JP2002080930A - Wear resistant steel having excellent toughness and delayed fracture resistance and its production method - Google Patents

Wear resistant steel having excellent toughness and delayed fracture resistance and its production method

Info

Publication number
JP2002080930A
JP2002080930A JP2000275064A JP2000275064A JP2002080930A JP 2002080930 A JP2002080930 A JP 2002080930A JP 2000275064 A JP2000275064 A JP 2000275064A JP 2000275064 A JP2000275064 A JP 2000275064A JP 2002080930 A JP2002080930 A JP 2002080930A
Authority
JP
Japan
Prior art keywords
delayed fracture
steel material
quenching
less
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000275064A
Other languages
Japanese (ja)
Other versions
JP3736320B2 (en
Inventor
Teruki Sadasue
照輝 貞末
Shinichi Suzuki
伸一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2000275064A priority Critical patent/JP3736320B2/en
Publication of JP2002080930A publication Critical patent/JP2002080930A/en
Application granted granted Critical
Publication of JP3736320B2 publication Critical patent/JP3736320B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide wear resistant steel having excellent toughness and delayed fracture resistance. SOLUTION: This wear resistant steel having excellent toughness and delayed fracture resistance has a composition containing, by weight, 0.05 to 0.4% C, 0.1 to 0.8% Si, 0.5 to 2.0% Mn, 0.05 to 2.0% Cr, 0.005 to 0.5% Ti, 0.0005 to 0.005% B, 0.005 to 0.10% Al and <=0.005% N, and the balance iron with inevitable impurities, the surface layer part has a martensitic structure, the internal part has a mixed structure of a martensitic structure and a lower bainitic structure or a lower bainitic single phase structure, and the old austenitic grain expanding degree expressed by the ratio of the old austenitic grain size (dL) in the rolling direction to the old austenitic grain size (dZ) in the thickness direction, i.e., (dL/dZ) is >=2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、建設、土木および
鉱山等の掘削等の分野で用いられる産業機械、運搬機器
等に用いられる靭性および耐遅れ破壊性に優れた耐摩耗
鋼材ならびにその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an abrasion-resistant steel material having excellent toughness and delayed fracture resistance used for industrial machines, transportation equipment and the like used in the fields of construction, civil engineering, mining, and the like, and a method for producing the same. About.

【0002】[0002]

【従来の技術】建設、土木および鉱山等の掘削等の分野
で用いられる産業機械、運搬機器(例えば、パワーショ
ベル、ブルドーザ、大型ダンプトラック等)における土
砂摩耗部は、その摩耗量によって寿命が支配されるた
め、優れた耐摩耗性を有する鋼材であることが要求され
ている。そのため、耐摩耗性を向上させるために、鋼材
の組織をマルテンサイト組織とすることにより鋼材の硬
度を高めること等がなされている。
2. Description of the Related Art The life of an earth and sand abrasion portion of an industrial machine or a transportation device (eg, a power shovel, a bulldozer, a large dump truck, etc.) used in the fields of construction, excavation of civil engineering and mining, etc. is governed by the amount of wear. Therefore, it is required that the steel material has excellent wear resistance. Therefore, in order to improve the wear resistance, the hardness of the steel material is increased by changing the structure of the steel material to a martensite structure.

【0003】ところで、マルテンサイト組織とされた鋼
材の硬度はC含有量により一義的に決定される。したが
って、C含有量を高めることにより鋼材の硬度を向上で
きるが、その反面、鋼材の靭性が著しく劣化し、さらに
鋼材中の水素に起因する遅れ破壊が生じ易くなるという
問題があった。
[0003] The hardness of a steel material having a martensite structure is uniquely determined by the C content. Therefore, the hardness of the steel material can be improved by increasing the C content. However, on the other hand, there is a problem that the toughness of the steel material is remarkably deteriorated and delayed fracture due to hydrogen in the steel material is easily caused.

【0004】そこで、これまでは焼入れ性向上による鋼
材硬度の向上、すなわち耐摩耗性を向上させるととも
に、靭性および耐遅れ破壊性を確保できるように鋼成分
の選定を行なうことが前提とされてきた。
[0004] Therefore, it has been premised to select steel components so as to improve the hardness of the steel material by improving the hardenability, that is, to improve the wear resistance and to secure the toughness and the delayed fracture resistance. .

【0005】また、靭性および耐遅れ破壊性をともに向
上させることを意図して、鋼を熱間圧延して空冷した後
に、再加熱焼入れし、さらに必要に応じて焼戻し処理を
施すことにより耐摩耗鋼材の製造はなされてきた。
[0005] Further, in order to improve both toughness and delayed fracture resistance, the steel is hot-rolled, air-cooled, re-heat-quenched, and if necessary, tempered to provide abrasion resistance. The production of steel has been done.

【0006】具体的には、特開平10−102185号
公報には、オーステナイト再結晶温度域で圧延して旧オ
ーステナイト粒を微細化し、再加熱操作によりCr、M
o、Vの各元素を基地中に固溶させた後に焼入れおよび
焼戻しを行なう製造方法が開示されている。この製造方
法により得られた鋼材は、その使用中にCr、Mo、V
の複合析出物が生成され、この生成された複合析出物に
より耐摩耗性が向上される。したがって、耐摩耗性の向
上には寄与するが、靭性には有害なC、Mn等の含有量
を低減できる。
Specifically, Japanese Patent Application Laid-Open No. 10-102185 discloses that old austenite grains are refined by rolling in an austenite recrystallization temperature range, and Cr, M
There is disclosed a manufacturing method in which each element of o and V is dissolved in a matrix, followed by quenching and tempering. During the use of the steel material obtained by this manufacturing method, Cr, Mo, V
Is formed, and the generated composite precipitate improves wear resistance. Therefore, the content of C, Mn, etc., which contributes to the improvement of the wear resistance but is harmful to the toughness, can be reduced.

【0007】また、特開平11−71631号公報に
は、C含有量を低減し、このC量低減に伴う焼入れ性の
低下をSi含有量の増加により補償し、さらにNbのピ
ンニング効果を利用して再加熱操作時にオーステナイト
粒が粗大化するのを抑制し、これにより靭性を向上させ
る製造方法が開示されている。
Japanese Patent Application Laid-Open No. 11-71631 discloses that the C content is reduced, the decrease in hardenability accompanying the reduction in the C content is compensated for by increasing the Si content, and the pinning effect of Nb is used. Thus, a production method has been disclosed which suppresses austenite grains from being coarsened during a reheating operation, thereby improving toughness.

【0008】さらに、特開昭60−59019号公報に
は、Mn含有量を低減することにより耐遅れ破壊性を向
上させ、このMn含有量の低減に伴う焼入れ性の低下を
Cr、Moの添加により補償する製造方法が開示されて
いる。
Further, Japanese Unexamined Patent Publication No. 60-59019 discloses that the delayed fracture resistance is improved by reducing the Mn content, and the decrease in hardenability due to the reduction in the Mn content is confirmed by the addition of Cr and Mo. Discloses a manufacturing method that compensates for this.

【0009】しかしながら、これら従来の製造方法は、
いずれも再加熱焼入れ工程を含むため、製造工程が複雑
化して製品コストの上昇が避けられないという欠点があ
った。さらに、Cr、Mo、V、Nb等の添加元素の増
加は製造コストをより一層上昇させる。
However, these conventional manufacturing methods are:
Since all of them include a reheating and quenching step, there is a disadvantage that the manufacturing process is complicated and an increase in product cost cannot be avoided. Further, an increase in the amount of additional elements such as Cr, Mo, V, and Nb further increases the manufacturing cost.

【0010】一方、製造コストの削減を意図して、上述
の熱間圧延後の空冷操作および再加熱焼入れ操作を省略
し、その代わりに直接焼入れ操作を行なう製造方法を確
立することが望まれている。
On the other hand, in order to reduce the production cost, it is desired to omit the air cooling operation and the reheating quenching operation after the above-described hot rolling, and to establish a production method in which a direct quenching operation is performed instead. I have.

【0011】具体的には、特開平8−41535号公報
には、鋼成分としてSiとNbとを組み合わせて添加
し、直接焼入れした後に焼戻しする製造方法が開示され
ている。この製造方法によれば、Si,Nbの両元素が
焼戻し脆化および焼戻し軟化をともに抑制すること、N
bが旧オーステナイト粒の微細化に作用して耐摩耗性と
靭性とが両立すること、さらにMoを添加することによ
り焼入れ性および靭性をより向上させることができる。
Specifically, JP-A-8-41535 discloses a production method in which Si and Nb are added in combination as steel components, and the steel is directly quenched and then tempered. According to this manufacturing method, both elements of Si and Nb suppress temper embrittlement and temper softening.
b acts on the refinement of the prior austenite grains to achieve both abrasion resistance and toughness, and the addition of Mo can further improve the hardenability and toughness.

【0012】また、特開平1−255622号公報に
は、直接焼入れした後に、鋼板内の引張残留応力を低減
して耐遅れ破壊性を向上させることを意図して高温焼戻
しを行なう一方、この高温焼戻しによって生じる硬度低
下をNb添加により補償する製造方法が開示されてい
る。
Japanese Patent Application Laid-Open No. 1-255622 discloses that, after direct quenching, high-temperature tempering is performed for the purpose of reducing tensile residual stress in a steel sheet and improving delayed fracture resistance. There is disclosed a manufacturing method in which a decrease in hardness caused by tempering is compensated by adding Nb.

【0013】さらに、特開昭63−317623号公報
には、遅れ破壊感受性を高めるMnの含有量を低減し、
Mn含有量の低減に伴う鋼材の硬度低下をNb添加によ
り補償し、かつTiを添加して直接焼入れ後に低温焼戻
しを行ない、Ti窒化物、Ti炭窒化物を析出させるこ
とにより、これら析出物とマトリックスとの界面が水素
のトラップサイトとして作用して耐遅れ破壊性が向上さ
れることが開示されている。
Further, Japanese Patent Application Laid-Open No. 63-317623 discloses that the content of Mn, which enhances delayed fracture susceptibility, is reduced,
By compensating for the decrease in hardness of the steel material due to the reduction of the Mn content by adding Nb, and performing low-temperature tempering after direct quenching by adding Ti to precipitate Ti nitrides and Ti carbonitrides, It is disclosed that the interface with the matrix acts as a hydrogen trap site to improve delayed fracture resistance.

【0014】上述の特開平8−41535号公報、特開
平1−255622号公報および特開昭63−3176
23号公報に記載された技術は、いずれも鋼組成の選定
を行なうとともに、焼戻し処理によりマトリックスを軟
化させて靭性および耐遅れ破壊性を向上させ、かつこれ
ら靭性および耐遅れ破壊性の向上に伴う硬度低下を特定
の成分元素を含有させることによって補償し、耐摩耗性
の確保を意図するものである。
The above-mentioned JP-A-8-41535, JP-A-1-255622 and JP-A-63-3176 are disclosed.
The technology described in Japanese Patent Publication No. 23 is to select a steel composition and to soften the matrix by tempering to improve toughness and delayed fracture resistance, and to improve the toughness and delayed fracture resistance. It is intended to compensate for the decrease in hardness by including a specific component element and to secure wear resistance.

【0015】[0015]

【発明が解決しようとする課題】しかしながら、上記の
従来技術に共通した問題点は、特定の成分元素の添加が
必要であるのでコストの上昇を招き、これにより省プロ
セス化によるコスト低減を相殺してしまう可能性があ
る。また、いずれの従来技術も焼戻し工程が必須である
ため、製造コストの上昇や生産効率の低下を招くことが
懸念される。
However, a problem common to the above-mentioned prior arts is that the addition of a specific component element necessitates an increase in the cost, thereby offsetting the cost reduction by saving the process. Could be In addition, since the tempering step is indispensable in any of the prior arts, there is a concern that an increase in manufacturing cost and a decrease in production efficiency may be caused.

【0016】本発明はこのような事情を考慮してなされ
たものであって、その目的とするところは、特殊な鋼選
定を行なうことなく靭性および耐遅れ破壊性に優れた耐
摩耗鋼材を提供することにある。
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a wear-resistant steel material excellent in toughness and delayed fracture resistance without selecting a special steel. Is to do.

【0017】本発明の他の目的は、このような耐摩耗鋼
材を製造するにあたり、製造コストを節減できる製造方
法を提供することにある。
Another object of the present invention is to provide a manufacturing method capable of reducing the manufacturing cost in manufacturing such a wear-resistant steel material.

【0018】[0018]

【課題を解決するための手段】本発明者らは、靭性およ
び耐摩耗性に優れた耐摩耗鋼材について鋭意研究を重ね
た結果、オーステナイト未再結晶温度域で強圧下を施す
ことによりオーステナイト粒を形態制御した後に、直ち
に直接焼入れし、かつこの焼入れを特定の温度域で途中
停止することにより表層部をマルテンサイト組織とし、
内質部をマルテンサイトと下部ベイナイトとの混合組織
または下部ベイナイト単相組織とすることによって、優
れた靭性および耐遅れ破壊性を有する耐摩耗鋼材を開発
するに至った。本発明は、かかる知見に基づいて完成さ
れたものである。
The present inventors have conducted intensive studies on wear-resistant steel materials having excellent toughness and wear resistance. As a result, the austenitic grains were subjected to strong pressure reduction in the austenite non-recrystallization temperature range. Immediately after the morphology control, direct quenching is performed, and the quenching is stopped halfway in a specific temperature range to make the surface layer a martensitic structure.
By making the internal part a mixed structure of martensite and lower bainite or a lower bainite single phase structure, a wear-resistant steel material having excellent toughness and delayed fracture resistance has been developed. The present invention has been completed based on such findings.

【0019】本発明に係る靭性および耐遅れ破壊性に優
れた耐摩耗鋼材は、質量%で、C:0.05〜0.4
%、Si:0.1〜0.8%、Mn:0.5〜2.0
%、Cr:0.05〜2.0%、Ti:0.005〜
0.5%、B:0.0005〜0.005%、Al:
0.005〜0.10%、N:0.005%以下を含
み、残部が鉄および不可避的不純物から実質的になり、
表層部がマルテンサイト組織であり、内質部がマルテン
サイト組織と下部ベイナイト組織との混合組織または下
部ベイナイト単相組織であり、肉厚方向の旧オーステナ
イト粒径(dZ)に対する圧延方向の旧オーステナイト
粒径(dL)の比(dL/dZ)で表される旧オーステ
ナイト粒展伸度が2以上であることを特徴としている。
The wear-resistant steel material according to the present invention, which has excellent toughness and delayed fracture resistance, has a C content of 0.05 to 0.4 in mass%.
%, Si: 0.1 to 0.8%, Mn: 0.5 to 2.0
%, Cr: 0.05 to 2.0%, Ti: 0.005 to
0.5%, B: 0.0005 to 0.005%, Al:
0.005 to 0.10%, N: 0.005% or less, the balance substantially consisting of iron and inevitable impurities,
The surface layer has a martensite structure, the internal portion has a mixed structure of a martensite structure and a lower bainite structure or a lower bainite single phase structure, and the former austenite in the rolling direction relative to the former austenite grain size (dZ) in the thickness direction. It is characterized in that the prior austenite grain elongation expressed by the ratio of particle size (dL) (dL / dZ) is 2 or more.

【0020】この場合において、質量%で、Cu:0.
1〜1.0%、Ni:0.1〜1.0%、Mo:0.1
〜1.0%およびV:0.01〜0.2%からなる群か
ら選択される1種または2種以上をさらに含有すること
が好ましい。
In this case, in mass%, Cu: 0.
1 to 1.0%, Ni: 0.1 to 1.0%, Mo: 0.1
1.01.0% and V: preferably one or more selected from the group consisting of 0.01 to 0.2%.

【0021】また、質量%で、Nb:0.005〜0.
1%をさらに含有させるようにしてもよい。
In mass%, Nb: 0.005 to 0.5%.
You may make it contain 1% further.

【0022】本発明に係る靭性および耐遅れ破壊性に優
れた耐摩耗鋼材の製造方法は、質量%で、C:0.05
〜0.4%、Si:0.1〜0.8%、Mn:0.5〜
2.0%、Cr:0.05〜2.0%、Ti:0.00
5〜0.5%、B:0.0005〜0.005%、A
l:0.005〜0.10%、N:0.005%以下を
含み、残部が実質的に鉄および不可避的不純物からなる
鋼材を調製する調製工程と、調製された鋼材を加熱した
後に、900℃以下の温度域で累積圧下率50%以上に
熱間圧延する圧延工程と、圧延された鋼材を直ちにAr
3点以上の温度域から焼入れを開始し、Ms点−250
℃以上Ms点+100℃以下の温度域で焼入れを停止す
る焼入れ工程と、を備えたことを特徴としている。
The method for producing a wear-resistant steel material having excellent toughness and delayed fracture resistance according to the present invention is as follows.
-0.4%, Si: 0.1-0.8%, Mn: 0.5-
2.0%, Cr: 0.05 to 2.0%, Ti: 0.00
5 to 0.5%, B: 0.0005 to 0.005%, A
l: a preparation step of preparing a steel material containing 0.005 to 0.10% and N: 0.005% or less, with the balance substantially consisting of iron and unavoidable impurities, and after heating the prepared steel material, A rolling step of hot rolling to a cumulative draft of 50% or more in a temperature range of 900 ° C. or less;
Start quenching from a temperature range of 3 points or more, Ms point -250
And a quenching step of stopping quenching in a temperature range of not less than ° C and an Ms point + 100 ° C or less.

【0023】この場合において、調製工程の鋼材は、質
量%で、Cu:0.1〜1.0%、Ni:0.1〜1.
0%、Mo:0.1〜1.0%およびV:0.01〜
0.2%からなる群から選択される1種または2種以上
をさらに含有することが好ましい。
In this case, the steel material in the preparation step is as follows: Cu: 0.1-1.0%, Ni: 0.1-1.
0%, Mo: 0.1-1.0% and V: 0.01-
It is preferable to further contain one or more selected from the group consisting of 0.2%.

【0024】また、調製工程の鋼材は、質量%で、N
b:0.005〜0.1%をさらに含有するようにして
もよい。
Further, the steel material in the preparation step is expressed as
b: 0.005 to 0.1% may be further contained.

【0025】以下、本発明に係る靭性および耐遅れ破壊
性に優れた耐摩耗鋼材について説明する。
Hereinafter, a wear-resistant steel material having excellent toughness and delayed fracture resistance according to the present invention will be described.

【0026】まず、上記の各成分の働きおよび成分範囲
の限定理由を述べる。なお、以下の各成分範囲における
「%」は「質量%」を意味する。
First, the function of each of the above components and the reasons for limiting the component ranges will be described. In addition, “%” in the following component ranges means “% by mass”.

【0027】(1)C:0.05〜0.40% Cは鋼材の硬度を高めるとともに、後述するマルテンサ
イト組織のラス内に微細炭化物を生じさせ、靭性と耐遅
れ破壊性とを向上させる働きを有する。C含有量は0.
05%以上必要であるが、0.4%を超えると、溶接性
が劣化し、焼き割れが生じやすくなるとともに、耐摩耗
性を確保しつつ靭性および耐遅れ破壊性を向上させ難く
なる。C含有量は、好ましくは0.05〜0.3%であ
る。
(1) C: 0.05 to 0.40% C not only increases the hardness of the steel material but also generates fine carbides in the lath of the martensite structure described later, thereby improving toughness and delayed fracture resistance. Has a function. C content is 0.
When the content exceeds 0.4%, the weldability is deteriorated, quenching cracks are easily generated, and it is difficult to improve the toughness and the delayed fracture resistance while securing the wear resistance. C content is preferably 0.05 to 0.3%.

【0028】(2)Si:0.1〜0.8% Siは製鋼時の脱酸剤としての働きを有する。脱酸剤と
して有効な働きをなすために、その添加量は0.1%以
上必要であるが、0.8%を超える添加量にすると、溶
接部靭性を損なうおそれがある。Si含有量は、好まし
くは0.25〜0.55%である。
(2) Si: 0.1-0.8% Si has a function as a deoxidizing agent in steel making. In order to function effectively as a deoxidizing agent, the addition amount is required to be 0.1% or more. However, if the addition amount exceeds 0.8%, the toughness of the weld may be impaired. The Si content is preferably 0.25 to 0.55%.

【0029】(3)Mn:0.5〜2.0% Mnは低コストで焼入れ性を高める働きおよび靭性を向
上させる働きを有し、その含有量は0.5%以上必要で
あるが、2.0%を超えると溶接性を損なうおそれがあ
り、また遅れ破壊が生じやすくなる。Mn含有量は、好
ましくは1.0〜1.6%である。
(3) Mn: 0.5 to 2.0% Mn has a function of improving hardenability and a function of improving toughness at low cost, and its content is required to be 0.5% or more. If it exceeds 2.0%, the weldability may be impaired, and delayed fracture tends to occur. The Mn content is preferably 1.0 to 1.6%.

【0030】(4)Cr:0.05〜2.0% Crは低コストで焼入れ性を向上させる働きを有する。
0.05%未満のCr含有量ではその効果が小さく、
2.0%を超えると溶接性および靭性を損なうおそれが
ある。Cr含有量は、好ましくは0.05〜1.5%で
ある。
(4) Cr: 0.05 to 2.0% Cr has a function of improving hardenability at low cost.
The effect is small at a Cr content of less than 0.05%,
If it exceeds 2.0%, weldability and toughness may be impaired. The Cr content is preferably 0.05 to 1.5%.

【0031】(5)Ti:0.005〜0.5% Tiは鋼中のNと化合し、このNを固定して後述するB
による焼入れ性を確保する働きを有するとともに、Ti
Cとして分散析出して耐摩耗性の向上に寄与する。0.
005%未満のTi含有量ではこのような効果を得がた
く、一方、0.5%を超えるとコスト上昇を招く傾向に
ある。
(5) Ti: 0.005 to 0.5% Ti combines with N in the steel, and fixes this N to B
Has the function of securing the hardenability by
It is dispersed and precipitated as C and contributes to improvement of wear resistance. 0.
When the Ti content is less than 005%, such an effect is hardly obtained, while when it exceeds 0.5%, the cost tends to increase.

【0032】(6)B:0.0005〜0.005% Bはその微量添加によって焼入れ性を高める働きを有す
る。B含有量は、0.0005%未満ではその効果を発
揮し難く、一方、0.005%を超えると、溶接性に有
害となるおそれがあるとともに、焼入れ性の低下を招く
おそれがある。
(6) B: 0.0005 to 0.005% B has a function of improving the hardenability by adding a small amount of B. If the B content is less than 0.0005%, it is difficult to exert its effect. On the other hand, if the B content exceeds 0.005%, the weldability may be detrimental and the hardenability may be reduced.

【0033】(7)Al:0.005〜0.10% Alは製鋼時の脱酸剤としての働きを有し、その含有量
は0.005%以上必要であるが、0.10%を超える
と靭性の低下を招くおそれがある。Al含有量は、好ま
しくは0.015〜0.035%である。
(7) Al: 0.005 to 0.10% Al has a function as a deoxidizing agent at the time of steel making, and its content needs to be 0.005% or more. If it exceeds, the toughness may be reduced. The Al content is preferably 0.015 to 0.035%.

【0034】(8)N:0.005%以下 Nは、上記のBと化合しやすく焼入れ性を阻害する。
0.005%を超えるN含有量にすると、上述の特定し
た含有量範囲のTiによるNの固定が不十分になるおそ
れがある。したがって、N含有量の上限を0.005%
とした。
(8) N: 0.005% or less N easily combines with the above-mentioned B and inhibits the hardenability.
If the N content exceeds 0.005%, the fixation of N by Ti in the above-specified content range may be insufficient. Therefore, the upper limit of the N content is 0.005%
And

【0035】本発明に係る鋼材の基本成分は以上である
が、さらにその特性を向上させるために、Cu、Ni、
Mo、VおよびNbから選ばれる1種または2種以上を
含有させることができる。
The basic components of the steel material according to the present invention are as described above. In order to further improve its properties, Cu, Ni,
One, two or more selected from Mo, V and Nb can be contained.

【0036】(9)Cu:0.1〜1.0% Cuは焼入れ性をより向上させる働きを有する。Cu含
有量が0.1%未満ではこの効果が小さく、1.0%を
超えると熱間脆性を引き起こすおそれがある。Cu含有
量は、好ましくは0.1〜0.3%である。
(9) Cu: 0.1 to 1.0% Cu has a function of further improving the hardenability. If the Cu content is less than 0.1%, this effect is small, and if it exceeds 1.0%, hot brittleness may be caused. The Cu content is preferably 0.1-0.3%.

【0037】(10)Ni:0.1〜1.0% Niは靭性と焼入れ性とをより向上させる働きを有す
る。Ni含有量は0.1%以上必要であるが未満ではそ
れらの効果が小さく、1.0%を超えるとコスト上昇を
招く傾向にある。Ni含有量は、好ましくは0.1〜
0.3%である。
(10) Ni: 0.1 to 1.0% Ni has a function of further improving toughness and hardenability. The Ni content is required to be 0.1% or more, but if the Ni content is less than 0.1%, the effect is small, and if it exceeds 1.0%, the cost tends to increase. Ni content is preferably 0.1 to
0.3%.

【0038】(11)Mo:0.1〜1.0% Moは焼入れ性をより向上させる働きを有し、その含有
量は0.1%以上必要であるが、1.0%を超えると溶
接性および靭性を損なうおそれがある。Mo含有量は、
好ましくは、0.1〜0.5%である。
(11) Mo: 0.1 to 1.0% Mo has a function of further improving the hardenability, and its content is required to be 0.1% or more. The weldability and toughness may be impaired. The Mo content is
Preferably, it is 0.1 to 0.5%.

【0039】(12)V:0.01〜0.2% Vは析出硬化により鋼材硬度をより上昇させる働きを有
し、その含有量は0.01%以上必要であるが、0.2
%を超えると溶接性を損なうおそれがある。V含有量
は、好ましくは0.01〜0.1%である。
(12) V: 0.01 to 0.2% V has a function of further increasing the hardness of steel due to precipitation hardening, and its content is required to be 0.01% or more.
%, The weldability may be impaired. The V content is preferably 0.01 to 0.1%.

【0040】(13)Nb:0.005〜0.1% Nbは上記の(1)〜(12)の各成分とは異なる作用
を有し、圧延時の再結晶化を抑制して圧延によるオース
テナイト粒の展伸を容易にし、靭性を向上させる働きを
有する。Nb含有量は0.005%未満ではこのような
働きを有効になすことができないおそれがあり、一方、
0.1%を超えると溶接性を損なうおそれがある。Nb
含有量は、好ましくは0.005〜0.03%である。
(13) Nb: 0.005 to 0.1% Nb has an effect different from those of the above-mentioned components (1) to (12), and suppresses recrystallization at the time of rolling to reduce the recrystallization. It has the function of facilitating the expansion of austenite grains and improving the toughness. If the Nb content is less than 0.005%, such a function may not be effectively achieved.
If it exceeds 0.1%, the weldability may be impaired. Nb
The content is preferably 0.005 to 0.03%.

【0041】本発明に係る鋼材は、上記の特定範囲の各
成分を含有するものであって、表層部がマルテンサイト
組織であり、内質部がマルテンサイト組織と下部ベイナ
イト組織との混合組織または下部ベイナイト単相組織で
ある。ここで表層部とは、鋼材表面から深さ1mmの部
位のことをいう。
The steel material according to the present invention contains each component in the above specific range, wherein the surface layer has a martensite structure, and the internal portion has a mixed structure of a martensite structure and a lower bainite structure or Lower bainite single phase structure. Here, the surface portion refers to a portion having a depth of 1 mm from the surface of the steel material.

【0042】なお、本発明においては、表層部がマルテ
ンサイト組織であり、内質部で80%以上がマルテンサ
イト組織と下部ベイナイト組織との混合組織または下部
ベイナイト単相組織であればよく、内質部には一部上部
ベイナイト組織やフェライト組織が混合されることを許
容する。また、このマルテンサイト組織は、後述する直
接焼入れ−途中停止において、途中停止後の復熱による
炭化物が析出した焼戻しマルテンサイト組織であっても
よい。
In the present invention, it is sufficient that the surface layer has a martensitic structure and at least 80% of the inner part has a mixed structure of a martensite structure and a lower bainite structure or a lower bainite single phase structure. The upper part is allowed to partially contain an upper bainite structure or a ferrite structure. Further, the martensite structure may be a tempered martensite structure in which carbides are precipitated by reheating after the intermediate quenching-intermediate stop described later.

【0043】さらに、本発明の鋼材は、肉厚方向の旧オ
ーステナイト粒径(dz)に対する圧延方向の旧オース
テナイト粒径(dL)の比で表される旧オーステナイト
粒展伸度(dL/dz)が2以上である。本発明におい
て旧オーステナイト粒展伸度を2以上とするのは、これ
により靭性および耐遅れ破壊性の向上効果が発揮される
からである。これは、鋼板の旧オーステナイト粒展伸度
と、吸収エネルギー(J)、遅れ破壊発生応力拡大係数
(N/mm3/2)およびブリネル硬さ(HB10/3
000)との関係を示す図1の特性線図から理解でき
る。
Further, the steel material of the present invention has a prior austenite grain elongation (dL / dz) expressed by a ratio of a prior austenite grain size (dL) in the rolling direction to a prior austenite grain size (dz) in the thickness direction. Is 2 or more. In the present invention, the prior austenite grain elongation is set to 2 or more because the effect of improving toughness and delayed fracture resistance is exhibited thereby. This is due to the former austenite grain elongation, the absorbed energy (J), the delayed fracture initiation stress intensity factor (N / mm 3/2 ), and the Brinell hardness (HB10 / 3) of the steel sheet.
000) can be understood from the characteristic diagram of FIG.

【0044】上記の旧オーステナイト粒展伸度は、例え
ば、日本工業規格JIS G 0551に規定された焼
入焼戻し法による熱処理粒度試験法に基づき、鋼板の肉
厚方向に沿う断面および鋼板の圧延方向に沿う断面にそ
れぞれ現出させた旧オーステナイト粒の粒径を測定する
ことにより求められる。なお、図1の横軸にとった旧オ
ーステナイト粒展伸度の値は、板厚t/2部において5
視野で観察したときに得られた測定値の平均値とした。
The above-mentioned prior austenite grain elongation can be determined, for example, based on a heat treatment grain size test method based on a quenching and tempering method specified in Japanese Industrial Standard JIS G 0551, based on the cross section along the thickness direction of the steel sheet and the rolling direction of the steel sheet. Can be determined by measuring the particle size of the prior austenite grains that have appeared in the cross section along the line. The value of the prior austenite grain elongation taken on the horizontal axis of FIG. 1 is 5 at the plate thickness t / 2.
The average value of the measured values obtained when observed in the visual field was used.

【0045】ここで用いた鋼材試料としては、質量%
で、C:0.23%、Si:0.45%、Mn:1.5
5%、P:0.011%、S:0.005%、Cr:
0.31%、Ti:0.018%、B:0.0019
%、Al:0.035%、N:0.0029%、残部が
鉄である組成の鋼を種々の条件で圧延した後、表層部を
マルテンサイト組織とし、内質部をマルテンサイト組織
と下部ベイナイト組織との混合組織または下部ベイナイ
ト単相組織とした鋼板(板厚50mm)である。図1の
縦軸にとったブリネル硬さの測定は、JIS Z 22
43に基づいて、鋼鈑表面に直径10mmの圧子を押し
込んだときに形成されるくぼみの直径を測定するブリネ
ル硬さ(HB10/3000)試験により行なった。ま
た、図1の縦軸にとった吸収エネルギーは、板厚中央部
から採取したJIS Z 2202の規定に基づく10
×10mmの2mmVノッチ試験片を用い、試料の圧延
方向に対して垂直に衝撃力を与えるようにしたシャルピ
ー衝撃試験を−40℃で行なった。なお、吸収エネルギ
ーの値は、上記の衝撃試験を3回行ない、得られた測定
値の平均値を求めたものである。さらに図1の縦軸にと
った遅れ破壊発生応力拡大係数は、試験片を3.5質量
%NaCl水溶液中に浸漬させるとともに試験片の圧延
方向に対して垂直方向に所定の荷重を負荷する片持ち梁
型の定荷重遅れ破壊試験において、破断に至る最大の応
力拡大係数である。なお、このときの破断の測定は10
00時間を最長とした。
[0045] The steel sample used here was expressed as mass%
And C: 0.23%, Si: 0.45%, Mn: 1.5
5%, P: 0.011%, S: 0.005%, Cr:
0.31%, Ti: 0.018%, B: 0.0019
%, Al: 0.035%, N: 0.0029%, and the balance being iron, after rolling under various conditions, the surface layer portion is made to have a martensite structure, and the internal portion is made up of a martensite structure and a lower portion. It is a steel plate (plate thickness 50 mm) having a mixed structure with a bainite structure or a lower bainite single phase structure. The measurement of Brinell hardness taken on the vertical axis of FIG. 1 is based on JIS Z22.
Based on No. 43, a Brinell hardness (HB10 / 3000) test was conducted to measure the diameter of a recess formed when a 10 mm diameter indenter was pushed into the steel sheet surface. The absorbed energy taken along the vertical axis in FIG. 1 is based on JIS Z 2202 taken from the center of the sheet thickness.
A Charpy impact test was performed at −40 ° C. using a 2 mm V notch test piece of × 10 mm to apply an impact force perpendicular to the rolling direction of the sample. The value of the absorbed energy was obtained by performing the above-mentioned impact test three times and calculating the average value of the obtained measured values. Further, the stress intensity factor for delayed fracture initiation stress taken on the vertical axis in FIG. 1 is obtained by immersing a test piece in a 3.5 mass% NaCl aqueous solution and applying a predetermined load in a direction perpendicular to the rolling direction of the test piece. This is the maximum stress intensity factor that leads to fracture in a cantilever type constant load delayed fracture test. The measurement of the fracture at this time was 10
00 hours was the longest.

【0046】図1において、旧オーステナイト粒展伸度
の値によらずブリネル硬さの値は約400程度とほぼ一
定である。また、旧オーステナイト粒展伸度dL/dz
が2となるところを境にしてdL/dzが2未満である
領域で吸収エネルギーおよび遅れ破壊発生応力拡大係数
は著しく低く、一方、dL/dzが2以上である領域で
吸収エネルギーおよび遅れ破壊応力拡大係数が急激に上
昇する顕著な遷移が認められ、優れた靭性および耐遅れ
破壊性を示すことが判明した。すなわち、旧オーステナ
イト粒展伸度を2以上とし、かつ表層部をマルテンサイ
ト組織とし、かつ内質部をマルテンサイトと下部ベイナ
イトとの混合組織または下部ベイナイト単相組織とする
ことにより、所望の耐摩耗性を維持しつつ優れた靭性お
よび耐遅れ破壊性を有することが判明した。
In FIG. 1, the value of Brinell hardness is almost constant at about 400 regardless of the value of the prior austenite grain elongation. Also, the former austenite grain extension elongation dL / dz
Where dL / dz is less than 2, the absorbed energy and the delayed fracture initiating stress intensity factor are extremely low in the region where dL / dz is less than 2, while the absorbed energy and the delayed fracture stress are in the region where dL / dz is 2 or more. A remarkable transition in which the expansion coefficient sharply increased was observed, and it was found that excellent toughness and delayed fracture resistance were exhibited. That is, by setting the austenite grain extension and elongation to 2 or more, the surface layer portion to have a martensite structure, and the internal portion to have a mixed structure of martensite and lower bainite or a lower bainite single phase structure, thereby achieving a desired resistance. It has been found that it has excellent toughness and delayed fracture resistance while maintaining wearability.

【0047】このように靭性および耐遅れ破壊性が著し
く向上するのは、マルテンサイト組織と下部ベイナイト
組織との混合組織または下部ベイナイト単相組織におい
てラス長さが短くなること、および下部ベイナイトラス
内で微細な炭化物が優先析出することによるものと考え
られる。すなわち、靭性に関しては、(a)ラス長さが
短くなることにより亀裂の屈曲や分岐が生じやすくなる
こと、(b)ラス組織内に優先析出した微細な炭化物が
亀裂の進展を抑制する障壁となること、以上(a)、
(b)の両作用により靭性が向上するものと考えられ
る。一方、耐遅れ破壊性に関しては、ラス組織内の微細
炭化物とマトリックスとの界面が水素のトラップサイト
となり、遅れ破壊の発生が抑制されるからであると考え
られる。
The remarkable improvement in toughness and delayed fracture resistance is due to the fact that the lath length is reduced in the mixed structure of the martensite structure and the lower bainite structure or in the lower bainite single phase structure, and in the lower bainite lath. It is considered that fine carbides are preferentially precipitated in the above. That is, regarding toughness, (a) the crack length is likely to be bent or branched due to the shortened lath length, and (b) the fine carbide preferentially precipitated in the lath structure is a barrier that suppresses crack propagation. The above, (a),
It is considered that the toughness is improved by both actions (b). On the other hand, the delayed fracture resistance is considered to be because the interface between the fine carbide and the matrix in the lath structure serves as a hydrogen trap site, and the occurrence of delayed fracture is suppressed.

【0048】次に、本発明に係る靭性および耐遅れ破壊
性に優れた耐摩耗鋼材の製造方法について説明する。
Next, a method for producing a wear-resistant steel material having excellent toughness and delayed fracture resistance according to the present invention will be described.

【0049】本発明に係る鋼材の製造方法は、まず、
C、Si、Mn、Cr、Ti、B、Al、Nを上記の
(1)〜(8)に示す特定範囲を満たすように含有し、
残部が実質的に鉄および不可避的不純物からなる鋼材を
調製する。
The method for producing steel according to the present invention comprises:
C, Si, Mn, Cr, Ti, B, Al and N are contained so as to satisfy the specific ranges shown in the above (1) to (8),
A steel material whose balance substantially consists of iron and unavoidable impurities is prepared.

【0050】この調製工程において、成分元素としてさ
らにCu、Ni、Mo、Vのうち1種または2種以上を
上記の(9)〜(12)に示す成分範囲で含有させても
よい。また、成分元素としてNbを上記の(13)に示
す成分範囲でさらに含有させてもよい。
In this preparation step, one or more of Cu, Ni, Mo, and V may be further contained as component elements in the component ranges described in (9) to (12) above. Further, Nb may be further contained as a component element in the component range shown in the above (13).

【0051】次に、調製された鋼材を加熱した後、90
0℃以下の温度域で累積圧下率50%以上の圧延を行な
う。ここで、900℃なる上限温度は、鋼板表面から鋼
板中央部にかけての平均温度を意味し、以下の説明にお
ける温度についても同様である。なお、実際の製造では
実質的に鋼板表面温度により温度管理されるが、リアル
タイムで平均温度を計算して、この平均温度に基づき温
度制御できるようにする必要がある。
Next, after heating the prepared steel material,
Rolling is performed at a cumulative draft of 50% or more in a temperature range of 0 ° C. or less. Here, the upper limit temperature of 900 ° C. means the average temperature from the surface of the steel sheet to the center of the steel sheet, and the same applies to the temperature in the following description. In actual production, the temperature is substantially controlled by the steel sheet surface temperature. However, it is necessary to calculate the average temperature in real time and control the temperature based on the average temperature.

【0052】圧延前の鋼材の加熱温度としては、950
〜1250℃であることが好ましい。この加熱温度を9
50℃未満にすると、鋼の変形抵抗が高くなるので圧延
を行なうことが困難になる。また、1250℃を超える
加熱温度にすると、鋼の結晶粒が粗大化するので、所望
の強度および靭性を得ることが困難になる。
The heating temperature of the steel before rolling is 950
The temperature is preferably 1250C. This heating temperature is 9
If the temperature is lower than 50 ° C., the deformation resistance of the steel increases, so that it becomes difficult to perform rolling. If the heating temperature exceeds 1250 ° C., the crystal grains of the steel become coarse, and it becomes difficult to obtain desired strength and toughness.

【0053】圧延時の温度条件として900℃以下の温
度域とした理由は、この900℃以下の温度域はオース
テナイト再結晶温度未満の温度域に対応し、圧延により
展伸させたオーステナイト粒を消失させることなくその
形態を維持させるためである。
The reason for setting the temperature range at the time of rolling to 900 ° C. or lower is that the temperature range of 900 ° C. or lower corresponds to a temperature range lower than the austenite recrystallization temperature, and the austenite grains expanded by rolling disappear. This is to maintain the form without causing it to occur.

【0054】本発明の製造方法において、上記圧延条件
として、累積圧下率を50%未満にすると、旧オーステ
ナイト粒展伸度dL/dzが2未満となる。一方、累積
圧下率を50%以上にすることによって、dL/dzを
2以上にすることができる。事実、本発明者らは、90
0℃以下の温度域での累積圧下率(%)と、旧オーステ
ナイト粒展伸度dL/dzとの相関を示す図2の特性線
図からこのことを明らかにしている。ここで用いた鋼材
試料は、図1で用いたのと同様の組成の鋼を900℃以
下の温度域で種々の累積圧下率に圧延し、表層部をマル
テンサイト組織とし、内質部をマルテンサイト組織と下
部ベイナイト組織との混合組織または下部ベイナイト単
相組織としたものである。
In the production method of the present invention, when the rolling conditions are such that the cumulative rolling reduction is less than 50%, the austenite grain extension / extension dL / dz becomes less than 2. On the other hand, dL / dz can be made 2 or more by making the cumulative draft be 50% or more. In fact, we have 90
This is made clear from the characteristic diagram of FIG. 2 showing the correlation between the cumulative draft (%) in the temperature range of 0 ° C. or lower and the prior austenite grain elongation dL / dz. The steel sample used here is a steel having the same composition as that used in FIG. 1 rolled to various cumulative reductions in a temperature range of 900 ° C. or less, the surface layer has a martensite structure, and the inner portion has a martensite structure. It has a mixed structure of a site structure and a lower bainite structure or a lower bainite single phase structure.

【0055】図2に示されるように、累積圧下率の増加
に伴って旧オーステナイト粒展伸度dL/dzはほぼ比
例的に増加している。これによれば、累積圧下率50%
未満の領域ではdL/dzは2未満であり、累積圧下率
50%以上の領域ではdL/dzは2以上である。した
がって、900℃以下の温度域で累積圧下率50%以上
の圧延を行なうことによって、dL/dzを2以上に形
態制御できることがわかる。
As shown in FIG. 2, the old austenite grain elongation dL / dz increases almost proportionally with an increase in the cumulative rolling reduction. According to this, the cumulative rolling reduction is 50%.
DL / dz is less than 2 in a region of less than 2, and dL / dz is 2 or more in a region of a cumulative reduction ratio of 50% or more. Therefore, it can be seen that by performing rolling at a cumulative draft of 50% or more in a temperature range of 900 ° C. or less, dL / dz can be controlled in form to 2 or more.

【0056】本発明の製造方法は、上述した900℃以
下の温度域で累積圧下率50%以上に圧延した鋼材を、
直ちにAr3点以上の温度域から直接焼入れし、かつM
s点−250℃以上Ms点+100℃以下の温度域で焼
入れを停止する。
In the production method of the present invention, the steel material rolled to a cumulative draft of 50% or more in the above-mentioned temperature range of 900 ° C. or less is provided.
Immediately quenching directly from the temperature range of Ar3 or more
The quenching is stopped in a temperature range of s point -250 ° C or more and Ms point + 100 ° C or less.

【0057】ここで、上記Ar3点は、例えば、Ar3
(℃)=910−310C%−80Mn%−20Cu%
−15Cr%−55Ni%−80Mo%(ここで示され
る「%」は、いずれも各成分元素の鋼材中に占める「質
量%」であり、下記Ms点についても同様である。)で
表される関係式により鋼材の成分組成に基づいて導くこ
とができる。また、上記Ms点も同様に、例えば、Ms
(℃)=517−300C%−33Mn%−22Cr%
−17Ni%−11Mo%−11Si%で表される関係
式により鋼材の成分組成に基づいて導くことができる。
Here, the Ar3 point is, for example, Ar3
(° C) = 910-310C% -80Mn% -20Cu%
−15Cr% −55Ni% −80Mo% (“%” shown here is “mass%” of each component element in the steel material, and the same applies to the following Ms point). The relational expression can be derived based on the composition of the steel material. Similarly, the above Ms point is, for example, Ms
(° C) = 517-300C% -33Mn% -22Cr%
It can be derived based on the component composition of the steel material by a relational expression expressed by -17Ni% -11Mo% -11Si%.

【0058】上述のように圧延後、直接焼入れとするの
は、再加熱焼入れとした場合には上記圧延効果が薄れ、
焼入れ後に得られる鋼材の靭性および耐遅れ破壊性の向
上効果が得られなくなるおそれがあり、また、工程が複
雑化するので製造コストの上昇につながるからである。
As described above, the direct quenching after rolling is because the above-mentioned rolling effect is weakened in the case of reheating quenching.
This is because there is a possibility that the effect of improving the toughness and delayed fracture resistance of the steel material obtained after quenching may not be obtained, and the manufacturing process is increased because the process is complicated.

【0059】上記の焼入れ開始温度をAr3点以上の温
度域としたのは、オーステナイト単相組織から焼入れな
いと所望の表面硬度(例えば、ブリネル硬さHB(10
/3000)で300以上)が得られないためである。
The above-mentioned quenching start temperature is set to a temperature range of Ar3 point or higher because a desired surface hardness (for example, Brinell hardness HB (10
/ 3000) cannot be obtained.

【0060】また、焼入れ停止温度をMs点−250℃
以上Ms点+100℃以下の温度域と規定したのは、こ
れにより鋼材の表層部をマルテンサイト組織とし、内質
部をマルテンサイトと下部ベイナイトとの混合組織また
は下部ベイナイト単相組織とするためである。
Further, the quenching stop temperature is set at Ms point-250 ° C.
The reason why the temperature range is defined as the Ms point + 100 ° C. or less is that the surface layer of the steel material has a martensite structure and the internal portion has a mixed structure of martensite and lower bainite or a lower bainite single phase structure. is there.

【0061】このように、直接焼入れ−途中停止とする
ことにより、冷却速度が高い鋼板表層部のみをマルテン
サイト組織とすることができ、内質部はマルテンサイト
単相組織とならないよう冷え切らせずに焼入れを途中停
止するのでマルテンサイトと下部ベイナイトとの混合組
織または下部ベイナイト単相組織とすることができる。
これにより、表面硬度を確保しつつ全体として靭性およ
び耐遅れ破壊性を向上できる複合材料的な耐摩耗鋼材を
得ることができる。
As described above, by direct quenching and stopping halfway, only the surface portion of the steel sheet having a high cooling rate can have a martensite structure, and the internal portion can be cooled completely so as not to have a martensite single phase structure. Since the quenching is stopped halfway, a mixed structure of martensite and lower bainite or a lower bainite single phase structure can be obtained.
This makes it possible to obtain a wear-resistant steel material like a composite material that can improve the toughness and the delayed fracture resistance as a whole while securing the surface hardness.

【0062】なお、直接焼入れ時の冷却速度は、10〜
50℃/秒とすることが好ましく、このような冷却速度
は例えば水焼入れにより容易に達成できる。
The cooling rate during direct quenching is 10 to
The cooling rate is preferably 50 ° C./second, and such a cooling rate can be easily achieved by, for example, water quenching.

【0063】なお、本発明においては、焼入れを途中停
止した後に復熱による焼戻しがなされてもよい。
In the present invention, tempering by reheating may be performed after quenching is stopped halfway.

【0064】図3は、縦軸にブリネル硬さHB(10/
3000)、吸収エネルギー(J)および遅れ破壊発生
応力拡大係数(N/mm3/2)をとり、横軸に焼入れ
停止温度(℃)をとって、ブリネル硬さ、吸収エネルギ
ーおよび遅れ破壊発生応力拡大係数の3つの特性と焼入
れ停止温度との関係をそれぞれ調べた結果を示す特性線
図である。ここで用いた試料は、前述した図1で説明し
たのと同様な組成の鋼を900℃以下の温度域で圧延し
た後に直接焼入れするにあたり、圧延時の累積圧下率を
65%および35%と変化させるとともに、焼入れ停止
温度を種々変化させて得られたものである。なお、図3
の縦軸にとったブリネル硬さ、吸収エネルギーおよび遅
れ破壊発生応力拡大係数の測定は、前述した図1で説明
したのと同様な方法により行なった。
FIG. 3 shows that the vertical axis represents the Brinell hardness HB (10 /
3000), absorbed energy (J), and stress intensity factor of delayed fracture initiation stress (N / mm 3/2 ), and quenching stop temperature (° C.) is plotted on the horizontal axis, and Brinell hardness, absorbed energy, and delayed fracture initiation stress It is a characteristic diagram which shows the result of having investigated the relationship between three characteristics of an expansion coefficient and quenching stop temperature, respectively. When the sample used here is directly quenched after rolling a steel having the same composition as that described with reference to FIG. 1 in a temperature range of 900 ° C. or less, the cumulative rolling reduction during rolling is 65% and 35%. It was obtained by changing the quenching stop temperature variously while changing the temperature. Note that FIG.
The Brinell hardness, absorbed energy and delayed fracture initiation stress intensity factor measured on the vertical axis were measured in the same manner as described with reference to FIG.

【0065】図3において、白丸を結んだ曲線A1,A
2,A3は900℃以下の温度域で65%の累積圧下率
に圧延した場合の結果を示す特性線であり、黒丸を結ん
だ曲線B1,B2,B3は900℃以下の温度域で35
%の累積圧下率に圧延した場合の結果を示す特性線であ
る。
In FIG. 3, curves A1 and A connecting white circles
2, A3 are characteristic lines showing the results when rolling was performed to a cumulative draft of 65% in a temperature range of 900 ° C. or lower, and curves B1, B2, and B3 connecting black circles were 35% in a temperature range of 900 ° C. or lower.
6 is a characteristic line showing a result when rolling is performed to a cumulative reduction ratio of%.

【0066】図3の特性線B1,B2,B3に着目する
と、焼入れ停止温度が485℃(Ms点+100℃)以
下の領域では、ブリネル硬さが300以上と高い硬度で
あるものの、遅れ破壊発生応力拡大係数および吸収エネ
ルギーが著しく低くなり、靭性および耐遅れ破壊性に著
しく劣ることが判明した。また、焼入れ停止温度が48
5℃(Ms点+100℃)を超える領域では、遅れ破壊
発生応力拡大係数および吸収エネルギーがともに上昇傾
向にあるものの、ブリネル硬さは低下傾向にあり、しか
も300未満と低くなり、耐摩耗性に劣ることが判明し
た。
Focusing on the characteristic lines B1, B2, and B3 in FIG. 3, in the region where the quenching stop temperature is 485 ° C. (Ms point + 100 ° C.) or less, although the Brinell hardness is as high as 300 or more, delayed fracture occurs. It was found that the stress intensity factor and the absorbed energy were extremely low, and the toughness and delayed fracture resistance were extremely poor. The quenching stop temperature is 48
In the region exceeding 5 ° C. (Ms point + 100 ° C.), both the delayed fracture initiation stress intensity factor and the absorbed energy tend to increase, but the Brinell hardness tends to decrease, and the Brinell hardness decreases to less than 300, resulting in poor wear resistance. It turned out to be inferior.

【0067】一方、特性線A1,A2,A3に着目する
と、焼入れ停止温度が135℃(Ms−250℃)未満
の領域ではブリネル硬さが500程度と高い値を維持し
ているものの、遅れ破壊発生応力拡大係数および吸収エ
ネルギーが著しく低くなり、また、焼入れ停止温度が4
85℃(Ms点+100℃)を超える領域では遅れ破壊
発生応力拡大係数および吸収エネルギーが高い値を示す
ものの、ブリネル硬さが300未満と低くなり、いずれ
の領域においても耐摩耗性を確保するとともに靭性およ
び耐遅れ破壊性を向上できないことが判明した。これに
対して、焼入れ停止温度が135℃(Ms点−250
℃)〜485℃(Ms点+100℃)の領域内では、ブ
リネル硬さが300以上と高いのみならず、遅れ破壊発
生応力拡大係数および吸収エネルギーが上昇して高い値
を示すことから、高い表面硬度を維持しつつ、優れた靭
性および耐遅れ破壊性を有することが判明した。
On the other hand, focusing on the characteristic lines A1, A2, and A3, in the region where the quenching stop temperature is less than 135 ° C. (Ms-250 ° C.), although the Brinell hardness is maintained at a high value of about 500, delayed fracture The generated stress intensity factor and absorbed energy are significantly reduced, and the quenching stop temperature is 4
In the region exceeding 85 ° C. (Ms point + 100 ° C.), although the delayed fracture initiation stress intensity factor and the absorbed energy show high values, the Brinell hardness becomes low at less than 300, and the wear resistance is secured in any region. It was found that toughness and delayed fracture resistance could not be improved. On the other hand, the quenching stop temperature is 135 ° C. (Ms
C.) to 485.degree. C. (Ms point + 100.degree. C.), not only the Brinell hardness is as high as 300 or more, but also the delayed fracture initiation stress intensity factor and the absorbed energy increase to show high values. It has been found to have excellent toughness and delayed fracture resistance while maintaining hardness.

【0068】なお、900℃以下の温度域で50%以上
の累積圧下率で圧延することにより旧オーステナイト粒
展伸度を2以上としても、焼入れ停止温度をMs点−2
50℃未満の温度域にすると、靭性および耐遅れ破壊性
の向上効果が認められないのは、表層部から板厚中央部
にわたりマルテンサイト単相組織となるからである。
The quenching stop temperature is set to Ms point -2 even when the austenite grain elongation is set to 2 or more by rolling at a cumulative draft of 50% or more in a temperature range of 900 ° C. or less.
When the temperature range is lower than 50 ° C., the effect of improving toughness and delayed fracture resistance is not recognized because a martensitic single-phase structure is formed from the surface layer portion to the central portion of the plate thickness.

【0069】一方、Ms点+100℃を超える温度域で
焼入れを停止すると、ブリネル硬さが低下するのは、表
層部をマルテンサイト組織とすることができないからで
ある。
On the other hand, if the quenching is stopped in a temperature range exceeding the Ms point + 100 ° C., the Brinell hardness decreases because the surface layer cannot have a martensitic structure.

【0070】図4は、縦軸にブリネル硬さHB(10/
3000)、吸収エネルギー(J)および遅れ破壊発生
応力拡大係数(N/mm3/2)をとり、横軸に焼入れ
停止温度(℃)および焼戻し温度(℃)をとって、直接
焼入れ−焼戻しプロセスにより得られた鋼板について、
焼戻し温度と、ブリネル硬さ、吸収エネルギーおよび遅
れ破壊発生応力拡大係数との関係を、直接焼入れ−途中
停止プロセスにより得られた鋼板について、焼入れ停止
温度と、ブリネル硬さ、吸収エネルギーおよび遅れ破壊
発生応力拡大係数との関係をそれぞれ調べた結果を示す
特性線図である。
FIG. 4 shows that the vertical axis represents the Brinell hardness HB (10 /
3000), the absorbed energy (J) and the stress intensity factor for delayed fracture initiation (N / mm 3/2 ), the quenching stop temperature (° C.) and the tempering temperature (° C.) on the horizontal axis, and the direct quenching-tempering process. About the steel sheet obtained by
The relationship between the tempering temperature, the Brinell hardness, absorbed energy, and the stress intensity factor for delayed fracture initiation was determined for the steel sheet obtained by the direct quenching-intermediate stop process, with the quenching termination temperature, Brinell hardness, absorbed energy, and delayed fracture initiation. FIG. 8 is a characteristic diagram showing the results of examining the relationship with the stress intensity factor.

【0071】図4中の白丸を結んだ曲線A4,A5,A
6はそれぞれ直接焼入れ−途中停止プロセスの場合の結
果を示す特性線であり、黒丸を結んだ曲線B4,B5,
B6はそれぞれ直接焼入れ−焼戻しプロセスの場合の結
果を示す特性線である。なお、ここで用いた試料の組成
は前述した図1で説明したのと同様の鋼種である。ま
た、直接焼入れ−途中停止プロセスにおいては900℃
以下の温度域での累積圧下率を65%とした。一方、直
接焼入れ−焼戻しプロセスでは900℃以下の温度域で
の累積圧下率を35%とし、100℃以下の温度域に直
接焼入れした後に種々の焼戻し温度で焼戻しを施した。
Curves A4, A5, A connecting white circles in FIG.
6 are characteristic lines showing the results in the case of the direct quenching-intermediate stop process, respectively, and the curves B4, B5,
B6 is a characteristic line showing the result in the case of the direct quenching-tempering process, respectively. The composition of the sample used here is the same steel type as that described with reference to FIG. 900 ° C. in the direct quenching-intermediate stop process
The cumulative draft in the following temperature range was 65%. On the other hand, in the direct quenching-tempering process, the cumulative draft in a temperature range of 900 ° C. or less was set to 35%, and the steel was directly quenched in a temperature range of 100 ° C. or less and then tempered at various tempering temperatures.

【0072】図4において、まず、特性線A6,B6に
ついて着目すると、焼入れ停止温度および焼戻し温度が
ともに同じ値であれば、ブリネル硬さはほぼ同じ値を示
しており、ほぼ同じ耐摩耗性を有していることがわか
る。次に、特性線A4,B4に着目すると、135℃
(Ms点−250℃)〜485℃(Ms点+100℃)
の温度範囲において、特性線A4は特性線B4よりも上
記の温度範囲にわたり遅れ破壊発生応力拡大係数の値が
大幅に高くなり、優れた耐遅れ破壊性を有することが判
明した。また、特性線A5,B5に着目すると、135
℃(Ms点−250℃)〜485℃(Ms点+100
℃)の温度範囲において、特性線A5は特性線B5より
も上記の温度範囲にわたり吸収エネルギーの値が大幅に
高くなり、優れた靭性を有することが判明した。すなわ
ち、同じブリネル硬さを有していても、本発明のように
特定した製造条件により得られた鋼板の方が、吸収エネ
ルギーおよび遅れ破壊発生応力拡大係数がより高くな
り、耐摩耗性を確保しつつ優れた靭性および耐遅れ破壊
性をも有することが判明した。
In FIG. 4, focusing on the characteristic lines A6 and B6, if both the quenching stop temperature and the tempering temperature are the same value, the Brinell hardness shows almost the same value, and almost the same wear resistance is obtained. It turns out that it has. Next, focusing on the characteristic lines A4 and B4, 135 ° C.
(Ms point-250 ° C)-485 ° C (Ms point + 100 ° C)
In the above temperature range, the characteristic line A4 has a significantly higher value of the delayed fracture initiation stress intensity factor over the above temperature range than the characteristic line B4, and it has been found that the characteristic line A4 has excellent delayed fracture resistance. Focusing on the characteristic lines A5 and B5, 135
° C (Ms point -250 ° C) to 485 ° C (Ms point +100
In the temperature range of (° C.), the characteristic line A5 has a significantly higher absorbed energy value over the above temperature range than the characteristic line B5, and it has been found that the characteristic line A5 has excellent toughness. That is, even if they have the same Brinell hardness, the steel sheet obtained under the specified manufacturing conditions as in the present invention has higher absorption energy and delayed fracture initiation stress intensity factor, and secures wear resistance. It was also found that they also had excellent toughness and delayed fracture resistance.

【0073】なお、図4で説明した直接焼入れ−焼戻し
プロセスは900℃以下の温度域での累積圧下率を50
%未満である35%としたものであるが、この累積圧下
率を50%以上に圧延することとすれば、圧延後に途中
停止することなく焼入れた後に焼戻しするようにしても
差し支えない。この場合、焼戻し温度の上限はブリネル
硬さHB(10/3000)で300以上の表面硬度を
確保できる温度とする。
In the direct quenching-tempering process described with reference to FIG. 4, the cumulative rolling reduction in the temperature range of 900 ° C. or less is 50%.
However, if the cumulative rolling reduction is to be rolled to 50% or more, tempering may be performed after quenching without stopping halfway after rolling. In this case, the upper limit of the tempering temperature is a temperature at which a surface hardness of 300 or more in Brinell hardness HB (10/3000) can be secured.

【0074】[0074]

【発明の実施の形態】以下、本発明の実施形態を説明す
る。
Embodiments of the present invention will be described below.

【0075】(実施例)表1に示す鋼種A〜Hの成分組
成に調整した鋼を各々溶製した。なお、表1には各鋼種
の組成に基づき求められたAr3点(℃)およびMs点
(℃)をそれぞれ併記した。
(Examples) Steels adjusted to the component compositions of steel types A to H shown in Table 1 were smelted. In Table 1, the Ar 3 point (° C.) and the Ms point (° C.) determined based on the composition of each steel type are also shown.

【0076】次いで、これらの鋼種A〜Hを用い、表2
に示す製造条件にしたがって鋼板を製造し、板厚15〜
100mmの鋼板を得た。
Next, using these steel types A to H, Table 2
A steel sheet is manufactured according to the manufacturing conditions shown in
A 100 mm steel plate was obtained.

【0077】[0077]

【表1】 [Table 1]

【0078】得られた各鋼板について、光学顕微鏡およ
び透過型電子顕微鏡により表層下1mmの位置の組織観
察および板厚中央部の組織観察を行なった。なお、これ
らの組織観察において、例えばマルテンサイトと下部ベ
イナイトとは、大まかには光学顕微鏡により、詳細には
透過型電子顕微鏡により薄膜サンプルを観察すれば炭化
物の析出形態の差異により判別可能である。
With respect to each of the obtained steel sheets, the structure at a position 1 mm below the surface layer and the structure at the center of the sheet thickness were observed with an optical microscope and a transmission electron microscope. In observation of these structures, for example, martensite and lower bainite can be discriminated by a difference in the precipitation form of carbide by observing a thin film sample roughly with an optical microscope, specifically, a transmission electron microscope.

【0079】また、JIS G 0551の焼入焼戻し
法による熱処理粒度試験方法に基づいてオーステナイト
粒を現出させて板厚中央部における旧オーステナイト粒
展伸度(dL/dZ)を求めた。さらに、図1で説明し
たのと同様にして、硬度測定、シャルピー衝撃試験およ
び遅れ破壊試験を行なった。なお、本実施例において
は、上記の硬度測定により得られたブリネル硬さ値が3
00以上、シャルピー衝撃試験による吸収エネルギー値
が17J以上、遅れ破壊試験による遅れ破壊発生応力拡
大係数値が980N/mm3/2以上を全て満たすこと
を条件とした。
Further, the austenite grains were revealed based on the heat treatment grain size test method according to the quenching and tempering method of JIS G 0551, and the austenite grain elongation (dL / dZ) at the center of the sheet thickness was determined. Further, a hardness measurement, a Charpy impact test, and a delayed fracture test were performed in the same manner as described with reference to FIG. In this example, the Brinell hardness value obtained by the above hardness measurement was 3
The condition was that the absorption energy value in the Charpy impact test was 17 J or more, and the stress intensity factor for delayed fracture initiation stress in the delayed fracture test was 980 N / mm 3/2 or more.

【0080】以上調べた評価結果を表2に示す。Table 2 shows the evaluation results examined above.

【0081】[0081]

【表2】 [Table 2]

【0082】表2に示すように、特定の成分組成と特定
の製造条件とを満たした実施例1〜7の各鋼材はいずれ
も、旧オーステナイト粒展伸度dL/dzが2以上であ
り、表層部がマルテンサイト組織であり、内質部がマル
テンサイト組織と下部ベイナイト組織との混合組織また
は下部ベイナイト単相組織であった。実施例1〜7の各
鋼材は、ブリネル硬さがいずれも300以上であり、か
つ吸収エネルギーがいずれも17Jを大幅に上回り、か
つ遅れ破壊発生応力拡大係数がいずれも980N/mm
3/2を大幅に上回り、優れた耐摩耗性を有するのみな
らず優れた靭性および耐遅れ破壊性をも有する鋼材であ
ることが判明した。
As shown in Table 2, each of the steel materials of Examples 1 to 7 satisfying the specific component composition and the specific manufacturing conditions has a prior austenite grain elongation dL / dz of 2 or more. The surface layer had a martensite structure, and the internal portion had a mixed structure of a martensite structure and a lower bainite structure or a lower bainite single phase structure. Each of the steel materials of Examples 1 to 7 had a Brinell hardness of 300 or more, an absorbed energy of significantly more than 17 J, and a delayed fracture initiation stress intensity factor of 980 N / mm.
It was found that the steel material greatly exceeded 3/2 and had not only excellent wear resistance but also excellent toughness and delayed fracture resistance.

【0083】これに対して、900℃以下の温度域での
累積圧下率を50%未満とした比較例1〜4の各鋼板
は、いずれも表層部がマルテンサイト組織であり、内質
部がマルテンサイト組織と下部ベイナイト組織との混合
組織または下部ベイナイト単相組織ではあるものの、旧
オーステナイト粒展伸度dL/dzがいずれも2未満で
あった。比較例1〜4の各鋼板は、ブリネル硬さが30
0以上であるものの、吸収エネルギーおよび遅れ破壊発
生応力拡大係数がそれぞれ17J未満、980N/mm
3/2未満となり、靭性および耐遅れ破壊性に劣ること
が判明した。
On the other hand, in each of the steel sheets of Comparative Examples 1 to 4 in which the cumulative rolling reduction in the temperature range of 900 ° C. or less was less than 50%, the surface layer had a martensitic structure and the inner part had a martensitic structure. Although it was a mixed structure of a martensite structure and a lower bainite structure or a lower bainite single phase structure, the former austenite grain extension elongation dL / dz was less than 2. Each of the steel sheets of Comparative Examples 1 to 4 had a Brinell hardness of 30.
0 or more, but the absorbed energy and the delayed fracture initiation stress intensity factor are less than 17 J and 980 N / mm, respectively.
It was less than 3/2, which proved to be inferior in toughness and delayed fracture resistance.

【0084】また、焼入れ停止温度を鋼種Cの組成に基
づくMs点Ms点+100℃を上回る温度とした比較例
5の鋼板は、旧オーステナイト粒展伸度dL/dzが2
以上であるものの、表層部が下部ベイナイト組織であ
り、内質部が上部ベイナイト組織であった。この鋼板は
ブリネル硬さが300を下回り、耐摩耗性に劣ることが
判明した。
Further, the steel sheet of Comparative Example 5 in which the quenching stop temperature was higher than the Ms point Ms point + 100 ° C. based on the composition of steel type C had a prior austenite grain elongation dL / dz of 2
As described above, the surface layer had a lower bainite structure, and the internal portion had an upper bainite structure. This steel sheet was found to have a Brinell hardness of less than 300 and poor wear resistance.

【0085】焼入れ停止温度をMs点−250℃を下回
る温度とした比較例6の鋼板は、旧オーステナイト粒展
伸度dL/dzが2以上であるものの、全板厚にわたり
マルテンサイト単相組織であった。この鋼板はブリネル
硬さが著しく高く、耐摩耗性に優れてはいるものの、吸
収エネルギーおよび遅れ破壊発生応力拡大係数がそれぞ
れ著しく低く、靭性および耐遅れ破壊性ともに劣ること
が判明した。
The steel sheet of Comparative Example 6 in which the quenching stop temperature was lower than the Ms point of −250 ° C. had a martensitic single-phase structure over the entire sheet thickness, although the austenite grain extension / extension dL / dz was 2 or more. there were. Although this steel sheet had a remarkably high Brinell hardness and excellent wear resistance, it was found that the absorbed energy and the stress intensity factor for delayed fracture initiation were extremely low, respectively, and both toughness and delayed fracture resistance were poor.

【0086】焼入れ開始温度をAr3点を下回る温度と
した比較例7の鋼板は、旧オーステナイト粒展伸度dL
/dzが2以上であり、内質部がマルテンサイトと下部
ベイナイトとの混合組織ではあるものの、表層部はフェ
ライト組織が大幅に混在されたマルテンサイト組織であ
った。この鋼板は吸収エネルギーおよび遅れ破壊発生応
力拡大係数が上記の条件を満たしているものの、ブリネ
ル硬さは上記の条件を満たしておらず、耐摩耗性に劣る
ことが判明した。
[0086] The steel sheet of Comparative Example 7 in which the quenching start temperature was lower than the Ar3 point was the former austenite grain extension elongation dL.
/ Dz was 2 or more, and although the internal part had a mixed structure of martensite and lower bainite, the surface layer had a martensite structure in which a ferrite structure was significantly mixed. Although this steel sheet satisfies the above conditions with the absorbed energy and the delayed fracture initiation stress intensity factor, it was found that the Brinell hardness did not satisfy the above conditions and was inferior in wear resistance.

【0087】C含有量が特定範囲を低減逸脱した組成の
鋼種Hを用いて製造された比較例8の鋼板は、旧オース
テナイト粒展伸度dL/dzが2以上であり、表層部組
織および表層部から板厚中央部にかけての組織が特定し
た組織ではあるが、ブリネル硬さが著しく低くなり、耐
摩耗性に劣ることが判明した。
The steel sheet of Comparative Example 8 manufactured using steel type H having a composition in which the C content deviated from the specific range was reduced from the prior austenite grain elongation dL / dz of 2 or more to the surface layer structure and the surface layer. Although the structure from the part to the central part of the sheet thickness was a specified structure, it was found that the Brinell hardness was extremely low and the wear resistance was poor.

【0088】比較例9においては、900℃の温度域で
の累積圧下率を50%以上である65%としたので圧延
直後では旧オーステナイト粒展伸度dL/dzが2以上
に展伸していたと考えられるが、その後オーステナイト
域に再加熱して焼入れしたため、dL/dzが1.2と
なり2に満たなかった。また、焼入れ停止温度をMs点
−250℃を下回る温度としたため、全板厚にわたりマ
ルテンサイト単相組織であった。この鋼板はブリネル硬
さと遅れ破壊発生応力拡大係数とが上記の条件を満たす
ものの、吸収エネルギーが17J未満となり、靭性に劣
ることが判明した。
In Comparative Example 9, since the cumulative draft in the temperature range of 900 ° C. was 65%, which is 50% or more, immediately after rolling, the austenite grain elongation dL / dz was expanded to 2 or more. However, since it was reheated to the austenite region and quenched, dL / dz was 1.2, which was less than 2. Further, since the quenching stop temperature was set to a temperature lower than the Ms point of −250 ° C., a martensite single phase structure was formed over the entire plate thickness. Although this steel sheet satisfied the above conditions with the Brinell hardness and the delayed fracture initiation stress intensity factor, it was found that the absorbed energy was less than 17 J and the toughness was poor.

【0089】900℃以下の温度域での累積圧下率を5
0%未満である35%とし、焼入れ停止温度をMs点−
250℃を下回る温度とし、さらに焼入れ後に450℃
に焼戻しを施した比較例10の鋼板は、旧オーステナイ
ト粒展伸度dL/dzが2未満となり、全板厚にわたり
マルテンサイト単相組織であった。この鋼板は吸収エネ
ルギーと遅れ破壊発生応力拡大係数とが上記の条件を満
たすものの、ブリネル硬さが300未満となり、耐摩耗
性に劣ることが判明した。
The cumulative rolling reduction in the temperature range of 900 ° C. or less is 5
35%, which is less than 0%, and the quenching stop temperature is Ms point−
Temperature below 250 ° C, 450 ° C after quenching
The steel sheet of Comparative Example 10 which had been tempered had a prior austenite grain extension elongation dL / dz of less than 2, and had a martensite single phase structure over the entire sheet thickness. This steel sheet was found to have a Brinell hardness of less than 300 and inferior wear resistance, although the absorbed energy and the delayed fracture initiation stress intensity factor satisfied the above conditions.

【0090】[0090]

【発明の効果】以上説明した通り、本発明によれば、所
望の硬度を維持しつつ優れた靭性および耐遅れ破壊性を
有する耐摩耗鋼材が提供される。また、本発明によれ
ば、このような耐摩耗鋼材をオンラインで製造できるの
で製造コストを大幅に低減できる。したがって、本発明
によれば、耐摩耗鋼材において靭性および耐遅れ破壊性
をともに向上できるので、土木機械等の産業機械の信頼
性向上や施工性向上等、産業に寄与する効果が極めて大
きい。
As described above, according to the present invention, a wear-resistant steel material having excellent toughness and delayed fracture resistance while maintaining desired hardness is provided. Further, according to the present invention, since such a wear-resistant steel material can be manufactured online, the manufacturing cost can be significantly reduced. Therefore, according to the present invention, both toughness and delayed fracture resistance can be improved in the wear-resistant steel material, and the effect of contributing to the industry such as improvement of reliability and workability of industrial machines such as civil engineering machines is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】旧オーステナイト粒展伸度と、ブリネル硬さ、
吸収エネルギーおよび遅れ破壊発生応力拡大係数の3つ
の特性との関係をそれぞれ調べた結果を示す特性線図。
FIG. 1: Old austenite grain elongation, Brinell hardness,
FIG. 7 is a characteristic diagram showing the results of examining the relationship between the absorbed energy and the three characteristics of the delayed fracture initiation stress intensity factor.

【図2】900℃以下の温度域で圧延した累積圧下率
と、旧オーステナイト粒展伸度との関係を調べた結果を
示す特性線図。
FIG. 2 is a characteristic diagram showing a result of examining a relationship between a cumulative rolling reduction rolled in a temperature range of 900 ° C. or less and prior austenite grain elongation.

【図3】焼入れ停止温度と、ブリネル硬さ、吸収エネル
ギーおよび遅れ破壊発生応力拡大係数の3つの特性との
関係をそれぞれ調べた結果を示す特性線図。
FIG. 3 is a characteristic diagram showing the results of examining the relationship between the quenching stop temperature and three characteristics of Brinell hardness, absorbed energy, and stress intensity factor for delayed fracture initiation.

【図4】直接焼入れ−焼戻しプロセスにより得られた鋼
板について、焼戻し温度と、ブリネル硬さ、吸収エネル
ギーおよび遅れ破壊発生応力拡大係数の3つの特性との
関係を、直接焼入れ−途中停止プロセスにより得られた
鋼板について、焼入れ停止温度と、ブリネル硬さ、吸収
エネルギーおよび遅れ破壊発生応力拡大係数の3つの特
性との関係を、それぞれ調べた結果を示す特性線図。
FIG. 4 shows the relationship between the tempering temperature and the three properties of Brinell hardness, absorbed energy, and the stress intensity factor for delayed fracture initiation in the steel sheet obtained by the direct quenching-tempering process. FIG. 9 is a characteristic diagram showing the results of examining the relationship between the quenching stop temperature and three properties of Brinell hardness, absorbed energy, and delayed fracture initiation stress intensity factor for each of the obtained steel sheets.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K032 AA01 AA02 AA04 AA05 AA11 AA12 AA14 AA16 AA19 AA21 AA23 AA31 AA35 AA36 BA01 CA02 CB02 CC03 CD06  ────────────────────────────────────────────────── ─── Continued on the front page F term (reference) 4K032 AA01 AA02 AA04 AA05 AA11 AA12 AA14 AA16 AA19 AA21 AA23 AA31 AA35 AA36 BA01 CA02 CB02 CC03 CD06

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、C:0.05〜0.4%、S
i:0.1〜0.8%、Mn:0.5〜2.0%、C
r:0.05〜2.0%、Ti:0.005〜0.5
%、B:0.0005〜0.005%、Al:0.00
5〜0.10%、N:0.005%以下を含み、残部が
鉄および不可避的不純物から実質的になり、 表層部がマルテンサイト組織であり、内質部がマルテン
サイト組織と下部ベイナイト組織との混合組織または下
部ベイナイト単相組織であり、 肉厚方向の旧オーステナイト粒径(dZ)に対する圧延
方向の旧オーステナイト粒径(dL)の比(dL/d
Z)で表される旧オーステナイト粒展伸度が2以上であ
ることを特徴とする靭性および耐遅れ破壊性に優れた耐
摩耗鋼材。
1. C .: 0.05 to 0.4% by mass, S
i: 0.1 to 0.8%, Mn: 0.5 to 2.0%, C
r: 0.05 to 2.0%, Ti: 0.005 to 0.5
%, B: 0.0005 to 0.005%, Al: 0.00
5 to 0.10%, N: 0.005% or less, the balance substantially consists of iron and unavoidable impurities, the surface layer has a martensite structure, and the internal portion has a martensite structure and a lower bainite structure. And a lower bainite single phase structure, and the ratio (dL / d) of the former austenite grain size (dL) in the rolling direction to the former austenite grain size (dZ) in the thickness direction.
A wear-resistant steel material excellent in toughness and delayed fracture resistance, characterized in that the austenite grain extension and elongation represented by Z) is 2 or more.
【請求項2】 質量%で、Cu:0.1〜1.0%、N
i:0.1〜1.0%、Mo:0.1〜1.0%および
V:0.01〜0.2%からなる群から選択される1種
または2種以上をさらに含有することを特徴とする請求
項1に記載の耐摩耗鋼材。
2. In mass%, Cu: 0.1-1.0%, N
i: 0.1 to 1.0%, Mo: 0.1 to 1.0%, and V: One or more selected from the group consisting of 0.01 to 0.2%. The wear-resistant steel material according to claim 1, wherein:
【請求項3】 質量%で、Nb:0.005〜0.1%
をさらに含有することを特徴とする請求項1または2の
いずれかに記載の耐摩耗鋼材。
3. Nb: 0.005 to 0.1% by mass%
The wear-resistant steel material according to claim 1, further comprising:
【請求項4】 質量%で、C:0.05〜0.4%、S
i:0.1〜0.8%、Mn:0.5〜2.0%、C
r:0.05〜2.0%、Ti:0.005〜0.5
%、B:0.0005〜0.005%、Al:0.00
5〜0.10%、N:0.005%以下を含み、残部が
実質的に鉄および不可避的不純物からなる鋼材を調製す
る調製工程と、 前記鋼材を加熱した後に、900℃以下の温度域で累積
圧下率50%以上に熱間圧延する圧延工程と、 圧延された鋼材を直ちにAr3点以上の温度域から焼入
れを開始し、Ms点−250℃以上Ms点+100℃以
下の温度域で焼入れを停止する焼入れ工程と、を備えた
ことを特徴とする靭性および耐遅れ破壊性に優れた耐摩
耗鋼材の製造方法。
4. In mass%, C: 0.05-0.4%, S
i: 0.1 to 0.8%, Mn: 0.5 to 2.0%, C
r: 0.05 to 2.0%, Ti: 0.005 to 0.5
%, B: 0.0005 to 0.005%, Al: 0.00
A preparation step of preparing a steel material containing 5 to 0.10%, N: 0.005% or less, and the balance substantially consisting of iron and unavoidable impurities; and after heating the steel material, a temperature range of 900 ° C or less. Rolling step of hot rolling to a cumulative draft of 50% or more at, and quenching of the rolled steel material immediately from the temperature range of Ar3 point or more and quenching at the temperature range of Ms point -250 ° C or more and Ms point + 100 ° C or less And a quenching step of stopping the abrasion-resistant steel material having excellent toughness and delayed fracture resistance.
【請求項5】 前記調製工程の鋼材は、質量%で、C
u:0.1〜1.0%、Ni:0.1〜1.0%、M
o:0.1〜1.0%およびV:0.01〜0.2%か
らなる群から選択される1種または2種以上をさらに含
有することを特徴とする請求項4に記載の製造方法。
5. The steel material in the preparation step is represented by mass%
u: 0.1 to 1.0%, Ni: 0.1 to 1.0%, M
5. The production according to claim 4, further comprising one or more selected from the group consisting of o: 0.1 to 1.0% and V: 0.01 to 0.2%. Method.
【請求項6】 前記調製工程の鋼材は、質量%で、N
b:0.005〜0.1%をさらに含有することを特徴
とする請求項4または5のいずれかに記載の製造方法。
6. The steel material in the preparation step is represented by mass%
The method according to claim 4, further comprising b: 0.005 to 0.1%.
JP2000275064A 2000-09-11 2000-09-11 Abrasion-resistant steel with excellent toughness and delayed fracture resistance and method for producing the same Expired - Fee Related JP3736320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000275064A JP3736320B2 (en) 2000-09-11 2000-09-11 Abrasion-resistant steel with excellent toughness and delayed fracture resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000275064A JP3736320B2 (en) 2000-09-11 2000-09-11 Abrasion-resistant steel with excellent toughness and delayed fracture resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002080930A true JP2002080930A (en) 2002-03-22
JP3736320B2 JP3736320B2 (en) 2006-01-18

Family

ID=18760741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000275064A Expired - Fee Related JP3736320B2 (en) 2000-09-11 2000-09-11 Abrasion-resistant steel with excellent toughness and delayed fracture resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP3736320B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283126A (en) * 2005-03-31 2006-10-19 Kobe Steel Ltd High-strength and high-toughness bainitic non-heat-treated steel sheet with small acoustic anisotropy
CN1293222C (en) * 2003-12-11 2007-01-03 杨军 Easy cut by flame abrasion-resistant steel in high rigidity, in toughness and preparation method
WO2011061812A1 (en) * 2009-11-17 2011-05-26 住友金属工業株式会社 High-toughness abrasion-resistant steel and manufacturing method therefor
WO2012002563A1 (en) 2010-06-30 2012-01-05 Jfeスチール株式会社 Wear-resistant steel sheet having excellent welded part toughness and lagging destruction resistance properties
WO2012002567A1 (en) 2010-06-30 2012-01-05 Jfeスチール株式会社 Abrasion-resistant steel plate or sheet with excellent weld toughness and delayed fracture resistance
WO2012133910A1 (en) 2011-03-29 2012-10-04 Jfeスチール株式会社 Abrasion-resistant steel sheet exhibiting excellent resistance to stress corrosion cracking, and method for producing same
WO2012133911A1 (en) 2011-03-29 2012-10-04 Jfeスチール株式会社 Abrasion-resistant steel sheet exhibiting excellent resistance to stress corrosion cracking, and method for producing same
WO2014020891A1 (en) * 2012-07-30 2014-02-06 Jfeスチール株式会社 Abrasion-resistant steel plate and manufacturing process therefor
WO2015115086A1 (en) 2014-01-28 2015-08-06 Jfeスチール株式会社 Wear-resistant steel plate and process for producing same
JP2016505094A (en) * 2013-03-28 2016-02-18 宝山鋼鉄股▲分▼有限公司 High hardness low alloy wear resistant steel sheet and method for producing the same
WO2017034216A1 (en) * 2015-08-21 2017-03-02 주식회사 포스코 High-hardness steel sheet, and manufacturing method therefor
US9982331B2 (en) 2012-09-19 2018-05-29 Jfe Steel Corporation Abrasion resistant steel plate having excellent low-temperature toughness and excellent corrosive wear resistance
EP3730656A4 (en) * 2017-12-22 2020-10-28 Posco Wear-resistant steel having excellent hardness and impact toughness, and method for producing same
CN115369319A (en) * 2022-08-05 2022-11-22 张家口三信同达机械制造有限公司 Weldable high-strength high-toughness wear-resistant material and heat treatment process thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6034632B2 (en) * 2012-03-26 2016-11-30 株式会社神戸製鋼所 Boron-added steel for high strength bolts and high strength bolts with excellent delayed fracture resistance

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1293222C (en) * 2003-12-11 2007-01-03 杨军 Easy cut by flame abrasion-resistant steel in high rigidity, in toughness and preparation method
JP2006283126A (en) * 2005-03-31 2006-10-19 Kobe Steel Ltd High-strength and high-toughness bainitic non-heat-treated steel sheet with small acoustic anisotropy
AU2009355404B2 (en) * 2009-11-17 2013-04-04 Nippon Steel Corporation High-toughness abrasion-resistant steel and manufacturing method therefor
WO2011061812A1 (en) * 2009-11-17 2011-05-26 住友金属工業株式会社 High-toughness abrasion-resistant steel and manufacturing method therefor
CN102666897A (en) * 2009-11-17 2012-09-12 住友金属工业株式会社 High-toughness abrasion-resistant steel and manufacturing method therefor
JP5423806B2 (en) * 2009-11-17 2014-02-19 新日鐵住金株式会社 High toughness wear resistant steel and method for producing the same
WO2012002563A1 (en) 2010-06-30 2012-01-05 Jfeスチール株式会社 Wear-resistant steel sheet having excellent welded part toughness and lagging destruction resistance properties
WO2012002567A1 (en) 2010-06-30 2012-01-05 Jfeスチール株式会社 Abrasion-resistant steel plate or sheet with excellent weld toughness and delayed fracture resistance
US9879334B2 (en) 2011-03-29 2018-01-30 Jfe Steel Corporation Abrasion resistant steel plate or steel sheet excellent in resistance to stress corrosion cracking and method for manufacturing the same
WO2012133911A1 (en) 2011-03-29 2012-10-04 Jfeスチール株式会社 Abrasion-resistant steel sheet exhibiting excellent resistance to stress corrosion cracking, and method for producing same
KR20130133035A (en) 2011-03-29 2013-12-05 제이에프이 스틸 가부시키가이샤 Abrasion-resistant steel sheet exhibiting excellent resistance to stress corrosion cracking, and method for producing same
US9938599B2 (en) 2011-03-29 2018-04-10 Jfe Steel Corporation Abrasion resistant steel plate or steel sheet excellent in resistance to stress corrosion cracking and method for manufacturing the same
WO2012133910A1 (en) 2011-03-29 2012-10-04 Jfeスチール株式会社 Abrasion-resistant steel sheet exhibiting excellent resistance to stress corrosion cracking, and method for producing same
US9738957B2 (en) 2012-07-30 2017-08-22 Jfe Steel Corporation Wear resistant steel plate and manufacturing process therefor
WO2014020891A1 (en) * 2012-07-30 2014-02-06 Jfeスチール株式会社 Abrasion-resistant steel plate and manufacturing process therefor
CN104508166A (en) * 2012-07-30 2015-04-08 杰富意钢铁株式会社 Abrasion-resistant steel plate and manufacturing process therefor
US9982331B2 (en) 2012-09-19 2018-05-29 Jfe Steel Corporation Abrasion resistant steel plate having excellent low-temperature toughness and excellent corrosive wear resistance
US10208369B2 (en) 2013-03-28 2019-02-19 Baoshan Iron & Steel Co., Ltd. High-hardness low-alloy wear-resistant steel sheet and method of manufacturing the same
JP2016505094A (en) * 2013-03-28 2016-02-18 宝山鋼鉄股▲分▼有限公司 High hardness low alloy wear resistant steel sheet and method for producing the same
KR20160113683A (en) 2014-01-28 2016-09-30 제이에프이 스틸 가부시키가이샤 Wear-resistant steel plate and process for producing same
WO2015115086A1 (en) 2014-01-28 2015-08-06 Jfeスチール株式会社 Wear-resistant steel plate and process for producing same
US10662493B2 (en) 2014-01-28 2020-05-26 Jfe Steel Corporation Abrasion-resistant steel plate and method for manufacturing the same
WO2017034216A1 (en) * 2015-08-21 2017-03-02 주식회사 포스코 High-hardness steel sheet, and manufacturing method therefor
EP3730656A4 (en) * 2017-12-22 2020-10-28 Posco Wear-resistant steel having excellent hardness and impact toughness, and method for producing same
US11371125B2 (en) 2017-12-22 2022-06-28 Posco Wear-resistant steel having excellent hardness and impact toughness, and method for producing same
CN115369319A (en) * 2022-08-05 2022-11-22 张家口三信同达机械制造有限公司 Weldable high-strength high-toughness wear-resistant material and heat treatment process thereof
CN115369319B (en) * 2022-08-05 2023-08-29 张家口三信同达机械制造有限公司 Weldable high-strength high-toughness wear-resistant material and heat treatment process thereof

Also Published As

Publication number Publication date
JP3736320B2 (en) 2006-01-18

Similar Documents

Publication Publication Date Title
JP6465266B1 (en) Hot rolled steel sheet and manufacturing method thereof
JP4538094B2 (en) High strength thick steel plate and manufacturing method thereof
EP2264205B1 (en) High-strength steel plate excellent in low-temperature toughness, steel pipe, and processes for production of both
US6183573B1 (en) High-toughness, high-tensile-strength steel and method of manufacturing the same
JP4542624B2 (en) High strength thick steel plate and manufacturing method thereof
EP0733715B1 (en) Hot-rolled steel sheet and method for forming hot-rolled steel sheet having low yield ratio, high strength and excellent toughness
JP5070744B2 (en) Manufacturing method of steel material with excellent fatigue crack propagation resistance
JP2001271134A (en) Low-alloy steel excellent in sulfide stress cracking resistance and toughness
JP2002115024A (en) Wear resistant steel having excellent toughness and delayed-fracture resistance and its production method
KR20130025947A (en) Wear-resistant steel sheet having excellent welded part toughness and lagging destruction resistance properties
KR20090098909A (en) High tensile steel products excellent in the resistance to delayed fracture and process for production of the same
JP2002080930A (en) Wear resistant steel having excellent toughness and delayed fracture resistance and its production method
KR20070091368A (en) High tensile and fire-resistant steel excellent in weldability and gas cutting property and method for production thereof
JP2002256382A (en) Wear resistant steel sheet and production method therefor
JP2002020837A (en) Wear resistant steel excellent in toughness and its production method
JP4379085B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP4547944B2 (en) Manufacturing method of high strength and high toughness thick steel plate
WO2001042523A1 (en) Wear-resistant steel product and method for production thereof
JP6691967B2 (en) High hardness and wear resistant steel excellent in toughness and cutting crack resistance, and method for producing the same
JPH10298707A (en) High toughness and high tensile strength steel and its production
JP2007197776A (en) High-strength steel material superior in delayed fracture resistance and fatigue-crack propagation resistance, and manufacturing method therefor
JP2002047532A (en) High tensile strength steel sheet excellent in weldability and its production method
JP4645462B2 (en) A high-strength steel material excellent in fatigue crack propagation characteristics with low strength dependence and a method for producing the same.
JPS5952687B2 (en) Manufacturing method of tempered high-strength steel plate with excellent low-temperature toughness
JP4655372B2 (en) Method for producing high-tensile steel with high yield point

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051017

R150 Certificate of patent or registration of utility model

Ref document number: 3736320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees