JPH07333829A - Optical element and its production - Google Patents

Optical element and its production

Info

Publication number
JPH07333829A
JPH07333829A JP12483694A JP12483694A JPH07333829A JP H07333829 A JPH07333829 A JP H07333829A JP 12483694 A JP12483694 A JP 12483694A JP 12483694 A JP12483694 A JP 12483694A JP H07333829 A JPH07333829 A JP H07333829A
Authority
JP
Japan
Prior art keywords
film
optical element
ray
forming
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12483694A
Other languages
Japanese (ja)
Inventor
Takashi Soga
隆 曽我
Masaaki Ito
昌昭 伊東
Taro Ogawa
太郎 小川
Hiroaki Oiizumi
博昭 老泉
Hiromasa Yamanashi
弘将 山梨
Takashi Matsuzaka
尚 松坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12483694A priority Critical patent/JPH07333829A/en
Publication of JPH07333829A publication Critical patent/JPH07333829A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To realize a process for producing optical element capable of realizing a reflection type optical element of high resolution prevented from degrading the contrast of X-ray reflection, facilitating correction of pattern defects in stages for producing the optical element having X-ray absorber patterns and improving the yield. CONSTITUTION:This optical element is formed by disposing an intermedite film 3 which is formed out of a material having a low etching rate to the etching of an X-ray absorber 4 and is used as a protective film of multilayered film 2 between the X-ray absorber 4 and the multilayered film 2 on a substrate 1. Pattern formation is executed without impairing the reflectivity of X-ray reflection parts by etching the X-ray absorber 4 without exposing the multilayered film surface to an etching atmosphere at the time of forming a mask 4' by patterning by X-ray absorber 4. As a result, the reflection surface having the uniform reflectivity is provided in a wide range region on the mask and the mask defects are decreased since the correction by a convergent ion beam is facilitated. The mask for X-ray exposure with which the improvement in the yield is possible in the lithography stage in semiconductor element production is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、X線もしくは極紫外線
を反射する光学素子及びその製造方法に係り、特に投影
露光装置に用いるX線の反射型マスク、回折格子、反射
型フレネルレンズ等に好適な光学素子及びその製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical element for reflecting X-rays or extreme ultraviolet rays and a method for manufacturing the same, and more particularly to an X-ray reflection type mask, a diffraction grating, a reflection type Fresnel lens and the like used in a projection exposure apparatus. The present invention relates to a suitable optical element and a method for manufacturing the same.

【0002】[0002]

【従来の技術】マスク上に描かれた半導体素子等の回路
パターンを、ウェハ上に転写する投影露光装置には、微
細なパターンの転写を行なうために、高い解像力が要求
される。一般に、投影光学系の開口数(NA)が大きい
ほど、あるいは露光波長が短いほど解像力は向上する。
しかし、大きなNAはパターン転写時に焦点深度の低下
をもたらすので、実用上その大きさには限界がある。
2. Description of the Related Art A projection exposure apparatus for transferring a circuit pattern of a semiconductor element or the like drawn on a mask onto a wafer is required to have high resolution in order to transfer a fine pattern. Generally, the larger the numerical aperture (NA) of the projection optical system or the shorter the exposure wavelength, the higher the resolution.
However, a large NA causes a decrease in the depth of focus during pattern transfer, and therefore its size is practically limited.

【0003】一方、X線領域もしくはこれに近い波長の
極紫外線領域では、物質の屈折率が1に極めて近いの
で、透過型レンズの使用は困難で、反射型光学系を使用
する必要がある。近年、反射膜として屈折率の異なる2
種類の物質の薄膜を交互に多数積層した多層膜鏡が実用
化され、X線の直入射反射が可能となってきたため、投
影露光装置の光源としてX線を使用し、解像力を向上さ
せる検討が盛んに行なわれている。
On the other hand, in the X-ray region or in the extreme ultraviolet region having a wavelength close to this, the refractive index of the substance is extremely close to 1, so that it is difficult to use a transmission type lens and it is necessary to use a reflection type optical system. In recent years, there have been two reflective films with different refractive indices.
Since a multilayer mirror in which a large number of thin films of different kinds of substances are alternately laminated has been put into practical use and X-rays can be directly incident and reflected, a study has been made to improve resolution by using X-rays as a light source of a projection exposure apparatus. It is being actively conducted.

【0004】図2は、反射型マスクとして従来提案され
ている二種類の構造例を示す要部断面図である。同図
(a)は、その一例を示するもので、基板1の上に、重
元素を主とする物質と軽元素を主とする物質を交互に多
数積層した多層膜2を、所定のマスクパターンをリソグ
ラフィにより転写する工程、すなわち、レジスト等をマ
スクにしたエッチングにより部分的に除去する工程によ
り作製される構造である。
FIG. 2 is a cross-sectional view of an essential part showing two types of structural examples conventionally proposed as a reflective mask. FIG. 1A shows an example thereof, in which a multi-layer film 2 in which a large number of substances mainly containing heavy elements and a large number of substances mainly containing light elements are alternately laminated is provided on a substrate 1 with a predetermined mask. This structure is manufactured by a process of transferring a pattern by lithography, that is, a process of partially removing it by etching using a resist or the like as a mask.

【0005】同図(b)は、他の例を示すもので、基板
1の上に、重元素を主とする物質と軽元素を主とする物
質を交互に多数積層した多層膜2を形成し、さらにこの
多層膜上にX線吸収体層を形成し、これを選択的にエッ
チングすることによりパターン化し、X線吸収体のパタ
ーン4’を形成する工程、すなわち、レジスト等をマス
クにしたエッチングによりX線吸収体を部分的に除去す
る工程により作製される構造である。
FIG. 1B shows another example, in which a multi-layered film 2 in which a large number of substances containing a heavy element and a large number of light elements are alternately laminated is formed on a substrate 1. Further, a step of forming an X-ray absorber layer on the multilayer film and patterning it by selectively etching it to form a pattern 4'of the X-ray absorber, that is, using a resist or the like as a mask. This structure is manufactured by a process of partially removing the X-ray absorber by etching.

【0006】なお、このようなX線投影露光装置に使用
されるX線露光用の反射型マスクに関連するものとし
て、例えば特開昭64−4021号公報が挙げられる。
An example of a reflection type mask for X-ray exposure used in such an X-ray projection exposure apparatus is disclosed in Japanese Laid-Open Patent Publication No. 64-4021.

【0007】[0007]

【発明が解決しようとする課題】上記従来技術の図2
(a)に示す構造を製作する場合、X線を反射する部分
となる多層膜2の表面は、リソグラフィによるマスクパ
ターン形成時にレジストマスク等により保護され、イオ
ン照射等による損傷を受けずに加工できるため反射率の
高いパタ−ンが形成できる。しかし、マスクとして残す
べきパタ−ンの多層膜が欠損した場合、その欠損部分の
みを反射面として修正することは、極めて困難である。
その理由は、多層膜2が屈折率の異なる2種類の物質の
薄膜を交互に積層したもので構成され、成膜構造が複雑
であるからである。
FIG. 2 of the above-mentioned prior art.
In the case of manufacturing the structure shown in (a), the surface of the multilayer film 2 which is a portion that reflects X-rays is protected by a resist mask or the like when forming a mask pattern by lithography, and can be processed without being damaged by ion irradiation or the like. Therefore, a pattern with high reflectance can be formed. However, when the pattern multilayer film to be left as a mask is defective, it is extremely difficult to correct only the defective portion as a reflecting surface.
The reason is that the multilayer film 2 is formed by alternately laminating thin films of two kinds of substances having different refractive indexes, and the film forming structure is complicated.

【0008】一方、上記従来技術の図2(b)に示す構
造を製作する場合、X線吸収体を選択的にエッチング除
去する領域内において、全ての場所で等速度でエッチン
グを進行させることは困難である。したがって、X線吸
収体のエッチングが早く進行して露出した多層膜2の部
分は、他のエッチングが遅い部分のエッチングを終了す
るまでの時間の間エッチング雰囲気に曝され続け、多層
膜2の層数の減少や表面荒れなどの損傷を受ける。
On the other hand, in the case of manufacturing the structure shown in FIG. 2 (b) of the prior art described above, it is not possible to carry out etching at a constant rate at all locations within the region where the X-ray absorber is selectively removed by etching. Have difficulty. Therefore, the portion of the multilayer film 2 exposed by the rapid progress of the etching of the X-ray absorber is continuously exposed to the etching atmosphere until the etching of the portion where the other etching is slow is completed, and the layer of the multilayer film 2 is exposed. It suffers damage such as a decrease in the number and surface roughness.

【0009】また、製造工程で発生するX線吸収体パタ
−ン部4’の欠陥を修正する場合、余分なX線吸収体は
集束イオンビ−ムによりエッチング除去するが、この
時、多層膜2は同様に層数の減少や表面粗れ、多層膜の
相互拡散による構造変調等の損傷を受ける。損傷を受け
た多層膜2は、X線の反射率が低下するため、X線吸収
体パタ−ン部4’で反射するX線とのコントラストが低
下するという問題があった。
Further, when the defect of the X-ray absorber pattern portion 4'generated in the manufacturing process is to be repaired, the excess X-ray absorber is removed by etching with the focused ion beam. At this time, the multilayer film 2 is used. Similarly, the number of layers is reduced, the surface is roughened, and the structure is damaged by the mutual diffusion of the multilayer film. The damaged multilayer film 2 has a problem that the reflectance with respect to X-rays is lowered, so that the contrast with the X-rays reflected by the X-ray absorber pattern portion 4'is lowered.

【0010】したがって、本発明の目的は、上記従来技
術の図2(b)に示す構造上の問題点を解消することに
あり、第1の目的は、広範囲で高い反射率を持った多層
膜の上に、X線吸収体パタ−ンを有する光学素子、すな
わち、コントラスト低下を防止した高解像度の反射型光
学素子を提供することにあり、第2の目的は、広範囲で
高い反射率を持った多層膜の上に、X線吸収体パタ−ン
を有する光学素子の製造工程における反射部分の欠損や
パターン欠陥の修正が容易にでき、歩留まりの高い改良
された光学素子の製造方法を提供することにある。
Therefore, an object of the present invention is to eliminate the structural problem shown in FIG. 2 (b) of the prior art, and the first object is a multilayer film having a high reflectance in a wide range. A second object is to provide an optical element having an X-ray absorber pattern, that is, a high-resolution reflective optical element that prevents a reduction in contrast. A second object is to provide a high reflectance in a wide range. Provided is an improved method for manufacturing an optical element having a high yield, by which a defect of a reflection portion or a pattern defect can be easily repaired in a manufacturing process of an optical element having an X-ray absorber pattern on a multilayer film. Especially.

【0011】[0011]

【課題を解決するための手段】上記第1の目的を達成す
るために、本発明の光学素子は、基板上に、屈折率の異
なる少なくとも2種類の物質の薄膜が交互に順次積層さ
れたX線を反射する多層膜の上に、この多層膜を保護す
る中間膜を配設し、この中間膜の上にX線吸収体のパタ
−ンを配設して構成したものである。
In order to achieve the above first object, the optical element of the present invention has an X-layer structure in which thin films of at least two kinds of substances having different refractive indexes are alternately laminated on a substrate. An intermediate film for protecting the multilayer film is arranged on the multilayer film for reflecting rays, and a pattern of the X-ray absorber is arranged on the intermediate film.

【0012】この多層膜を保護する中間膜は、X線吸収
体を選択的にエッチングする場合の雰囲気において、X
線吸収体のエッチング速度よりも小さいエッチング速度
を有する材質であることが好ましい。なおかつ、中間膜
を透過する際のX線強度の減衰を極力小さくするため
に、中間膜に用いる材質のX線線吸収係数と中間膜の膜
厚との積が小さいことが好ましい。しかも、中間膜の膜
厚を多層膜の周期長の整数倍とすることが好ましく、こ
れにより、中間膜表面で反射したX線と多層膜で反射し
たX線の位相が一致し、反射率を向上することになる。
The intermediate film for protecting the multilayer film is made of X-ray in an atmosphere in which the X-ray absorber is selectively etched.
It is preferable that the material has an etching rate lower than the etching rate of the linear absorber. Further, in order to minimize the attenuation of X-ray intensity when passing through the intermediate film, it is preferable that the product of the X-ray absorption coefficient of the material used for the intermediate film and the film thickness of the intermediate film is small. Moreover, it is preferable that the film thickness of the intermediate film be an integral multiple of the cycle length of the multilayer film, whereby the X-rays reflected on the surface of the intermediate film and the X-rays reflected by the multilayer film are in phase with each other, and the reflectance is improved. Will be improved.

【0013】中間膜として用いるのに好ましい材質は、
C、Cr、Al、Ni、Al23、SiO2、Si
34、SiC又はBNであり、これら2種以上の複合組
成膜であっても良い。また、膜の構造は単層が望ましい
が、必要に応じて多層膜構造とすることもできる。
A preferred material for use as the intermediate film is
C, Cr, Al, Ni, Al 2 O 3 , SiO 2 , Si
It is 3 N 4 , SiC or BN, and may be a composite composition film of two or more of these. Further, the film structure is preferably a single layer, but a multilayer film structure may be used if necessary.

【0014】中間膜の厚さは、多層膜に入射するX線の
強度を極力減衰させないことを配慮して、できるだけ薄
くすることが望ましく、1〜100nmが好ましく、実
用的には更に5〜20nmの範囲がより好ましい。膜厚
1nmは現在の技術で成膜できる限界であり、それ以下
の膜厚を実現することが困難であることから、また、1
00nmを超えると著しくX線の吸収が大きくなること
からである。中間膜のX線透過率は、少なくとも80%
は欲しい。そのためにはこのように薄膜化することが必
要となる。
The thickness of the intermediate film is preferably as thin as possible in consideration of not attenuating the intensity of X-rays incident on the multilayer film as much as possible, preferably 1 to 100 nm, and more practically 5 to 20 nm. Is more preferable. A film thickness of 1 nm is the limit that can be formed by the current technology, and it is difficult to achieve a film thickness less than that.
This is because if it exceeds 00 nm, the absorption of X-rays remarkably increases. X-ray transmittance of the interlayer film is at least 80%
I want For that purpose, it is necessary to reduce the thickness in this way.

【0015】X線吸収体としては、例えばW、Ta、P
t、Au、Ge等の重金属が使用でき、X線の吸収率が
高く、しかもリソグラフィによるパターン形成時のエッ
チング速度が、中間膜のそれよりも速く、加工し易い材
質で形成するが好ましい。
As the X-ray absorber, for example, W, Ta, P
Heavy metals such as t, Au, and Ge can be used, the absorptivity of X-rays is high, and the etching rate at the time of pattern formation by lithography is faster than that of the intermediate film.

【0016】なお、本発明の光学素子の応用例として代
表的なものは、リソグラフィにより微細加工する際のX
線露光用反射型マスクであり、LSIや液晶表示装置等
の電子装置の製造に有効であるが、その他、回折格子、
反射型フレネルレンズ等の光学素子についても適用で
き、同様に高性能の素子を高い歩留まりで実現すること
ができる。
A typical example of application of the optical element of the present invention is X for fine processing by lithography.
It is a reflective mask for line exposure and is effective for manufacturing electronic devices such as LSI and liquid crystal display devices.
The present invention can also be applied to optical elements such as reflective Fresnel lenses, and similarly high-performance elements can be realized with high yield.

【0017】また、上記第2の目的を達成するために、
本発明の光学素子の製造方法は、基板上に屈折率の異な
る少なくとも2種類の物質の薄膜を交互に積層してX線
もしくは極紫外線を反射する多層膜を形成する工程と、
前記多層膜の保護層として中間膜を形成する工程と、前
記中間膜上にX線もしくは極紫外線の吸収体パタ−ンを
形成する工程とを設けて構成したものである。
In order to achieve the second object,
The method for producing an optical element of the present invention comprises the steps of alternately laminating thin films of at least two kinds of substances having different refractive indexes on a substrate to form a multilayer film reflecting X-rays or extreme ultraviolet rays,
It comprises a step of forming an intermediate film as a protective layer of the multilayer film and a step of forming an X-ray or extreme ultraviolet absorber pattern on the intermediate film.

【0018】この中間膜は、上記光学素子の場合と同様
に、X線吸収体をエッチングする場合の雰囲気におい
て、X線吸収体のエッチング速度よりも小さいエッチン
グ速度を有する材質であることが好ましい。なおかつ、
中間膜を透過する際のX線強度の減衰を小さくするため
に、中間膜に用いる材質のX線線吸収係数と中間膜の膜
厚との積が小さいことが好ましい。
This intermediate film is preferably made of a material having an etching rate lower than that of the X-ray absorber in the atmosphere for etching the X-ray absorber, as in the case of the optical element. Moreover,
In order to reduce the attenuation of X-ray intensity when passing through the intermediate film, it is preferable that the product of the X-ray absorption coefficient of the material used for the intermediate film and the film thickness of the intermediate film is small.

【0019】そして具体的には、上記中間膜を形成する
工程を、C、Cr、Al、Ni、Al23、SiO2
Si34、SiC及びBNからなる群から選ばれる少な
くとも1種の物質を含む薄膜形成工程で構成すると共
に、上記吸収体パタ−ンを形成する工程を、W、Ta、
Pt、Au及びGeからなる群から選ばれる少なくとも
1種の金属薄膜を形成する工程と、前記金属薄膜を予め
定められた所定のマスクパターンを介してリソグラフィ
によりパターン化する工程とで構成することである。
Specifically, the step of forming the intermediate film is performed by using C, Cr, Al, Ni, Al 2 O 3 , SiO 2 ,
The step of forming a thin film containing at least one substance selected from the group consisting of Si 3 N 4 , SiC and BN, and forming the absorber pattern is performed by W, Ta,
By comprising a step of forming at least one metal thin film selected from the group consisting of Pt, Au and Ge, and a step of patterning the metal thin film by lithography through a predetermined mask pattern. is there.

【0020】上記中間膜を形成する工程において、形成
する薄膜の膜厚は1〜100nm、より好ましくは5〜
20nmとすることであり、多層膜の周期長に対し、実
質的に整数倍の膜厚となるように形成する工程とするこ
とである。
In the step of forming the intermediate film, the thickness of the thin film to be formed is 1 to 100 nm, more preferably 5 to 100 nm.
The thickness is 20 nm, which is a step of forming a film having a film thickness that is substantially an integral multiple of the cycle length of the multilayer film.

【0021】なお、多層膜、X線吸収体および中間膜の
形成方法としては、マグネトロンスパッタ法が好ましい
が、その他に、イオンビームスパッタ法、電子ビーム蒸
着法、CVD法、抵抗加熱蒸着法など、周知の成膜方法
をも使用することができる。
As the method for forming the multilayer film, the X-ray absorber and the intermediate film, magnetron sputtering is preferable, but in addition, ion beam sputtering, electron beam evaporation, CVD, resistance heating evaporation, etc. Well-known film forming methods can also be used.

【0022】また、X線吸収体をパターン化するための
レジストマスクパターンの形成方法としては、電子ビー
ム描画の他に、収束イオンビーム、水銀ランプやエキシ
マレーザによる光学露光によってもよい。
As a method of forming a resist mask pattern for patterning the X-ray absorber, a focused ion beam, optical exposure with a mercury lamp or an excimer laser may be used in addition to electron beam drawing.

【0023】また、レジストマスクを用いてX線吸収体
をパターン化するには、各種のドライエッチングによる
パターン形成方法が有効であるが、例えばプラズマを利
用した反応性イオンエッチング、特に低温ドライエッチ
ングが好ましい。
In order to pattern the X-ray absorber using a resist mask, various dry etching pattern forming methods are effective. For example, reactive ion etching using plasma, especially low temperature dry etching is used. preferable.

【0024】[0024]

【作用】多層膜の保護膜として中間膜を設けることによ
り、X線吸収体のパタ−ン形成、および修正をするため
のエッチングを行う場合に、多層膜をエッチング雰囲気
に曝すことがないため、多層膜の層数の減少や表面粗
れ、相互拡散などによる損傷がなく、高いX線反射率を
有する面が広範囲で得られる。
By providing the intermediate film as the protective film for the multilayer film, the multilayer film is not exposed to the etching atmosphere when the pattern forming of the X-ray absorber and the etching for the correction are performed. A surface having a high X-ray reflectance can be obtained in a wide range without any damage due to a decrease in the number of layers of the multilayer film, surface roughness, mutual diffusion, or the like.

【0025】中間膜は上記のように、X線吸収体のパタ
−ン形成時および/またはパターン修正時に加工ビーム
や反応ガスから多層膜表面が損傷を受けないように保護
する作用を有している。したがって、その機能を発揮す
るためには、X線の吸収損失を最小限にして、X線吸収
体のパタ−ン形成時にエッチングに対する耐性が十分に
確保されていること、すなわち、X線吸収体と中間膜と
のエッチング速度差が大きく、パタ−ン形成が完全に終
了した段階でもX線吸収体がエッチング除去された跡に
中間膜が残っており、多層膜を被覆して十分に保護膜と
して作用していることである。
As described above, the intermediate film has a function of protecting the surface of the multilayer film from being damaged by the processing beam and the reaction gas when the X-ray absorber pattern is formed and / or the pattern is modified. There is. Therefore, in order to exert its function, the absorption loss of X-rays should be minimized to ensure sufficient resistance to etching when the X-ray absorber is patterned, that is, the X-ray absorber. The difference in etching rate between the intermediate film and the intermediate film is large, and the intermediate film remains after the X-ray absorber is removed by etching even when the pattern formation is completely completed. Is acting as.

【0026】[0026]

【実施例】以下、本発明の一実施例を図面にしたがって
説明する。 〈実施例1〉図1は、本発明の一実施例の反射型マスク
の製造方法を示す工程図である。同図(a)に示すよう
に、基板1は厚さ5mmのSiであり、予め表面粗さが
rms(2乗平均根)値で0.3nmの光学研磨が施さ
れている。この基板上にマグネトロンスパッタ装置を用
いて、多層膜2、中間膜3、X線吸収体4を順次積み上
げ積層した。多層膜2は、厚さ2.5nmのMo薄膜
と、厚さ4.2nmのSi薄膜を、交互に各々50層積
層した。この時、波長13nm、入射角5°のX線に対
して多層膜2での反射率は60%であった。中間膜3は
Alを10nm積層し、X線吸収体4はWを100nm
積層した。次いで、X線吸収体4上に電子線レジストP
MMAを厚さ1.0μm塗布し、電子線露光および現像
を行って所定のLSI製造用のレジストマスクパタ−ン
5を形成した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. <Embodiment 1> FIG. 1 is a process chart showing a method of manufacturing a reflective mask according to an embodiment of the present invention. As shown in FIG. 3A, the substrate 1 is made of Si having a thickness of 5 mm, and is surface-polished in advance to have a surface roughness of rms (root mean square) value of 0.3 nm. A multilayer film 2, an intermediate film 3, and an X-ray absorber 4 were sequentially stacked and laminated on this substrate by using a magnetron sputtering device. The multilayer film 2 was formed by alternately laminating a Mo thin film having a thickness of 2.5 nm and a Si thin film having a thickness of 4.2 nm in 50 layers each. At this time, the reflectance of the multilayer film 2 with respect to X-rays having a wavelength of 13 nm and an incident angle of 5 ° was 60%. The intermediate film 3 is formed by stacking Al with a thickness of 10 nm, and the X-ray absorber 4 is formed with W by 100 nm
Laminated. Then, an electron beam resist P is formed on the X-ray absorber 4.
MMA was applied to a thickness of 1.0 μm, and electron beam exposure and development were performed to form a predetermined resist mask pattern 5 for manufacturing an LSI.

【0027】次いで同図(b)に示すように、X線吸収
体(W)4の露出部分を反応性イオンエッチングにより
除去し、そのパターン4’を形成した。エッチング反応
ガスとしてはSF6を用い、ガス圧力を0.05〜15
Paの範囲で行った場合、Wのエッチング速度は中間膜
(Al)3のエッチング速度の20倍以上であり、10
0nmの厚さのWをエッチングするために要した時間と
同じ時間をさらに追加した場合でも5nm以上の厚さの
Alで多層膜2を保護できる。X線吸収体4を基板上全
面でエッチングを終了しても多層膜2の露出は見られな
かった。レジストパタ−ン5はアセトン等の有機溶剤へ
の浸漬もしくは酸素プラズマエッチングにより容易に除
去することができ、図1(b)に示す構造の反射型マス
クが得られた。
Then, as shown in FIG. 2B, the exposed portion of the X-ray absorber (W) 4 was removed by reactive ion etching to form a pattern 4 '. SF 6 is used as the etching reaction gas, and the gas pressure is 0.05 to 15
When performed in the range of Pa, the etching rate of W is 20 times or more the etching rate of the intermediate film (Al) 3,
Even when the same time as the time required to etch W having a thickness of 0 nm is further added, the multilayer film 2 can be protected by Al having a thickness of 5 nm or more. Even after etching the X-ray absorber 4 over the entire surface of the substrate, the multilayer film 2 was not exposed. The resist pattern 5 could be easily removed by immersion in an organic solvent such as acetone or oxygen plasma etching, and a reflective mask having the structure shown in FIG. 1 (b) was obtained.

【0028】なお、波長13nmのX線の透過率は、厚
さ10nmの中間膜(Al)3では95%であり、入射
角5°のX線に対し、反射面でのX線反射率は54%を
示した。さらに、中間膜(Al)3の膜厚を多層膜2の
周期長である6.7nmに一致させた場合には、入射角
5°のX線に対し、反射面でのX線反射率は58%を示
した。
The transmittance of X-rays having a wavelength of 13 nm is 95% for the intermediate film (Al) 3 having a thickness of 10 nm, and the X-ray reflectance at the reflecting surface for X-rays having an incident angle of 5 ° is It showed 54%. Furthermore, when the film thickness of the intermediate film (Al) 3 is made to coincide with the period length of 6.7 nm of the multilayer film 2, the X-ray reflectance at the reflecting surface with respect to the X-ray with an incident angle of 5 ° is It showed 58%.

【0029】以上の工程で、X線吸収体をパターン化し
マスクを形成する際の歩留まりは従来通り70%程度で
あったが、欠陥を生じたマスクについては、いずれも以
下のような欠陥修正法によって容易に修正でき、完全に
正常なものとして使用可能となり最終的に歩留まり10
0%を達成することができた。
In the above steps, the yield when patterning the X-ray absorber and forming a mask was about 70% as in the conventional case. Can be easily corrected, and can be used as a completely normal product, resulting in a yield of 10
It was possible to achieve 0%.

【0030】すなわち、本実施例の構造の反射型マスク
の欠陥修正法は、X線吸収体のパターン4’を構成する
Wの欠損部に対してはW(CO)6を用いた集束イオン
ビ−ムアシストデポジションによりWを局部的に成膜
し、欠陥部分を埋めた。一方、Wの除去が不完全な部分
に対してはGaイオンによる集束イオンビ−ムエッチン
グによりWを除去したところ、反射部(Wパターン4’
に覆うわれていない多層膜2の表面)でのX線反射率は
50%を示した。
That is, in the defect correcting method for the reflective mask having the structure of this embodiment, the focused ion beam using W (CO) 6 is used for the defective portion of W constituting the pattern 4'of the X-ray absorber. W was locally formed by the soft assist deposition to fill the defective portion. On the other hand, when W was removed incompletely by focused ion beam etching with Ga ions, the reflection portion (W pattern 4 ') was removed.
The X-ray reflectance of the surface of the multilayer film 2 which was not covered with the above) was 50%.

【0031】この反射型マスクを投影露光装置に用い、
X線源からのX線を反射させ、所定のパタ−ンを半導体
基板上のX線レジストに投影し、半導体素子の製造に適
用した。それにより、マスク全面に対応する半導体基板
上で0.1μmの微細なパタ−ンを形成できた。これに
より半導体素子製造のリソグラフィ工程における歩留ま
りが格段に向上した。
Using this reflective mask in a projection exposure apparatus,
The X-ray from the X-ray source was reflected, and a predetermined pattern was projected on the X-ray resist on the semiconductor substrate, which was applied to the manufacture of a semiconductor device. As a result, a fine pattern of 0.1 μm could be formed on the semiconductor substrate corresponding to the entire surface of the mask. As a result, the yield in the lithographic process for manufacturing semiconductor devices has been significantly improved.

【0032】なお、上記実施例では中間膜3としてAl
を用いたが、その他C、Cr、Ni、Al23、SiO
2、Si34、SiC、BNについて、単一組成のもの
と2種以上の複合組成のものとを作成し、各々X線吸収
体4とのエッチング速度の比率から明らかとなる必要な
膜厚を積層することにより同様の結果が得られた。中間
膜3を構成するこれらの組成についてさらに詳細に実験
検討したところ、X線吸収体4とのエッチング速度差が
大きくエッチング耐性に優れている点、X線の吸収損失
が少い点、成膜の容易さ等の特性を総合的に考慮し、強
いて序列をもうければ、次のように優れている順から3
つのグループに分類できる。 Aグループ〔C、SiO2、Si34、SiC〕>Bグ
ループ〔Cr、BN〕>Cグループ〔Al、Ni、Al
23〕。
In the above embodiment, Al is used as the intermediate film 3.
Other than C, Cr, Ni, Al 2 O 3 , SiO
2 , Si 3 N 4 , SiC, and BN, which have a single composition and a composite composition of two or more kinds, and which are necessary films which are clarified from the etching rate ratios with the X-ray absorber 4 respectively. Similar results were obtained by stacking thicknesses. As a result of a more detailed experimental study of these compositions forming the intermediate film 3, a large difference in etching rate from the X-ray absorber 4 and a high etching resistance, a small X-ray absorption loss, and a film formation Taking into account characteristics such as ease of use, and if you have a strong ranking,
It can be classified into two groups. A group [C, SiO 2 , Si 3 N 4 , SiC]> B group [Cr, BN]> C group [Al, Ni, Al
2 O 3 ].

【0033】なお、X線吸収体4としてはWを用いた
が、その他Ta、Pt、Au、Geを用いることもでき
た。
Although W was used as the X-ray absorber 4, other materials such as Ta, Pt, Au, and Ge could be used.

【0034】多層膜2、X線吸収体4および中間膜3の
形成法としては、マグネトロンスパッタ法を用いたが、
これについてもその他周知の成膜方法が用いられ、例え
ばイオンビームスパッタ法、電子ビーム蒸着法、CVD
法、抵抗加熱蒸着法などが使用できる。
As the method for forming the multilayer film 2, the X-ray absorber 4 and the intermediate film 3, the magnetron sputtering method was used.
Other well-known film forming methods are also used for this, such as ion beam sputtering, electron beam evaporation, and CVD.
Method, resistance heating vapor deposition method or the like can be used.

【0035】さらに、レジストパターン5の形成方法と
しては、電子ビーム描画の他に、収束イオンビーム、水
銀ランプやエキシマレーザによる光学露光によってもよ
い。
Further, as a method for forming the resist pattern 5, in addition to electron beam drawing, a focused ion beam, optical exposure using a mercury lamp or an excimer laser may be used.

【0036】〈実施例2〉実施例1と同様にして、ただ
し、上記図1に示したX線吸収体のパタ−ン4’を所定
の幅のラインとスペ−スの繰返しパタ−ンとして、回折
格子を製造した。この場合も実施例1と同様の効果が得
られた。
<Embodiment 2> In the same manner as in Embodiment 1, except that the pattern 4'of the X-ray absorber shown in FIG. 1 is used as a repeating pattern of lines and spaces of a predetermined width. , A diffraction grating was manufactured. Also in this case, the same effect as in Example 1 was obtained.

【0037】〈実施例3〉実施例1と同様にして、ただ
し、上記図1に示したX線吸収体のパタ−ン4’を同心
円状の所定の幅のラインとスペ−スの繰返しパタ−ンと
し、外周に行くにしたがい細かくなるパターンを形成し
て、反射型フレネルレンズを製造した。この場合も実施
例1と同様の効果が得られた。
<Embodiment 3> In the same manner as in Embodiment 1, except that the pattern 4'of the X-ray absorber shown in FIG. 1 is replaced by a pattern of concentric circles having a predetermined width and a space. Then, a reflective Fresnel lens was manufactured by forming a pattern that becomes finer toward the outer periphery. Also in this case, the same effect as in Example 1 was obtained.

【0038】[0038]

【発明の効果】以上詳述したように、本発明により所期
の目的を達成することができた。すなわち、本発明の光
学素子の一つである反射型マスクにおいては、X線を反
射する多層膜の上にX線吸収体のパタ−ンを形成、ある
いは修正する際に、多層膜上にそれを保護する中間膜を
設けることで、多層膜からなるX線反射部に損傷を与え
ることがないため、反射率が低下する欠陥発生を低減で
きるので、投影露光するパタ−ンの欠陥も低減できるこ
とから半導体素子製造のリソグラフィ工程における歩留
まりが向上する。また、その他の光学素子である回折格
子や反射型フレネルレンズについても同様であり、X線
吸収体のパタ−ン形成、あるいは修正に有効で歩留まり
が格段に向上する。
As described above in detail, according to the present invention, the intended purpose can be achieved. That is, in the reflection type mask which is one of the optical elements of the present invention, when the pattern of the X-ray absorber is formed or modified on the multilayer film that reflects X-rays, the pattern is formed on the multilayer film. By providing an intermediate film that protects the X-rays, the X-ray reflection part made of a multilayer film is not damaged, so that the occurrence of defects that reduce the reflectance can be reduced, and the defects of the pattern that is projected and exposed can also be reduced. Therefore, the yield in the lithographic process for manufacturing semiconductor devices is improved. The same applies to other diffraction gratings and reflection type Fresnel lenses, which are effective for pattern formation or correction of the X-ray absorber, and the yield is significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例となる反射型マスクの製造方
法を示す工程図である。
FIG. 1 is a process drawing showing a method of manufacturing a reflective mask that is an embodiment of the present invention.

【図2】従来の反射型マスクの構造を示す図である。FIG. 2 is a diagram showing a structure of a conventional reflective mask.

【符号の説明】[Explanation of symbols]

1…基板、 2…多層膜、 3…中間膜、 4…X線吸収体、 4’…パターン化されたX線吸収体、 5…レジストパタ−ン。 DESCRIPTION OF SYMBOLS 1 ... Substrate, 2 ... Multilayer film, 3 ... Intermediate film, 4 ... X-ray absorber, 4 '... Patterned X-ray absorber, 5 ... Resist pattern.

フロントページの続き (72)発明者 老泉 博昭 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 山梨 弘将 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 松坂 尚 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内Front page continued (72) Inventor Hiroaki Oizumi 1-280 Higashi Koikekubo, Kokubunji, Tokyo Inside Hitachi Central Research Laboratory (72) Inventor Hiromasa Yamanashi 1-280 Higashi Koikeku, Tokyo Kokubunji City Hitachi Ltd. Central In the laboratory (72) Inventor Takashi Matsuzaka 1-280, Higashi Koigokubo, Kokubunji, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】基板上に、屈折率の異なる少なくとも2種
類の物質の薄膜が交互に積層されたX線もしくは極紫外
線を反射する多層膜と、前記多層膜上に配設された多層
膜を保護する中間膜と、さらに前記中間膜上に配設され
たX線もしくは極紫外線の吸収体パタ−ンとを有して成
る光学素子。
1. A multilayer film which reflects X-rays or extreme ultraviolet rays in which thin films of at least two kinds of substances having different refractive indexes are alternately laminated on a substrate, and a multilayer film arranged on the multilayer film. An optical element comprising an intermediate film to be protected, and an X-ray or extreme ultraviolet absorber pattern provided on the intermediate film.
【請求項2】上記中間膜を、上記吸収体を所定のパター
ンに加工する場合の吸収体のエッチング速度よりもエッ
チング速度が遅い材質で構成して成る請求項1記載の光
学素子。
2. The optical element according to claim 1, wherein the intermediate film is made of a material having an etching rate slower than an etching rate of the absorber when the absorber is processed into a predetermined pattern.
【請求項3】上記中間膜の膜厚を、上記多層膜の周期長
に対し、実質的に整数倍の膜厚で構成して成る請求項1
もしくは2記載の光学素子。
3. The film thickness of the intermediate film is constituted by a film thickness which is substantially an integral multiple of the cycle length of the multilayer film.
Alternatively, the optical element described in 2.
【請求項4】上記中間膜の膜厚を、5〜20nmとして
成る請求項1乃至3何れか記載の光学素子。
4. The optical element according to claim 1, wherein the intermediate film has a film thickness of 5 to 20 nm.
【請求項5】上記中間膜を、C、Cr、Al、Ni、A
23、SiO2、Si34、SiC及びBNからなる
群から選ばれる少なくとも1種の物質で構成すると共
に、上記吸収体を、W、Ta、Pt、Au及びGeから
なる群から選ばれる少なくとも1種の金属薄膜で構成し
て成る請求項1乃至4何れか記載の光学素子。
5. The intermediate film is formed of C, Cr, Al, Ni, A.
1 2 O 3 , SiO 2 , Si 3 N 4 , SiC and BN, and at least one substance selected from the group consisting of W, Ta, Pt, Au and Ge. The optical element according to any one of claims 1 to 4, comprising at least one metal thin film selected.
【請求項6】請求項1乃至5何れか記載の光学素子より
構成される反射型マスク。
6. A reflective mask comprising the optical element according to claim 1.
【請求項7】請求項1乃至5何れか記載の光学素子より
構成される回折格子。
7. A diffraction grating composed of the optical element according to claim 1.
【請求項8】請求項1乃至5何れか記載の光学素子より
構成される反射型フレネルレンズ。
8. A reflective Fresnel lens comprising the optical element according to claim 1.
【請求項9】基板上に屈折率の異なる少なくとも2種類
の物質の薄膜を交互に積層してX線もしくは極紫外線を
反射する多層膜を形成する工程と、前記多層膜の保護層
として中間膜を形成する工程と、前記中間膜上にX線も
しくは極紫外線の吸収体パタ−ンを形成する工程とを有
して成る光学素子の製造方法。
9. A step of forming a multilayer film that reflects X-rays or extreme ultraviolet rays by alternately laminating thin films of at least two kinds of substances having different refractive indexes on a substrate, and an intermediate film as a protective layer of the multilayer film. And a step of forming an X-ray or extreme ultraviolet absorber pattern on the intermediate film.
【請求項10】上記中間膜を形成する工程を、C、C
r、Al、Ni、Al23、SiO2、Si34、Si
C及びBNからなる群から選ばれる少なくとも1種の物
質を含む薄膜形成工程で構成すると共に、上記吸収体パ
タ−ンを形成する工程を、W、Ta、Pt、Au及びG
eからなる群から選ばれる少なくとも1種の金属薄膜を
形成する工程と、前記金属薄膜を予め定められた所定の
マスクパターンを介してリソグラフィによりパターン化
する工程とで構成して成る請求項9記載の光学素子の製
造方法。
10. The step of forming the intermediate film is carried out by C, C
r, Al, Ni, Al 2 O 3 , SiO 2 , Si 3 N 4 , Si
The steps of forming a thin film containing at least one substance selected from the group consisting of C and BN and forming the absorber pattern are W, Ta, Pt, Au and G.
10. The method comprising the steps of forming at least one kind of metal thin film selected from the group consisting of e, and patterning the metal thin film by lithography through a predetermined mask pattern. Of manufacturing optical element of.
【請求項11】上記中間膜を形成する工程において、形
成する薄膜の膜厚を5〜20nmとすると共に、上記多
層膜の周期長に対し、実質的に整数倍の膜厚となるよう
に形成する工程として成る請求項9もしくは10記載の
光学素子の製造方法。
11. In the step of forming the intermediate film, the thickness of the thin film to be formed is set to 5 to 20 nm, and the film is formed to have a film thickness that is substantially an integral multiple of the cycle length of the multilayer film. The method for manufacturing an optical element according to claim 9 or 10, which comprises the step of:
JP12483694A 1994-06-07 1994-06-07 Optical element and its production Pending JPH07333829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12483694A JPH07333829A (en) 1994-06-07 1994-06-07 Optical element and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12483694A JPH07333829A (en) 1994-06-07 1994-06-07 Optical element and its production

Publications (1)

Publication Number Publication Date
JPH07333829A true JPH07333829A (en) 1995-12-22

Family

ID=14895300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12483694A Pending JPH07333829A (en) 1994-06-07 1994-06-07 Optical element and its production

Country Status (1)

Country Link
JP (1) JPH07333829A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002122981A (en) * 2000-10-13 2002-04-26 Samsung Electronics Co Ltd Reflective photomask
JP2003045779A (en) * 2001-07-30 2003-02-14 Hoya Corp Euv beam exposure reflection type mask and euv beam exposure reflection type mask blank
WO2003085709A1 (en) * 2002-04-11 2003-10-16 Hoya Corporation Reflection type mask blank and reflection type mask and production methods for them
WO2004006018A1 (en) * 2002-07-04 2004-01-15 Hoya Corporation Reflective maskblanks
US6749973B2 (en) 2001-02-14 2004-06-15 Hoya Corporation Reflection type mask blank for EUV exposure and reflection type mask for EUV exposure as well as method of producing the mask
US6797368B2 (en) 2002-02-28 2004-09-28 Hoya Corporation Reflective-type mask blank for exposure, method of producing the same, and reflective-type mask for exposure
JP2004289048A (en) * 2003-03-25 2004-10-14 Hoya Corp Process for producing reflective mask
JP2005308718A (en) * 2004-01-26 2005-11-04 Mitsutoyo Corp Scale for reflection type photoelectric encoder, manufacturing method for scale, and photoelectric encoder
JP2006190900A (en) * 2005-01-07 2006-07-20 Toppan Printing Co Ltd Reflective photo mask, blank thereof, and method of manufacturing semiconductor device using the same
JP2007005523A (en) * 2005-06-23 2007-01-11 Toppan Printing Co Ltd Reflective photomask blank, reflective photo mask, and pattern transfer method using the same
JP2007250613A (en) * 2006-03-14 2007-09-27 Toppan Printing Co Ltd Reflective mask blank, reflective mask, and exposure method of extremely short ultraviolet ray
US7282305B2 (en) 2003-03-03 2007-10-16 Hoya Corporation Reflective mask blank having a programmed defect and method of producing the same, reflective mask having a programmed defect and method of producing the same, and substrate for use in producing the reflective mask blank or the reflective mask having a programmed defect
WO2012014495A1 (en) * 2010-07-30 2012-02-02 Hoya株式会社 Reflective mask blank, manufacturing method thereof, and reflective mask

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002122981A (en) * 2000-10-13 2002-04-26 Samsung Electronics Co Ltd Reflective photomask
US6749973B2 (en) 2001-02-14 2004-06-15 Hoya Corporation Reflection type mask blank for EUV exposure and reflection type mask for EUV exposure as well as method of producing the mask
JP2003045779A (en) * 2001-07-30 2003-02-14 Hoya Corp Euv beam exposure reflection type mask and euv beam exposure reflection type mask blank
JP4540267B2 (en) * 2001-07-30 2010-09-08 Hoya株式会社 Reflective mask blank for EUV light exposure and reflective mask for EUV light exposure
US6797368B2 (en) 2002-02-28 2004-09-28 Hoya Corporation Reflective-type mask blank for exposure, method of producing the same, and reflective-type mask for exposure
EP2317384A2 (en) 2002-04-11 2011-05-04 Hoya Corporation Reflective mask blank, reflective mask and methods of producing the mask blank and the mask
US7981573B2 (en) 2002-04-11 2011-07-19 Hoya Corporation Reflective mask blank, reflective mask and methods of producing the mask blank and the mask
EP2317382A2 (en) 2002-04-11 2011-05-04 Hoya Corporation Reflective mask blank, reflective mask and methods of producing the mask blank and the mask
EP2189842A2 (en) 2002-04-11 2010-05-26 Hoya Corporation Reflective mask blank, reflective mask and methods of producing the mask blank and the mask
WO2003085709A1 (en) * 2002-04-11 2003-10-16 Hoya Corporation Reflection type mask blank and reflection type mask and production methods for them
US7390596B2 (en) 2002-04-11 2008-06-24 Hoya Corporation Reflection type mask blank and reflection type mask and production methods for them
WO2004006018A1 (en) * 2002-07-04 2004-01-15 Hoya Corporation Reflective maskblanks
US7348105B2 (en) 2002-07-04 2008-03-25 Hoya Corporation Reflective maskblanks
US7722998B2 (en) 2002-07-04 2010-05-25 Hoya Corporation Reflective mask blank
US7282305B2 (en) 2003-03-03 2007-10-16 Hoya Corporation Reflective mask blank having a programmed defect and method of producing the same, reflective mask having a programmed defect and method of producing the same, and substrate for use in producing the reflective mask blank or the reflective mask having a programmed defect
JP2004289048A (en) * 2003-03-25 2004-10-14 Hoya Corp Process for producing reflective mask
JP4541654B2 (en) * 2003-03-25 2010-09-08 Hoya株式会社 Method for manufacturing a reflective mask
JP2005308718A (en) * 2004-01-26 2005-11-04 Mitsutoyo Corp Scale for reflection type photoelectric encoder, manufacturing method for scale, and photoelectric encoder
JP4635610B2 (en) * 2005-01-07 2011-02-23 凸版印刷株式会社 Reflective photomask blank, reflective photomask, and reflective photomask manufacturing method
JP2006190900A (en) * 2005-01-07 2006-07-20 Toppan Printing Co Ltd Reflective photo mask, blank thereof, and method of manufacturing semiconductor device using the same
JP2007005523A (en) * 2005-06-23 2007-01-11 Toppan Printing Co Ltd Reflective photomask blank, reflective photo mask, and pattern transfer method using the same
JP2007250613A (en) * 2006-03-14 2007-09-27 Toppan Printing Co Ltd Reflective mask blank, reflective mask, and exposure method of extremely short ultraviolet ray
WO2012014495A1 (en) * 2010-07-30 2012-02-02 Hoya株式会社 Reflective mask blank, manufacturing method thereof, and reflective mask
JP2012033715A (en) * 2010-07-30 2012-02-16 Hoya Corp Reflective mask blank, manufacturing method of the same, and reflective mask
US8785086B2 (en) 2010-07-30 2014-07-22 Hoya Corporation Reflective mask blank, method of manufacturing the same, and reflective mask

Similar Documents

Publication Publication Date Title
JP3047541B2 (en) Reflective mask and defect repair method
US6699625B2 (en) Reflection photomasks including buffer layer comprising group VIII metal, and methods of fabricating and using the same
US6593041B2 (en) Damascene extreme ultraviolet lithography (EUVL) photomask and method of making
EP2015139B1 (en) Reflective photomask blank, process for producing the same, reflective photomask and process for producing semiconductor device
US7078134B2 (en) Photolithographic mask having a structure region covered by a thin protective coating of only a few atomic layers and methods for the fabrication of the mask including ALCVD to form the thin protective coating
JP6731415B2 (en) EUV multilayer mirror, optical system including multilayer mirror, and method for manufacturing multilayer mirror
JP2005268750A (en) Reflection mask blank, reflection mask, and method of manufacturing semiconductor device
JP5292747B2 (en) Reflective photomask for extreme ultraviolet
JP2004207593A (en) Mask for extreme ultra-violet exposure, blank, and method for pattern transfer
JPH07333829A (en) Optical element and its production
WO2021193089A1 (en) Multilayer-reflective-film-equipped substrate, reflective mask blank, reflective mask, and method for producing semiconductor device
JP5245091B2 (en) Reflective lithography mask manufacturing method and mask obtained by the method
JP4998082B2 (en) Reflective photomask blank and manufacturing method thereof, reflective photomask, and semiconductor device manufacturing method
JP4923923B2 (en) Extreme ultraviolet exposure mask and semiconductor integrated circuit manufacturing method using the same
JP2004342867A (en) Reflective mask blank and reflective mask
JP4529359B2 (en) Ultraviolet exposure mask, blank and pattern transfer method
JP2009519593A (en) Reflective photolithography mask and method of making the mask
JP4691829B2 (en) Reflective projection exposure mask
JP4501347B2 (en) Ultraviolet exposure mask, blank and pattern transfer method
JP2005037798A (en) Reflective mask blank, its manufacturing method, reflective mask, substrate with reflective multilayer film, and its manufacturing method
JP4300930B2 (en) Ultraviolet exposure mask, blank and pattern transfer method
JP4605284B2 (en) Extreme ultraviolet exposure mask, extreme ultraviolet exposure mask blank, and pattern transfer method
JPH07120607A (en) Optical element and manufacture thereof
JPH06347603A (en) Two wavelength antireflection film
JP4923922B2 (en) Extreme ultraviolet exposure mask, manufacturing method thereof, and semiconductor integrated circuit manufacturing method using the same