JP2002122981A - Reflective photomask - Google Patents

Reflective photomask

Info

Publication number
JP2002122981A
JP2002122981A JP2000314292A JP2000314292A JP2002122981A JP 2002122981 A JP2002122981 A JP 2002122981A JP 2000314292 A JP2000314292 A JP 2000314292A JP 2000314292 A JP2000314292 A JP 2000314292A JP 2002122981 A JP2002122981 A JP 2002122981A
Authority
JP
Japan
Prior art keywords
buffer layer
layer
reflective
film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000314292A
Other languages
Japanese (ja)
Other versions
JP5371162B2 (en
Inventor
Byoung-Taek Lee
秉澤 李
Taro Ogawa
太郎 小川
Eiichi Hoshino
栄一 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Hitachi Ltd
Samsung Electronics Co Ltd
Original Assignee
Fujitsu Ltd
Hitachi Ltd
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd, Hitachi Ltd, Samsung Electronics Co Ltd filed Critical Fujitsu Ltd
Priority to JP2000314292A priority Critical patent/JP5371162B2/en
Priority to KR10-2000-0084154A priority patent/KR100403615B1/en
Priority to US09/976,566 priority patent/US6699625B2/en
Publication of JP2002122981A publication Critical patent/JP2002122981A/en
Application granted granted Critical
Publication of JP5371162B2 publication Critical patent/JP5371162B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reflective photomask capable of preventing the damage of the surface of a reflecting layer in a production process without complexing the production process. SOLUTION: The reflective photomask 10 has a substrate 11 comprising Si, glass or the like, a reflecting layer 12 formed on the substrate 11 and comprising a multilayer film obtained by alternately laminating Mo and Si, a buffer layer 13 formed on the reflecting layer 12 and comprising Ru and an absorbent pattern 14 formed on the buffer layer 13 with a prescribed pattern shape and comprising a material capable of absorbing soft X-rays, e.g. TaN.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、反射型フォトマス
クに関し、半導体製造プロセスにおいて特に軟X線を用
いた高解像度のフォトリソグラフィー技術に用いて好適
な反射型フォトマスクに関するものである。
The present invention relates to a reflective photomask, and more particularly to a reflective photomask suitable for use in a high resolution photolithography technique using soft X-rays in a semiconductor manufacturing process.

【0002】[0002]

【従来の技術】半導体製造プロセスのフォトリソグラフ
ィー工程において、高集積化のためにデザインルールが
縮小されるに従って、現在の技術よりも高い解像度を有
する露光技術が必要となってきている。現在、DUV
(deep-ultraviolet)光を利用した露光技術は、波長2
48nmの光源を利用することによって250nm程度
の描画サイズの露光が可能である。これに対して、より
短い193nmの波長の光源を使用する新たなDUV露
光技術は、100〜130nm程度の描画サイズの露光
が可能になると期待されている。さらに、100nm以
下の描画サイズを実現する露光技術として、軟X線と呼
ばれるEUV(extream-ultraviolet)領域の露光波長
を利用すると、5〜70nm程度の描画サイズの露光が
可能になると期待されており、現在これに関する研究が
盛んに行われている。
2. Description of the Related Art In a photolithography process of a semiconductor manufacturing process, as design rules are reduced for higher integration, an exposure technology having a higher resolution than the current technology is required. Currently, DUV
Exposure technology using (deep-ultraviolet) light has a wavelength of 2
Exposure with a drawing size of about 250 nm is possible by using a 48 nm light source. On the other hand, a new DUV exposure technique using a shorter light source having a wavelength of 193 nm is expected to be able to expose a drawing size of about 100 to 130 nm. Further, when an exposure wavelength in an EUV (extream-ultraviolet) region called a soft X-ray is used as an exposure technique for realizing a drawing size of 100 nm or less, it is expected that a drawing size of about 5 to 70 nm can be exposed. Currently, research on this is being actively conducted.

【0003】EUVを使用する露光技術は、従来のDU
V領域までの露光技術とは顕著に異なる点がある。それ
はEUV領域ではほとんどの物質が大きい光吸収性を有
するため、既存の透過型フォトマスクとは違って、反射
型フォトマスクを使用しなければならないということで
ある。一般的なEUV用フォトマスクは、EUV領域で
の反射率の大きいミラー(反射鏡)上にEUV光を吸収
し得る吸収体からなるパターンを形成したものである。
したがって、反射鏡の表面が吸収体パターンで覆われた
領域が吸収領域、吸収体パターンがなく、反射鏡表面が
露出した領域が反射領域となる。ここで用いる反射鏡
は、モリブデンとシリコン(Mo/Si)、ベリリウム
とシリコン(Be/Si)等の異種の膜を交互に積層し
て多層膜を形成したものである。
An exposure technique using EUV is a conventional DU.
There is a remarkable difference from the exposure technique up to the V region. That is, in the EUV region, most of the materials have a large light absorbing property, so that a reflective photomask must be used unlike the existing transmissive photomask. A general EUV photomask is formed by forming a pattern made of an absorber capable of absorbing EUV light on a mirror (reflecting mirror) having a high reflectance in the EUV region.
Therefore, a region where the surface of the reflector is covered with the absorber pattern is an absorption region, and a region where there is no absorber pattern and the surface of the reflector is exposed is a reflection region. The reflecting mirror used here is formed by alternately laminating different kinds of films such as molybdenum and silicon (Mo / Si) and beryllium and silicon (Be / Si) to form a multilayer film.

【0004】図11はこの種のフォトマスク110の構
造を示しており、シリコン、ガラス等の基板111上に
上記の多層膜からなる反射層112が形成され、反射層
112上に所望のパターンを有する窒化タンタル(Ta
N)膜などからなる軟X線の吸収体パターン113が形
成されている。
FIG. 11 shows the structure of a photomask 110 of this type. A reflective layer 112 composed of the above-mentioned multilayer film is formed on a substrate 111 of silicon, glass or the like, and a desired pattern is formed on the reflective layer 112. Tantalum nitride (Ta
N) A soft X-ray absorber pattern 113 made of a film or the like is formed.

【0005】しかしながら、図11に示したように、反
射層112上に吸収体パターン113を直接形成する構
造では、吸収体のパターニング(エッチング)時に、反
射層表面の露出した部分がエッチングされて損傷を受
け、反射率が低下するという問題が発生した。さらに吸
収体パターンを形成した後、図16に示すように、吸収
体パターン113の欠陥(例えば図16における左端の
吸収体パターンではエッチング残渣の部分113a、隣
の吸収体パターンでは欠けの部分113b)が発生した
場合、集束イオンビーム(Focused Ion Beam, 以下、F
IBと略記する)を用いてこれらの欠陥を修正すること
がある。すなわち、FIBを照射した際のエッチング作
用により残渣の部分113aだけを局所的に除去した
り、所定のガス雰囲気中でFIBを照射することでパタ
ーンの欠けの部分113bに局所的に吸収体を堆積さ
せ、埋め込むことができる。この工程をマスクリペア工
程と呼ぶが、上記図11の構造ではこのマスクリペア工
程においてもFIB照射が反射層表面に損傷を与える恐
れが充分にあった。
However, as shown in FIG. 11, in the structure in which the absorber pattern 113 is formed directly on the reflective layer 112, the exposed portion of the reflective layer surface is etched and damaged when the absorber is patterned (etched). As a result, there arises a problem that the reflectance is reduced. After the absorber pattern is further formed, as shown in FIG. 16, defects in the absorber pattern 113 (for example, a portion 113a of an etching residue in the absorber pattern at the left end in FIG. 16, and a chipped portion 113b in the adjacent absorber pattern). When a focused ion beam (hereinafter, referred to as F)
IB) may be used to correct these defects. That is, only the residue portion 113a is locally removed by the etching action when the FIB is irradiated, or the absorber is locally deposited on the chipped portion 113b by irradiating the FIB in a predetermined gas atmosphere. Can be embedded. This step is referred to as a mask repair step. In the structure shown in FIG. 11, there was a sufficient risk that the FIB irradiation might damage the reflective layer surface even in this mask repair step.

【0006】そこで、この問題を解決する方法として、
以下の2つの方法が提案された。第1の方法は図12に
示す構造のフォトマスクを用いるものであり、E.Hoshin
o et al.,"Process Scheme for Removing Buffer Layer
on Multilayer of EUVLMask",Digest of papers, Phot
omask Japan p.75,2000に開示されている。このフォト
マスク120は、吸収体パターン124の下にシリコン
酸化膜(SiOx)からなるバッファ層123が形成さ
れている。このフォトマスク120を製造する際には、
図13(a)に示すように、基板121上に多層膜から
なる反射層122を形成し、図13(b)に示すよう
に、反射層122上にバッファ層123aを成膜し、図
13(c)に示すように、さらにバッファ層123a上
に吸収体層124aを成膜する。
Therefore, as a method for solving this problem,
The following two methods have been proposed. The first method uses a photomask having the structure shown in FIG.
o et al., "Process Scheme for Removing Buffer Layer
on Multilayer of EUVLMask ", Digest of papers, Phot
omask Japan p.75,2000. In the photomask 120, a buffer layer 123 made of a silicon oxide film (SiO x ) is formed below the absorber pattern 124. When manufacturing the photomask 120,
As shown in FIG. 13A, a reflective layer 122 made of a multilayer film is formed on a substrate 121, and a buffer layer 123a is formed on the reflective layer 122 as shown in FIG. As shown in (c), an absorber layer 124a is further formed on the buffer layer 123a.

【0007】次に、図13(d)に示すように、フォト
リソグラフィー技術により吸収体層124aをパターニ
ングして吸収体パターン124とするが、この際、2段
階エッチング法を用いる。すなわち、最初にドライエッ
チングを行い、図13(e)に示すように、吸収体層1
24aに続いてバッファ層123aをエッチングし、バ
ッファ層123aを若干残した状態でエッチングを止め
る。次いで、ウェットエッチングを行い、図13(f)
に示すように、残ったバッファ層123aを完全に除去
して反射層122の表面を露出させる。この方法によれ
ば、ドライエッチングに比べてエッチング選択性の高い
ウェットエッチングの採用により反射層表面のオーバー
エッチングを極力少なくすることができる。
Next, as shown in FIG. 13D, the absorber layer 124a is patterned by photolithography to form an absorber pattern 124. At this time, a two-step etching method is used. That is, first, dry etching is performed, and as shown in FIG.
Subsequent to 24a, the buffer layer 123a is etched, and the etching is stopped with a small amount of the buffer layer 123a left. Next, wet etching is performed, and FIG.
As shown in (2), the remaining buffer layer 123a is completely removed to expose the surface of the reflective layer 122. According to this method, overetching of the surface of the reflective layer can be minimized by employing wet etching having higher etching selectivity than dry etching.

【0008】第2の方法は図14に示す構造のフォトマ
スクを用いるものであり、P.J.S.Mangat et al.,"EUV m
ask fabrication with Cr absorber",Proceedings of S
PIEVol.3997,p.76,2000に開示されている。このフォト
マスク140は、吸収体パターン145の下にシリコン
窒化酸化膜(SiON)からなるバッファ層144が形
成され、さらにその下に膜厚10nm程度のクロム(C
r)膜からなるエッチングストッパ層143が形成され
ている。このフォトマスク140を製造する際には、図
15(a)に示すように、基板141上に多層膜からな
る反射層142を形成し、図15(b)に示すように、
反射層142上にエッチングストッパ層143aを形成
し、図15(c)に示すように、エッチングストッパ層
143a上にバッファ層144aを成膜し、図15
(d)に示すように、さらにバッファ層144a上に吸
収体層145aを成膜する。
The second method uses a photomask having the structure shown in FIG. 14 and is disclosed in PJSMangat et al., "EUV m
ask fabrication with Cr absorber ", Proceedings of S
PIEVol.3997, p.76,2000. In this photomask 140, a buffer layer 144 made of a silicon nitride oxide film (SiON) is formed below the absorber pattern 145, and a chromium (C
r) An etching stopper layer 143 made of a film is formed. When manufacturing the photomask 140, as shown in FIG. 15A, a reflective layer 142 composed of a multilayer film is formed on a substrate 141, and as shown in FIG.
An etching stopper layer 143a is formed on the reflective layer 142, and a buffer layer 144a is formed on the etching stopper layer 143a as shown in FIG.
As shown in (d), an absorber layer 145a is further formed on the buffer layer 144a.

【0009】次に、図15(e)に示すように、フォト
リソグラフィー技術により吸収体層145aをパターニ
ングして吸収体パターン145とした後、図15(f)
に示すように、バッファ層144aをエッチングする。
この時、Crに対するSiONのエッチング選択比が高
いため、バッファ層144aのエッチングはエッチング
ストッパ層143a表面で停止する。次いで、図15
(g)に示すように、改めてエッチングストッパ層14
3aを除去して反射層142の表面を露出させる。この
方法によれば、エッチングストッパ層の使用によりバッ
ファ層のエッチング時に反射層表面のオーバーエッチン
グが生じることがない。
Next, as shown in FIG. 15E, the absorber layer 145a is patterned by photolithography to form an absorber pattern 145, and thereafter, as shown in FIG.
As shown in FIG. 7, the buffer layer 144a is etched.
At this time, since the etching selectivity of SiON to Cr is high, the etching of the buffer layer 144a stops at the surface of the etching stopper layer 143a. Then, FIG.
(G), the etching stopper layer 14
3a is removed to expose the surface of the reflective layer 142. According to this method, the use of the etching stopper layer prevents the reflection layer surface from being over-etched when the buffer layer is etched.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上記2
つの方法にもそれぞれ問題点があった。例えば、第1の
方法には、2段階エッチング法を用いることからエッチ
ング工程が複雑になり、工程に費やす手間や時間が多く
なるという問題があった。そして、ウェットエッチング
がいくらドライエッチングに比べてエッチング選択性が
高いといってもエッチングの制御が難しく、エッチング
時間等の工程条件によっては反射層の表面に損傷が生じ
る場合があった。
However, the above-mentioned 2)
Each method had its own problems. For example, the first method has a problem that an etching process is complicated because a two-stage etching method is used, and labor and time spent in the process are increased. Even though wet etching has a higher etching selectivity than dry etching, it is difficult to control the etching, and the surface of the reflective layer may be damaged depending on process conditions such as etching time.

【0011】一方、第2の方法には、エッチングストッ
パ層を形成することで工程が複雑になることに加えて、
エッチングストッパ層を形成したことでバッファ層のエ
ッチング時には反射層表面のオーバーエッチングを防止
できるものの、次工程でエッチングストッパ層を除去す
る際に反射層表面のオーバーエッチングが生じる恐れが
ある。すなわち、クロムからなるエッチングストッパ層
を反射領域の上に残しておくと、クロム膜は光吸収性が
強く、反射層表面での反射が阻害されるため、結局のと
ころ、エッチングストッパ層自体を除去しなければなら
ない。この時、クロムと反射層表面を構成する膜とのエ
ッチング選択比が低ければ、反射層表面がオーバーエッ
チングされることになる。
On the other hand, in the second method, the process becomes complicated by forming an etching stopper layer,
Although the formation of the etching stopper layer can prevent overetching of the reflection layer surface when etching the buffer layer, there is a possibility that overetching of the reflection layer surface will occur when the etching stopper layer is removed in the next step. That is, if the etching stopper layer made of chromium is left on the reflection area, the chromium film has a strong light absorption property and the reflection on the surface of the reflection layer is hindered, so that the etching stopper layer itself is eventually removed. Must. At this time, if the etching selectivity between chromium and the film constituting the reflective layer surface is low, the reflective layer surface is over-etched.

【0012】本発明は、上記の課題を解決するためにな
されたものであって、製造工程を複雑にすることなく、
製造工程における反射層表面の損傷を防止することので
きる反射型フォトマスクを提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and has been made without complicating the manufacturing process.
It is an object of the present invention to provide a reflective photomask that can prevent the surface of a reflective layer from being damaged in a manufacturing process.

【0013】[0013]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の第1の形態の反射型フォトマスクは、基
板と、基板上に形成され、2種の異なる膜が交互に積層
された多層膜からなる反射層と、反射層上に形成された
金属膜からなるバッファ層と、所定のパターン形状をも
ってバッファ層上に形成された軟X線を吸収し得る材料
からなる吸収体パターンとを有することを特徴とする。
In order to achieve the above object, a reflection type photomask according to a first aspect of the present invention is formed on a substrate, and two different films are alternately laminated on the substrate. Layer formed of a multilayered film, a buffer layer formed of a metal film formed on the reflective layer, and an absorber pattern formed of a material capable of absorbing soft X-rays formed on the buffer layer with a predetermined pattern shape And characterized in that:

【0014】本発明の第2の形態の反射型フォトマスク
は、基板と、基板上に形成され、2種の異なる膜が交互
に積層された多層膜からなる反射層と、反射層上に形成
された金属膜からなり、所定のパターン形状を有するバ
ッファ層と、バッファ層と同一のパターン形状をもって
バッファ層上に形成された軟X線を吸収し得る材料から
なる吸収体パターンとを有することを特徴とする。
According to a second aspect of the present invention, there is provided a reflective photomask comprising a substrate, a reflective layer formed on the substrate, a multilayer film in which two different films are alternately laminated, and a reflective layer formed on the reflective layer. A buffer layer having a predetermined pattern shape, and an absorber pattern made of a material capable of absorbing soft X-rays formed on the buffer layer with the same pattern shape as the buffer layer. Features.

【0015】本発明の第3の形態の反射型フォトマスク
は、基板と、基板上に形成され、2種の異なる膜が交互
に積層された多層膜からなる反射層と、反射層上に形成
された金属膜からなる第1のバッファ層と、第1のバッ
ファ層上に形成され、所定のパターン形状を有する第2
のバッファ層と、第2のバッファ層と同一のパターン形
状をもって第2のバッファ層上に形成された軟X線を吸
収し得る材料からなる吸収体パターンとを有することを
特徴とする。
According to a third aspect of the present invention, there is provided a reflective photomask formed of a substrate, a reflective layer formed on the substrate, a multilayer film in which two kinds of different films are alternately laminated, and a reflective layer formed on the reflective layer. A first buffer layer made of a metal film formed on the first buffer layer and a second buffer layer formed on the first buffer layer and having a predetermined pattern shape.
And an absorber pattern made of a material capable of absorbing soft X-rays formed on the second buffer layer with the same pattern shape as the second buffer layer.

【0016】本発明者らは、従来用いていたシリコン酸
化膜(SiOx)、シリコン窒化酸化膜(SiON)等
の半導体材料系のバッファ層に代えて、ある種の金属膜
からなるバッファ層を用いた場合、フォトマスクの反射
領域にバッファ層を残しても半導体材料系のバッファ層
ほどには反射層表面での反射が阻害されない、反射層の
構成材料に対する高いエッチング選択比が得られる、と
の知見を得た。
The present inventors have replaced a buffer layer made of a certain metal film with a buffer layer made of a semiconductor material such as a silicon oxide film (SiO x ) or a silicon oxynitride film (SiON). When used, even if the buffer layer is left in the reflection region of the photomask, reflection on the surface of the reflection layer is not disturbed as much as the buffer layer made of a semiconductor material, and a high etching selectivity to the constituent material of the reflection layer is obtained. Was obtained.

【0017】この知見によれば、フォトマスクの反射領
域にバッファ層を残すことができるので、吸収体パター
ンのパターニング時にエッチングが反射層表面に達する
前にエッチングを停止することができる。したがって、
反射層の表面に損傷を与えることがなく、反射率の低下
が生じることがない。一方、反射領域のバッファ層を除
去する場合でも、反射層の構成材料に対するエッチング
選択比が高いために反射層の表面にほとんど損傷を与え
ることがなく、反射率の低下が生じることがない。
According to this finding, since the buffer layer can be left in the reflection region of the photomask, the etching can be stopped before reaching the reflection layer surface when the absorber pattern is patterned. Therefore,
The surface of the reflective layer is not damaged, and the reflectance does not decrease. On the other hand, even when the buffer layer in the reflection region is removed, the etching selectivity to the constituent material of the reflection layer is high, so that the surface of the reflection layer is hardly damaged, and the reflectance does not decrease.

【0018】本発明者らは、バッファ層を構成する金属
膜として特にルテニウムが好適であることを見い出し
た。詳しくは[発明の実施の形態]の項で後述するが、
ルテニウムを用いた場合、反射層の構成材料に対して高
いエッチング選択比が得られることを実際に確認した。
さらに、ルテニウムバッファ層を反射領域上に残す場
合、ルテニウムの膜厚を3nm以下とすると、反射層表
面が露出している場合よりもむしろ反射率が向上するこ
とを見い出した。
The present inventors have found that ruthenium is particularly suitable as the metal film constituting the buffer layer. The details will be described later in the section of [Embodiments of the Invention].
It was actually confirmed that when ruthenium was used, a high etching selectivity was obtained with respect to the constituent material of the reflective layer.
Further, it has been found that when the ruthenium buffer layer is left on the reflection region, if the thickness of ruthenium is set to 3 nm or less, the reflectance is improved rather than the case where the surface of the reflection layer is exposed.

【0019】バッファ層を反射領域に残す構成において
は、吸収体のエッチングをジャストエッチングの状態で
止め、反射領域上のバッファ層の膜厚を他の領域(吸収
領域)の膜厚と同一としてもよいし、オーバーエッチン
グして結果的に反射領域上のバッファ層の膜厚が他の領
域(吸収領域)よりも薄くなったとしても何ら支障がな
い。
In the structure in which the buffer layer is left in the reflection region, the etching of the absorber is stopped in the state of just etching, and the thickness of the buffer layer on the reflection region is the same as the thickness of the other region (absorption region). Even if the thickness of the buffer layer on the reflection region becomes smaller than that of the other region (absorption region) as a result of over-etching, there is no problem.

【0020】反射層を構成する多層膜を基板上に形成し
たとき、多層膜の種類に応じて圧縮応力、引張応力のい
ずれかの内部応力が発生する。したがって、基板と反射
層との間に反射層の内部応力と逆向きの内部応力を持つ
応力緩和層を設けることによって反射層の内部応力が相
殺されて緩和され、フォトマスクの反りを防止すること
ができる。
When a multilayer film constituting a reflection layer is formed on a substrate, an internal stress of either a compressive stress or a tensile stress is generated depending on the type of the multilayer film. Therefore, by providing a stress relaxation layer having an internal stress opposite to the internal stress of the reflective layer between the substrate and the reflective layer, the internal stress of the reflective layer is offset and reduced, and the warpage of the photomask is prevented. Can be.

【0021】反射層を構成する2種の膜としては、モリ
ブデン膜とシリコン膜の組み合わせが屈折率差が最も大
きく、最も高い反射率を示すことから最適な組み合わせ
である。
As the two kinds of films constituting the reflection layer, the combination of a molybdenum film and a silicon film is the most suitable because the difference in refractive index is the largest and the reflectance is the highest.

【0022】[0022]

【発明の実施の形態】[第1の実施の形態]以下、本発
明の第1の実施の形態を図1〜図3、図10を参照して
説明する。図1は本実施の形態の反射型フォトマスクを
示す断面図、図2はこの反射型フォトマスクの製造方法
を説明するための工程断面図である。図1、図2を含む
以下の断面図では、図示の都合上、フォトマスクを構成
する各層の厚さの比率は実際とは異なっている。本実施
の形態では、金属膜からなるバッファ層を反射領域上に
残す形態の例を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [First Embodiment] A first embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a cross-sectional view showing a reflective photomask of the present embodiment, and FIG. 2 is a process cross-sectional view for explaining a method of manufacturing the reflective photomask. In the following cross-sectional views including FIGS. 1 and 2, the thickness ratio of each layer constituting the photomask is different from the actual one for convenience of illustration. In this embodiment, an example of a mode in which a buffer layer made of a metal film is left over a reflective region will be described.

【0023】本実施の形態の反射型フォトマスク10
は、図1に示すように、シリコン、ガラス等からなる基
板11上にモリブデン(Mo)膜とシリコン(Si)膜
が交互に多層積層された多層膜からなる反射層12が形
成されている。反射層12の最上層はモリブデン膜、シ
リコン膜のいずれでもよいが、シリコン表面に生成する
自然酸化膜の安定性が高いことからシリコン膜を最上層
とする方が望ましい。モリブデン、シリコン単層の膜厚
は数nm程度、積層数は数十層程度の値で任意に設定す
ることができる。
The reflection type photomask 10 of the present embodiment
As shown in FIG. 1, a reflective layer 12 composed of a multilayer film in which a molybdenum (Mo) film and a silicon (Si) film are alternately laminated on a substrate 11 made of silicon, glass, or the like. The uppermost layer of the reflective layer 12 may be either a molybdenum film or a silicon film, but it is preferable to use a silicon film as the uppermost layer because a natural oxide film formed on the silicon surface has high stability. The thickness of the single layer of molybdenum and silicon can be arbitrarily set to about several nm, and the number of laminations can be set to about several tens layers.

【0024】なお、反射層12を構成する膜としては、
上記モリブデンに代えて、スカンジウム(Sc)、チタ
ン(Ti)、バナジウム(V)、鉄(Fe)、ニッケル
(Ni)、コバルト(Co)、ジルコニウム(Zr)、
ニオブ(Nb)、テクネチウム(Tc)、ルテニウム
(Ru)ロジウム(Rh)、ハフニウム(Hf)、タン
タル(Ta)、タングステン(W)、レニウム(R
e)、オスミウム(Os)、イリジウム(Ir)、白金
(Pt)、銅(Cu)、パラジウム(Pd)、銀(A
g)、金(Au)等が用いられ、上記シリコンに代え
て、炭化シリコン、窒化シリコン、酸化シリコン、窒化
ボロン、窒化ベリリウム、酸化ベリリウム、窒化アルミ
ニウム、酸化アルミニウム等が用いられる。
Incidentally, the film constituting the reflection layer 12 includes:
Instead of molybdenum, scandium (Sc), titanium (Ti), vanadium (V), iron (Fe), nickel (Ni), cobalt (Co), zirconium (Zr),
Niobium (Nb), Technetium (Tc), Ruthenium (Ru) Rhodium (Rh), Hafnium (Hf), Tantalum (Ta), Tungsten (W), Rhenium (R
e), osmium (Os), iridium (Ir), platinum (Pt), copper (Cu), palladium (Pd), silver (A
g), gold (Au) or the like, and silicon carbide, silicon nitride, silicon oxide, boron nitride, beryllium nitride, beryllium oxide, aluminum nitride, aluminum oxide, or the like is used instead of silicon.

【0025】反射層12上の全面にルテニウム(Ru)
からなるバッファ層13が形成され、Ruバッファ層1
3上には所定のパターンを有する吸収体パターン14が
形成されている。反射型フォトマスク10のうち、吸収
体パターン14が形成された領域がEUV光を吸収する
吸収領域A、吸収体パターン14がなく、Ruバッファ
層13の表面が露出した領域が反射領域Rとなる。Ru
バッファ層13の膜厚は数nm〜数十nm程度で任意に
設定することができ、Ruバッファ層13の材料には、
Ruの他、Pt、Ir、Pd等の材料を用いることがで
きる。
Ruthenium (Ru) is formed on the entire surface of the reflective layer 12.
Is formed, and the Ru buffer layer 1 is formed.
Absorber pattern 14 having a predetermined pattern is formed on 3. In the reflective photomask 10, a region where the absorber pattern 14 is formed is an absorption region A that absorbs EUV light, and a region where there is no absorber pattern 14 and the surface of the Ru buffer layer 13 is exposed is a reflection region R. . Ru
The thickness of the buffer layer 13 can be arbitrarily set in a range from several nm to several tens of nm.
In addition to Ru, materials such as Pt, Ir, and Pd can be used.

【0026】吸収体パターン14としては、窒化タンタ
ル(TaN)、タンタル(Ta)、クロム(Cr)、窒
化チタン(TiN)、チタン(Ti)、アルミニウム・
銅合金(Al−Cu)、NiSi、TaSiN、TiS
iN、アルミニウム(Al)等を用いることができる。
吸収体パターン14の膜厚は200nm以下とすること
が望ましい。
As the absorber pattern 14, tantalum nitride (TaN), tantalum (Ta), chromium (Cr), titanium nitride (TiN), titanium (Ti), aluminum
Copper alloy (Al-Cu), NiSi, TaSiN, TiS
iN, aluminum (Al), or the like can be used.
The thickness of the absorber pattern 14 is desirably 200 nm or less.

【0027】以下、上記構成の反射型フォトマスク10
の製造方法について説明する。まず図2(a)に示すよ
うに、基板11上の全面にMo/Si多層膜からなる反
射層12を形成する。この際には、成膜法として例えば
RFマグネトロンスパッタリング法やイオンビームスパ
ッタリング法を用いる。なお、スパッタリング条件は使
用する装置によって変わる。MoとSiを7nm周期で
切り換えて成膜して13.4nm波長領域で最も大きい
反射率を持つように形成する。1周期中のMoの割合は
約40%であって、Moの膜厚は約2.8nm、Siの
膜厚は約4.2nmである。層数は、まずMo/Siを
40対成膜した後、最後にSiを成膜するので、合計で
81層となる。
Hereinafter, the reflection type photomask 10 having the above configuration will be described.
A method of manufacturing the device will be described. First, as shown in FIG. 2A, a reflection layer 12 made of a Mo / Si multilayer film is formed on the entire surface of a substrate 11. In this case, for example, an RF magnetron sputtering method or an ion beam sputtering method is used as a film formation method. The sputtering conditions vary depending on the equipment used. A film is formed by switching between Mo and Si at a cycle of 7 nm so as to have the highest reflectance in a wavelength region of 13.4 nm. The ratio of Mo in one cycle is about 40%, the thickness of Mo is about 2.8 nm, and the thickness of Si is about 4.2 nm. As for the number of layers, first, 40 layers of Mo / Si are formed, and then Si is finally formed, so that the total number of layers is 81.

【0028】次に、図2(b)に示すように、反射層1
2上の全面にRuからなるバッファ層13を成膜する。
この際には、DCスパッタリング法を用い、スパッタリ
ング条件は、例えばDCパワー:1kW、圧力:0.3
Pa、Arガス雰囲気下とする。
Next, as shown in FIG.
A buffer layer 13 made of Ru is formed on the entire surface of the substrate 2.
In this case, a DC sputtering method was used, and the sputtering conditions were, for example, DC power: 1 kW and pressure: 0.3.
The atmosphere is a Pa, Ar gas atmosphere.

【0029】次に、図2(c)に示すように、さらにR
uバッファ層13上の全面にTaN等の吸収体層14a
を成膜する。この際、吸収体層14aの材料が窒化物の
場合には反応性スパッタリング法を用い、その他の場合
にはDCスパッタリング法を用いる。
Next, as shown in FIG.
An absorber layer 14a of TaN or the like is formed on the entire surface of the u buffer layer 13.
Is formed. At this time, when the material of the absorber layer 14a is a nitride, a reactive sputtering method is used, and in other cases, a DC sputtering method is used.

【0030】次に、図2(d)に示すように、フォトリ
ソグラフィー技術により吸収体層14aをパターニング
して吸収体パターン14とする。この際には、吸収体層
14a上に所望のパターン形状を有するレジストパター
ン(図示せず)を形成した後、このレジストパターンを
マスクとしてECRリアクティブエッチング法を用い、
吸収体層14aの材料がTaNの場合、例えばECR方
式を用いて使用ガス:Cl2/Ar=80/40ml/mi
n、ECRパワー:600W、RFバイアスパワー:3
0W、圧力:5Pa、基板温度:50℃の条件下で吸収
体層14aのエッチングを行う。吸収体層14aのエッ
チング工程においては、エッチングをジャストエッチン
グの状態で止めれば、反射領域上のRuバッファ層13
の膜厚が他の領域(吸収領域)の膜厚と同一となる。こ
れに対して、若干のオーバーエッチングを行えば、図3
に示すように、結果的に反射領域上のRuバッファ層1
3の膜厚が他の領域(吸収領域)よりも薄くなるが、こ
のようになったとしても何ら支障がない。この後、必要
に応じてFIBを用いたマスクリペアを行う。マスクリ
ペアにはFIBの他、GAE(gas-assisted etching)
を用いることもできる。その場合、エッチングガスには
主としてBr2を用いるが、吸収体およびバッファ層の
材料によって適宜変えることができる。以上の工程を経
て、本実施の形態の反射型フォトマスク10が完成す
る。
Next, as shown in FIG. 2D, the absorber layer 14a is patterned by photolithography to form an absorber pattern 14. At this time, after a resist pattern (not shown) having a desired pattern shape is formed on the absorber layer 14a, using this resist pattern as a mask, an ECR reactive etching method is used.
When the material of the absorber layer 14a is TaN, for example, an ECR method is used, and the used gas is Cl 2 / Ar = 80/40 ml / mi.
n, ECR power: 600 W, RF bias power: 3
The absorber layer 14a is etched under the conditions of 0 W, pressure: 5 Pa, and substrate temperature: 50 ° C. In the etching process of the absorber layer 14a, if the etching is stopped in a state of just etching, the Ru buffer layer 13
Becomes the same as the film thickness of the other region (absorption region). On the other hand, if slight over-etching is performed, FIG.
As a result, as shown in FIG.
Although the film thickness of No. 3 is smaller than that of the other region (absorption region), there is no problem even if such a film is formed. Thereafter, mask repair using FIB is performed as needed. For mask repair, FIB and GAE (gas-assisted etching)
Can also be used. In that case, Br 2 is mainly used as an etching gas, but can be appropriately changed depending on the material of the absorber and the buffer layer. Through the above steps, the reflective photomask 10 of the present embodiment is completed.

【0031】本実施の形態によれば、2段階エッチング
を用いた従来例のように製造工程を複雑にすることな
く、反射領域上のRuバッファ層13を残しているの
で、製造工程における反射層12表面の損傷を確実に防
止することができ、反射率の低下を招くことがない。
According to the present embodiment, the Ru buffer layer 13 on the reflection region is left without complicating the manufacturing process unlike the conventional example using the two-step etching. 12 can reliably prevent damage to the surface and does not cause a decrease in reflectance.

【0032】ただし、本実施の形態の場合、反射領域上
にRuバッファ層13が存在しているので、反射率の低
下が懸念される。図10は、反射層上に残すバッファ層
としてSiO2とRuを用いた場合の反射率の膜厚依存
性を示すシミュレーション結果であり、横軸が膜厚(n
m)、縦軸が反射率である。シミュレーション条件は、
反射層の積層構造を上からSiO2(Si上の自然酸化
膜を想定、膜厚2nm)、Si(膜厚4.14nm)/
Mo(膜厚2.76nm)の対を40層積層した多層膜
の上にSiO2、Ruのバッファ層をそれぞれ積層した
ものとし、EUV光の波長を13.5nm、光入射角を
0°とした。
However, in the case of the present embodiment, since the Ru buffer layer 13 exists on the reflection region, there is a concern that the reflectance may be reduced. FIG. 10 is a simulation result showing the dependency of the reflectance on the film thickness when SiO 2 and Ru are used as the buffer layer left on the reflection layer.
m), the vertical axis is the reflectance. The simulation conditions are
From the top, the laminated structure of the reflective layer is SiO 2 (assuming a natural oxide film on Si, film thickness 2 nm), Si (film thickness 4.14 nm) /
It is assumed that buffer layers of SiO 2 and Ru are respectively laminated on a multilayer film in which 40 layers of Mo (film thickness 2.76 nm) are laminated, the EUV light wavelength is 13.5 nm, and the light incident angle is 0 °. did.

【0033】SiO2バッファ層の場合(図中破線で示
す)、曲線が多少波打ちながらも膜厚が増加するにつれ
て反射率が約0.75から徐々に低下する傾向にある。
これに対して、Ruバッファ層の場合(図中実線で示
す)、SiO2の場合に比べて曲線の波が大きくなり、
膜厚tが0<t≦3nmの範囲ではバッファ層がない場
合に比べてむしろ反射率が向上することがわかった。し
たがって、Ruバッファ層を残す場合、例えばバッファ
層がない場合に対して反射率が10%低下する点までを
許容するならば膜厚は6nm程度というように、製造す
るフォトマスクにおいて、欲しい反射率に応じて膜厚を
適宜設定することができる。上述したように、バッファ
層がない場合よりも反射率を大きくできるという点から
すれば、Ruバッファ層の膜厚を3nm以下とすること
が望ましい。
In the case of the SiO 2 buffer layer (shown by a broken line in the figure), the reflectance tends to gradually decrease from about 0.75 as the film thickness increases, although the curve is slightly wavy.
On the other hand, in the case of the Ru buffer layer (shown by a solid line in the figure), the wave of the curve becomes larger than in the case of SiO 2 ,
It was found that when the thickness t was in the range of 0 <t ≦ 3 nm, the reflectance was improved more than when no buffer layer was provided. Therefore, in the case where the Ru buffer layer is left, for example, the film thickness is about 6 nm if the point where the reflectance is reduced by 10% as compared with the case where there is no buffer layer is set to the desired reflectance in the photomask to be manufactured. The film thickness can be appropriately set according to the conditions. As described above, the thickness of the Ru buffer layer is desirably 3 nm or less from the viewpoint that the reflectance can be increased as compared with the case where the buffer layer is not provided.

【0034】[第2の実施の形態]以下、本発明の第2
の実施の形態を図4、図5を参照して説明する。図4は
本実施の形態の反射型フォトマスクを示す断面図、図5
はこの反射型フォトマスクの製造方法を説明するための
工程断面図である。本実施の形態では、第1の実施の形
態とは逆に、金属膜からなるバッファ層を反射領域上に
残さない形態の例を説明する。
[Second Embodiment] Hereinafter, a second embodiment of the present invention will be described.
The embodiment will be described with reference to FIGS. FIG. 4 is a sectional view showing a reflection type photomask of the present embodiment, and FIG.
FIG. 4 is a process cross-sectional view for describing the method for manufacturing the reflection type photomask. In the present embodiment, an example will be described in which the buffer layer made of a metal film is not left on the reflection region, contrary to the first embodiment.

【0035】本実施の形態の反射型フォトマスク20
は、図4に示すように、シリコン、ガラス等からなる基
板21上にMo/Si多層膜からなる反射層22が形成
されている。反射層22の材料としては、Mo/Siの
他、第1の実施の形態で例示したものと同じものを用い
ることができる。モリブデン、シリコン単層の膜厚や積
層数も第1の実施の形態と同様である。
The reflection type photomask 20 of the present embodiment
As shown in FIG. 4, a reflective layer 22 made of a Mo / Si multilayer film is formed on a substrate 21 made of silicon, glass or the like. As the material of the reflection layer 22, other than Mo / Si, the same material as exemplified in the first embodiment can be used. The thickness and the number of layers of the single layer of molybdenum and silicon are the same as in the first embodiment.

【0036】反射層22上に所定のパターン形状を有す
るルテニウム(Ru)からなるバッファ層23が形成さ
れ、Ruバッファ層23上にはRuバッファ層23と同
一のパターン形状を有する吸収体パターン24が形成さ
れている。反射型フォトマスク20のうち、吸収体パタ
ーン24で覆われた領域が吸収領域A、吸収体パターン
24およびRuバッファ層23がなく、反射層22の表
面が露出した領域が反射領域Rとなる。Ru以外のバッ
ファ層23の材料および膜厚は第1の実施の形態と同様
でよい。吸収体パターン24の材料および膜厚も第1の
実施の形態と同様でよい。
A buffer layer 23 made of ruthenium (Ru) having a predetermined pattern shape is formed on the reflective layer 22, and an absorber pattern 24 having the same pattern shape as the Ru buffer layer 23 is formed on the Ru buffer layer 23. Is formed. In the reflection type photomask 20, the area covered with the absorber pattern 24 is the absorption area A, and the area where the absorber pattern 24 and the Ru buffer layer 23 are not present and the surface of the reflection layer 22 is exposed is the reflection area R. The material and thickness of the buffer layer 23 other than Ru may be the same as in the first embodiment. The material and thickness of the absorber pattern 24 may be the same as in the first embodiment.

【0037】以下、上記構成の反射型フォトマスク20
の製造方法について説明する。まず図5(a)に示すよ
うに、基板21上の全面にMo/Si多層膜からなる反
射層22を形成する。この際には、成膜法として例えば
RFマグネトロンスパッタリング法やイオンビームスパ
ッタリング法を用いる。なお、スパッタリング条件は使
用する装置によって変わる。MoとSiを7nm周期で
切り換えて成膜して13.4nm波長領域で最も大きい
反射率を持つように形成する。1周期中のMoの割合は
約40%であって、Moの膜厚は約2.8nm、Siの
膜厚は約4.2nmである。層数は、まずMo/Siを
40対成膜した後、最後にSiを成膜するので、合計で
81層となる。
Hereinafter, the reflection type photomask 20 having the above configuration will be described.
A method of manufacturing the device will be described. First, as shown in FIG. 5A, a reflective layer 22 made of a Mo / Si multilayer film is formed on the entire surface of a substrate 21. In this case, for example, an RF magnetron sputtering method or an ion beam sputtering method is used as a film formation method. The sputtering conditions vary depending on the equipment used. A film is formed by switching between Mo and Si at a cycle of 7 nm so as to have the highest reflectance in a wavelength region of 13.4 nm. The ratio of Mo in one cycle is about 40%, the thickness of Mo is about 2.8 nm, and the thickness of Si is about 4.2 nm. As for the number of layers, first, 40 layers of Mo / Si are formed, and then Si is finally formed, so that the total number of layers is 81.

【0038】次に、図5(b)に示すように、反射層2
2上の全面にRuからなるバッファ層23aを成膜す
る。この際には、DCスパッタリング法を用い、スパッ
タリング条件は、例えばDCパワー:1kW、圧力:
0.3Pa、Arガス雰囲気下とする。
Next, as shown in FIG.
A buffer layer 23a made of Ru is formed on the entire surface of the substrate 2. In this case, a DC sputtering method is used, and the sputtering conditions are, for example, DC power: 1 kW, pressure:
0.3 Pa in an Ar gas atmosphere.

【0039】次に、図5(c)に示すように、さらにR
uバッファ層23a上の全面にTaN等の吸収体層24
aを成膜する。この際、吸収体層14aの材料が窒化物
の場合には反応性スパッタリング法を用い、その他の場
合にはDCスパッタリング法を用いる。
Next, as shown in FIG.
An absorber layer 24 of TaN or the like is formed on the entire surface of the u buffer layer 23a.
a is formed. At this time, when the material of the absorber layer 14a is a nitride, a reactive sputtering method is used, and in other cases, a DC sputtering method is used.

【0040】次に、図5(d)に示すように、フォトリ
ソグラフィー技術により吸収体層24aをパターニング
して吸収体パターン24とする。この際には、吸収体層
24a上に所望のパターン形状を有するレジストパター
ン(図示せず)を形成した後、このレジストパターンを
マスクとしてECRリアクティブエッチング法を用い、
吸収体層14aの材料がTaNの場合、例えばECR方
式を用いて使用ガス:Cl2/Ar=80/40ml/mi
n、ECRパワー:600W、RFバイアスパワー:3
0W、圧力:5Pa、基板温度:50℃の条件下で少な
くともRuバッファ層23a表面が露出するまで吸収体
層24aのエッチングを行う。本実施の形態の場合、こ
の後でRuバッファ層23aもエッチングしてしまうの
で、ジャストエッチングでもオーバーエッチングでも特
にかまわない。この後、必要に応じてFIBを用いたマ
スクリペアを行う。
Next, as shown in FIG. 5D, the absorber layer 24a is patterned by photolithography to form an absorber pattern 24. At this time, after a resist pattern (not shown) having a desired pattern shape is formed on the absorber layer 24a, using this resist pattern as a mask, an ECR reactive etching method is used.
When the material of the absorber layer 14a is TaN, for example, an ECR method is used, and the used gas is Cl 2 / Ar = 80/40 ml / mi.
n, ECR power: 600 W, RF bias power: 3
The absorber layer 24a is etched under the conditions of 0 W, pressure: 5 Pa, and substrate temperature: 50 ° C. until at least the surface of the Ru buffer layer 23a is exposed. In the case of the present embodiment, the Ru buffer layer 23a is also etched after this, so that either just etching or over etching may be used. Thereafter, mask repair using FIB is performed as needed.

【0041】次に、図5(e)に示すように、吸収体パ
ターン24をマスクとしてRuバッファ層23aのエッ
チングを行う。本実施の形態の場合、ここで問題となる
のがRuバッファ層23aのエッチング時に反射層22
の表面に損傷が生じないかという点である。本発明者ら
は、ECR(Electron Cycrotron Resonance)方式のド
ライエッチング装置を用い、使用ガス:Cl2/O2(C
2含有量:30%)、ECRパワー:300W、RF
バイアスパワー:30W、基板温度:50℃の条件下で
Ruバッファ層のエッチングを実際に行ったところ、ス
パッタリング法により形成したアモルファスSi(反射
層の最上層)に対して19.3:1という高いエッチン
グ選択比を得ることができた。
Next, as shown in FIG. 5E, the Ru buffer layer 23a is etched using the absorber pattern 24 as a mask. In the case of the present embodiment, a problem here is that the reflective layer 22 is etched when the Ru buffer layer 23a is etched.
Is that there is no damage to the surface. The present inventors used an ECR (Electron Cycrotron Resonance) type dry etching apparatus and used gas: Cl 2 / O 2 (C
l 2 content: 30%), ECR power: 300 W, RF
When the Ru buffer layer was actually etched under the conditions of a bias power of 30 W and a substrate temperature of 50 ° C., it was as high as 19.3: 1 with respect to amorphous Si (the uppermost layer of the reflective layer) formed by the sputtering method. An etching selectivity was obtained.

【0042】また、従来のバッファ層材料であるSiO
2と本実施の形態で用いたRuとで吸収体層の材料であ
るTaNのエッチングにおけるエッチング選択比を比較
した。使用ガス:Cl2/Ar=80/40ml/min、E
CRパワー:600W、RFバイアスパワー:30W、
圧力:5Pa、基板温度:50℃の条件下で実際にエッ
チングを行ったところ、エッチング選択比はSiO2
対して8:1であったのに対し、Ruに対しては30:
1という高いエッチング選択比が得られた。
Further, the conventional buffer layer material of SiO
2 and Ru used in the present embodiment were compared in terms of etching selectivity in etching TaN as a material of the absorber layer. Working gas: Cl 2 / Ar = 80/40 ml / min, E
CR power: 600 W, RF bias power: 30 W,
When etching was actually performed under the conditions of a pressure: 5 Pa and a substrate temperature: 50 ° C., the etching selectivity was 8: 1 with respect to SiO 2 , but 30: with respect to Ru.
A high etching selectivity of 1 was obtained.

【0043】このように、本実施の形態によれば、第1
の実施の形態と異なり反射領域上のRuバッファ層23
aをエッチング、除去しても、エッチング条件の制御に
よって反射層22の表面のオーバーエッチングを充分に
抑制することができ、反射率の低下を防止することがで
きる。
As described above, according to the present embodiment, the first
Different from the embodiment, the Ru buffer layer 23 on the reflection region
Even if a is etched or removed, over-etching of the surface of the reflective layer 22 can be sufficiently suppressed by controlling the etching conditions, and a decrease in reflectance can be prevented.

【0044】[第3の実施の形態]以下、本発明の第3
の実施の形態を図6〜図8を参照して説明する。図6は
本実施の形態の反射型フォトマスクを示す断面図、図7
はこの反射型フォトマスクの製造方法を説明するための
工程断面図である。本実施の形態では、金属膜からなる
第1のバッファ層上に半導体材料系からなる第2のバッ
ファ層を形成した形態の例を説明する。
[Third Embodiment] Hereinafter, a third embodiment of the present invention will be described.
The embodiment will be described with reference to FIGS. FIG. 6 is a sectional view showing a reflection type photomask of the present embodiment, and FIG.
FIG. 4 is a process cross-sectional view for describing the method for manufacturing the reflection type photomask. In this embodiment, an example in which a second buffer layer made of a semiconductor material is formed over a first buffer layer made of a metal film will be described.

【0045】本実施の形態の反射型フォトマスク30
は、図6に示すように、シリコン、ガラス等からなる基
板31上にMo/Si多層膜からなる反射層32が形成
されている。反射層32の材料としては、Mo/Siの
他、第1の実施の形態で例示したものと同じものを用い
ることができる。モリブデン、シリコン単層の膜厚や積
層数も第1の実施の形態と同様である。
The reflection type photomask 30 of the present embodiment
As shown in FIG. 6, a reflective layer 32 made of a Mo / Si multilayer film is formed on a substrate 31 made of silicon, glass, or the like. As the material of the reflection layer 32, other than Mo / Si, the same material as exemplified in the first embodiment can be used. The thickness and the number of layers of the single layer of molybdenum and silicon are the same as in the first embodiment.

【0046】反射層32上の全面にルテニウム(Ru)
からなる第1のバッファ層33が形成され、第1のバッ
ファ層33上には所定のパターンを有する第2のバッフ
ァ層34が形成され、さらに第2のバッファ層34上に
吸収体パターン35が形成されている。反射型フォトマ
スク30の全面のうち、吸収体パターン35で覆われた
領域が吸収領域A、吸収体パターン35および第2のバ
ッファ層34がなく、第1のバッファ層33の表面が露
出した領域が反射領域Rとなる。Ru以外の第1のバッ
ファ層33の材料および膜厚は第1の実施の形態と同様
でよい。第2のバッファ層34の材料には、シリコン酸
化膜、シリコン窒化膜、シリコン窒化酸化膜のいずれか
を用いることができる。第2のバッファ層34の膜厚
は、数十〜100nm程度でよい。吸収体パターン35
の材料および膜厚は第1の実施の形態と同様でよい。
Ruthenium (Ru) is formed on the entire surface of the reflective layer 32.
Is formed, a second buffer layer having a predetermined pattern is formed on the first buffer layer 33, and an absorber pattern 35 is formed on the second buffer layer. Is formed. In the entire surface of the reflective photomask 30, the area covered with the absorber pattern 35 is the area where the absorber area A, the absorber pattern 35 and the second buffer layer 34 are not present, and the surface of the first buffer layer 33 is exposed. Becomes the reflection region R. The material and thickness of the first buffer layer 33 other than Ru may be the same as in the first embodiment. As the material of the second buffer layer 34, any of a silicon oxide film, a silicon nitride film, and a silicon oxynitride film can be used. The thickness of the second buffer layer 34 may be about several tens to 100 nm. Absorber pattern 35
The material and the film thickness may be the same as in the first embodiment.

【0047】以下、上記構成の反射型フォトマスク30
の製造方法について説明する。まず図7(a)に示すよ
うに、基板31上の全面にMo/Si多層膜からなる反
射層32を形成する。この際には、成膜法として例えば
RFマグネトロンスパッタリング法やイオンビームスパ
ッタリング法を用いる。なお、スパッタリング条件は使
用する装置によって変わる。MoとSiを7nm周期で
切り換えて成膜して13.4nm波長領域で最も大きい
反射率を持つように形成する。1周期中のMoの割合は
約40%であって、Moの膜厚は約2.8nm、Siの
膜厚は約4.2nmである。層数は、まずMo/Siを
40対成膜した後、最後にSiを成膜するので、合計で
81層となる。
Hereinafter, the reflection type photomask 30 having the above configuration will be described.
A method of manufacturing the device will be described. First, as shown in FIG. 7A, a reflective layer 32 made of a Mo / Si multilayer film is formed on the entire surface of a substrate 31. In this case, for example, an RF magnetron sputtering method or an ion beam sputtering method is used as a film formation method. The sputtering conditions vary depending on the equipment used. A film is formed by switching between Mo and Si at a cycle of 7 nm so as to have the highest reflectance in a wavelength region of 13.4 nm. The ratio of Mo in one cycle is about 40%, the thickness of Mo is about 2.8 nm, and the thickness of Si is about 4.2 nm. As for the number of layers, first, 40 layers of Mo / Si are formed, and then Si is finally formed, so that the total number of layers is 81.

