JP2005219379A - Composite material for substrates and circuit board using it - Google Patents

Composite material for substrates and circuit board using it Download PDF

Info

Publication number
JP2005219379A
JP2005219379A JP2004030614A JP2004030614A JP2005219379A JP 2005219379 A JP2005219379 A JP 2005219379A JP 2004030614 A JP2004030614 A JP 2004030614A JP 2004030614 A JP2004030614 A JP 2004030614A JP 2005219379 A JP2005219379 A JP 2005219379A
Authority
JP
Japan
Prior art keywords
copper foil
composite material
substrate
protrusions
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004030614A
Other languages
Japanese (ja)
Other versions
JP4615226B2 (en
Inventor
Yuji Suzuki
裕ニ 鈴木
Hiroyuki Ohata
裕之 大幡
Takashi Akita
貴司 秋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Circuit Foil Co Ltd
Japan Gore Tex Inc
Original Assignee
Furukawa Circuit Foil Co Ltd
Japan Gore Tex Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Circuit Foil Co Ltd, Japan Gore Tex Inc filed Critical Furukawa Circuit Foil Co Ltd
Priority to JP2004030614A priority Critical patent/JP4615226B2/en
Publication of JP2005219379A publication Critical patent/JP2005219379A/en
Application granted granted Critical
Publication of JP4615226B2 publication Critical patent/JP4615226B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite material for a substrate which is low in hygroscopicity and high in peel strength in a laminate between a liquid crystal polymer film having enough heat resistance to soldering and copper foil and can be converted into a fine pattern and a circuit board using the composite material. <P>SOLUTION: In the composite material for the substrate, the surface-treated copper foil having a roughened surface 2.5-4.0 μm in surface roughness Rz and 25 or below in brightness by bonding roughening particles to at least one side of the copper foil and the insulating substrate containing at least 50% of a thermoplastic liquid crystal polymer are laminated. Projections by the roughening particles are preferably distributed approximately uniformly so that 6-35 projections 1-5 μm high are distributed in a range of an observation cross section of 25 μm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、熱可塑性液晶ポリマーを主体としたフィルム(以下液晶ポリマーフィルムということがある)と、該液晶ポリマーフィルムとの密着性を改良した表面処理銅箔とで形成したフレキシブル基板・高密度実装用多層基板・高周波基板等を製作する基板用複合材に関するものであり、更に、前記基板用複合材を用いて作成した回路基板に関するものである。   The present invention relates to a flexible substrate / high-density mounting formed of a film mainly composed of a thermoplastic liquid crystal polymer (hereinafter sometimes referred to as a liquid crystal polymer film) and a surface-treated copper foil having improved adhesion to the liquid crystal polymer film. The present invention relates to a composite material for a substrate for manufacturing a multi-layer substrate, a high-frequency substrate, and the like, and further relates to a circuit board formed using the composite material for a substrate.

電子機器の小型化、軽量化に伴い、最近の各種電子部品は高度に集積化されている。
これらに使用されるフレキシブル基板・高密度実装用多層基板・高周波基板等(以下これらを総称してプリント配線板ということもある)を製作する基板用複合材は、導体(銅箔)とそれを支持する絶縁基板から構成されており、絶縁基板は、導体間の絶縁を確保し、部品を支持する等の役割を果たすため、所定の強度をもたせている。
また、絶縁基板は、信号速度が速くなると、絶縁基板の材質が特性インピーダンスや信号伝搬速度等に重要に関与してくるため、その材料の誘電率、誘電体損失等の特性の向上が要求される。これらを満足させるために種々な材料が提案されている。例えば信号の高速伝搬のためには、誘電率が小さく、誘電体損失も小さい絶縁基板として、片面板には、フェノール樹脂材が多く、めっきスルーホールには、エポキシ樹脂材が用いられている。また、耐熱性を必要とする絶縁基板では耐熱性エポキシ樹脂、ポリイミドなどが使われている。この他、寸法安定性のよい材料、反りねじれの少ない材料、熱収縮の少ない材料などが開発されている。
As electronic devices become smaller and lighter, various recent electronic components are highly integrated.
The composite material for boards that manufactures flexible boards, multilayer boards for high-density mounting, high-frequency boards, etc. (hereinafter also collectively referred to as printed wiring boards) used in these is a conductor (copper foil) and it The insulating substrate is supported, and the insulating substrate has a predetermined strength in order to ensure insulation between conductors and to support components.
In addition, when the signal speed of an insulating substrate increases, the material of the insulating substrate plays an important role in the characteristic impedance, signal propagation speed, etc., so that improvement in the characteristics such as dielectric constant and dielectric loss of the material is required. The Various materials have been proposed to satisfy these requirements. For example, for high-speed signal propagation, an insulating substrate having a low dielectric constant and low dielectric loss, a single-sided plate is often made of a phenol resin material, and a plated through hole is made of an epoxy resin material. Insulating substrates that require heat resistance use heat-resistant epoxy resin, polyimide, or the like. In addition, materials with good dimensional stability, materials with less warping and twisting, and materials with less heat shrinkage have been developed.

フレキシブルな基板用複合材で耐熱性を必要とし、半田付けを行なう場合には、絶縁基板にポリイミドフィルムが用いられる。一方、カーボンインクなどの印刷で、半田を使わないところではポリエステルフィルムが用いられている。近年、フレキシブル基板等も複雑になり、多くの場合、ポリイミドフィルムが採用されているが、ポリイミドは吸水により誘電特性が大きく変化し、吸水環境下では高周波特性が大きく低下する欠点がある。また、高度な耐熱性を有する反面熱溶融性がないので、導体としての銅箔と複合化するには、銅箔上に前駆体であるポリアミック酸をキャスティングした後イミド化したり、ポリイミドフィルム上に接着層を設けた後銅箔とラミネートするなどの方法をとる必要があり工程が複雑化する問題がある。   When a flexible composite material for a substrate requires heat resistance and soldering is performed, a polyimide film is used for the insulating substrate. On the other hand, polyester film is used in places where solder is not used for printing with carbon ink or the like. In recent years, flexible substrates and the like have become complicated, and in many cases, polyimide films have been adopted. However, polyimide has a drawback in that dielectric properties greatly change due to water absorption, and high-frequency properties greatly decrease in a water absorption environment. On the other hand, since it has high heat resistance, there is no heat meltability, so to compound with copper foil as a conductor, after casting polyamic acid as a precursor on copper foil, imidization or on polyimide film It is necessary to take a method such as laminating with a copper foil after providing an adhesive layer, and there is a problem that the process becomes complicated.

そこで、ポリイミドに比べ、吸湿性が著しく低く従って誘電特性の変化が少なく、半田付けに耐えられる耐熱性を有する熱可塑性材料として、液晶ポリマーフィルムが注目されている。しかし、この液晶ポリマーフィルムは、銅箔との接着性が低く、銅箔とのピール強度がポリイミドに比較すると弱くなる傾向にある。
これらの絶縁基板に貼り合わされ導体として使用される銅箔は主に電解銅箔である。電解銅箔は、通常、図1に示すような電解製箔装置により製箔された銅箔に、図2に示すような表面処理装置により密着性向上のための粗化処理や防錆処理等を施して製造される。電解製箔装置は、回転するドラム状のカソード2(表面はSUS又はチタン製)と該カソードに対して同心円状に配置されたアノード1(鉛又は貴金属酸化物被覆チタン電極)からなる装置に、電解液3を流通させつつ両極間に電流を流して、該カソード表面に所定の厚さに銅を析出させ、その後該カソード表面から銅を箔状に剥ぎ取る。この段階の銅箔が未処理銅箔4であり、該未処理銅箔の電解液と接していた面がマット面、回転するドラム状のカソード2と接していた面が光沢面(シャイニー面)である。
Therefore, liquid crystal polymer films have attracted attention as thermoplastic materials having extremely low hygroscopicity as compared with polyimide, and hence little change in dielectric properties, and heat resistance that can withstand soldering. However, this liquid crystal polymer film has low adhesion to copper foil, and the peel strength with copper foil tends to be weak compared to polyimide.
The copper foil bonded to these insulating substrates and used as a conductor is mainly an electrolytic copper foil. The electrolytic copper foil is usually a copper foil produced by an electrolytic foil making apparatus as shown in FIG. 1, or a roughening treatment or rust prevention treatment for improving adhesion by a surface treatment apparatus as shown in FIG. 2. It is manufactured by applying. The electrolytic foil making apparatus is an apparatus comprising a rotating drum-like cathode 2 (the surface is made of SUS or titanium) and an anode 1 (lead or noble metal oxide-coated titanium electrode) arranged concentrically with the cathode. An electric current is passed between both electrodes while the electrolytic solution 3 is circulated to deposit copper to a predetermined thickness on the cathode surface, and then the copper is peeled off from the cathode surface in a foil shape. The copper foil at this stage is the untreated copper foil 4, the surface of the untreated copper foil in contact with the electrolyte is the matte surface, and the surface in contact with the rotating drum-shaped cathode 2 is the glossy surface (shiny surface). It is.

製箔された未処理銅箔4は、絶縁基板と積層し銅張積層板を製造するのに必要とされる接着強度(ピール強度)を高めるために、図2に示すような表面処理装置により未処理銅箔4に、電気化学的或いは化学的な表面処理を連続的に行う。図2は電気化学的に表面処理を連続的に行う装置を示すもので、未処理銅箔4を電解液5が充填された電解層、電解液6が充填された電解層を連続的に通過させ、電極7をアノードとし、銅箔自体をカソードとして表面処理を施し、絶縁(樹脂)基板と接着させるときの密着性を高めるために、粒状の銅を未処理銅箔4の表面に析出させる。この工程が粗化処理工程であり、粗化処理は、通常、未処理銅箔4のマット面又はシャイニー面に施される。これらの表面処理を施した後の銅箔が表面処理銅箔8であり、絶縁基板と積層されて基板用複合材として使用される。   In order to increase the adhesive strength (peel strength) required for producing a copper-clad laminate by laminating an untreated copper foil 4 made of a foil, a surface treatment apparatus as shown in FIG. 2 is used. The untreated copper foil 4 is continuously subjected to electrochemical or chemical surface treatment. FIG. 2 shows an apparatus for continuously performing electrochemical surface treatment. An untreated copper foil 4 is continuously passed through an electrolytic layer filled with an electrolytic solution 5 and an electrolytic layer filled with an electrolytic solution 6. Then, surface treatment is performed using the electrode 7 as an anode and the copper foil itself as a cathode, and granular copper is deposited on the surface of the untreated copper foil 4 in order to improve adhesion when adhered to an insulating (resin) substrate. . This step is a roughening treatment step, and the roughening treatment is usually applied to the mat surface or shiny surface of the untreated copper foil 4. The copper foil after the surface treatment is the surface-treated copper foil 8, which is laminated with an insulating substrate and used as a composite material for a substrate.

しかし、前記液晶ポリマーフィルムは、特にピール強度が出難い絶縁基板として知られている。一般的に、ピール強度は銅箔表面粗さRz(表面粗さ:Rz(JISB 0601−1994「表面粗さの定義と表示」の5.1(十点平均粗さの定義)に規定されたRzを言う。)に大きく影響されるといわれている。銅箔の表面粗さを考える場合は、未処理銅箔の表面粗さRzか、或いは表面処理銅箔の粒状銅で形成される凹凸の表面粗さRzが挙げられる。平滑な未処理銅箔にて、特にピール強度が出難い絶縁基板においてピール強度を出す場合には、粗化処理時に流す電流を大きくし、粗化処理時の粒伏銅の付着量を多くし表面粗さRzを増やして対処することを行なわれてきている。確かにこの方法は、ピール強度を上げるための目的には適しているが、高周波特性においては、表皮効果の関係上表面粗さRzが大きく、或いは粗化粒子の量が多くなることは好ましくない。また、液晶ポリマーフィルムの種類によっては、その表面の粗さRz値をあげても従来のフィルムのようにピール強度に相関が得られないフィルムの種類がある。このようなフィルムについては、粗化粒子において形成される突起物の形状と深く関係があることが分かってきている。   However, the liquid crystal polymer film is known as an insulating substrate that is particularly difficult to have peel strength. In general, peel strength is specified in 5.1 (definition of ten-point average roughness) of copper foil surface roughness Rz (surface roughness: Rz) (JISB 0601-1994 “Definition and Display of Surface Roughness”). When considering the surface roughness of the copper foil, the surface roughness Rz of the untreated copper foil or the irregularities formed by the granular copper of the surface-treated copper foil. The surface roughness Rz of a smooth unprocessed copper foil, particularly when peel strength is obtained on an insulating substrate that is difficult to produce peel strength, increases the current that flows during the roughening treatment. In order to increase the surface roughness Rz, the amount of adhered copper has been increased, and this method is suitable for the purpose of increasing the peel strength. The surface roughness Rz is large or rough due to the skin effect. Increasing the amount of particles is not preferable, and depending on the type of liquid crystal polymer film, there is a type of film that does not correlate with peel strength, even if the surface roughness Rz value is increased. It has been found that such films are closely related to the shape of the protrusions formed in the roughened particles.

また、プリント配線板における回路パターンも高密度化が要求され、微細な線幅と配線ピッチの配線からなる回路パターンが形成されるいわゆるファインパターンのプリント配線板が要求されるようになってきている。最近では、例えば配線ピッチが50μm〜100μm程度で線幅が30μ前後の高密度極細配線を有するプリント配線板が要求されている。ピール強度を上げるための粗化粒子における表面粗さRzを大きくしたり、付着量を多くすることは、これらのファインパターンを作成する場合にも不適当である。
そこで未処理銅箔の表面を粗くし、粗化粒子付着量を減らすことでピール強度を上げることも可能ではあるが、高周波特性・ファインパターンを作成する上では不適当である。
Further, the circuit pattern on the printed wiring board is also required to have a high density, and a so-called fine pattern printed wiring board on which a circuit pattern composed of wiring with a fine line width and wiring pitch is formed is required. . Recently, for example, a printed wiring board having high-density ultrafine wiring with a wiring pitch of about 50 μm to 100 μm and a line width of about 30 μm is required. Increasing the surface roughness Rz of the roughened particles for increasing the peel strength and increasing the amount of adhesion are also inappropriate for producing these fine patterns.
Therefore, it is possible to increase the peel strength by roughening the surface of the untreated copper foil and reducing the amount of roughened particles, but it is not suitable for creating high-frequency characteristics / fine patterns.

液晶ポリマーフィルムとの接着性を改良した銅箔として、特定の元素を含み、特定厚さの表面酸化層・防錆層を設けた銅合金箔が提案(特許文献1参照)されている。しかし、液晶ポリマーをフィルム化すると、棒状分子が面方向に配向するために、厚み方向の強度が極端に低下するので、この様な粗化を行わない銅箔では、液晶ポリマーフィルムが銅箔界面との極近傍で容易に破壊してしまうために、結果として十分なピール強度が得られていない。
また、液晶ポリマーの接着性を改善するために、プラズマ(特許文献2参照)、UV処理(特許文献3参照)などの表面処理を施す方法も提案されているが、これらの方法を用いても、表面粗さの低い銅箔には十分な接着性が得られていない。
そこで、高周波特性が良いこと・ファインパターンが作製できること・ピール強度を上げることを可能にする銅箔の開発と、この銅箔を使用した耐熱性、フレキシブル性に富む基板用複合材の出現が要求されている。
As a copper foil having improved adhesion to a liquid crystal polymer film, a copper alloy foil containing a specific element and provided with a surface oxide layer and a rust preventive layer having a specific thickness has been proposed (see Patent Document 1). However, when the liquid crystal polymer is made into a film, the rod-shaped molecules are oriented in the plane direction, so the strength in the thickness direction is extremely reduced. As a result, a sufficient peel strength is not obtained.
Moreover, in order to improve the adhesiveness of the liquid crystal polymer, methods for surface treatment such as plasma (see Patent Document 2), UV treatment (see Patent Document 3) have been proposed. The copper foil with low surface roughness does not have sufficient adhesion.
Therefore, it is required to develop copper foils that have good high-frequency characteristics, to be able to produce fine patterns, to increase peel strength, and to emerge as a heat-resistant and flexible substrate composite material that uses these copper foils. Has been.

特開2003−64431号公報JP 2003-64431 A 特開2001−49002号公報JP 2001-49002 A 特開2000−233448号公報JP 2000-233448 A

本発明は、このような従来技術の問題点を解消すべくなされたものであり、吸湿性が著しく低いために誘電特性の変化が少なく、半田付けに耐えられる耐熱性を有し、加熱により銅箔とラミネートが可能である液晶ポリマーフィルムと、該液晶ポリマーフィルムに対し、ピール強度が大きく、ファインパターン化が可能な表面処理銅箔とを使用し、特に高周波特性が良好な基板用複合材及びそれを用いた回路基板を提供することにある。   The present invention has been made to solve such problems of the prior art, and since it has extremely low hygroscopicity, it has little change in dielectric properties, has heat resistance that can withstand soldering, and is heated by copper. Using a liquid crystal polymer film that can be laminated with a foil, and a surface-treated copper foil that has a high peel strength and can be made into a fine pattern with respect to the liquid crystal polymer film, The object is to provide a circuit board using the same.

本発明は、少なくとも銅箔の片面に粗化粒子を付着して、その表面粗さがRz:2.5〜4.0μmであり、明度値:25以下である表面処理銅箔と、50%以上が熱可塑性液晶ポリマーからなる絶縁基板とから形成される基板用複合材である。
更に、前記本発明表面処理銅箔は、前記粗化粒子から突起物が形成されており、該突起物は、高さが1μm〜5μmの突起物が観察断面25μmの範囲に6〜35個の個数で、略均等に分布している銅箔であることが好ましく、前記表面処理銅箔の突起物における各突起物の最大幅は、0.01μm以上、25μm範囲に存在する突起物の個数(n)で25μmを割った長さの2倍以下であることが好ましい。
更に、本発明は、前記表面処理銅箔の突起物において各突起物の最大幅は、0.01μm以上、25μm範囲に存在する突起物の個数(n)で25μmを割った長さの2倍以下であることが好ましい。
更に、本発明は、好適には、前記表面処理銅箔の粗化処理前の銅箔として電解銅箔を使用すると良い。
更に、本発明は、前記表面処理銅箔に使用する未処理銅箔の少なくとも表面処理を行う面の粗さはRzが、2μm以下である銅箔が好ましい。
更に、本発明は、前記表面処理銅箔の粗化処理面の表面粗さRzが2μm以下のマット面とすることが好ましい。
更に、本発明は、前記絶縁基板を熱可塑性液晶ポリマーを50%以上含む樹脂からなるフィルムとすることが好ましい。
更に、本発明は、前記基板用複合材により作成したことを特徴とする回路基板である。
In the present invention, at least one surface of a copper foil is attached with roughened particles, the surface roughness is Rz: 2.5 to 4.0 μm, and the brightness value is 25 or less, and 50% The above is a composite material for a substrate formed from an insulating substrate made of a thermoplastic liquid crystal polymer.
Further, in the surface-treated copper foil of the present invention, protrusions are formed from the roughened particles, and the protrusions are 6 to 35 protrusions having a height of 1 μm to 5 μm and an observation cross section of 25 μm. It is preferable that the copper foil is distributed evenly in terms of the number, and the maximum width of each protrusion in the protrusions of the surface-treated copper foil is 0.01 μm or more and the number of protrusions existing in a range of 25 μm ( The length is preferably not more than twice the length obtained by dividing 25 μm by n).
Further, according to the present invention, in the protrusions of the surface-treated copper foil, the maximum width of each protrusion is 0.01 μm or more and twice the length obtained by dividing 25 μm by the number (n) of protrusions existing in the 25 μm range. The following is preferable.
Furthermore, in the present invention, it is preferable to use an electrolytic copper foil as the copper foil before the roughening treatment of the surface-treated copper foil.
Furthermore, in the present invention, a copper foil having a surface roughness Rz of 2 μm or less is preferred for at least the surface of the untreated copper foil used for the surface-treated copper foil.
Furthermore, in the present invention, it is preferable that the roughened surface of the surface-treated copper foil has a matte surface having a surface roughness Rz of 2 μm or less.
Furthermore, in the present invention, the insulating substrate is preferably a film made of a resin containing 50% or more of a thermoplastic liquid crystal polymer.
Furthermore, the present invention is a circuit board characterized by being made of the substrate composite material.

本発明は、吸湿性が著しく低いために誘電特性の変化が少なく、半田付けに耐えられる耐熱性を有する液晶ポリマーフィルムと、該液晶ポリマーフィルムに対し、ピール強度が大きく、ファインパターン化が可能な表面処理銅箔とを使用することで、特にファインパターンで高周波特性に優れた基板用複合材及びそれを用いた回路基板を提供することができる。   The present invention has a remarkably low hygroscopic property, so that there is little change in dielectric properties and heat resistance that can withstand soldering, and the liquid crystal polymer film has a high peel strength and can be made into a fine pattern. By using the surface-treated copper foil, it is possible to provide a composite material for a substrate that is particularly fine and excellent in high-frequency characteristics and a circuit board using the same.

本発明では、表面処理前の銅箔(未処理銅箔)は、電解もしくは圧延によって製造された銅箔である。その銅箔の厚さは1μm〜200μmであり、少なくとも片面の表面粗さがRz:0.01μm〜2μmの銅もしくは銅合金箔であることが好ましい。箔の厚みについては、厚さが1μm以下の銅箔に対し、その表面上に粗化処理を行なうことは、非常に難しく、また、高周波プリント配線板用に使用する銅箔としては、200μm以上の箔は現実的でないからである。   In the present invention, the copper foil before surface treatment (untreated copper foil) is a copper foil produced by electrolysis or rolling. The thickness of the copper foil is 1 μm to 200 μm, and at least one surface is preferably a copper or copper alloy foil having a surface roughness of Rz: 0.01 μm to 2 μm. Regarding the thickness of the foil, it is very difficult to roughen the surface of the copper foil having a thickness of 1 μm or less, and the copper foil used for a high-frequency printed wiring board is 200 μm or more. This is because the foil is not realistic.

未処理銅箔の表面粗さについては、Rz:0.01μm以下の箔は、現実的に製造も困難であり、もし製造できたとしても製造コストもかかり高価となることから現実的に不適であり、また、Rz:2μm以上の未処理銅箔を使用してもよいが、高周波特性及びファインパターン化を考えると未処理銅箔の表面の粗さがRz:2μm以下であることが更に好ましい。   Regarding the surface roughness of the untreated copper foil, a foil with Rz: 0.01 μm or less is practically difficult to manufacture, and even if it can be manufactured, it is costly and expensive, so it is not practically suitable. In addition, although an untreated copper foil of Rz: 2 μm or more may be used, the surface roughness of the untreated copper foil is more preferably Rz: 2 μm or less in consideration of high frequency characteristics and fine patterning. .

本発明においては、上記した未処理銅箔について表面粗化処理を行う。
未処理銅箔の表面の表面粗化処理は、未処理銅箔の表面に粗化粒子を付着させ、その表面粗さがRz:2.5〜4.0μmの粗化面とする。Rzが2.5μm未満では、ピール強度が低いためその目的を果たす表面処理銅箔としては満足でなく、また、Rzが4.0μmより大きいと、高周波特性が低下するうえにファインパターン化に不向きとなるためである。
In the present invention, surface roughening treatment is performed on the above-described untreated copper foil.
In the surface roughening treatment of the surface of the untreated copper foil, roughened particles are attached to the surface of the untreated copper foil, and the surface roughness is a roughened surface of Rz: 2.5 to 4.0 μm. If the Rz is less than 2.5 μm, the peel strength is low, so it is not satisfactory as a surface-treated copper foil that fulfills its purpose. If the Rz is greater than 4.0 μm, the high-frequency characteristics are deteriorated and unsuitable for fine patterning. It is because it becomes.

また,本発明においては表面粗化処理を行った粗化処理銅箔は、明度値が25以下である必要がある。本発明における明度とは、通常、表面の粗さを見る指標として使用されている明度であり、測定方法としては、測定サンプル表面に光をあて光の反射量を測定し明度値として表す方法である。この方法で表面処理銅箔の処理面の明度を測定すると、表面粗さのRzが大きいかまたは粗化粒子間の溝の深さが深い時は、光の反射量が少なくなるため明度値が低くなり、平滑だと光の反射量が大きくなり明度が高くなる傾向がある。   In the present invention, the roughened copper foil subjected to the surface roughening treatment needs to have a brightness value of 25 or less. The lightness in the present invention is usually the lightness used as an index for viewing the roughness of the surface, and the measuring method is a method of measuring the amount of reflected light by applying light to the surface of the measurement sample and expressing it as a lightness value. is there. When the brightness of the treated surface of the surface-treated copper foil is measured by this method, when the surface roughness Rz is large or the depth of the groove between the roughened particles is deep, the lightness value is reduced because the amount of reflected light is reduced. If it is low and smooth, the amount of reflected light tends to increase and the brightness tends to increase.

絶縁基板(液晶ポリマーフィルム)とのピール強度を向上させるためには明度を25以下とすると良い。また、明度26以上では、粗化面を大きなRzとしても凹凸がなだらかな凹凸となるため表面処理銅箔と絶縁基板(液晶ポリマーフィルム)との食いつきが悪く、ピール強度が向上しないためである。   In order to improve the peel strength with the insulating substrate (liquid crystal polymer film), the brightness is preferably 25 or less. On the other hand, when the brightness is 26 or more, even if the roughened surface has a large Rz, the unevenness becomes gentle, so that the bite between the surface-treated copper foil and the insulating substrate (liquid crystal polymer film) is poor and the peel strength is not improved.

なお、明度の測定は、被測定銅箔に
Ni: 0.01〜0.5mg/dm2
Zn: 0.01〜0.5mg/dm2
Cr: 0.01〜0.3mg/dm2
の範囲内の防錆処理を施した後、明度計(スガ試験機株式会社製、機種名:SMカラーコンピューター 型番:SM−4)を使用して明度を測定した。
以上のような表面粗さ(Rz)および明度値を兼ね備えた本発明の表面処理銅箔は、液晶ポリマーフィルムと積層・複合化されて、接着性に難点のある液晶ポリマーフィルムの欠点を補い、後記する実施例・比較例から明らかなように、優れたピール強度およびファインパターン特性を有する基板用複合材を提供することができる。
The brightness is measured on the copper foil to be measured.
Ni: 0.01 to 0.5 mg / dm 2
Zn: 0.01 to 0.5 mg / dm 2
Cr: 0.01 to 0.3 mg / dm 2
Then, the brightness was measured using a lightness meter (manufactured by Suga Test Instruments Co., Ltd., model name: SM color computer, model number: SM-4).
The surface-treated copper foil of the present invention having both surface roughness (Rz) and brightness value as described above is laminated and combined with a liquid crystal polymer film to compensate for the drawbacks of the liquid crystal polymer film having a difficulty in adhesion, As will be apparent from Examples and Comparative Examples described later, it is possible to provide a composite material for substrates having excellent peel strength and fine pattern characteristics.

本発明においては、上記したように、未処理銅箔の表面を粗化処理したものであるが、さらに優れたピール強度およびファインパターン特性を得るために下記する粗化粒子から形成される突起物を略均等に存在(分布)することが好ましい。突起物の高さは、1.0μm乃至5.0μmのものがよい。該未処理銅箔表面に形成される突起物の高さが、1.0μm以下では、高さが低いためピール強度を上げる効果が得られず、5.0μm以上では突起物の分布が均一にならず、表面処理箔の表面粗さRzが範囲毎にバラツキが大きくなるため、安定性のあるピール強度が保てず、また高周波特性低下するうえに、ファインパターン化に不向きとなるためである。尚、ここでいう高さとは、未処理銅箔の表面と突起物の頂点との距離をいう。   In the present invention, as described above, the surface of the untreated copper foil is roughened, but in order to obtain further excellent peel strength and fine pattern characteristics, the protrusions formed from the roughened particles described below Are preferably present (distributed) substantially evenly. The height of the protrusion is preferably 1.0 μm to 5.0 μm. If the height of the protrusions formed on the surface of the untreated copper foil is 1.0 μm or less, the height is low, so the effect of increasing the peel strength cannot be obtained. If the height is 5.0 μm or more, the distribution of the protrusions is uniform. This is because the surface roughness Rz of the surface-treated foil varies widely from range to range, so that a stable peel strength cannot be maintained, high-frequency characteristics are deteriorated, and it is not suitable for fine patterning. . Here, the height refers to the distance between the surface of the untreated copper foil and the top of the protrusion.

また、突起物の個数は、数が少なければ、ピール強度が出せず、また個数が多いと銅箔表面と突起物との密着性が弱く数が多くてもその効果は逆に減少することから、観察断面25μm内に6個〜35個が好適であり、特に10個〜20個が最適である。   Also, if the number of protrusions is small, peel strength cannot be obtained, and if the number is large, the adhesion between the copper foil surface and the protrusions is weak and the effect decreases even if the number is large. In the observation cross section of 25 μm, 6 to 35 are preferable, and 10 to 20 are particularly preferable.

ここで、本発明でいう突起物の概念について説明すると、隣接する突起物の間に形成される溝部の底と突起物の頂点との距離(以下、溝深さということがある。)が0.3μm未満の場合、このような隣接する突起物は1つの突起物として把握し、また、溝深さが0.3μm以上の場合、このような隣接する突起物は2つの突起物として把握する。この溝深さは、前記した突起物の高さが未処理銅箔の表面と突起物の頂点との距離をいうのに対し、表面粗化処理を行った後の溝部の底と突起物の頂点との距離をいう点で異なる。   Here, the concept of the protrusion in the present invention will be described. The distance between the bottom of the groove formed between adjacent protrusions and the apex of the protrusion (hereinafter sometimes referred to as groove depth) is 0. When the depth is less than 3 μm, the adjacent protrusions are recognized as one protrusion, and when the groove depth is 0.3 μm or more, the adjacent protrusions are recognized as two protrusions. . This groove depth refers to the distance between the surface of the untreated copper foil and the top of the protrusion, while the height of the protrusion described above is the distance between the bottom of the groove and the protrusion after the surface roughening treatment. It differs in the point of the distance from the vertex.

突起物の数を数える方法としては、表面処理銅箔を樹脂に埋め、研磨を行った後断面SEM観察を行い観察写真にて、25μmの長さで上記定義する突起物の数が何個あるかを数える方法が挙げられる。本発明は、この方法を用いて測定した数を実施例の表に記載した。また、断面観察の概略図を図3・4・5に記載した。   As a method of counting the number of protrusions, a method of counting the number of protrusions as defined above with a length of 25 μm by observing a cross-sectional SEM after embedding a surface-treated copper foil in a resin, polishing, and performing observation Is mentioned. The present invention lists the numbers measured using this method in the table of examples. In addition, schematic views of cross-sectional observation are shown in FIGS.

さらに、高さが1.0μm〜5.0μmである突起物の個数が、25μm内に6個〜35個存在し、該突起物間に深さが0.3μm以上の溝を存在させて略均等に分布させることは、突起物が25μm以内で部分的に集中することを避けることができ、銅箔の幅方向・長手方向でピール強度の安定化が図れる。   Further, the number of protrusions having a height of 1.0 μm to 5.0 μm is 6 to 35 within 25 μm, and a groove having a depth of 0.3 μm or more is present between the protrusions. Distributing evenly prevents the protrusions from being partially concentrated within 25 μm, and can stabilize the peel strength in the width direction and the longitudinal direction of the copper foil.

本発明で記載している「略均等に分布している」とは、
「突起物の頂点と銅箔表面の間の高さが、1.0μm〜5.0μmである突起物の個数をn(個)とし、突起物を断面観察した際の観察幅を25(μm)とした時に、25/n(μm)の幅の領域に、少なくとも該突起物の1つの一部分がその領域に存在している」ことをいう。
As described in the present invention, “almost uniformly distributed”
“The height between the top of the protrusion and the copper foil surface is 1.0 μm to 5.0 μm, and the number of protrusions is n (pieces), and the observation width when the protrusion is observed in cross section is 25 (μm ), At least a part of the protrusion is present in the region having a width of 25 / n (μm) ”.

また、ピール強度の安定化を図るためには、形成する突起物の幅に均一性があることが望ましく、各突起物の最大幅が、0.01μm以上、25μmの範囲内に存在する突起物の個数で25μmを割った長さの2倍以下の幅であることが好ましい。尚、ここでいう最大幅とは、前記した断面のSEM観察において、突起物の高さ方向と垂直な方向の距離の最大値をいう。   Further, in order to stabilize the peel strength, it is desirable that the width of the protrusions to be formed is uniform, and the protrusions whose maximum width is within the range of 0.01 μm or more and 25 μm. The width is preferably not more than twice the length divided by 25 μm. In addition, the maximum width here means the maximum value of the distance in the direction perpendicular to the height direction of the projection in the SEM observation of the cross section.

また突起物間の溝深さにおいては、突起物間の平均溝深さが、0.5μm以上であると更に好ましい。
突起物間の平均溝深さは、溝の深さが0.3μm以上の突起物n個に対して、各突起物の両サイドの溝深さを測定し、その時の値を A1(μm) B1(μm)・・・・・・・An(μm) Bn(μm)とした時、次式により求めた値である。
((A1+B1)+・・・・・・+(An+Bn))/2/n
Further, regarding the groove depth between the protrusions, the average groove depth between the protrusions is more preferably 0.5 μm or more.
For the average groove depth between protrusions, for n protrusions with a groove depth of 0.3 μm or more, measure the groove depth on both sides of each protrusion, and the value at that time is A1 (μm) B1 (μm)... An (μm) When Bn (μm), the value obtained by the following equation.
((A1 + B1) + ... + (An + Bn)) / 2 / n

図3は本発明の実施形態に適合した表面処理銅箔の観察断面を示す図である。突起の数は、25μm以内に6個以上存在し、その高さは1〜5μmの範囲に入っており、溝深さは0.3μm以上であり、突起物の最大幅は0.01μm以上、25μmの範囲内に存在する突起物の個数で25μmを割った長さの2倍以下の幅となっている。
図4は突起の最大幅が0.01μm以上、25μmの範囲内に存在する突起物の個数で25μmを割った長さの2倍以上の幅の突起物が一部に存在する。図5は突起物が均等に分布していない断面を示している。
このように、図3に示す断面形状の表面処理銅箔は液晶ポリマーフィルムとの密着性が良く、ファインパターンの回路構成が可能である。図4に示す断面形状の表面処理銅箔は幅の広い突起物が一部に存在し、部分的に液晶ポリマーフィルムとの密着性が良くない部分が存在するためファインパターン回路では支障がでることもあるが、他の一般的な用途には支障とならない程度である。図5に示すように突起物が均等に分布されていない場合には液晶ポリマーフィルムとの密着性に支障が生じ、ファインパターンの回路構成ができない恐れが生じる。
FIG. 3 is a view showing an observation cross section of the surface-treated copper foil suitable for the embodiment of the present invention. The number of protrusions is 6 or more within 25 μm, the height is in the range of 1 to 5 μm, the groove depth is 0.3 μm or more, and the maximum width of the protrusion is 0.01 μm or more, The width is not more than twice the length obtained by dividing 25 μm by the number of protrusions existing in the range of 25 μm.
In FIG. 4, there are some protrusions having a width that is twice or more the length obtained by dividing 25 μm by the number of protrusions having a maximum width of 0.01 μm or more and 25 μm. FIG. 5 shows a cross section in which the protrusions are not evenly distributed.
As described above, the surface-treated copper foil having a cross-sectional shape shown in FIG. 3 has good adhesion to the liquid crystal polymer film, and a fine pattern circuit configuration is possible. The surface-treated copper foil having a cross-sectional shape shown in FIG. 4 has a wide protrusion in part, and there is a part that does not have good adhesion to the liquid crystal polymer film, so that there is a problem in the fine pattern circuit. However, it does not interfere with other general purposes. As shown in FIG. 5, when the projections are not evenly distributed, the adhesion with the liquid crystal polymer film is hindered, and there is a possibility that the circuit configuration of the fine pattern cannot be made.

本発明の基板複合材を構成する表面処理箔の突起物を形成する粗化粒子は、CuまたはCuとMoの合金粒子やCuとNi、Co、Fe、Cr、V及びWの群から選ばれる少なくとも1種の元素を含む銅合金である。
Cu粒子又はCuとMoの合金粒子で所望の突起物は得られるが、Cu粒子又はCuとMoの合金粒子にNi、Co、Fe、Cr、V及びWの群から選ばれる少なくとも1種の元素を含む2種類以上の合金粗化粒子で形成された突起物は更に均一性のある突起物を形成させることができるため効果的である。これらの突起物を形成する粗化粒子は、化学結合を液晶ポリマーフィルム(絶縁基板)と行うため、ピール強度を増大させると考えられる。絶縁基板を構成する樹脂の種類にもよるが、ピール強度を化学結合で増大させる粒子としてCu−Mo合金、Cu−Ni合金、Cu−Co合金、Cu−Fe合金、Cu−Cr合金、Cu−Mo−Ni合金、Cu−Mo−Cr合金、Cu−Mo−Co合金、Cu−Mo−Fe合金等を挙げることができる。
The roughening particles forming the protrusions of the surface-treated foil constituting the substrate composite material of the present invention are selected from the group consisting of Cu or alloy particles of Cu and Mo or Cu and Ni, Co, Fe, Cr, V and W. It is a copper alloy containing at least one element.
The desired projections can be obtained with Cu particles or alloy particles of Cu and Mo, but at least one element selected from the group of Ni, Co, Fe, Cr, V and W can be used as the Cu particles or alloy particles of Cu and Mo. Projections formed of two or more types of alloy roughening particles containing, are effective because they can form more uniform projections. The roughened particles forming these protrusions are thought to increase the peel strength because chemical bonding is performed with the liquid crystal polymer film (insulating substrate). Depending on the type of resin constituting the insulating substrate, Cu-Mo alloy, Cu-Ni alloy, Cu-Co alloy, Cu-Fe alloy, Cu-Cr alloy, Cu- A Mo-Ni alloy, a Cu-Mo-Cr alloy, a Cu-Mo-Co alloy, a Cu-Mo-Fe alloy, etc. can be mentioned.

前記突起物を形成する合金粒子に含まれるMo、Ni、Co、Fe、Cr、V及びWの群から選ばれる少なくとも1種の元素は、Cuの存在量に対し0.01ppm〜20%を占めることが好ましい。存在量が20%を越える合金組成では、回路パターンをエッチングする際に、溶解しにくくなるためである。更に、均一な突起物を得るために、各種処理液の組成、電流密度、液温、処理時間を最適にすることが望ましい。その一例を実施例に示す。   At least one element selected from the group of Mo, Ni, Co, Fe, Cr, V and W contained in the alloy particles forming the protrusions occupies 0.01 ppm to 20% with respect to the amount of Cu present. It is preferable. This is because an alloy composition having an abundance exceeding 20% is difficult to dissolve when the circuit pattern is etched. Furthermore, in order to obtain uniform protrusions, it is desirable to optimize the composition, current density, solution temperature, and treatment time of various treatment solutions. One example is shown in the Examples.

また、突起物を設けた表面に、粉落ち性・耐塩酸性・耐熱性・導電性を向上させることを目的にNi、Ni合金、Zn、Zn合金、Agの群から選ばれる少なくとも1種の金属めっき層を設けると良い。
更に、突起物を設けていない方の表面にも耐塩酸性・耐熱性・導電性を向上させることを目的にNi、Ni合金、Zn、Zn合金、Agの少なくとも1種の金属めっき層を付着させると良い。これらの目的を果たすためには、付着金属量として0.05mg/dm2以上、10mg/dm2以下であることが望ましい。
特に液晶ポリマーフィルム等との複合化においてNi金属またはNi合金は、ピール強度向上に効果がある。
上記構成からなるめっき層の上にCrおよび/またはクロメート被膜を形成させ防錆処理を行ない、または、必要に応じシランカップリング処理または防錆処理+シランカップリングを施す。
In addition, at least one metal selected from the group consisting of Ni, Ni alloy, Zn, Zn alloy, and Ag is provided on the surface provided with the protrusions for the purpose of improving powder fall resistance, hydrochloric acid resistance, heat resistance, and conductivity. A plating layer may be provided.
Furthermore, at least one metal plating layer of Ni, Ni alloy, Zn, Zn alloy, or Ag is attached to the surface on which the protrusion is not provided for the purpose of improving hydrochloric acid resistance, heat resistance, and conductivity. And good. In order to achieve these purposes, the amount of deposited metal is preferably 0.05 mg / dm 2 or more and 10 mg / dm 2 or less.
In particular, Ni metal or Ni alloy is effective in improving the peel strength when combined with a liquid crystal polymer film or the like.
A Cr and / or chromate film is formed on the plating layer having the above-described structure, and a rust prevention treatment is performed, or a silane coupling treatment or a rust prevention treatment + silane coupling is performed as necessary.

絶縁基板としては、液晶ポリマーを50%以上含む組成物からなるフィルムや射出成形板が用いられる。この組成物には、線膨張係数制御、接着性改善、物性改善等の目的で、無機フィラーやポリエーテルサルホン、ポリアミドイミド、ポリエーテルイミド、ポリエーテルエーテルケトン、熱可塑ポリイミド等の熱可塑性樹脂を混合することも出来るが、液晶ポリマーの含有量が50%を下回ると、低吸水性、耐熱性、誘電特性などの面で液晶ポリマーの特性が失われてしまい好ましくない。   As the insulating substrate, a film or an injection-molded plate made of a composition containing 50% or more of a liquid crystal polymer is used. This composition includes thermoplastic resins such as inorganic filler, polyethersulfone, polyamideimide, polyetherimide, polyetheretherketone, and thermoplastic polyimide for the purpose of controlling the linear expansion coefficient, improving adhesiveness, and improving physical properties. However, if the content of the liquid crystal polymer is less than 50%, the properties of the liquid crystal polymer are lost in terms of low water absorption, heat resistance, dielectric properties and the like, which is not preferable.

ここで用いられる液晶ポリマーは、加熱溶融状態で液晶性を示す熱可塑性液晶ポリマーを指し、溶液中で液晶性を示すが、加熱溶融をおこさない芳香族ポリアミドのようなライオトロピック型の液晶ポリマーは用いられない。このような液晶ポリマーの代表例としては、モノマーとして芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸、芳香族ジオール等を単独、もしくは共重合した全芳香族ポリエステルが挙げられる。   The liquid crystal polymer used here refers to a thermoplastic liquid crystal polymer that exhibits liquid crystallinity in a heated and melted state, and exhibits liquid crystallinity in a solution, but a lyotropic liquid crystal polymer such as an aromatic polyamide that does not cause heat melting. Not used. A typical example of such a liquid crystal polymer is a wholly aromatic polyester obtained by homopolymerizing or copolymerizing aromatic hydroxycarboxylic acid, aromatic dicarboxylic acid, aromatic diol or the like as a monomer.

この絶縁基板としての液晶ポリマーフィルムと表面処理銅箔を貼り合わせる方法としては、熱プレス方式、連続ロールラミネート方式、連続ベルトプレス方式などを用いることができ、接着剤等を介さずに熱圧着することができる。   As a method of laminating the liquid crystal polymer film as the insulating substrate and the surface-treated copper foil, a hot press method, a continuous roll laminating method, a continuous belt press method, or the like can be used, and thermocompression bonding is performed without using an adhesive or the like. be able to.

以下に、本発明を実施例に基づいて更に詳しく説明するが、本発明はこれらに限定されるものではない。
本実施例においては、銅箔、粗化処理用めっき液、絶縁基板用フィルムとして、以下に記載したものを用いた。
Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.
In the present Example, what was described below was used as copper foil, the plating solution for roughening processes, and the film for insulating substrates.

(イ)銅箔:
(i)原箔1
厚さ:12μmで、マット面粗度:Rz=1.26μm、光沢面粗度:Rz=1.82μmの未処理電解銅箔、及び未処理圧延銅箔を用意した。
(ii)原箔2
厚さ:12μmで、マット面粗度:Rz=1.52μm、光沢面粗度:Rz=1.46μmの未処理電解銅箔を用意した。
(iii)原箔3
厚さ:12μmで、マット面粗度:Rz=1.86μm、光沢面粗度:Rz=1.2μmの未処理電解銅箔を用意した。
(I) Copper foil:
(i) Raw foil 1
An untreated electrolytic copper foil and an untreated rolled copper foil having a thickness of 12 μm, a mat surface roughness of Rz = 1.26 μm, and a glossy surface roughness of Rz = 1.82 μm were prepared.
(ii) Raw foil 2
An untreated electrolytic copper foil having a thickness of 12 μm, a mat surface roughness: Rz = 1.52 μm, and a glossy surface roughness: Rz = 1.46 μm was prepared.
(iii) Raw foil 3
An untreated electrolytic copper foil having a thickness of 12 μm, a mat surface roughness: Rz = 1.86 μm, and a gloss surface roughness: Rz = 1.2 μm was prepared.

(ロ)表面粗化処理用めっき液およびめっき条件:
(i)電気めっきA
めっき浴1
硫酸銅(Cu金属として) 5〜10g/dm3
硫 酸 30〜120g/dm3
モリブデン酸アンモニウム(Mo金属として) 0.1〜5.0g/dm3
電流密度 10〜60A/dm2
通電時間 1秒〜2分
浴 温 20〜60℃
めっき浴2
硫酸銅(Cu金属として) 20〜70g/dm3
硫 酸 30〜120g/dm3
電流密度 5〜60A/dm2
通電時間 1秒〜2分
浴温 20℃〜65℃
(B) Surface roughening plating solution and plating conditions:
(i) Electroplating A
Plating bath 1
Copper sulfate (as Cu metal) 5-10g / dm 3
Sulfuric acid 30-120 g / dm 3
Ammonium molybdate (as Mo metal) 0.1-5.0 g / dm 3
Current density 10-60A / dm 2
Energizing time 1 second-2 minutes Bath temperature 20-60 ° C
Plating bath 2
Copper sulfate (as Cu metal) 20-70 g / dm 3
30 to 120 g / dm 3 of sulfuric acid,
Current density 5-60A / dm 2
Energizing time 1 second to 2 minutes Bath temperature 20 ° C to 65 ° C

(ii)電気めっきB
めっき浴1
硫酸銅(Cu金属として) 1〜50g/dm3
硫酸ニッケル(Ni金属として) 2〜25g/dm3
メタパナジン酸アンモニウム(V金属として) 0.1〜15g/dm3
pH 1.0〜4.5
電流密度 1〜60A/dm2
通電時間 1秒〜2分
浴 温 20℃〜60℃
めっき浴2
硫酸銅(Cu金属として) 10〜70g/dm3
硫 酸 30〜120g/dm3
電流密度 5〜60A/dm2
通電時間 1秒〜2分
浴 温 20℃〜65℃
(ii) Electroplating B
Plating bath 1
Copper sulfate (as Cu metal) 1-50g / dm 3
Nickel sulfate (as Ni metal) 2-25g / dm 3
Ammonium metapanadate (as V metal) 0.1-15 g / dm 3
pH 1.0-4.5
Current density 1-60A / dm 2
Energizing time 1 second to 2 minutes Bath temperature 20 ° C to 60 ° C
Plating bath 2
Copper sulfate (as Cu metal) 10-70 g / dm 3
Sulfuric acid 30-120 g / dm 3
Current density 5~60A / dm 2,
Energizing time 1 second to 2 minutes Bath temperature 20 ° C to 65 ° C

(iii)電気めっきC
めっき浴1
硫酸銅(Cu金属として) 1〜50/dm3
硫酸コバルト(Co金属として) 1〜50g/dm3
モリブデン酸アンモニウム(Mo金属として) 0.1〜10g/dm3
pH 0.5〜4.0
電流密度 1〜60A/dm2
通電時間 1秒〜2分
浴 温 20℃〜60℃
めっき浴2
硫酸銅(Cu金属として) 10〜70g/dm3
硫 酸 30〜120g/dm3
電流密度 5〜60A/dm2
通電時間 1秒〜2分
浴 温 20℃〜65℃
(iii) Electroplating C
Plating bath 1
Copper sulfate (as Cu metal) 1-50 / dm 3 ,
Cobalt sulfate (as Co metal) 1-50 g / dm 3
Ammonium molybdate (as Mo metal) 0.1-10 g / dm 3
pH 0.5-4.0
Current density 1-60A / dm 2
Energizing time 1 second to 2 minutes Bath temperature 20 ° C to 60 ° C
Plating bath 2
Copper sulfate (as Cu metal) 10-70 g / dm 3
Sulfuric acid 30-120 g / dm 3
Current density 5-60A / dm 2
Energizing time 1 second to 2 minutes Bath temperature 20 ° C to 65 ° C

(iv)電気めっきA’ B’(比較例)
めっき浴3
硫酸銅(Cu金属として) 20〜70g/dm3
硫 酸 30〜120g/dm3
電流密度 3A/dm2
通電時間 2分以上(表面粗さにおいて時間を変更)
浴 温 15℃
(iv) Electroplating A'B '(comparative example)
Plating bath 3
Copper sulfate (as Cu metal) 20-70 g / dm 3
Sulfuric acid 30-120 g / dm 3
Current density 3A / dm 2
Energizing time 2 minutes or more (change time in surface roughness)
Bath temperature 15 ℃

(ハ)絶縁基板用フィルム:
(i)液晶ポリマーフィルム(絶縁基板)1(以下「フィルム1」とする)
ジャパンゴアテックス(株)製のI型液晶ポリマーフィルム、BIAC BA050F−NT
を用いた。
(ii) 液晶ポリマーフィルム2(絶縁基板)(以下「フィルム2」とする)
ジャパンゴアテックス(株)製のII型液晶ポリマーフィルム、BIAC BC050F−NT
を用いた。
(C) Film for insulating substrate:
(i) Liquid crystal polymer film (insulating substrate) 1 (hereinafter referred to as “film 1”)
Japan Gore-Tex Co., Ltd. type I liquid crystal polymer film, BIAC BA050F-NT
Was used.
(ii) Liquid crystal polymer film 2 (insulating substrate) (hereinafter referred to as “film 2”)
Japan Gore-Tex Co., Ltd. type II liquid crystal polymer film, BIAC BC050F-NT
Was used.

銅箔として上記の原箔1〜原箔3を用いて、図2に示す表面処理装置において、上記の電気めっき液A〜Cに示すめっき液組成・浴温度・電流条件範囲のいずれかのものを用いて、めっき浴1→めっき浴2の順番で少なくとも1回のめっきを行った。更に、これらの粗化処理面に、Niめっき(0.3mg/dm2)亜鉛めっき(0.1mg/dm2)を施し、その上にクロメート処理を施した。なお、電気めっき液A’,B’の場合には、めっき浴2の代わりにめっき浴3の液組成および条件を用いた。
このようにして得られた表面粗化処理した銅箔の表面の粗さ等の測定結果を、表面処理の選択条件とともに表1に示す。
In the surface treatment apparatus shown in FIG. 2 using the above-mentioned original foil 1 to original foil 3 as the copper foil, any one of the plating solution composition, bath temperature, and current condition ranges shown in the above electroplating solutions A to C The plating was performed at least once in the order of plating bath 1 → plating bath 2. Furthermore, Ni plating (0.3 mg / dm 2 ) zinc plating (0.1 mg / dm 2 ) was applied to these roughened surfaces, and chromate treatment was performed thereon. In the case of the electroplating solutions A ′ and B ′, the solution composition and conditions of the plating bath 3 were used instead of the plating bath 2.
Table 1 shows the measurement results such as the surface roughness of the surface-roughened copper foil thus obtained, together with the surface treatment selection conditions.

次に、このようにして得た表面処理銅箔に、以下のようにして液晶ポリマーフィルム(絶縁基板)のラミネートを行なった。
即ち、上記のようにして得た表面処理銅箔と前記フィルム1又は2のいずれかとを積層し、多段式真空プレス機(北川製作所製ホットアンドコールドプレスVH3−1377)を用いて、前記フィルム1の場合には335℃で4MPaの条件で、前記フィルム2の場合には310℃で4Mpaの条件で、5分間保持した後冷却してラミネート処理を行い基板用複合材とした。室温からの昇温は、7℃/分の速度で行った。
Next, the surface-treated copper foil thus obtained was laminated with a liquid crystal polymer film (insulating substrate) as follows.
That is, the surface-treated copper foil obtained as described above and either the film 1 or 2 are laminated, and the film 1 is used by using a multistage vacuum press (Hitakawa Co., Ltd. hot and cold press VH3-1377). In this case, the film was held at 335 ° C. and 4 MPa, and in the case of the film 2 at 310 ° C. and 4 MPa, held for 5 minutes, then cooled and laminated to obtain a composite material for a substrate. The temperature was raised from room temperature at a rate of 7 ° C./min.

この様にして得られた、表面処理箔を用いた液晶ポリマーフィルムとの基板複合材(銅張積層板)の、ピール強度を測定した。ピール強度の測定は、JIS C6471に準じ、180度方向に引き剥がして行った。   The peel strength of the substrate composite material (copper-clad laminate) with the liquid crystal polymer film using the surface-treated foil thus obtained was measured. The peel strength was measured in accordance with JIS C6471 by peeling in the 180 degree direction.

また、作成した基板複合材のファインパターン特性を以下の方法によって評価した。
即ち、作成した銅箔をFR4樹脂に貼り付け、図6に断面概略図を示すように銅箔にライン幅:L、スペース幅:Sにてレジストした銅箔を、塩化鉄浴にてエッチングし、ライン幅Lのトップの幅がレジスト幅と同じになるエッチング時間を決定し、各ライン幅L及び各スペース幅S(基板1枚に形成するラインを10本とする)でレジストした基板を各n=10作成し、塩化鉄浴で上記決定した時間、エッチングを行い、各基板において、ライン間にブリッジが発生していないこと、または根残りがないこと、またはラインのトップの幅がレジストと同じになっていることを観察し、n=10作成した各基板にそれらが観察されなかったものの中で最小のLとSの値を求めた。
以上の各実施例、各比較例の条件で行なったピール強度およびファインパターン特性評価の結果を表1に示す。
Further, the fine pattern characteristics of the prepared substrate composite were evaluated by the following methods.
That is, the prepared copper foil was attached to FR4 resin, and the copper foil resisted with line width: L and space width: S on the copper foil was etched with an iron chloride bath as shown in the schematic sectional view of FIG. The etching time when the top width of the line width L is the same as the resist width is determined, and each of the substrates resisted with each line width L and each space width S (10 lines formed on one substrate) is registered. n = 10 and etching is performed in the iron chloride bath for the above-determined time, and in each substrate, there is no bridge between the lines, or there is no root residue, or the top width of the line is equal to the resist. Observing that they were the same, the minimum L and S values were obtained among those substrates in which n = 10 were not observed.
Table 1 shows the results of peel strength and fine pattern characteristics evaluation performed under the conditions of the above Examples and Comparative Examples.

Figure 2005219379
Figure 2005219379

表1に示した結果のように、表面粗さが同等でも粗化粒子から形成される突起物の数及び明度の数値によってピール強度は明らかに向上していることがわかる。比較例7では、粗さが大きい分だけピール強度は向上しているが、ファインパターンが切れないという欠陥が現れている。   As the results shown in Table 1, it can be seen that the peel strength is clearly improved by the number of protrusions formed from the roughened particles and the numerical value of the brightness even if the surface roughness is equal. In Comparative Example 7, the peel strength is improved by the amount of roughness, but there is a defect that the fine pattern cannot be cut.

上述したように本発明は、粗化粒子で形成される前述した特定の形状と分布を示す突起物を銅箔表面に形成させることによって、絶縁基板に液晶ポリマーフィルムを用いながら良好なピール強度有し、ファインな配線パターンを作成することができるため、高周波特性に優れた基板用複合材及びこれを用いた回路基板等へ利用することができ、種々の電子回路部品産業の分野での利用が可能である。   As described above, the present invention has a good peel strength while using a liquid crystal polymer film on an insulating substrate by forming protrusions having the specific shape and distribution described above formed of roughened particles on the surface of the copper foil. Since a fine wiring pattern can be created, it can be used for a substrate composite material excellent in high-frequency characteristics, a circuit board using the same, and used in various fields of electronic circuit parts industry. Is possible.

電解製箔装置の構造を示す断面図である。It is sectional drawing which shows the structure of an electrolytic foil manufacturing apparatus. 表面処理装置の構成を示す説明図である。It is explanatory drawing which shows the structure of a surface treatment apparatus. 本発明の表面処理銅箔の一実施形態の断面観察概略図である。It is a section observation schematic diagram of one embodiment of the surface treatment copper foil of the present invention. 本発明の表面処理銅箔の他の実施形態の断面観察概略図である。It is the cross-sectional observation schematic of other embodiment of the surface treatment copper foil of this invention. 表面処理箔において、突起物が均等に分布していない状態を示す断面観察概略図である。In surface treatment foil, it is a section observation schematic diagram showing the state where a projection is not distributed uniformly. エッチング後の断面を示す説明図である。It is explanatory drawing which shows the cross section after an etching.

符号の説明Explanation of symbols

1 電解製箔装置のアノード
2 電解製箔装置のカソード
3 電解製箔装置の電解液
4 未処理銅箔
5 表面処理装置の電解液
6 表面処理装置の電解液
7 表面処理装置のアノード
8 電解銅箔(表面処理銅箔)


1 Electrolytic Foil Device Anode 2 Electrolytic Foil Device Cathode 3 Electrolytic Foil Device Electrolyte 4 Untreated Copper Foil
5 Electrolytic solution 6 of surface treatment device Electrolyte solution 7 of surface treatment device Anode 8 of surface treatment device Electrolytic copper foil (surface treatment copper foil)


Claims (8)

少なくとも銅箔の片面に粗化粒子を付着して、その表面粗さRz:2.5〜4.0μmであり、明度値:25以下である粗化処理面とした表面処理銅箔と、50%以上が熱可塑性液晶ポリマーからなる絶縁基板とが積層されてなることを特徴とする基板用複合材。 Surface-treated copper foil having roughened particles attached to at least one surface of the copper foil and having a surface roughness Rz of 2.5 to 4.0 μm and a lightness value of 25 or less, and a surface-treated copper foil of 50 A composite material for a substrate, characterized in that it is laminated with an insulating substrate made of a thermoplastic liquid crystal polymer. 前記表面処理銅箔は、前記粗化粒子から突起物が形成されており、該突起物は、その高さが1μm〜5μmの突起物が観察断面25μmの範囲に6〜35個の個数で、略均等に分布しているものであることを特徴とする請求項1に記載の基板用複合材。 The surface-treated copper foil has protrusions formed from the roughened particles, and the protrusions have a number of protrusions having a height of 1 μm to 5 μm and a number of 6 to 35 in the observation cross section of 25 μm. The composite material for a substrate according to claim 1, wherein the composite material is distributed substantially evenly. 前記表面処理銅箔の突起物において、各突起物の最大幅は、0.01μm以上、25μm範囲に存在する突起物の個数で25μmを割った長さの2倍以下であることを特徴とする請求項1又は2に記載の基板用複合材。 In the protrusions of the surface-treated copper foil, the maximum width of each protrusion is 0.01 μm or more and not more than twice the length of 25 μm divided by the number of protrusions existing in the 25 μm range. The composite material for substrates according to claim 1 or 2. 前記表面処理銅箔の粗化処理前の銅箔が電解銅箔であることを特徴とする請求項1乃至3の何れかに記載の基板用複合材。 The board | substrate composite material in any one of Claim 1 thru | or 3 whose copper foil before the roughening process of the said surface treatment copper foil is an electrolytic copper foil. 前記表面処理銅箔に使用する未処理銅箔の少なくとも表面処理を行う面の粗さRzが2.0μm以下であることを特徴とする請求項1乃至4の何れかに記載の基板用複合材。 The composite material for a substrate according to any one of claims 1 to 4, wherein a roughness Rz of at least a surface of the untreated copper foil used for the surface-treated copper foil is 2.0 µm or less. . 前記未処理銅箔の粗化処理を施す方の表面が、表面粗さ2.0μm以下のマット面であることを特徴とする請求項5に記載の基板用複合材。 6. The substrate composite according to claim 5, wherein the surface of the untreated copper foil subjected to the roughening treatment is a matte surface having a surface roughness of 2.0 [mu] m or less. 前記絶縁基板が、熱可塑性液晶ポリマーを50%以上含むフィルムより構成されていることを特徴とする請求項1乃至6に記載の基板用複合材。 7. The composite material for a substrate according to claim 1, wherein the insulating substrate is composed of a film containing 50% or more of a thermoplastic liquid crystal polymer. 請求項1乃至7に記載の基板用複合材を用いて作成したことを特徴とする回路基板。
A circuit board produced using the substrate composite material according to claim 1.
JP2004030614A 2004-02-06 2004-02-06 Composite material for substrate and circuit board using the same Expired - Lifetime JP4615226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004030614A JP4615226B2 (en) 2004-02-06 2004-02-06 Composite material for substrate and circuit board using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004030614A JP4615226B2 (en) 2004-02-06 2004-02-06 Composite material for substrate and circuit board using the same

Publications (2)

Publication Number Publication Date
JP2005219379A true JP2005219379A (en) 2005-08-18
JP4615226B2 JP4615226B2 (en) 2011-01-19

Family

ID=34995402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004030614A Expired - Lifetime JP4615226B2 (en) 2004-02-06 2004-02-06 Composite material for substrate and circuit board using the same

Country Status (1)

Country Link
JP (1) JP4615226B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1645662A1 (en) * 2004-10-06 2006-04-12 Furukawa Circuit Foil Co., Ltd. Surface treated copper foil and circuit board
JP2009164588A (en) * 2007-12-10 2009-07-23 Furukawa Electric Co Ltd:The Surface-treated copper foil and circuit board
JP2010236058A (en) * 2009-03-31 2010-10-21 Mitsui Mining & Smelting Co Ltd Roughening-processed copper foil, method of manufacturing roughening-processed copper foil and copper clad laminate
US7883780B2 (en) 2005-07-29 2011-02-08 Sumitomo Chemical Company, Limited Laminate of liquid crystalline polyester with copper foil
JP2011216598A (en) * 2010-03-31 2011-10-27 Kuraray Co Ltd High-frequency circuit board
CN102740613A (en) * 2011-03-31 2012-10-17 新日铁化学株式会社 Metal-clad laminate
JP5611355B2 (en) * 2010-08-12 2014-10-22 新日鉄住金化学株式会社 Metal-clad laminate
JP2016010967A (en) * 2014-06-05 2016-01-21 パナソニックIpマネジメント株式会社 Method for manufacturing liquid crystal polymer film with metal foil attached, liquid crystal polymer film with metal foil attached, and method for manufacturing multilayer printed wiring board
KR20170107040A (en) 2015-04-28 2017-09-22 미쓰이금속광업주식회사 Roughened copper foil and printed wiring board
US9979087B2 (en) 2013-02-06 2018-05-22 Murata Manufacturing Co., Ltd. Coil device and antenna device
KR20190133701A (en) 2017-03-30 2019-12-03 후루카와 덴키 고교 가부시키가이샤 Surface-treated copper foil, and copper clad laminate and printed wiring board using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001355092A (en) * 2000-04-14 2001-12-25 Fukuda Metal Foil & Powder Co Ltd Method for surface-treating copper foil
JP2002161394A (en) * 2000-09-18 2002-06-04 Nippon Denkai Kk Method for manufacturing copper foil for micro wiring
JP2002261442A (en) * 2001-03-06 2002-09-13 Hitachi Chem Co Ltd Method of manufacturing multilayer printed wiring board
JP2003239082A (en) * 2002-02-18 2003-08-27 Hitachi Cable Ltd Copper foil for resin bonding, and its manufacturing method
WO2003102277A1 (en) * 2002-06-04 2003-12-11 Mitsui Mining & Smelting Co.,Ltd. Surface treatment copper foil for low dielectric substrate, copper clad laminate including the same and printed wiring board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001355092A (en) * 2000-04-14 2001-12-25 Fukuda Metal Foil & Powder Co Ltd Method for surface-treating copper foil
JP2002161394A (en) * 2000-09-18 2002-06-04 Nippon Denkai Kk Method for manufacturing copper foil for micro wiring
JP2002261442A (en) * 2001-03-06 2002-09-13 Hitachi Chem Co Ltd Method of manufacturing multilayer printed wiring board
JP2003239082A (en) * 2002-02-18 2003-08-27 Hitachi Cable Ltd Copper foil for resin bonding, and its manufacturing method
WO2003102277A1 (en) * 2002-06-04 2003-12-11 Mitsui Mining & Smelting Co.,Ltd. Surface treatment copper foil for low dielectric substrate, copper clad laminate including the same and printed wiring board

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1645662A1 (en) * 2004-10-06 2006-04-12 Furukawa Circuit Foil Co., Ltd. Surface treated copper foil and circuit board
US7883780B2 (en) 2005-07-29 2011-02-08 Sumitomo Chemical Company, Limited Laminate of liquid crystalline polyester with copper foil
JP2009164588A (en) * 2007-12-10 2009-07-23 Furukawa Electric Co Ltd:The Surface-treated copper foil and circuit board
JP2010236058A (en) * 2009-03-31 2010-10-21 Mitsui Mining & Smelting Co Ltd Roughening-processed copper foil, method of manufacturing roughening-processed copper foil and copper clad laminate
JP2011216598A (en) * 2010-03-31 2011-10-27 Kuraray Co Ltd High-frequency circuit board
JP5611355B2 (en) * 2010-08-12 2014-10-22 新日鉄住金化学株式会社 Metal-clad laminate
KR101913368B1 (en) 2010-08-12 2018-10-30 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Metal-clad laminated plate
CN102740613A (en) * 2011-03-31 2012-10-17 新日铁化学株式会社 Metal-clad laminate
US9979087B2 (en) 2013-02-06 2018-05-22 Murata Manufacturing Co., Ltd. Coil device and antenna device
JP2016010967A (en) * 2014-06-05 2016-01-21 パナソニックIpマネジメント株式会社 Method for manufacturing liquid crystal polymer film with metal foil attached, liquid crystal polymer film with metal foil attached, and method for manufacturing multilayer printed wiring board
KR20170107040A (en) 2015-04-28 2017-09-22 미쓰이금속광업주식회사 Roughened copper foil and printed wiring board
KR20190133701A (en) 2017-03-30 2019-12-03 후루카와 덴키 고교 가부시키가이샤 Surface-treated copper foil, and copper clad laminate and printed wiring board using the same
US10701811B2 (en) 2017-03-30 2020-06-30 Furukawa Electric Co., Ltd. Surface-treated copper foil, and copper-clad laminate and printed wiring board using same

Also Published As

Publication number Publication date
JP4615226B2 (en) 2011-01-19

Similar Documents

Publication Publication Date Title
JP4833556B2 (en) Surface treated copper foil
JP5367529B2 (en) Surface-treated copper foil and method for producing the same
JP2006103189A (en) Surface-treated copper foil and circuit board
JP5684328B2 (en) Method for producing surface roughened copper plate and surface roughened copper plate
KR101705403B1 (en) Adhesiveless copper clad laminates and printed wiring assembly having adhesiveless copper clad laminates as substrate
JP2005076091A (en) Method of producing ultrathin copper foil with carrier, and ultrathin copper foil with carrier produced by the production method
JP6722452B2 (en) Surface-treated copper foil, copper-clad laminate obtained by using the surface-treated copper foil, and printed wiring board
JP4609850B2 (en) Multilayer circuit board
JP4615226B2 (en) Composite material for substrate and circuit board using the same
US7976956B2 (en) Laminated circuit board
JP4429539B2 (en) Electrolytic copper foil for fine pattern
US7794578B2 (en) Method for preparing a circuit board material having a conductive base and a resistance layer
JP2009164588A (en) Surface-treated copper foil and circuit board
JP4217778B2 (en) Conductive substrate with resistance layer, circuit board with resistance layer, and resistance circuit wiring board
JP4391437B2 (en) Multilayer circuit board, surface-treated copper foil for multilayer circuit board, and surface-treated copper foil
JP2006005149A (en) Conductive substrate and circuit board material with resistive layer
JP2006207032A (en) Ultrathin copper foil with carrier and method for manufacturing the same, and printed wiring board using ultrathin copper foil with carrier
JP5373453B2 (en) Copper foil for printed wiring boards
US20070048507A1 (en) Laminated circuit board
JP2005240132A (en) Electrolytic copper foil, and electrolytic polishing method for shiny face of electrolytic copper foil
JP2011009453A (en) Copper foil for printed wiring board
JP2010047842A (en) Electrolytic copper foil and method for electropolishing glossy surface of electrolytic copper foil
JP2927968B2 (en) Copper foil for high-density multilayer printed circuit inner layer and high-density multilayer printed circuit board using said copper foil for inner layer circuit
TW201714742A (en) Surface-treated copper foil and method of manufacturing the same
KR20230095677A (en) Surface-treated copper foil with heat resistance, copper clad laminate comprising the same, and printed wiring board comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090122

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101020

R151 Written notification of patent or utility model registration

Ref document number: 4615226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250