JP2002110185A - Electric cell with non-aqueous electrolyte solution - Google Patents

Electric cell with non-aqueous electrolyte solution

Info

Publication number
JP2002110185A
JP2002110185A JP2000299722A JP2000299722A JP2002110185A JP 2002110185 A JP2002110185 A JP 2002110185A JP 2000299722 A JP2000299722 A JP 2000299722A JP 2000299722 A JP2000299722 A JP 2000299722A JP 2002110185 A JP2002110185 A JP 2002110185A
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
lithium
battery
salt
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000299722A
Other languages
Japanese (ja)
Other versions
JP4233206B2 (en
Inventor
Tetsutoshi Hirota
哲理 廣田
Satoru Naruse
悟 成瀬
Hiromitsu Suwa
弘光 諏訪
Shinichiro Sakaguchi
眞一郎 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000299722A priority Critical patent/JP4233206B2/en
Publication of JP2002110185A publication Critical patent/JP2002110185A/en
Application granted granted Critical
Publication of JP4233206B2 publication Critical patent/JP4233206B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Primary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electric cell with non-aqueous electrolyte solution whose internal resistance is not increased significantly even if it has been left for a long time ranging from several months to several years after a partial discharge. SOLUTION: In the electric cell with non-aqueous electrolyte solution which cell comprises a negative electrode having metallic lithium or lithium alloy as active material, there is used, as a non-aqueous electrolyte solution, a non- aqueous solution containing lithium salt and at least a salt of the aluminum salts represented by the formulas, Al[N(CxF2x+1A)(CyF2y+1A)]3, Al[C(CxF2x+1 A)(CyF2y+1A)(CzF2z+1A)]3, and Al[CR(CxF2x+1A)(CyF2y+1A)]3, where A is CO or SO2, R is an alkyl group, and x, y, and z are the natural numbers of 1-4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液電池に
関するものであり、特に電池容量の一部を放電した後の
内部抵抗の上昇を抑制できる非水電解液電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte battery, and more particularly to a non-aqueous electrolyte battery capable of suppressing an increase in internal resistance after discharging a part of battery capacity.

【0002】[0002]

【従来の技術】近年、各種電子機器用の電源として、小
型、軽量で高エネルギー密度を有する電池の開発が望ま
れているが、そのようななか、金属リチウムやリチウム
合金等を負極活物質とし、二酸化マンガンやフッ化黒鉛
等を正極活物質とする非水電解液電池が用いられるよう
になった。
2. Description of the Related Art In recent years, there has been a demand for the development of a battery having a small size, light weight and high energy density as a power source for various electronic devices. Non-aqueous electrolyte batteries using manganese dioxide, fluorinated graphite or the like as a positive electrode active material have come to be used.

【0003】この種の電池には、初期状態から放電した
後、長期間保存すると、電池の内部抵抗が上昇するとい
う欠点がある。特に電池容量の約70%以上を放電した
状態で長期間保存したときに、特に内部抵抗の上昇が顕
著となる。この原因としては、放電時に生成された正極
活物質内のMnO2 (Li)の触媒作用によって、電解
液中の溶媒成分(特に低沸点溶媒)が分解した後、この
分解物が負極側に移動し、負極表面のリチウムと反応し
て不活性な膜が形成され、リチウムイオンの移動を妨げ
ること等が考えられる。このような内部抵抗の上昇は、
電池の信頼性を損なうこととなる。
[0003] This type of battery has a disadvantage that the internal resistance of the battery increases when it is stored for a long time after being discharged from the initial state. In particular, when the battery is stored for a long time in a state where about 70% or more of the battery capacity is discharged, the internal resistance is particularly increased. This is because the solvent component (especially a low boiling point solvent) in the electrolytic solution is decomposed by the catalytic action of MnO 2 (Li) in the positive electrode active material generated at the time of discharge, and the decomposed product moves to the negative electrode side However, it is conceivable that an inert film is formed by reacting with lithium on the surface of the negative electrode to hinder the movement of lithium ions. Such an increase in internal resistance
This will impair the reliability of the battery.

【0004】このような内部抵抗の上昇を抑制するため
に、例えば、金属リチウムからなる負極の表面にアルミ
ニウム箔を圧着してリチウム−アルミニウム合金層を形
成し、負極表面に不活性な膜が形成されるのを抑制する
方法が考えられる。この方法であれば、前記分解物がリ
チウムと接触する頻度が低くなるので、負極表面での還
元反応が抑制され、その結果として内部抵抗が上昇する
のを抑えることができる。しかしながら、この方法は、
合金化反応に時間がかかるとともに、形成された合金層
表面は微粉状になるので、セパレータを突き破る等の不
具合を生ずるおそれがあるという問題があった。
In order to suppress such an increase in internal resistance, for example, an aluminum foil is pressed on the surface of a negative electrode made of metallic lithium to form a lithium-aluminum alloy layer, and an inert film is formed on the surface of the negative electrode. There is a method of suppressing such a situation. According to this method, the frequency of contact of the decomposition product with lithium is reduced, so that a reduction reaction on the negative electrode surface is suppressed, and as a result, an increase in internal resistance can be suppressed. However, this method
The alloying reaction takes a long time, and the surface of the formed alloy layer becomes fine powder, so that there is a problem that a problem such as breaking through the separator may occur.

【0005】また、特開平1−124960号公報に
は、非水電解液にトリフルオロメタンスルホン酸アルミ
ニウム〔Al(CF3 SO3 3 〕を添加する方法が開
示されている。この方法であれば、金属リチウムからな
る負極の表面にリチウム−アルミニウム合金層を形成で
きるので、前記と同様、内部抵抗の上昇を抑えることが
できる。しかしながら、この方法を適用した電池は、内
部抵抗の上昇をある一定期間(数ヶ月程度)については
抑制できるが、その期間を過ぎると内部抵抗が大きく上
昇するという課題を有しており、その改善が求められて
いた。
Further, Japanese Patent Application Laid-Open No. 1-124960 discloses a method of adding aluminum trifluoromethanesulfonate [Al (CF 3 SO 3 ) 3 ] to a non-aqueous electrolyte. According to this method, a lithium-aluminum alloy layer can be formed on the surface of the negative electrode made of metallic lithium, so that an increase in internal resistance can be suppressed as described above. However, the battery to which this method is applied can suppress the increase in the internal resistance for a certain period of time (about several months), but has a problem that the internal resistance greatly increases after that period. Was required.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記に鑑み
なされたものであって、部分放電後に数ヶ月から数年に
わたって長期間放置したとしても内部抵抗が大きく上昇
しない非水電解液電池の提供をその目的とする。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above, and has been made in view of the above circumstances. Its purpose is to provide.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
め、請求項1に記載の発明は、金属リチウムまたはリチ
ウム合金を活物質とする負極と、正極と、非水電解液と
を備えた非水電解液電池において、前記非水電解液が、
溶質としてリチウム塩と下記の化学式(1)〜(3)で
表されるアルミニウム塩のうちの少なくとも1種とを含
むものであることを特徴とする。
Means for Solving the Problems To solve the above problems, the invention according to claim 1 comprises a negative electrode using lithium metal or a lithium alloy as an active material, a positive electrode, and a non-aqueous electrolyte. In a non-aqueous electrolyte battery, the non-aqueous electrolyte is
The solute is characterized by containing a lithium salt and at least one of aluminum salts represented by the following chemical formulas (1) to (3).

【0008】[0008]

【化2】 Embedded image

【0009】上記構成のように、溶質としてリチウム塩
と前記特定のアルミニウム塩とを用いれば、特定のアル
ミニウム塩によって負極表面にリチウム−アルミニウム
合金層が形成され、かつ電解液中のイオン組成は、主に
リチウムイオンとリチウム塩由来のアニオンと前記特定
のアルミニウム塩由来のアニオンとになる。そのため、
部分放電後に長期間放置したとしても、電池の内部抵抗
は大きく上昇しない。この理由については必ずしも明ら
かではないが、前記トリフルオロメタンスルホン酸アル
ミニウムに比べて、前記特定のアルミニウム塩のアニオ
ンが電子吸引基を多数持っているため解離度が高く、こ
のアニオンが電解液中で安定しやすい。このため、アル
ミニウム塩から解離したアルミニウムイオンがスムーズ
に負極表面へ移動して、緻密でアルミニウムリッチな合
金層が形成され、その結果として不活性な膜の形成がよ
り抑制される。また、前記特定のアルミニウム塩由来の
安定なアニオンが正極表面での電解液の分解を抑制する
などの相乗効果が考えられる。
When a lithium salt and the specific aluminum salt are used as a solute as in the above configuration, a lithium-aluminum alloy layer is formed on the surface of the negative electrode by the specific aluminum salt, and the ionic composition in the electrolytic solution is as follows: It mainly becomes lithium ions, anions derived from lithium salts and anions derived from the specific aluminum salts. for that reason,
Even if the battery is left for a long time after the partial discharge, the internal resistance of the battery does not increase significantly. Although the reason for this is not necessarily clear, the degree of dissociation is high because the anion of the specific aluminum salt has a large number of electron-withdrawing groups as compared with the aluminum trifluoromethanesulfonate, and this anion is stable in the electrolytic solution. It's easy to do. For this reason, the aluminum ions dissociated from the aluminum salt smoothly move to the negative electrode surface, and a dense and aluminum-rich alloy layer is formed. As a result, the formation of an inert film is further suppressed. In addition, a synergistic effect is conceivable in which the stable anion derived from the specific aluminum salt suppresses the decomposition of the electrolytic solution on the positive electrode surface.

【0010】なお、前記特定のアルミニウム塩から生じ
るアニオンは、電解液中で安定に存在するので、より多
くのリチウムイオンが電池反応に寄与する。そのため、
特定のアルミニウム塩を含ませたことにより、電池性能
は低下することはない。
The anion generated from the specific aluminum salt is stably present in the electrolytic solution, so that more lithium ions contribute to the battery reaction. for that reason,
By including the specific aluminum salt, the battery performance does not decrease.

【0011】請求項2に記載の発明は、請求項1に記載
の発明において、前記正極の活物質が、二酸化マンガン
であることを特徴とする。
According to a second aspect of the present invention, in the first aspect of the invention, the active material of the positive electrode is manganese dioxide.

【0012】正極活物質として二酸化マンガンを用いる
と、前述したとおり、放電により反応性に富むMnO2
(Li)が正極側に生成するが、本発明によれば負極表
面に合金層が形成されているので、MnO2 (Li)に
よる溶媒の分解物が負極に接触して反応し不活性膜が形
成されるのを防止できる。よって、内部抵抗の上昇を抑
制した非水電解液電池となる。
When manganese dioxide is used as the positive electrode active material, as described above, MnO 2, which is highly reactive due to discharge,
Although (Li) is generated on the positive electrode side, according to the present invention, since an alloy layer is formed on the negative electrode surface, the decomposition product of the solvent due to MnO 2 (Li) comes into contact with the negative electrode and reacts to form an inert film. Formation can be prevented. Therefore, a non-aqueous electrolyte battery in which an increase in internal resistance is suppressed is obtained.

【0013】請求項3に記載の発明は、請求項1または
2に記載の発明において、前記非水電解液が、溶媒とし
て少なくとも低沸点溶媒を含むものであることを特徴と
する。
According to a third aspect of the present invention, in the first or second aspect, the non-aqueous electrolytic solution contains at least a low-boiling solvent as a solvent.

【0014】低沸点溶媒は、MnO2 (Li)等と反応
して分解されやすいので、このような低沸点溶媒を用い
た場合に、本発明による改善効果が高い。
Since the low boiling point solvent is easily decomposed by reacting with MnO 2 (Li) or the like, the improvement effect of the present invention is high when such a low boiling point solvent is used.

【0015】請求項4に記載の発明は、請求項1〜3の
いずれか1項に記載の発明において、前記リチウム塩
が、前記化学式(1)〜(3)で表されるアルミニウム
塩と異なるアニオンを有するリチウム塩であることを特
徴とする。
According to a fourth aspect of the present invention, in the first aspect of the present invention, the lithium salt is different from the aluminum salt represented by the chemical formulas (1) to (3). It is a lithium salt having an anion.

【0016】上記のようなリチウム塩とアルミニウム塩
との組み合わせであっても、前記特定のアルミニウム塩
の解離度が低下することはなく、アルミニウムイオンが
よりスムーズに負極リチウムとの合金層の形成に供され
る。よって、保存した後の内部抵抗上昇を抑制できる電
池となる。
Even with the combination of the lithium salt and the aluminum salt as described above, the degree of dissociation of the specific aluminum salt does not decrease, and the aluminum ions can smoothly form the alloy layer with the negative electrode lithium. Provided. Therefore, the battery can suppress an increase in internal resistance after storage.

【0017】請求項5に記載の発明は、請求項1〜4の
いずれか1項に記載の発明において、前記化学式(1)
〜(3)で表されるアルミニウム塩の非水電解液全体中
に占める配合割合は、0.005〜10質量%であるこ
とを特徴とする。
According to a fifth aspect of the present invention, there is provided the method according to any one of the first to fourth aspects, wherein the chemical formula (1)
The compounding ratio of the aluminum salt represented by (3) in the whole nonaqueous electrolyte is 0.005 to 10% by mass.

【0018】特定のアルミニウム塩の配合割合が上記範
囲内であると、良質な合金膜が形成されるとともに、電
解液中のイオン組成が適正になるので、電池の内部抵抗
が上昇するのを有効に抑制できる。
When the mixing ratio of the specific aluminum salt is within the above range, a high quality alloy film is formed, and the ionic composition in the electrolytic solution becomes appropriate. Therefore, it is effective to increase the internal resistance of the battery. Can be suppressed.

【0019】[0019]

【発明の実施の形態】本発明の実施の形態を、円筒形の
リチウム電池を例として、図面を用いて説明する。図1
は、この電池の構成を示す模式的な断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described with reference to the drawings, taking a cylindrical lithium battery as an example. FIG.
FIG. 1 is a schematic sectional view showing the configuration of this battery.

【0020】図1に示すように、この電池は、有底筒状
の外装缶(負極缶)1内に、二酸化マンガンを活物質と
する正極2と、金属リチウムを活物質とする負極3と、
ポリエチレン製多孔質フィルムからなるセパレータ4と
を巻回してなる渦巻電極体5が収納されている。そし
て、外装缶1の開口部には、絶縁ガスケット6を介し
て、正極端子を兼ねる封口蓋7がかしめ固定されてい
る。なお、外装缶1の内底面には、上記負極3と電気的
に接続された負極集電リード板8が取り付けられ、また
封口蓋7の内底面には、上記正極2と電気的に接続され
た正極集電リード板9が取り付けられている。なお、図
中の、10は負極集電リード板固定絶縁テープ、11は
上部絶縁板、12は下部絶縁板である。
As shown in FIG. 1, this battery comprises a bottomed cylindrical outer can (negative electrode can) 1, a positive electrode 2 containing manganese dioxide as an active material, and a negative electrode 3 containing metallic lithium as an active material. ,
A spiral electrode body 5 formed by winding a separator 4 made of a polyethylene porous film is housed therein. A sealing lid 7 serving also as a positive electrode terminal is caulked and fixed to the opening of the outer can 1 via an insulating gasket 6. A negative electrode current collector lead plate 8 electrically connected to the negative electrode 3 is attached to the inner bottom surface of the outer can 1, and the positive electrode 2 is electrically connected to the inner bottom surface of the sealing lid 7. The positive electrode current collecting lead plate 9 is attached. In the drawing, reference numeral 10 denotes a negative electrode current collector lead plate fixing insulating tape, 11 denotes an upper insulating plate, and 12 denotes a lower insulating plate.

【0021】ここで、上記セパレータ4には、プロピレ
ンカーボネート(PC)と1,2−ジメトキシエタン
(DME)との混合溶媒に、LiCF3 SO3 とAl
〔N(CF3SO223とを溶解してなる非水電解液が
含浸されている。
Here, in the separator 4, a mixed solvent of propylene carbonate (PC) and 1,2-dimethoxyethane (DME) is mixed with LiCF 3 SO 3 and Al
[N (CF 3 SO 2 ) 2 ] 3 is impregnated with a non-aqueous electrolyte solution.

【0022】上記構造のリチウム電池をつぎのようにし
て作製した。
A lithium battery having the above structure was manufactured as follows.

【0023】〔正極の作製〕まず、正極活物質としての
二酸化マンガンと、導電剤としての人造黒鉛とを、質量
比で9:1の割合で混合して正極合剤を作製した。つい
で、この正極合剤に、結着剤としてのフッ素樹脂(ポリ
テトラフルオロエチレン)5質量%と、分散媒としての
水とを加えて混合しスラリーを調製した。その後、この
スラリーをアルミニウム薄板からなる正極芯体に塗着
し、さらに圧縮、乾燥して、正極を作製した。その後、
この正極の一部を剥離し、その部分から露出した正極芯
体にステンレス製の正極集電リード板をスポット溶接で
接合した。
[Preparation of Positive Electrode] First, manganese dioxide as a positive electrode active material and artificial graphite as a conductive agent were mixed at a mass ratio of 9: 1 to prepare a positive electrode mixture. Next, 5 mass% of a fluororesin (polytetrafluoroethylene) as a binder and water as a dispersion medium were added to the positive electrode mixture, and mixed to prepare a slurry. Thereafter, this slurry was applied to a positive electrode core made of a thin aluminum plate, further compressed and dried to produce a positive electrode. afterwards,
A part of the positive electrode was peeled off, and a positive electrode current collector lead plate made of stainless steel was joined to the positive electrode core exposed from the part by spot welding.

【0024】〔負極の作製〕金属リチウム板を所定寸法
に切断して、負極を作製した。その後、この負極の一部
分にニッケル薄板からなる負極集電リード板を圧着し
た。
[Preparation of Negative Electrode] A metal lithium plate was cut into a predetermined size to prepare a negative electrode. Thereafter, a negative electrode current collecting lead plate made of a nickel thin plate was pressure-bonded to a part of the negative electrode.

【0025】〔非水電解液の作製〕プロピレンカーボネ
ート(PC)と1,2−ジメトキシエタン(DME)と
の等体積混合溶媒に、LiCF3SO3とAl〔N(CF
3SO223とを1:1(質量比)で混合してなる溶質
を、アルミニウム塩が5質量%(電解液全体中に占める
配合割合)となるように溶解して非水電解液を調製し
た。
[Preparation of Non-Aqueous Electrolyte] LiCF 3 SO 3 and Al [N (CF) were mixed in an equal volume mixed solvent of propylene carbonate (PC) and 1,2-dimethoxyethane (DME).
3 SO 2 ) 2 ] 3 in a ratio of 1: 1 (mass ratio), and a solute obtained by dissolving the aluminum salt in an amount of 5 mass% (combination ratio in the entire electrolytic solution) to form a non-aqueous electrolyte. A liquid was prepared.

【0026】〔電池の作製〕まず、前記正極と負極とを
ポリプロピレン製の多孔フィルムからなるセパレータを
介して巻回して、渦巻電極体を作製した。その後、この
渦巻電極体を有底筒状の外装缶(負極缶)内に挿入し、
さらに前記非水電解液を外装缶内に注入した。そして、
上記外装缶の開口部に、ポリプロピレン製の絶縁ガスケ
ットを介して、封口蓋(正極端子)をかしめ固定するこ
とにより、円筒形リチウム電池(電池容量:1400m
Ah、直径17mm、高さ33.5mm)を製造した。
[Preparation of Battery] First, the positive electrode and the negative electrode were wound through a separator made of a porous film made of polypropylene to prepare a spiral electrode body. Thereafter, the spiral electrode body is inserted into a bottomed cylindrical outer can (negative electrode can),
Further, the non-aqueous electrolyte was injected into the outer can. And
A sealing lid (positive electrode terminal) is swaged and fixed to the opening of the outer can via a polypropylene insulating gasket to form a cylindrical lithium battery (battery capacity: 1400 m).
Ah, diameter 17 mm, height 33.5 mm).

【0027】〔その他の事項〕上記の例では、特定のア
ルミニウム塩としてAl〔N(CF3SO223を用い
たが、本発明はこれに限定するものではなく、下記の化
学式(1)〜(3)で表されるアルミニウム塩であれば
各種のものを用いることができる。これらは単独である
いは2種以上併せて用いてもよい。
[Other Matters] In the above example, Al [N (CF 3 SO 2 ) 2 ] 3 was used as the specific aluminum salt, but the present invention is not limited to this. Various aluminum salts represented by 1) to (3) can be used. These may be used alone or in combination of two or more.

【0028】[0028]

【化3】 Embedded image

【0029】上記式(3)中のRで表されるアルキル基
としては、メチル基、エチル基、プロピル基等が例示で
きる。
Examples of the alkyl group represented by R in the above formula (3) include a methyl group, an ethyl group and a propyl group.

【0030】上記アルミニウム塩の具体例としては、A
l〔N(CF3SO223、Al〔N(C25
223、Al〔N(CF3SO2)(C25SO2)〕
3、Al〔C(CF3SO233、Al〔CCH3(CF
3SO223等があげられる。
Specific examples of the above aluminum salt include A
l [N (CF 3 SO 2 ) 2 ] 3 , Al [N (C 2 F 5 S
O 2 ) 2 ] 3 , Al [N (CF 3 SO 2 ) (C 2 F 5 SO 2 )]
3 , Al [C (CF 3 SO 2 ) 3 ] 3 , Al [CCH 3 (CF
3 SO 2 ) 2 ] 3 and the like.

【0031】上記アルミニウム塩の電解液全体中に占め
る配合割合は、合金膜の形成や電解液のイオン組成等を
考慮して、0.005〜10質量%の範囲が好ましく、
特に好ましくは0.01〜5質量%の範囲である。
The proportion of the aluminum salt occupied in the entire electrolytic solution is preferably in the range of 0.005 to 10% by mass in consideration of the formation of the alloy film and the ionic composition of the electrolytic solution.
Particularly preferably, it is in the range of 0.01 to 5% by mass.

【0032】なお、上記特定のアルミニウム塩ととも
に、リチウムと合金化することのできる他のアルミニウ
ム塩を組み合わせて用いてもよい。例えば、Al(CF
3SO33等を用いることができる。なお、Al(CF3
SO33を特定のアルミニウム塩とともに用いれば、コ
スト面や製造面等で有利である。
In addition, other aluminum salts that can be alloyed with lithium may be used in combination with the above-mentioned specific aluminum salt. For example, Al (CF
3 SO 3 ) 3 or the like can be used. In addition, Al (CF 3
If SO 3 ) 3 is used together with a specific aluminum salt, it is advantageous in terms of cost and production.

【0033】また、上記の例では、リチウム塩としてL
iCF3SO3 を用いたが、本発明はこれに限定するも
のではない。例えば、LiN(CF3 SO2 2 、Li
N(C2 5 SO2 2 、LiC(CF3 SO2 3
LiClO4 、LiBF4 、LiAsF6 、LiPF6
等を用いることができる。これらは単独であるいは2種
以上併せて用いてもよい。
In the above example, the lithium salt is L
Although iCF 3 SO 3 was used, the present invention is not limited to this. For example, LiN (CF 3 SO 2 ) 2 , Li
N (C 2 F 5 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 ,
LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6
Etc. can be used. These may be used alone or in combination of two or more.

【0034】また、非水電解液の溶媒としては、上記P
C、DMEの他に、例えば、エチレンカーボネート、ブ
チレンカーボネート、γ−ブチロラクトン等の誘電率
(25℃)が20以上の高誘電率非水有機溶媒や、ジメ
チルカーボネート、ジオキソラン、テトラヒドロフラ
ン、エトキシメトキシエタン等の沸点が100℃以下の
低沸点非水有機溶媒等を用いることができる。これらは
単独であるいは2種以上併せて用いてもよい。
As the solvent for the non-aqueous electrolyte, the above-mentioned P
In addition to C and DME, for example, a high dielectric constant non-aqueous organic solvent having a dielectric constant (25 ° C.) of 20 or more, such as ethylene carbonate, butylene carbonate, and γ-butyrolactone, dimethyl carbonate, dioxolan, tetrahydrofuran, ethoxymethoxyethane, and the like And a low-boiling non-aqueous organic solvent having a boiling point of 100 ° C. or lower can be used. These may be used alone or in combination of two or more.

【0035】本発明の非水電解液電池は、図1に示す構
造に限定されず、また正極、負極等についても、上記に
記載したものに限定されない。上記以外の正極活物質と
しては、例えば、リチウム含有コバルト複合酸化物、リ
チウム含有ニッケル複合酸化物、リチウム含有マンガン
複合酸化物等のリチウム含有金属酸化物や、酸化ニオ
ブ、酸化バナジウム等の金属酸化物や、二硫化モリブデ
ン等の金属カルコゲン化物等を用いることができる。ま
た、上記以外の負極活物質としては、リチウム−アルミ
ニウム合金等のリチウム合金を用いることができる。
The nonaqueous electrolyte battery of the present invention is not limited to the structure shown in FIG. 1, and the positive electrode, the negative electrode and the like are not limited to those described above. Other positive electrode active materials include, for example, lithium-containing metal oxides such as lithium-containing cobalt composite oxide, lithium-containing nickel composite oxide, and lithium-containing manganese composite oxide, and metal oxides such as niobium oxide and vanadium oxide. Alternatively, a metal chalcogenide such as molybdenum disulfide can be used. As the negative electrode active material other than the above, a lithium alloy such as a lithium-aluminum alloy can be used.

【0036】[0036]

【実施例】つぎに、本発明について、実施例および比較
例に基づいてさらに詳細に説明するが、本発明は下記の
実施例に限定されるものではない。
Next, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

【0037】(実施例1)実施例1としては、上記実施
の形態に示す方法と同様の方法にて作製したリチウム電
池を用いた。
(Example 1) In Example 1, a lithium battery manufactured by the same method as that described in the above embodiment mode was used.

【0038】(実施例2)特定のアルミニウム塩とし
て、Al〔C(CF3SO233を用いた他は、実施例
1と同様にして、リチウム電池を製造した。
Example 2 A lithium battery was manufactured in the same manner as in Example 1 except that Al [C (CF 3 SO 2 ) 3 ] 3 was used as a specific aluminum salt.

【0039】(実施例3)特定のアルミニウム塩とし
て、Al〔CCH3(CF3SO223を用いた他は、
実施例1と同様にして、リチウム電池を製造した。
Example 3 Except that Al [CCH 3 (CF 3 SO 2 ) 2 ] 3 was used as a specific aluminum salt,
A lithium battery was manufactured in the same manner as in Example 1.

【0040】(実施例4)非水電解液の溶質として、リ
チウム塩であるLiCF3SO3と、特定のアルミニウム
塩であるAl〔N(CF3SO223と、他のアルミニ
ウム塩であるAl(CF3SO23とを質量比で2:
2:1の割合で混合したものを用い、かつ特定のアルミ
ニウム塩が3質量%になるように溶解した非水電解液を
用いた他は、実施例1と同様にして、リチウム電池を製
造した。
Example 4 As a solute of the non-aqueous electrolyte, LiCF 3 SO 3 as a lithium salt, Al [N (CF 3 SO 2 ) 2 ] 3 as a specific aluminum salt, and other aluminum salts And Al (CF 3 SO 2 ) 3 in a mass ratio of 2:
A lithium battery was manufactured in the same manner as in Example 1, except that a mixture of 2: 1 was used, and a non-aqueous electrolyte solution in which a specific aluminum salt was dissolved to 3% by mass was used. .

【0041】(比較例1)非水電解液の溶質として、リ
チウム塩であるLiCF3 SO3 と、他のアルミニウム
塩であるAl(CF3 SO3 3 とを質量比で1:1の
割合で混合したものを用い、かつリチウム塩が0.5モ
ル/リットルになるように溶解した非水電解液を用いた
他は、実施例1と同様にして、リチウム電池を製造し
た。
Comparative Example 1 As a solute of a nonaqueous electrolyte, a lithium salt of LiCF 3 SO 3 and another aluminum salt of Al (CF 3 SO 3 ) 3 were mixed at a mass ratio of 1: 1. A lithium battery was manufactured in the same manner as in Example 1, except that the mixture prepared in Example 1 was used, and a nonaqueous electrolyte solution in which a lithium salt was dissolved to 0.5 mol / L was used.

【0042】(比較例2)非水電解液の溶質として、リ
チウム塩であるLiCF3SO3 を用い、かつその塩が
0.5モル/リットルになるように溶解した非水電解液
を用いた他は、実施例1と同様にして、リチウム電池を
製造した。
Comparative Example 2 As a solute of a non-aqueous electrolyte, a lithium salt, LiCF 3 SO 3, was used, and a non-aqueous electrolyte in which the salt was dissolved to a concentration of 0.5 mol / liter was used. Other than that was carried out similarly to Example 1, and manufactured the lithium battery.

【0043】このようにして得られた各リチウム電池に
ついて、その電池容量の70%を放電した後、室温条件
下(20℃)で1年間保存した。そして、保存前の内部
抵抗、6ヶ月保存後の内部抵抗、1年保存後の内部抵抗
をそれぞれ測定、その結果を下記の表1に示した。
Each of the lithium batteries thus obtained was discharged for 70% of its battery capacity and stored for one year at room temperature (20 ° C.). The internal resistance before storage, the internal resistance after storage for 6 months, and the internal resistance after storage for one year were measured. The results are shown in Table 1 below.

【0044】[0044]

【表1】 [Table 1]

【0045】上記表1より、リチウム塩とともに特定の
アルミニウム塩を用いた電池は、他の電池に比べ、1年
保存後の内部抵抗の上昇が抑制されていることがわかっ
た。具体的には、実施例1電池の1年保存後の内部抵抗
は保存前に比べ0.14Ω上昇しただけであったのに対
し、比較例1電池は0.72Ω、比較例2電池は8.4
Ωも上昇していたので、特定のアルミニウム塩を用いれ
ば、内部抵抗の上昇を特に抑制できることがわかった。
また、比較例1電池は、6ヶ月保存後の内部抵抗につい
ては0.21Ω上昇しただけであったが、その後の6ヶ
月保存で0.51Ω上昇したので、特定のアルミニウム
塩ではないAl(CF3 SO3 3は、急激に内部抵抗
が上昇することがわかった。
From Table 1 above, it was found that the battery using the specific aluminum salt together with the lithium salt suppressed the increase in the internal resistance after storage for one year as compared with other batteries. Specifically, the internal resistance of the battery of Example 1 after storage for one year increased only by 0.14Ω compared to that before storage, whereas the battery of Comparative Example 1 was 0.72Ω and the battery of Comparative Example 2 was 8 .4
Since Ω also increased, it was found that the use of a specific aluminum salt can particularly suppress an increase in internal resistance.
In the battery of Comparative Example 1, the internal resistance only increased by 0.21Ω after storage for 6 months, but increased by 0.51Ω after storage for 6 months. 3 SO 3 ) 3 was found to have an abrupt increase in internal resistance.

【0046】したがって、部分放電後長期間保存する場
合に内部抵抗の上昇を抑制するには、特定のアルミニウ
ム塩を用いる必要があることがわかった。
Accordingly, it has been found that it is necessary to use a specific aluminum salt in order to suppress an increase in internal resistance when the battery is stored for a long time after the partial discharge.

【0047】なお、実施例4の結果から、特定のアルミ
ニウム塩と、Al(CF3SO33とを併せて用いても
内部抵抗の上昇を抑制できることがわかった。
From the results of Example 4, it was found that an increase in internal resistance can be suppressed even when a specific aluminum salt and Al (CF 3 SO 3 ) 3 are used together.

【0048】[0048]

【発明の効果】本発明は、非水電解液の溶質としてリチ
ウム塩とともに特定のアルミニウム塩を用いた点に大き
な特徴を有するが、このような本発明によると、放電後
に長期間保存したとしても内部抵抗が大きく上昇しない
非水電解液電池を提供できる。
The present invention has a great feature in that a specific aluminum salt is used together with a lithium salt as a solute of a non-aqueous electrolyte. According to the present invention, even if the battery is stored for a long time after discharge, A non-aqueous electrolyte battery in which the internal resistance does not increase significantly can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一例である円筒形リチウム電池の構成
を示す模式的な断面図である。
FIG. 1 is a schematic sectional view showing a configuration of a cylindrical lithium battery as an example of the present invention.

【符号の説明】[Explanation of symbols]

1 外装缶(負極缶) 2 正極 3 負極 4 セパレータ 5 渦巻電極体 6 絶縁ガスケット 7 封口蓋(正極端子) 8 負極集電リード板 9 正極集電リード板 10 負極集電リード板固定絶縁テープ 11 上部絶縁板 12 下部絶縁板 Reference Signs List 1 outer can (negative electrode can) 2 positive electrode 3 negative electrode 4 separator 5 spiral electrode body 6 insulating gasket 7 sealing lid (positive electrode terminal) 8 negative electrode current collecting lead plate 9 positive electrode current collecting lead plate 10 negative electrode current collecting lead plate fixing insulating tape 11 upper part Insulating plate 12 Lower insulating plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 諏訪 弘光 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 坂口 眞一郎 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H024 AA03 AA12 CC02 CC12 FF19 FF20 FF38 HH02 5H029 AJ04 AJ06 AK02 AK03 AL12 AM03 AM04 AM05 AM07 BJ02 BJ14 DJ09 HJ01 HJ02 5H050 AA09 AA12 BA06 BA16 CA05 CA08 CA09 CB12 DA13 EA11 FA05 HA01 HA02  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Hiromitsu Suwa, 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Shinichiro Sakaguchi 2-5-2, Keihanhondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd. F-term (reference) 5H024 AA03 AA12 CC02 CC12 FF19 FF20 FF38 HH02 5H029 AJ04 AJ06 AK02 AK03 AL12 AM03 AM04 AM05 AM07 BJ02 BJ14 DJ09 HJ01 HJ02 5H050 AA09 AA12 CA06 CA05 FA05 HA01 HA02

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 金属リチウムまたはリチウム合金を活
物質とする負極と、正極と、非水電解液とを備えた非水
電解液電池において、 前記非水電解液が、溶質としてリチウム塩と下記の化学
式(1)〜(3)で表されるアルミニウム塩のうちの少
なくとも1種とを含むものである、ことを特徴とする非
水電解液電池。 【化1】
1. A non-aqueous electrolyte battery comprising a negative electrode using metal lithium or a lithium alloy as an active material, a positive electrode, and a non-aqueous electrolyte, wherein the non-aqueous electrolyte comprises a lithium salt as a solute and A non-aqueous electrolyte battery comprising at least one of the aluminum salts represented by the chemical formulas (1) to (3). Embedded image
【請求項2】 前記正極の活物質が、二酸化マンガン
である、請求項1記載の非水電解液電池。
2. The non-aqueous electrolyte battery according to claim 1, wherein the active material of the positive electrode is manganese dioxide.
【請求項3】 前記非水電解液が、溶媒として少なく
とも低沸点溶媒を含むものである、請求項1または2記
載の非水電解液電池。
3. The non-aqueous electrolyte battery according to claim 1, wherein the non-aqueous electrolyte contains at least a low-boiling solvent as a solvent.
【請求項4】 前記リチウム塩が、前記化学式(1)
〜(3)で表されるアルミニウム塩と異なるアニオンを
有するリチウム塩である、請求項1〜3のいずれか1項
に記載の非水電解液電池。
4. The method according to claim 1, wherein the lithium salt has the formula (1)
The nonaqueous electrolyte battery according to any one of claims 1 to 3, which is a lithium salt having an anion different from the aluminum salt represented by any one of (1) to (3).
【請求項5】 前記化学式(1)〜(3)で表される
アルミニウム塩の非水電解液全体中に占める配合割合
は、0.005〜10質量%である、請求項1〜4のい
ずれか1項に記載の非水電解液電池。
5. The aluminum salt represented by any one of the chemical formulas (1) to (3), wherein the proportion of the aluminum salt in the whole nonaqueous electrolyte is 0.005 to 10% by mass. 2. The non-aqueous electrolyte battery according to claim 1.
JP2000299722A 2000-09-29 2000-09-29 Non-aqueous electrolyte battery Expired - Lifetime JP4233206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000299722A JP4233206B2 (en) 2000-09-29 2000-09-29 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000299722A JP4233206B2 (en) 2000-09-29 2000-09-29 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2002110185A true JP2002110185A (en) 2002-04-12
JP4233206B2 JP4233206B2 (en) 2009-03-04

Family

ID=18781493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000299722A Expired - Lifetime JP4233206B2 (en) 2000-09-29 2000-09-29 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP4233206B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006236889A (en) * 2005-02-28 2006-09-07 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte primary battery
WO2016190404A1 (en) * 2015-05-26 2016-12-01 三井化学株式会社 Nonaqueous electrolyte solution for batteries and lithium secondary battery
JP2016225294A (en) * 2015-05-26 2016-12-28 三井化学株式会社 Nonaqueous electrolyte for battery and lithium secondary battery
JP2017017002A (en) * 2015-07-03 2017-01-19 三井化学株式会社 Nonaqueous electrolytic solution for battery and lithium secondary battery
JP2017027930A (en) * 2015-07-24 2017-02-02 三井化学株式会社 Nonaqueous electrolyte solution for batteries, and lithium secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006236889A (en) * 2005-02-28 2006-09-07 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte primary battery
WO2016190404A1 (en) * 2015-05-26 2016-12-01 三井化学株式会社 Nonaqueous electrolyte solution for batteries and lithium secondary battery
JP2016225294A (en) * 2015-05-26 2016-12-28 三井化学株式会社 Nonaqueous electrolyte for battery and lithium secondary battery
JP2017017002A (en) * 2015-07-03 2017-01-19 三井化学株式会社 Nonaqueous electrolytic solution for battery and lithium secondary battery
JP2017027930A (en) * 2015-07-24 2017-02-02 三井化学株式会社 Nonaqueous electrolyte solution for batteries, and lithium secondary battery

Also Published As

Publication number Publication date
JP4233206B2 (en) 2009-03-04

Similar Documents

Publication Publication Date Title
JP4151060B2 (en) Non-aqueous secondary battery
JP4042034B2 (en) Non-aqueous electrolyte battery
EP1022797B1 (en) Polymer electrolyte battery and polymer electrolyte
JP2000348768A (en) Nitric ester additive for nonaqueous electrolytic solution in rechargeable electrochemical battery
JP2007149535A (en) Battery
JP2006331866A (en) Battery
JP2007042387A (en) Electrolyte, electrode, and battery
JP2007273396A (en) Electrolytic solution and battery
JP2009105017A (en) Nonaqueous electrolyte secondary battery
JP2001236946A (en) Pole plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP3831550B2 (en) Non-aqueous electrolyte battery
JP3291528B2 (en) Non-aqueous electrolyte battery
JP3451781B2 (en) Organic electrolyte secondary battery
JP3396990B2 (en) Organic electrolyte secondary battery
JP4845245B2 (en) Lithium battery
JP5011742B2 (en) Nonaqueous electrolyte secondary battery
JP4233206B2 (en) Non-aqueous electrolyte battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP4176435B2 (en) Non-aqueous electrolyte battery
JPH07230825A (en) Nonaqueous electrolyte battery
JP2000285928A (en) Nonaqueous electrolyte battery
JP2006216450A (en) Battery
JP2000323171A (en) Nonaqueous electrolyte secondary battery
JP4313982B2 (en) Nonaqueous electrolyte secondary battery
JP4077423B2 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4233206

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250