【0048】次に、図7(b)に示すように、反射層3
2上の全面にRuからなる第1のバッファ層33を成膜
する。この際には、DCスパッタリング法を用い、スパ
ッタリング条件は、例えばDCパワー:1kW、圧力:
0.3Pa、Arガス雰囲気下とする。
Next, as shown in FIG.
A first buffer layer 33 made of Ru is formed on the entire surface of the substrate 2. In this case, a DC sputtering method is used, and the sputtering conditions are, for example, DC power: 1 kW, pressure:
0.3 Pa in an Ar gas atmosphere.

【0049】次に、図7(c)に示すように、第1のバ
ッファ層33上の全面にSiOx等からなる第2のバッ
ファ層34aを成膜する。この際には反射層の反射率の
変化を最小限に抑えるために低温蒸着が有利であるた
め、スパッタリング法やプラズマCVD法が用いられ
る。低温蒸着に際し、SiOxの場合にはRFスパッタ
リング法が主として用いられ、SiONの場合にはプラ
ズマCVD法が主として用いられる。
Next, as shown in FIG. 7 (c), forming a second buffer layer 34a made of SiO x or the like on the entire surface of the first buffer layer 33. In this case, low-temperature deposition is advantageous in order to minimize the change in the reflectance of the reflective layer. Therefore, a sputtering method or a plasma CVD method is used. For low-temperature deposition, RF sputtering is mainly used for SiO x , and plasma CVD is mainly used for SiON.

【0050】次に、図7(d)に示すように、さらに第
2のバッファ層34a上の全面にTaN等からなる吸収
体層35aを成膜する。この際、吸収体層14aの材料
が窒化物の場合には反応性スパッタリング法を用い、そ
の他の場合にはDCスパッタリング法を用いる。
Next, as shown in FIG. 7D, an absorber layer 35a made of TaN or the like is further formed on the entire surface of the second buffer layer 34a. At this time, when the material of the absorber layer 14a is a nitride, a reactive sputtering method is used, and in other cases, a DC sputtering method is used.

【0051】次に、図7(e)に示すように、フォトリ
ソグラフィー技術により吸収体層35aをパターニング
して吸収体パターン35とする。この際には、吸収体層
35a上に所望のパターン形状を有するレジストパター
ン(図示せず)を形成した後、このレジストパターンを
マスクとしてECRリアクティブエッチング法を用い、
吸収体層14aの材料がTaNの場合、例えばECR方
式を用いて使用ガス:Cl2/Ar=80/40ml/mi
n、ECRパワー:600W、RFバイアスパワー:3
0W、圧力:5Pa、基板温度:50℃の条件下で少な
くとも第2のバッファ層34aの表面が露出するまで吸
収体層35aのエッチングを行う。この後、必要に応じ
てFIBを用いたマスクリペアを行う。
Next, as shown in FIG. 7E, the absorber layer 35a is patterned by photolithography to form an absorber pattern 35. In this case, after a resist pattern (not shown) having a desired pattern shape is formed on the absorber layer 35a, the resist pattern is used as a mask by an ECR reactive etching method.
When the material of the absorber layer 14a is TaN, for example, an ECR method is used, and the used gas is Cl 2 / Ar = 80/40 ml / mi.
n, ECR power: 600 W, RF bias power: 3
The absorber layer 35a is etched under the conditions of 0 W, pressure: 5 Pa, and substrate temperature: 50 ° C. until at least the surface of the second buffer layer 34a is exposed. Thereafter, mask repair using FIB is performed as needed.

【0052】次に、図7(f)に示すように、吸収体パ
ターン35をマスクとして第2のバッファ層34aのエ
ッチングを行う。この際には、第2のバッファ層34a
の材料がSiOxの場合には、例えばECR方式を用い
て使用ガス:Ar/C48/O2=200/10/20m
l/min、ECRパワー:600W、RFバイアスパワ
ー:15W、圧力:1Pa、基板温度:50℃の条件下
で少なくとも第1のバッファ層33の表面が露出するま
で第2のバッファ層34aのエッチングを行う。また、
第2のバッファ層34aの材料がSiONの場合には、
フッ素系のエッチングガスを用いてエッチングが可能で
ある。このエッチング工程においては、第1のバッファ
層33がエッチングストッパの役目を果たす。本発明者
が実際にエッチングを行ったところ、エッチングガスと
してAr/C48/O2ガスを用いた場合、SiOx膜に
対しては、エッチングレートは70nm/分以上となっ
た。これに対して、Ru膜の場合、同一のエッチングガ
スを用いても測定不可能な極少量しかエッチングされ
ず、充分にエッチングストッパとして機能することが確
認された。エッチング条件によっては、図8に示すよう
に、第1のバッファ層33の表面がわずかにエッチング
され、反射領域上の第1のバッファ層33の膜厚が他の
領域(吸収領域)よりも薄くなることもあるが、特に問
題とはならない。以上の工程により、本実施の形態の反
射型フォトマスク30が完成する。
Next, as shown in FIG. 7F, the second buffer layer 34a is etched using the absorber pattern 35 as a mask. In this case, the second buffer layer 34a
When the material is SiO x, the gas used is, for example, ECR method: Ar / C 4 F 8 / O 2 = 200/10 / 20m
1 / min, ECR power: 600 W, RF bias power: 15 W, pressure: 1 Pa, substrate temperature: 50 ° C. The etching of the second buffer layer 34 a is performed until at least the surface of the first buffer layer 33 is exposed. Do. Also,
When the material of the second buffer layer 34a is SiON,
Etching can be performed using a fluorine-based etching gas. In this etching step, the first buffer layer 33 functions as an etching stopper. When the present inventor actually performed etching, the etching rate of the SiO x film was 70 nm / min or more when Ar / C 4 F 8 / O 2 gas was used as the etching gas. On the other hand, in the case of the Ru film, it was confirmed that even the same etching gas was used, only a very small amount that could not be measured was etched, and that the Ru film sufficiently functioned as an etching stopper. Depending on the etching conditions, as shown in FIG. 8, the surface of the first buffer layer 33 is slightly etched, and the thickness of the first buffer layer 33 on the reflection region is smaller than that of the other region (absorption region). It can be, but is not a problem. Through the above steps, the reflective photomask 30 of the present embodiment is completed.

【0053】本実施の形態によれば、2段階エッチング
を用いた従来例のように製造工程を複雑にすることな
く、反射領域上のRuの第1のバッファ層33を残して
いるので、製造工程における反射層32表面の損傷を確
実に防止することができ、反射率の低下を招くことがな
い、という第1の実施の形態と同様の効果が得られる。
また、第1の実施の形態と同様、反射領域上にRuの第
1のバッファ層33が存在していることで反射率の低下
が懸念されても、膜厚の制御によりその問題を充分に回
避することができる。バッファ層がない場合よりも反射
率を大きくできるという点からすれば、膜厚を3nm以
下とすることが望ましい。
According to the present embodiment, the first buffer layer 33 of Ru on the reflection region is left without complicating the manufacturing process unlike the conventional example using two-step etching. An effect similar to that of the first embodiment is obtained, in which damage to the surface of the reflective layer 32 in the process can be reliably prevented, and the reflectance does not decrease.
Further, as in the first embodiment, even if there is a concern that the reflectance may decrease due to the existence of the first buffer layer 33 of Ru on the reflection region, the problem can be sufficiently solved by controlling the film thickness. Can be avoided. From the viewpoint that the reflectance can be increased as compared with the case where there is no buffer layer, the film thickness is desirably 3 nm or less.

【0054】[第4の実施の形態]以下、本発明の第4
の実施の形態を図9を参照して説明する。図9は本実施
の形態の反射型フォトマスクを示す断面図である。本実
施の形態の反射型フォトマスクの構成は第1の実施の形
態とほぼ同様であり、異なる点は基板と反射層との間に
応力緩和層が追加された点のみである。したがって、図
9において図1と共通の構成要素には同一の符号を付
し、詳細な説明を省略する。
[Fourth Embodiment] Hereinafter, a fourth embodiment of the present invention will be described.
The embodiment will be described with reference to FIG. FIG. 9 is a cross-sectional view showing the reflective photomask of the present embodiment. The configuration of the reflection type photomask of this embodiment is almost the same as that of the first embodiment, and the only difference is that a stress relaxation layer is added between the substrate and the reflection layer. Therefore, in FIG. 9, the same reference numerals are given to the same components as those in FIG.

【0055】本実施の形態の反射型フォトマスク40
は、図9に示すように、Si、ガラス等からなる基板1
1上に応力緩和層41が形成され、応力緩和層41上に
Mo/Si多層膜からなる反射層12が形成されてい
る。そして、反射層12上にRuバッファ層13が形成
され、その上に吸収体パターン14が形成されている点
は、第1の実施の形態と同様である。応力緩和層41に
用いる材料の一例としては、Ru、Mo等を挙げること
ができる。
The reflection type photomask 40 of the present embodiment.
Is a substrate 1 made of Si, glass or the like as shown in FIG.
1, a stress relaxation layer 41 is formed, and on the stress relaxation layer 41, a reflection layer 12 made of a Mo / Si multilayer film is formed. Then, the Ru buffer layer 13 is formed on the reflective layer 12, and the absorber pattern 14 is formed thereon, as in the first embodiment. Examples of the material used for the stress relaxation layer 41 include Ru, Mo, and the like.

【0056】本実施の形態においても、製造工程を複雑
にすることなく、製造工程における反射層表面の損傷を
確実に防止でき、反射率の低下が生じることがない、と
いう第1の実施の形態と同様の効果が得られる。それに
加えて本実施の形態の場合、Mo/Si多層膜からなる
反射層12が持つ内部応力とRu、Mo等の単層膜から
なる応力緩和層41が持つ内部応力の向きが逆であるた
め、反射層12の内部応力が相殺されて緩和され、フォ
トマスクの反りを防止することができる。
Also in the present embodiment, the first embodiment, in which the reflection of the surface of the reflective layer in the production process can be reliably prevented without complicating the production process, and the reflectance does not decrease. The same effect can be obtained. In addition, in the case of the present embodiment, the direction of the internal stress of the reflection layer 12 made of the Mo / Si multilayer film and the direction of the internal stress of the stress relaxation layer 41 made of the single layer film of Ru, Mo, etc. are opposite. In addition, the internal stress of the reflection layer 12 is offset and alleviated, and the warpage of the photomask can be prevented.

【0057】なお、本発明の技術範囲は上記実施の形態
に限定されるものではなく、本発明の趣旨を逸脱しない
範囲において種々の変更を加えることが可能である。例
えば上記実施の形態で例示した各層の材料、膜厚、製造
プロセスにおける各種工程条件等の具体的な記載はほん
の一例にすぎず、適宜変更が可能である。
The technical scope of the present invention is not limited to the above embodiment, and various changes can be made without departing from the spirit of the present invention. For example, the specific descriptions of the materials and film thicknesses of the respective layers, the various process conditions in the manufacturing process, and the like illustrated in the above-described embodiment are merely examples, and can be appropriately changed.

【0058】[0058]

【発明の効果】以上、詳細に説明したように、本発明の
反射型フォトマスクによれば、製造工程を複雑にするこ
となく、製造工程における反射層表面の損傷を防止で
き、反射率が低下するのを防止することができる。その
結果、EUV領域の露光波長を利用した微細加工に好適
なものとなる。
As described above in detail, according to the reflection type photomask of the present invention, it is possible to prevent the reflection layer surface from being damaged in the production process without complicating the production process, and to reduce the reflectance. Can be prevented. As a result, it becomes suitable for fine processing using the exposure wavelength in the EUV region.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1の実施の形態の反射型フォトマ
スクを示す断面図である。
FIG. 1 is a sectional view showing a reflective photomask according to a first embodiment of the present invention.

【図2】 同、反射型フォトマスクの製造プロセスを順
を追って示す工程断面図である。
FIG. 2 is a process cross-sectional view showing a manufacturing process of the reflective photomask in order.

【図3】 同、反射型フォトマスクの他の例を示す断面
図である。
FIG. 3 is a sectional view showing another example of the reflection type photomask.

【図4】 本発明の第2の実施の形態の反射型フォトマ
スクを示す断面図である。
FIG. 4 is a cross-sectional view illustrating a reflective photomask according to a second embodiment of the present invention.

【図5】 同、反射型フォトマスクの製造プロセスを順
を追って示す工程断面図である。
FIG. 5 is a process sectional view showing the manufacturing process of the reflection type photomask in order.

【図6】 本発明の第1の実施の形態の反射型フォトマ
スクを示す断面図である。
FIG. 6 is a cross-sectional view illustrating a reflection type photomask according to the first embodiment of the present invention.

【図7】 同、反射型フォトマスクの製造プロセスを順
を追って示す工程断面図である。
FIG. 7 is a process sectional view sequentially showing a manufacturing process of the reflection type photomask.

【図8】 同、反射型フォトマスクの他の例を示す断面
図である。
FIG. 8 is a sectional view showing another example of the reflection type photomask.

【図9】 本発明の第1の実施の形態の反射型フォトマ
スクを示す断面図である。
FIG. 9 is a cross-sectional view illustrating a reflective photomask according to the first embodiment of the present invention.

【図10】 バッファ層としてSiO2とRuを用いた
場合の反射率の膜厚依存性を示すシミュレーション結果
である。
FIG. 10 is a simulation result showing the dependency of the reflectance on the film thickness when SiO 2 and Ru are used as the buffer layer.

【図11】 従来の反射型フォトマスクの一例を示す断
面図である。
FIG. 11 is a cross-sectional view illustrating an example of a conventional reflective photomask.

【図12】 従来の反射型フォトマスクの他の例を示す
断面図である。
FIG. 12 is a cross-sectional view illustrating another example of a conventional reflective photomask.

【図13】 同、反射型フォトマスクの製造プロセスを
順を追って示す工程断面図である。
FIG. 13 is a process sectional view showing the manufacturing process of the reflection type photomask in order.

【図14】 従来の反射型フォトマスクのさらに他の例
を示す断面図である。
FIG. 14 is a cross-sectional view showing still another example of a conventional reflective photomask.

【図15】 同、反射型フォトマスクの製造プロセスを
順を追って示す工程断面図である。
FIG. 15 is a process sectional view showing the manufacturing process of the reflection type photomask in order.

【図16】 マスクリペア工程の様子を説明するための
図である。
FIG. 16 is a view for explaining a state of a mask repair step.

【符号の説明】[Explanation of symbols]

10,20,30,40 反射型フォトマスク 11,21,31 基板 12,22,32 反射層 13,23,23a バッファ層 14,24,35,35a 吸収体パターン 14a,24a 吸収体層 33 第1のバッファ層 34,34a 第2のバッファ層 41 応力緩和層 A 吸収領域 R 反射領域 10, 20, 30, 40 Reflective photomask 11, 21, 31 Substrate 12, 22, 32 Reflective layer 13, 23, 23a Buffer layer 14, 24, 35, 35a Absorber pattern 14a, 24a Absorber layer 33 First Buffer layer 34, 34a second buffer layer 41 stress relaxation layer A absorption region R reflection region

───────────────────────────────────────────────────── フロントページの続き (72)発明者 李 秉澤 神奈川県厚木市森の里若宮3−1 NTT 厚木研究開発センタ内 技術研究組合超先 端電子技術開発機構内 (72)発明者 小川 太郎 東京都国分寺市東恋ヶ窪一丁目280番地 株式会社日立製作所 中央研究所内 (72)発明者 星野 栄一 神奈川県川崎市中原区上小田中4丁目1番 1号 富士通株式会社内 Fターム(参考) 2H095 BA01 BA07 BA10 BB01 BB35 BC05 BC11 BC24 5F046 GD05 GD10 GD15 GD16  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Lee Byungsawa 3-1 Morinosato Wakamiya, Atsugi City, Kanagawa Prefecture NTT Atsugi R & D Center Technology Research Association Super-advanced Electronics Technology Development Organization (72) Inventor Taro Ogawa Kokubunji, Tokyo 1-280 Higashi-Koigakubo, Hitachi, Ltd. Central Research Laboratory, Hitachi, Ltd. (72) Eiichi Hoshino 4-1-1, Kamidadanaka, Nakahara-ku, Kawasaki-shi, Kanagawa F-term in Fujitsu Limited (Reference) 2H095 BA01 BA07 BA10 BB01 BB35 BC05 BC11 BC24 5F046 GD05 GD10 GD15 GD16

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 基板と、前記基板上に形成され、2種の
異なる膜が交互に積層された多層膜からなる反射層と、
前記反射層上に形成された金属膜からなるバッファ層
と、所定のパターン形状をもって前記バッファ層上に形
成された軟X線を吸収し得る材料からなる吸収体パター
ンとを有することを特徴とする反射型フォトマスク。
1. A substrate, and a reflective layer formed on the substrate and comprising a multilayer film in which two different films are alternately stacked,
A buffer layer made of a metal film formed on the reflective layer; and an absorber pattern made of a material capable of absorbing soft X-rays formed on the buffer layer with a predetermined pattern shape. Reflective photomask.
【請求項2】 前記バッファ層を構成する金属膜がルテ
ニウムであることを特徴とする請求項1に記載の反射型
フォトマスク。
2. The reflective photomask according to claim 1, wherein the metal film forming the buffer layer is ruthenium.
【請求項3】 前記ルテニウムからなる金属膜の膜厚が
3nm以下であることを特徴とする請求項2に記載の反
射型フォトマスク。
3. The reflective photomask according to claim 2, wherein said ruthenium metal film has a thickness of 3 nm or less.
【請求項4】 前記吸収体パターンが形成されていない
領域における前記バッファ層の膜厚が他の部分のバッフ
ァ層の膜厚よりも薄くなっていることを特徴とする請求
項1ないし3のいずれか一項に記載の反射型フォトマス
ク。
4. The buffer layer according to claim 1, wherein a thickness of the buffer layer in a region where the absorber pattern is not formed is smaller than a thickness of the buffer layer in another portion. The reflective photomask according to claim 1.
【請求項5】 基板と、前記基板上に形成され、2種の
異なる膜が交互に積層された多層膜からなる反射層と、
前記反射層上に形成された金属膜からなり、所定のパタ
ーン形状を有するバッファ層と、前記バッファ層と同一
のパターン形状をもって前記バッファ層上に形成された
軟X線を吸収し得る材料からなる吸収体パターンとを有
することを特徴とする反射型フォトマスク。
5. A substrate, and a reflective layer formed on the substrate and comprising a multilayer film in which two different films are alternately stacked,
A buffer layer formed of a metal film formed on the reflective layer and having a predetermined pattern shape; and a material capable of absorbing soft X-rays formed on the buffer layer with the same pattern shape as the buffer layer. A reflective photomask comprising an absorber pattern.
【請求項6】 前記バッファ層を構成する金属膜がルテ
ニウムであることを特徴とする請求項5に記載の反射型
フォトマスク。
6. The reflective photomask according to claim 5, wherein the metal film forming the buffer layer is ruthenium.
【請求項7】 基板と、前記基板上に形成され、2種の
異なる膜が交互に積層された多層膜からなる反射層と、
前記反射層上に形成された金属膜からなる第1のバッフ
ァ層と、前記第1のバッファ層上に形成され、所定のパ
ターン形状を有する第2のバッファ層と、前記第2のバ
ッファ層と同一のパターン形状をもって前記第2のバッ
ファ層上に形成された軟X線を吸収し得る材料からなる
吸収体パターンとを有することを特徴とする反射型フォ
トマスク。
7. A substrate, and a reflective layer formed on the substrate and formed of a multilayer film in which two different films are alternately stacked,
A first buffer layer made of a metal film formed on the reflective layer, a second buffer layer formed on the first buffer layer and having a predetermined pattern, and a second buffer layer. A reflector pattern formed of a material capable of absorbing soft X-rays formed on the second buffer layer with the same pattern shape.
【請求項8】 前記第1のバッファ層を構成する金属膜
がルテニウムであることを特徴とする請求項7に記載の
反射型フォトマスク。
8. The reflection type photomask according to claim 7, wherein the metal film forming the first buffer layer is ruthenium.
【請求項9】 前記ルテニウムからなる金属膜の膜厚が
3nm以下であることを特徴とする請求項8に記載の反
射型フォトマスク。
9. The reflection type photomask according to claim 8, wherein the thickness of the ruthenium metal film is 3 nm or less.
【請求項10】 前記吸収体パターンが形成されていな
い領域における前記第1のバッファ層の膜厚が他の部分
の第1のバッファ層の膜厚よりも薄くなっていることを
特徴とする請求項7ないし9のいずれか一項に記載の反
射型フォトマスク。
10. The film thickness of the first buffer layer in a region where the absorber pattern is not formed is smaller than the film thickness of the first buffer layer in another portion. Item 10. The reflective photomask according to any one of Items 7 to 9.
【請求項11】 前記反射層を構成する2種の異なる膜
がモリブデン膜とシリコン膜であることを特徴とする請
求項1ないし10のいずれか一項に記載の反射型フォト
マスク。
11. The reflection type photomask according to claim 1, wherein the two different films forming the reflection layer are a molybdenum film and a silicon film.
【請求項12】 前記基板と前記反射層との間に、前記
反射層の内部応力を相殺して緩和するための応力緩和層
が設けられたことを特徴とする請求項1ないし11のい
ずれか一項に記載の反射型フォトマスク。
12. A stress relief layer provided between the substrate and the reflection layer to offset and relieve internal stress of the reflection layer. The reflective photomask according to claim 1.
JP2000314292A 2000-10-13 2000-10-13 Reflective photomask Expired - Fee Related JP5371162B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000314292A JP5371162B2 (en) 2000-10-13 2000-10-13 Reflective photomask
KR10-2000-0084154A KR100403615B1 (en) 2000-10-13 2000-12-28 Reflection type photomask
US09/976,566 US6699625B2 (en) 2000-10-13 2001-10-12 Reflection photomasks including buffer layer comprising group VIII metal, and methods of fabricating and using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000314292A JP5371162B2 (en) 2000-10-13 2000-10-13 Reflective photomask

Publications (2)

Publication Number Publication Date
JP2002122981A true JP2002122981A (en) 2002-04-26
JP5371162B2 JP5371162B2 (en) 2013-12-18

Family

ID=18793578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000314292A Expired - Fee Related JP5371162B2 (en) 2000-10-13 2000-10-13 Reflective photomask

Country Status (3)

Country Link
US (1) US6699625B2 (en)
JP (1) JP5371162B2 (en)
KR (1) KR100403615B1 (en)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222764A (en) * 2000-11-22 2002-08-09 Hoya Corp Substrate with multilayer film, reflection mask blank for exposure, reflection mask for exposure, method of manufacturing it and method of manufacturing semiconductor
JP2003045779A (en) * 2001-07-30 2003-02-14 Hoya Corp Euv beam exposure reflection type mask and euv beam exposure reflection type mask blank
JP2003318104A (en) * 2002-04-18 2003-11-07 Samsung Electronics Co Ltd Reflection photomask having capping layer and its manufacturing method
JP2004260056A (en) * 2003-02-27 2004-09-16 Toppan Printing Co Ltd Extreme ultraviolet light exposure mask and blank and pattern transfer method
JP2004304170A (en) * 2003-03-19 2004-10-28 Hoya Corp Method of manufacturing reflection mask, and method of manufacturing semiconductor device
JP2006013280A (en) * 2004-06-29 2006-01-12 Hoya Corp Manufacturing methods of reflection type mask blanks, reflection type mask, and semiconductor device
JP2006190900A (en) * 2005-01-07 2006-07-20 Toppan Printing Co Ltd Reflective photo mask, blank thereof, and method of manufacturing semiconductor device using the same
JP2006237192A (en) * 2005-02-24 2006-09-07 Hoya Corp Method of manufacturing reflection type mask
WO2007116562A1 (en) 2006-03-30 2007-10-18 Toppan Printing Co., Ltd. Reflective photomask blank, process for producing the same, reflective photomask and process for producing semiconductor device
JP2007273668A (en) * 2006-03-31 2007-10-18 Toppan Printing Co Ltd Reflecttion type phototmask blank, method of manufacturing same, reflection type phototmask, method of manufacturing same and exposure method of extreme ultraviolet light
US7348105B2 (en) 2002-07-04 2008-03-25 Hoya Corporation Reflective maskblanks
WO2008065821A1 (en) * 2006-11-27 2008-06-05 Nikon Corporation Optical element, exposure unit utilizing the same and process for device production
JP2008277398A (en) * 2007-04-26 2008-11-13 Toppan Printing Co Ltd Extreme ultraviolet exposure mask, and mask blank
JP2009021641A (en) * 2008-10-29 2009-01-29 Toppan Printing Co Ltd Mask for extreme ultraviolet light exposure, mask blank for extreme ultraviolet light exposure, and pattern transfer method
JP2009252788A (en) * 2008-04-01 2009-10-29 Asahi Glass Co Ltd Reflective mask blank for euv lithography
JP2010034179A (en) * 2008-07-28 2010-02-12 Toshiba Corp Reflective mask and manufacturing method for semiconductor device
US7700245B2 (en) 2006-05-03 2010-04-20 Hoya Corporation Reflective mask blank, reflective mask, and method of manufacturing semiconductor device
JP2010212484A (en) * 2009-03-11 2010-09-24 Toppan Printing Co Ltd Reflection type photomask blank and reflection type photomask
US7833682B2 (en) 2006-06-08 2010-11-16 Asahi Glass Company, Limited Reflective mask blank for EUV lithography and substrate with functional film for the same
US7855036B2 (en) 2006-10-19 2010-12-21 Asahi Glass Company, Limited Sputtering target used for production of reflective mask blank for EUV lithography
WO2011068223A1 (en) 2009-12-04 2011-06-09 旭硝子株式会社 Optical member for euv lithography, and process for production of reflective-layer-attached substrate for euv lithography
WO2011071123A1 (en) 2009-12-09 2011-06-16 旭硝子株式会社 Reflective-layer-equipped substrate for euv lithography, reflective mask blank for euv lithography, reflective mask for euv lithography, and process for producing reflective-layer-equipped substrate
WO2011071086A1 (en) 2009-12-09 2011-06-16 旭硝子株式会社 Optical member for use in euv lithography
JP2011129611A (en) * 2009-12-16 2011-06-30 Dainippon Printing Co Ltd Method of manufacturing reflective type mask
US8021807B2 (en) 2008-10-04 2011-09-20 Hoya Corporation Reflective mask blank and method of producing the same, and method of producing a reflective mask
US8252488B2 (en) 2008-10-23 2012-08-28 Hoya Corporation Mask blank substrate manufacturing method, and reflective mask blank manufacturing method
US8329361B2 (en) 2009-04-15 2012-12-11 Hoya Corporation Reflective mask blank, method of manufacturing a reflective mask blank and method of manufacturing a reflective mask
JP2013206936A (en) * 2012-03-27 2013-10-07 Toppan Printing Co Ltd Reflective mask and method of manufacturing reflective mask
KR20140008246A (en) 2012-07-11 2014-01-21 아사히 가라스 가부시키가이샤 Reflective mask blank for euv lithography and process for its production, as well as substrate with reflective layer for such mask blank and process for its production
US8748062B2 (en) 2011-04-26 2014-06-10 Osaka University Method of cleaning substrate
KR20140138601A (en) 2012-03-23 2014-12-04 호야 가부시키가이샤 Substrate with multilayer reflective film, reflective mask blank for euv lithography, method for producing reflective mask for euv lithography, and method for manufacturing semiconductor device
JP2015128183A (en) * 2008-05-09 2015-07-09 Hoya株式会社 Reflective mask, reflective mask blank, and method for manufacturing the same
KR20160034315A (en) 2013-07-22 2016-03-29 호야 가부시키가이샤 Substrate with multilayered reflective film, reflective mask blank for euv lithography, reflective mask for euv lithography, process for producing same, and process for producing semiconductor device
KR20160046740A (en) 2014-10-21 2016-04-29 아사히 가라스 가부시키가이샤 Reflective mask blank for euv lithography and process for its production, as well as substrate with reflective layer for such mask blank and process for its production
KR20160054458A (en) 2013-09-11 2016-05-16 호야 가부시키가이샤 Substrate with multilayer reflective film, reflective mask blank for euv lithography, reflective mask for euv lithography, method for producing reflective mask for euv lithography, and method for manufacturing semiconductor device
TWI548930B (en) * 2011-09-28 2016-09-11 Hoya股份有限公司 Reflective mask blank, reflective mask and method of manufacturing reflective mask
KR20210038360A (en) 2019-09-30 2021-04-07 호야 가부시키가이샤 Substrate with multilayer reflective film, reflective mask blank, reflective mask and method of manufacturing the same, and method of manufacturing semiconductor device
KR20210066015A (en) * 2018-10-26 2021-06-04 어플라이드 머티어리얼스, 인코포레이티드 TA-CU alloy material for extreme ultraviolet mask absorber
KR20210133155A (en) 2020-04-28 2021-11-05 신에쓰 가가꾸 고교 가부시끼가이샤 Substrate with film for reflective mask blank and reflective mask blank
EP4083704A1 (en) 2021-04-30 2022-11-02 Shin-Etsu Chemical Co., Ltd. Reflective mask blank and method for manufacturing reflective mask
KR20220161261A (en) 2020-03-30 2022-12-06 호야 가부시키가이샤 Substrate with multilayer reflective film, reflective mask blank, reflective mask, and manufacturing method of semiconductor device
KR20230119111A (en) 2020-12-25 2023-08-16 호야 가부시키가이샤 Manufacturing method of substrate with multi-layer reflective film, reflective mask blank, reflective mask, and semiconductor device
EP4276534A1 (en) 2022-05-10 2023-11-15 Shin-Etsu Chemical Co., Ltd. Mask blank, resist pattern forming process and chemically amplified positive resist composition
EP4390537A2 (en) 2022-12-21 2024-06-26 Shin-Etsu Chemical Co., Ltd. Reflective mask blank
EP4390536A2 (en) 2022-12-21 2024-06-26 Shin-Etsu Chemical Co., Ltd. Reflective mask blank, reflective mask, and manufacturing method thereof

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7843632B2 (en) * 2006-08-16 2010-11-30 Cymer, Inc. EUV optics
JP3674591B2 (en) * 2002-02-25 2005-07-20 ソニー株式会社 Exposure mask manufacturing method and exposure mask
WO2004006017A1 (en) * 2002-07-02 2004-01-15 Sony Corporation Phase shift mask and production method therefor and production method for semiconductor device
US7049034B2 (en) * 2003-09-09 2006-05-23 Photronics, Inc. Photomask having an internal substantially transparent etch stop layer
US6913706B2 (en) * 2002-12-28 2005-07-05 Intel Corporation Double-metal EUV mask absorber
US7118832B2 (en) * 2003-01-08 2006-10-10 Intel Corporation Reflective mask with high inspection contrast
US6800530B2 (en) * 2003-01-14 2004-10-05 International Business Machines Corporation Triple layer hard mask for gate patterning to fabricate scaled CMOS transistors
US20060051681A1 (en) * 2004-09-08 2006-03-09 Phototronics, Inc. 15 Secor Road P.O. Box 5226 Brookfield, Conecticut Method of repairing a photomask having an internal etch stop layer
US7413677B2 (en) * 2005-02-25 2008-08-19 E. I. Du Pont De Nemours And Company Process for heat transfer utilizing a polytrimethylene homo- or copolyether glycol based heat transfer fluid
JP2006332153A (en) * 2005-05-24 2006-12-07 Hoya Corp Reflective mask blank, reflective mask, and method of manufacturing semiconductor device
KR100879139B1 (en) * 2007-08-31 2009-01-19 한양대학교 산학협력단 Phase shift mask and manufacturing method thereof
DE102008042212A1 (en) * 2008-09-19 2010-04-01 Carl Zeiss Smt Ag Reflective optical element and method for its production
JP2010109336A (en) * 2008-10-04 2010-05-13 Hoya Corp Method of manufacturing reflective mask
KR20110088194A (en) * 2010-01-28 2011-08-03 삼성전자주식회사 Blank photomask and reflective photomask having a fiducial position align mark and methods of fabricating the same
JP6805674B2 (en) * 2016-09-21 2020-12-23 豊田合成株式会社 Light emitting element and its manufacturing method
US10802393B2 (en) * 2017-10-16 2020-10-13 Globalfoundries Inc. Extreme ultraviolet (EUV) lithography mask
US20230032950A1 (en) * 2021-07-30 2023-02-02 Taiwan Semiconductor Manufacturing Company, Ltd. Euv photo masks and manufacturing method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729794A (en) * 1993-07-12 1995-01-31 Nikon Corp Reflection type mask
JPH0745499A (en) * 1993-07-28 1995-02-14 Nikon Corp Reflective mask
JPH07153679A (en) * 1993-11-29 1995-06-16 Nippon Telegr & Teleph Corp <Ntt> Transmission-type multilayer film
JPH07333829A (en) * 1994-06-07 1995-12-22 Hitachi Ltd Optical element and its production
JPH08213303A (en) * 1995-02-03 1996-08-20 Nikon Corp Reflective x-ray mask and manufacture thereof
JPH08240904A (en) * 1995-03-01 1996-09-17 Hoya Corp Transfer mask and its production
JPH09298150A (en) * 1996-05-09 1997-11-18 Nikon Corp Reflection type mask
JPH10207036A (en) * 1997-01-21 1998-08-07 Nec Corp Pattern for measuring phase difference and production of phase shift mask
JPH11354407A (en) * 1998-06-08 1999-12-24 Fujitsu Ltd X-ray exposure mask and its manufacture
JP2001059901A (en) * 1999-07-02 2001-03-06 Asm Lithography Bv Capping layer for extreme ultraviolet optical device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3047541B2 (en) * 1991-08-22 2000-05-29 株式会社日立製作所 Reflective mask and defect repair method
KR100266847B1 (en) * 1991-12-30 2000-09-15 이데이 노부유끼 Condition determinative method of anti-reflective layer, method of forming anti-reflective layer and method of forming a resist pattern using an anti-reflective layer
JPH0743889A (en) * 1993-07-30 1995-02-14 Kawasaki Steel Corp Photomask and production thereof
JP3620978B2 (en) * 1998-10-27 2005-02-16 株式会社ルネサステクノロジ Manufacturing method of semiconductor device
JP3275863B2 (en) * 1999-01-08 2002-04-22 日本電気株式会社 Photo mask
US6319635B1 (en) * 1999-12-06 2001-11-20 The Regents Of The University Of California Mitigation of substrate defects in reticles using multilayer buffer layers

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729794A (en) * 1993-07-12 1995-01-31 Nikon Corp Reflection type mask
JPH0745499A (en) * 1993-07-28 1995-02-14 Nikon Corp Reflective mask
JPH07153679A (en) * 1993-11-29 1995-06-16 Nippon Telegr & Teleph Corp <Ntt> Transmission-type multilayer film
JPH07333829A (en) * 1994-06-07 1995-12-22 Hitachi Ltd Optical element and its production
JPH08213303A (en) * 1995-02-03 1996-08-20 Nikon Corp Reflective x-ray mask and manufacture thereof
JPH08240904A (en) * 1995-03-01 1996-09-17 Hoya Corp Transfer mask and its production
JPH09298150A (en) * 1996-05-09 1997-11-18 Nikon Corp Reflection type mask
JPH10207036A (en) * 1997-01-21 1998-08-07 Nec Corp Pattern for measuring phase difference and production of phase shift mask
JPH11354407A (en) * 1998-06-08 1999-12-24 Fujitsu Ltd X-ray exposure mask and its manufacture
JP2001059901A (en) * 1999-07-02 2001-03-06 Asm Lithography Bv Capping layer for extreme ultraviolet optical device

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6011012519; Mandeep Singh: 'Design of multilayer extreme-ultraviolet mirrors for enhanced reflectivity' APPLIED OPTICS Vol.39, No.13, 20000501, Page.2189-2197 *
JPN6012033699; Pawitter J. S. Mangat: 'EUV mask fabrication using Be-based multilayer mirrors (Proceedings Paper)' Proceedings of SPIE, Emerging Lithographic Technologies IV Volume 3997, 20000721, pp.814-818 *
JPN6012033700; P.J.S.Mangat: 'Extreme ultraviolet lithography mask patterning and printability studies with a Ta-based absorber' J.Vac.Sci.Technol.B Volume 17 Issue 6, 1999, p.3029-3033 *
JPN6012033701; Eiichi Hoshino: 'Process scheme for removing buffer layer on multilayer for EUVL mask (Proceedings Paper)' Proceedings of SPIE, Photomask and Next-Generation Lithography Mask Technology VII Volume 4066, 20000719, pp.124-130 *

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222764A (en) * 2000-11-22 2002-08-09 Hoya Corp Substrate with multilayer film, reflection mask blank for exposure, reflection mask for exposure, method of manufacturing it and method of manufacturing semiconductor
JP2003045779A (en) * 2001-07-30 2003-02-14 Hoya Corp Euv beam exposure reflection type mask and euv beam exposure reflection type mask blank
JP4540267B2 (en) * 2001-07-30 2010-09-08 Hoya株式会社 Reflective mask blank for EUV light exposure and reflective mask for EUV light exposure
JP2003318104A (en) * 2002-04-18 2003-11-07 Samsung Electronics Co Ltd Reflection photomask having capping layer and its manufacturing method
US6998200B2 (en) 2002-04-18 2006-02-14 Samsung Electronics Co., Ltd. Reflection photomasks with a capping layer and methods for manufacturing the same
US7348105B2 (en) 2002-07-04 2008-03-25 Hoya Corporation Reflective maskblanks
US7722998B2 (en) 2002-07-04 2010-05-25 Hoya Corporation Reflective mask blank
JP2004260056A (en) * 2003-02-27 2004-09-16 Toppan Printing Co Ltd Extreme ultraviolet light exposure mask and blank and pattern transfer method
JP4501347B2 (en) * 2003-02-27 2010-07-14 凸版印刷株式会社 Ultraviolet exposure mask, blank and pattern transfer method
DE102004013459B4 (en) * 2003-03-19 2016-08-25 Hoya Corp. Method for producing a reflective mask and method for producing a semiconductor component
US7294438B2 (en) 2003-03-19 2007-11-13 Hoya Corporation Method of producing a reflective mask and method of producing a semiconductor device
JP4521753B2 (en) * 2003-03-19 2010-08-11 Hoya株式会社 Reflective mask manufacturing method and semiconductor device manufacturing method
JP2004304170A (en) * 2003-03-19 2004-10-28 Hoya Corp Method of manufacturing reflection mask, and method of manufacturing semiconductor device
JP4553239B2 (en) * 2004-06-29 2010-09-29 Hoya株式会社 REFLECTIVE MASK BLANK, REFLECTIVE MASK, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE
JP2006013280A (en) * 2004-06-29 2006-01-12 Hoya Corp Manufacturing methods of reflection type mask blanks, reflection type mask, and semiconductor device
JP4635610B2 (en) * 2005-01-07 2011-02-23 凸版印刷株式会社 Reflective photomask blank, reflective photomask, and reflective photomask manufacturing method
JP2006190900A (en) * 2005-01-07 2006-07-20 Toppan Printing Co Ltd Reflective photo mask, blank thereof, and method of manufacturing semiconductor device using the same
JP2006237192A (en) * 2005-02-24 2006-09-07 Hoya Corp Method of manufacturing reflection type mask
JP4535270B2 (en) * 2005-02-24 2010-09-01 Hoya株式会社 Method for manufacturing a reflective mask
US8394558B2 (en) 2006-03-30 2013-03-12 Toppan Printing Co., Ltd. Reflection type photomask blank, manufacturing method thereof, reflection type photomask, and manufacturing method of semiconductor device
WO2007116562A1 (en) 2006-03-30 2007-10-18 Toppan Printing Co., Ltd. Reflective photomask blank, process for producing the same, reflective photomask and process for producing semiconductor device
JP2007294840A (en) * 2006-03-30 2007-11-08 Toppan Printing Co Ltd Reflective photomask blank and its manufacturing method, reflective photomask, and method for manufacturing semiconductor device
JP2007273668A (en) * 2006-03-31 2007-10-18 Toppan Printing Co Ltd Reflecttion type phototmask blank, method of manufacturing same, reflection type phototmask, method of manufacturing same and exposure method of extreme ultraviolet light
US7700245B2 (en) 2006-05-03 2010-04-20 Hoya Corporation Reflective mask blank, reflective mask, and method of manufacturing semiconductor device
US7833682B2 (en) 2006-06-08 2010-11-16 Asahi Glass Company, Limited Reflective mask blank for EUV lithography and substrate with functional film for the same
US7855036B2 (en) 2006-10-19 2010-12-21 Asahi Glass Company, Limited Sputtering target used for production of reflective mask blank for EUV lithography
WO2008065821A1 (en) * 2006-11-27 2008-06-05 Nikon Corporation Optical element, exposure unit utilizing the same and process for device production
JP2008277398A (en) * 2007-04-26 2008-11-13 Toppan Printing Co Ltd Extreme ultraviolet exposure mask, and mask blank
JP2009252788A (en) * 2008-04-01 2009-10-29 Asahi Glass Co Ltd Reflective mask blank for euv lithography
JP2015128183A (en) * 2008-05-09 2015-07-09 Hoya株式会社 Reflective mask, reflective mask blank, and method for manufacturing the same
JP2010034179A (en) * 2008-07-28 2010-02-12 Toshiba Corp Reflective mask and manufacturing method for semiconductor device
US8021807B2 (en) 2008-10-04 2011-09-20 Hoya Corporation Reflective mask blank and method of producing the same, and method of producing a reflective mask
US8252488B2 (en) 2008-10-23 2012-08-28 Hoya Corporation Mask blank substrate manufacturing method, and reflective mask blank manufacturing method
JP4605284B2 (en) * 2008-10-29 2011-01-05 凸版印刷株式会社 Extreme ultraviolet exposure mask, extreme ultraviolet exposure mask blank, and pattern transfer method
JP2009021641A (en) * 2008-10-29 2009-01-29 Toppan Printing Co Ltd Mask for extreme ultraviolet light exposure, mask blank for extreme ultraviolet light exposure, and pattern transfer method
JP2010212484A (en) * 2009-03-11 2010-09-24 Toppan Printing Co Ltd Reflection type photomask blank and reflection type photomask
US8709685B2 (en) 2009-04-15 2014-04-29 Hoya Corporation Reflective mask blank and method of manufacturing a reflective mask
US8329361B2 (en) 2009-04-15 2012-12-11 Hoya Corporation Reflective mask blank, method of manufacturing a reflective mask blank and method of manufacturing a reflective mask
WO2011068223A1 (en) 2009-12-04 2011-06-09 旭硝子株式会社 Optical member for euv lithography, and process for production of reflective-layer-attached substrate for euv lithography
KR20120106735A (en) 2009-12-09 2012-09-26 아사히 가라스 가부시키가이샤 Reflective-layer-equipped substrate for euv lithography, reflective mask blank for euv lithography, reflective mask for euv lithography, and process for producing reflective-layer-equipped substrate
WO2011071086A1 (en) 2009-12-09 2011-06-16 旭硝子株式会社 Optical member for use in euv lithography
WO2011071123A1 (en) 2009-12-09 2011-06-16 旭硝子株式会社 Reflective-layer-equipped substrate for euv lithography, reflective mask blank for euv lithography, reflective mask for euv lithography, and process for producing reflective-layer-equipped substrate
JP2011129611A (en) * 2009-12-16 2011-06-30 Dainippon Printing Co Ltd Method of manufacturing reflective type mask
US8748062B2 (en) 2011-04-26 2014-06-10 Osaka University Method of cleaning substrate
TWI548930B (en) * 2011-09-28 2016-09-11 Hoya股份有限公司 Reflective mask blank, reflective mask and method of manufacturing reflective mask
US9383637B2 (en) 2012-03-23 2016-07-05 Hoya Corporation Substrate with multilayer reflective film, reflective mask blank for EUV lithography, method of manufacturing reflective mask for EUV lithography and method of manufacturing semiconductor device
KR20140138601A (en) 2012-03-23 2014-12-04 호야 가부시키가이샤 Substrate with multilayer reflective film, reflective mask blank for euv lithography, method for producing reflective mask for euv lithography, and method for manufacturing semiconductor device
JP2013206936A (en) * 2012-03-27 2013-10-07 Toppan Printing Co Ltd Reflective mask and method of manufacturing reflective mask
US9052601B2 (en) 2012-07-11 2015-06-09 Asahi Glass Company, Limited Reflective mask blank for EUV lithography and process for its production, as well as substrate with reflective layer for such mask blank and process for its production
KR20140008246A (en) 2012-07-11 2014-01-21 아사히 가라스 가부시키가이샤 Reflective mask blank for euv lithography and process for its production, as well as substrate with reflective layer for such mask blank and process for its production
KR20160034315A (en) 2013-07-22 2016-03-29 호야 가부시키가이샤 Substrate with multilayered reflective film, reflective mask blank for euv lithography, reflective mask for euv lithography, process for producing same, and process for producing semiconductor device
US9740091B2 (en) 2013-07-22 2017-08-22 Hoya Corporation Substrate with multilayer reflective film, reflective mask blank for EUV lithography, reflective mask for EUV lithography, and method of manufacturing the same, and method of manufacturing a semiconductor device
US9720317B2 (en) 2013-09-11 2017-08-01 Hoya Corporation Substrate with a multilayer reflective film, reflective mask blank for EUV lithography, reflective mask for EUV lithography and method of manufacturing the same, and method of manufacturing a semiconductor device
KR20160054458A (en) 2013-09-11 2016-05-16 호야 가부시키가이샤 Substrate with multilayer reflective film, reflective mask blank for euv lithography, reflective mask for euv lithography, method for producing reflective mask for euv lithography, and method for manufacturing semiconductor device
KR20160046740A (en) 2014-10-21 2016-04-29 아사히 가라스 가부시키가이샤 Reflective mask blank for euv lithography and process for its production, as well as substrate with reflective layer for such mask blank and process for its production
US9720316B2 (en) 2014-10-21 2017-08-01 Asahi Glass Company, Limited Reflective mask blank for EUV lithography and process for its production, as well as substrate with reflective layer for such mask blank and process for its production
TWI650607B (en) * 2014-10-21 2019-02-11 日商Agc股份有限公司 Substrate with reflective layer for euvl and process for its production, as well as reflective mask blank for euvl and reflective mask for euvl
KR20210066015A (en) * 2018-10-26 2021-06-04 어플라이드 머티어리얼스, 인코포레이티드 TA-CU alloy material for extreme ultraviolet mask absorber
KR102647715B1 (en) 2018-10-26 2024-03-13 어플라이드 머티어리얼스, 인코포레이티드 TA-CU alloy material for extreme ultraviolet ray mask absorber
KR20210038360A (en) 2019-09-30 2021-04-07 호야 가부시키가이샤 Substrate with multilayer reflective film, reflective mask blank, reflective mask and method of manufacturing the same, and method of manufacturing semiconductor device
KR20220161261A (en) 2020-03-30 2022-12-06 호야 가부시키가이샤 Substrate with multilayer reflective film, reflective mask blank, reflective mask, and manufacturing method of semiconductor device
KR20210133155A (en) 2020-04-28 2021-11-05 신에쓰 가가꾸 고교 가부시끼가이샤 Substrate with film for reflective mask blank and reflective mask blank
EP3907560A1 (en) 2020-04-28 2021-11-10 Shin-Etsu Chemical Co., Ltd. Substrate with film for reflective mask blank, and reflective mask blank
KR20230119111A (en) 2020-12-25 2023-08-16 호야 가부시키가이샤 Manufacturing method of substrate with multi-layer reflective film, reflective mask blank, reflective mask, and semiconductor device
KR20220149442A (en) 2021-04-30 2022-11-08 신에쓰 가가꾸 고교 가부시끼가이샤 Reflective mask blank and manufacturing method of reflective mask
EP4083704A1 (en) 2021-04-30 2022-11-02 Shin-Etsu Chemical Co., Ltd. Reflective mask blank and method for manufacturing reflective mask
EP4276534A1 (en) 2022-05-10 2023-11-15 Shin-Etsu Chemical Co., Ltd. Mask blank, resist pattern forming process and chemically amplified positive resist composition
KR20230157880A (en) 2022-05-10 2023-11-17 신에쓰 가가꾸 고교 가부시끼가이샤 Mask blank, resist pattern forming process and chemically amplified positive resist composition
EP4390537A2 (en) 2022-12-21 2024-06-26 Shin-Etsu Chemical Co., Ltd. Reflective mask blank
EP4390536A2 (en) 2022-12-21 2024-06-26 Shin-Etsu Chemical Co., Ltd. Reflective mask blank, reflective mask, and manufacturing method thereof
KR20240099050A (en) 2022-12-21 2024-06-28 신에쓰 가가꾸 고교 가부시끼가이샤 Reflective mask blank, reflective mask and manufacturing method thereof
KR20240099051A (en) 2022-12-21 2024-06-28 신에쓰 가가꾸 고교 가부시끼가이샤 Reflective mask blank

Also Published As

Publication number Publication date
US6699625B2 (en) 2004-03-02
JP5371162B2 (en) 2013-12-18
KR100403615B1 (en) 2003-11-13
US20020045108A1 (en) 2002-04-18
KR20020029590A (en) 2002-04-19

Similar Documents

Publication Publication Date Title
JP2002122981A (en) Reflective photomask
KR100455383B1 (en) Reflection photomask, method of fabricating reflection photomask and method of fabricating integrated circuit using the same
JP6636581B2 (en) Reflective mask blank, method for manufacturing reflective mask, and method for manufacturing semiconductor device
JP6058757B1 (en) Mask blank, phase shift mask, method for manufacturing phase shift mask, and method for manufacturing semiconductor device
KR20160034315A (en) Substrate with multilayered reflective film, reflective mask blank for euv lithography, reflective mask for euv lithography, process for producing same, and process for producing semiconductor device
KR100640655B1 (en) Mask for EUVL and method for fabricating the same
JP2022024617A (en) Reflective mask blank for euv lithography, reflective mask for euv lithography and their manufacturing method
JP2023511124A (en) Extreme UV mask blank hard mask material
JP2023523342A (en) Extreme UV mask absorber material
JP2024097036A (en) Substrate with multilayer reflective film, reflective mask blank, reflective mask, and method for manufacturing semiconductor device
WO2021200325A1 (en) Multilayer reflective film-equipped substrate, reflective mask blank, reflective mask, and method for producing semiconductor device
US6749973B2 (en) Reflection type mask blank for EUV exposure and reflection type mask for EUV exposure as well as method of producing the mask
TW202129401A (en) Extreme ultraviolet mask blank hard mask materials
JP2002319542A (en) Reflective mask blank for euv exposure, reflective mask for euv exposure, and manufacturing method thereof
JP7478208B2 (en) Reflective mask, and method for manufacturing a reflective mask blank and a semiconductor device
JP7485084B2 (en) REFLECTIVE MASK BLANK FOR EUV LITHOGRAPHY, REFLECTIVE MASK FOR EUV LITHOGRAPHY, AND METHOD FOR MANUFACTURING THE SAME
WO2022138434A1 (en) Multilayer reflective film-equipped substrate, reflective mask blank, reflective mask, and method for producing semiconductor device
JP4691829B2 (en) Reflective projection exposure mask
KR100801484B1 (en) Extreme ultraviolet lithography mask and manufacturing method of thereof
TWI844312B (en) Photomask for extreme ultraviolet
JPWO2020166475A1 (en) Mask blank, phase shift mask, phase shift mask manufacturing method and semiconductor device manufacturing method
KR102667627B1 (en) Method for manufacturing extreme ultraviolet photomask pattern for reducing shadow phenomenon
WO2021125048A1 (en) Reflective mask blank, reflective mask, reflective mask manufacturing method, and reflective mask correction method
WO2023120026A1 (en) Mask blank, method for manufacturing transfer mask, and method for manufacturing semiconductor device
WO2023136183A1 (en) Reflection-type mask blank, reflection-type mask, and method for producing reflection-type mask

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070601

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090115

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100506

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110608

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110613

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110708

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121003

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121009

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121105

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121108

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121203

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130917

R150 Certificate of patent or registration of utility model

Ref document number: 5371162

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313118

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees