JP2002079094A - HIGH TEMPERATURE NOx ABSORBING AND REDUCTION TYPE CATALYST - Google Patents

HIGH TEMPERATURE NOx ABSORBING AND REDUCTION TYPE CATALYST

Info

Publication number
JP2002079094A
JP2002079094A JP2000273764A JP2000273764A JP2002079094A JP 2002079094 A JP2002079094 A JP 2002079094A JP 2000273764 A JP2000273764 A JP 2000273764A JP 2000273764 A JP2000273764 A JP 2000273764A JP 2002079094 A JP2002079094 A JP 2002079094A
Authority
JP
Japan
Prior art keywords
storage
carrier
amount
temperature
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000273764A
Other languages
Japanese (ja)
Inventor
直樹 ▲高▼橋
Naoki Takahashi
Shinichi Matsunaga
真一 松永
Chiwa Andou
千和 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2000273764A priority Critical patent/JP2002079094A/en
Publication of JP2002079094A publication Critical patent/JP2002079094A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high temperature NOx absorbing and reduction catalyst having a high NOx absorbing capacity even after a high temperature durability test at 750 deg.C for 5 hr and capable of sufficiently absorbing NOx even in a high temperature range of 600 deg.C or higher. SOLUTION: A noble metal and an NOx occluding material are supported on a carrier which comprises a composite oxide having a magnesia/alumin spinnel structure and has a specific surface area of 50 m2/g or more. This carrier has no lattice defect and magnesia is not detected even by X-ray diffraction and the lattice constant of the carrier is near to a theoretical value. Since the basicity of the carrier is high and magnesium is uniformly contained in a crystal lattice, the reactivity with the NOx occluding material basic in the same way is low and the solid phase reaction of the NOx occluding material and the carrier is suppressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はNOx 吸蔵還元型触媒
に関し、詳しくは高温耐久後にも高いNOx 吸蔵能を有
し、高温域においても高いNOx 浄化率を示す高温NOx
蔵還元型触媒に関する。
The present invention relates to relates to the NO x storage-reduction type catalyst, in particular has a high the NO x storage capacity even after high-temperature durability, high temperature NO x storage-and-reduction type showing high the NO x purification rate at the high temperature range Regarding the catalyst.

【0002】[0002]

【従来の技術】近年、地球環境保護の観点から、自動車
などの内燃機関から排出される排ガス中の二酸化炭素
(CO2 )が問題にされている。そこで温室効果ガスであ
るCO2 を低減するために、酸素過剰雰囲気下において希
薄燃焼させる、いわゆるリーンバーンが実用化されてい
る。このリーンバーンにおいては、燃料の使用量が低減
でき、排ガスとして排出されるCO2 量を低減することが
できる。
2. Description of the Related Art In recent years, carbon dioxide (CO 2 ) in exhaust gas discharged from an internal combustion engine such as an automobile has been a problem from the viewpoint of protection of the global environment. Therefore, in order to reduce CO 2 , which is a greenhouse gas, so-called lean burn in which lean combustion is performed in an oxygen-excess atmosphere has been put to practical use. In this lean burn, the amount of fuel used can be reduced, and the amount of CO 2 emitted as exhaust gas can be reduced.

【0003】そして特開平5-317625号公報などには、ア
ルカリ土類金属などのNOx 吸蔵材と貴金属をアルミナな
どの多孔質担体に担持したNOx 吸蔵還元型の排ガス浄化
用触媒が開示されている。この触媒によれば、空燃比を
リーン側からパルス状にストイキまたはリッチ側となる
ように制御する(リッチスパイク)ことにより、リーン
側でNOx がNOx 吸蔵材に吸蔵され、それがストイキまた
はリッチ側でHCやCOなどの還元性成分と反応して浄化さ
れるため、リーンバーンにおいてもNOx を効率良く浄化
することができる。
[0005] such as in JP-A 5-317625 Patent Publication, the NO x storage material and NO x storage-and-reduction type exhaust gas purifying catalyst in which the noble metal was supported on a porous carrier such as alumina, such as alkaline earth metals is disclosed ing. According to this catalyst, by controlling such that the stoichiometric or rich side air-fuel ratio from the lean side in a pulsed manner (rich spike), NO x is occluded in the NO x storage material in the lean side, it is stoichiometric or to be cleaned reacts with the reducing components such as HC and CO in the rich side, it is possible to efficiently purify NO x even in the lean burn.

【0004】また近年の研究によれば、燃料中の硫黄成
分の燃焼により生成した SO2が触媒上で酸化され、それ
がNOx 吸蔵材と反応することによってNOx 吸蔵能が低下
する現象が明らかとなっており、これはNOx 吸蔵材の硫
黄被毒と称されている。そしてこの硫黄被毒を抑制する
ために、特開平11-76838号、特開平10-263416号、特開
平10-192707号などの各公報には各種の解決策が提案さ
れている。
According to recent studies, SO 2 produced by combustion of sulfur components in fuel is oxidized on a catalyst, and the SO 2 reacts with the NO x storage material to reduce the NO x storage capacity. has become apparent, this is referred to as sulfur poisoning of the NO x storage material. In order to suppress the sulfur poisoning, various solutions have been proposed in JP-A-11-76838, JP-A-10-263416 and JP-A-10-192707.

【0005】[0005]

【発明が解決しようとする課題】ところで直噴ガソリン
エンジンの高出力化あるいは高速走行の増加などを背景
に、近年の自動車から排出される排ガスの温度は高温と
なっており、 600〜 700℃の高温雰囲気となる状況とな
っている。ところが従来のNOx 吸蔵還元型触媒では、 6
00〜 700℃の高温雰囲気下におけるNOx 吸蔵還元能が低
いという問題がある。この原因は、NOx 吸蔵材と担体と
の固相反応によってNOx 吸蔵材が安定な複合酸化物に変
化してしまうことが一因と考えられている。
The temperature of exhaust gas discharged from automobiles in recent years has been high due to the increase in the output of direct-injection gasoline engines or the increase in high-speed running. It is in a situation of high temperature atmosphere. However, with the conventional NO x storage reduction catalyst, 6
There is a problem that the NO x storage and reduction ability in a high temperature atmosphere of 00 to 700 ° C. is low. This cause is believed to contribute to the NO x storage material by solid-phase reaction with the NO x storage material and the carrier is changed to the stable complex oxide.

【0006】例えばカリウムはアルカリ度が強く高いNO
x 吸蔵能を有しているが、そのNOx吸蔵量は 500℃以上
では入りガス温度が上昇するにつれて急激に低下し、 6
00℃以上になるとNOx を吸蔵することはほとんど困難と
なる。そこでカリウムの担持量を増加することが考えら
れるが、そうしても初期活性は向上するものの例えば75
0℃で5時間程度の高温耐久試験後にはNOx 吸蔵能が大
きく低下することが明らかとなっている。
For example, potassium is highly alkaline and has high NO
Although it has x storage capacity, its NO x storage capacity drops sharply as the incoming gas temperature rises above 500 ° C.
Above 00 ° C., it becomes almost difficult to store NO x . Therefore, it is conceivable to increase the amount of potassium supported.
After a high-temperature durability test at about 0 ° C. for about 5 hours, it has been clarified that the NO x storage ability is greatly reduced.

【0007】本発明はこのような事情に鑑みてなされた
ものであり、 750℃で5時間の高温耐久試験後にも高い
NOx 吸蔵能を有し、 600℃以上の高温域でもNOx を充分
に吸蔵できるNOx 吸蔵還元型触媒を提供することを目的
とする。
[0007] The present invention has been made in view of such circumstances, and is high even after a high-temperature durability test at 750 ° C for 5 hours.
It has the NO x storage ability, and to provide a NO x storage-and-reduction type catalyst which can sufficiently occluding NO x in the high temperature range of not lower than 600 ° C..

【0008】[0008]

【課題を解決するための手段】上記課題を解決する請求
項1に記載の高温NOx 吸蔵還元型触媒の特徴は、マグネ
シア・アルミナスピネル構造を有する複合酸化物よりな
る担体であって、担体の比表面積は50m2/g以上であ
り、担体に担持された貴金属と、担体に担持されたアル
カリ金属,アルカリ土類金属及び希土類元素から選ばれ
る少なくとも一種のNOx 吸蔵材と、よりなることにあ
る。
The high-temperature NO x storage-reduction catalyst according to claim 1 is characterized in that it is a carrier comprising a composite oxide having a magnesia-alumina spinel structure. It has a specific surface area of 50 m 2 / g or more, and comprises a noble metal supported on a carrier and at least one NO x occluding material selected from an alkali metal, an alkaline earth metal and a rare earth element supported on the carrier. is there.

【0009】上記触媒は、複合酸化物の{ 800}面の格
子定数が理論値 8.083±0.02Åであり、X線回折法によ
って検出されるマグネシアの最強線のピークがマグネシ
ア・アルミナスピネルの最強線の1/20以下であり、か
つマグネシウム(Mg)とアルミニウム(Al)の組成比が
Mg/2Al=1±0.05(モル比)であることが望ましい。
In the above catalyst, the lattice constant of the {800} plane of the composite oxide is a theoretical value of 8.083 ± 0.02 °, and the peak of the strongest magnesia line detected by X-ray diffraction is the strongest line of magnesia-alumina spinel. And the composition ratio of magnesium (Mg) and aluminum (Al)
It is desirable that Mg / 2Al = 1 ± 0.05 (molar ratio).

【0010】[0010]

【発明の実施の形態】本発明の高温NOx 吸蔵還元型触媒
では、マグネシア・アルミナスピネル( MgAl2O4)構造
を有する複合酸化物よりなる担体を用いている。この複
合酸化物はそれ自体耐熱性が高く、高比表面積のものが
比較的得やすいため、触媒担体としての必要条件を備え
ている。
BEST MODE FOR CARRYING OUT THE INVENTION The high-temperature NO x storage-reduction catalyst of the present invention uses a support made of a composite oxide having a magnesia-alumina spinel (MgAl 2 O 4 ) structure. Since this composite oxide itself has high heat resistance and is relatively easy to obtain one having a high specific surface area, it has a necessary condition as a catalyst carrier.

【0011】そして本発明の高温NOx 吸蔵還元型触媒
は、担体の比表面積を50m2/g以上としたところに最大
の特徴を有している。このように比表面積の高いマグネ
シア・アルミナスピネル構造を有し、格子欠陥がなく、
X線回折によってもマグネシアが検出されず、格子定数
が理論値に近い複合酸化物を担体に用いている。そして
アルカリ土類金属であるマグネシウムは塩基性が強く、
このような複合酸化物ではそのマグネシウムが結晶格子
に均一に含まれているため、同様に塩基性であるNOx
蔵材との反応性が低くなっていると考えられる。したが
ってNOx 吸蔵材と担体との反応によるNOx 吸蔵材の消費
が抑制されるため、 600℃以上の高温域でも充分にNOx
を吸蔵することができる。また高温耐久後にも担体とNO
x 吸蔵材との反応が生じにくいので、本発明のNOx 吸蔵
還元型触媒は耐熱性に優れ、 750℃で5時間という高温
耐久試験後にも高いNOx 吸蔵能を示す。
[0011] The high temperature NO x storage-and-reduction type catalyst of the present invention has the greatest feature a specific surface area of the support at which a 50 m 2 / g or more. As such, it has a magnesia-alumina spinel structure with a high specific surface area, no lattice defects,
No magnesia is detected by X-ray diffraction, and a complex oxide having a lattice constant close to the theoretical value is used as the carrier. And magnesium, which is an alkaline earth metal, has a strong basicity,
In such a composite oxide, since its magnesium is uniformly contained in the crystal lattice, it is considered that the reactivity with the similarly basic NO x storage material is low. Therefore NO x for consumption storage component and the NO x storage material by reaction with the carrier is suppressed, sufficient even in a high temperature range of not lower than 600 ° C. NO x
Can be occluded. The carrier and NO after high temperature durability
Since the reaction with the x- occluding material hardly occurs, the NO x storage-reduction catalyst of the present invention has excellent heat resistance and shows high NO x storage ability even after a high-temperature durability test at 750 ° C. for 5 hours.

【0012】このような担体は、例えば特開2000-12852
7号公報に記載の製造方法を用いて製造することができ
る。すなわち、水酸化マグネシウムと水酸化アルミニウ
ムを原子比でAl:Mg=2:1となるように混合し、機械
的に混合・粉砕して複合水酸化物を含む水酸化物の混合
組成物とし、それを加熱処理することでマグネシア・ア
ルミナスピネル構造を有する複合酸化物とする。混合・
粉砕時に、混合物に機械的に十分なエネルギーを与える
ことにより、両水酸化物の少なくとも一部を複合水酸化
物に転化させるとともに、80重量%以上の粒子の粒子径
が 100nm以下となるまで十分に微細化する。そして得ら
れた混合組成物を1100℃以下の温度で加熱処理すること
により、比表面積が50m2/g以上のマグネシア・アルミ
ナスピネル構造を有する複合酸化物からなる担体が得ら
れる。またこの担体は、ゾルゲル法あるいは共沈法によ
っても製造することができる。
Such a carrier is described, for example, in JP-A-2000-12852.
It can be produced by using the production method described in JP-A-7. That is, magnesium hydroxide and aluminum hydroxide are mixed at an atomic ratio of Al: Mg = 2: 1, and are mechanically mixed and pulverized to form a mixed composition of a hydroxide containing a composite hydroxide, By heating it, a composite oxide having a magnesia-alumina spinel structure is obtained. mixture·
At the time of grinding, sufficient energy is mechanically applied to the mixture to convert at least a part of both hydroxides to a composite hydroxide and to sufficiently reduce the particle size of 80% by weight or more to 100 nm or less. To fineness. Then, by heating the obtained mixed composition at a temperature of 1100 ° C. or less, a support made of a composite oxide having a magnesia-alumina spinel structure having a specific surface area of 50 m 2 / g or more can be obtained. This carrier can also be produced by a sol-gel method or a coprecipitation method.

【0013】この担体は、比表面積が50m2/g以上であ
ることが必要であり、80m2/g以上であることが好まし
く、 100m2/g以上であることがさらに望ましい。比表
面積が大きいほどNOx 吸蔵材及び貴金属の分散性が向上
し、高温域でも高いNOx 吸蔵能を示すと共に、耐久後に
も高いNOx 吸蔵能が発現される。
The carrier must have a specific surface area of at least 50 m 2 / g, preferably at least 80 m 2 / g, more preferably at least 100 m 2 / g. It improves the dispersibility of the higher specific surface area greater the NO x storage materials and precious metals, exhibit both high the NO x storage ability in a high temperature region, high the NO x storage ability even after the durability is expressed.

【0014】この担体に担持される貴金属は、Pt,Rh,
Pd,Ru,Irなどから選択することができる。 550℃以上
の高温域では、貴金属種による活性の程度には差がみら
れないが、 500℃以下の温度ではPtが特にNO酸化活性が
高いので、Ptを用いるのが好ましい。また貴金属の担持
量は、触媒1リットル当たり2g以上とするのが望まし
い。担持量が2g/L未満ではNOの酸化が不十分とな
り、NOx 吸蔵能が低下する。
The noble metals supported on this carrier are Pt, Rh,
It can be selected from Pd, Ru, Ir and the like. In the high temperature range of 550 ° C. or higher, there is no difference in the degree of activity by the noble metal species. However, at temperatures of 500 ° C. or lower, Pt is particularly high in NO oxidation activity, so it is preferable to use Pt. The amount of the noble metal carried is desirably 2 g or more per liter of the catalyst. Oxidation of NO becomes insufficient is less than the amount carried is 2 g / L, NO x storage ability is lowered.

【0015】この担体に担持されるNOx 吸蔵材は、アル
カリ金属,アルカリ土類金属及び希土類元素から選択さ
れる。アルカリ金属としては、Li、Na、K、Csが例示さ
れる。アルカリ土類金属とは周期表2A族元素をいい、B
a、Be、Mg、Ca、Srなどが例示される。また希土類元素
としては、Sc、Y、La、Ce、Pr、Nd、Dy、Ybなどが例示
される。中でもアルカリ度が高く高温でも飛散しないK
が特に好ましい。
The NO x occluding material carried on the carrier is selected from alkali metals, alkaline earth metals and rare earth elements. Examples of the alkali metal include Li, Na, K, and Cs. Alkaline earth metals refer to Group 2A elements of the periodic table, and B
a, Be, Mg, Ca, Sr and the like are exemplified. Examples of the rare earth element include Sc, Y, La, Ce, Pr, Nd, Dy, and Yb. Among them, K which has high alkalinity and does not fly even at high temperatures
Is particularly preferred.

【0016】またNOx 吸蔵材の担持量は、触媒1リット
ル当たり 0.1〜2モルとするのがよい。担持量がこの範
囲より少ないとNOx 吸蔵能が不十分となり、この範囲よ
り多く担持すると貴金属を覆ったり、貴金属の粒成長を
促進させたりして活性が低下する場合がある。なおKの
場合には、触媒1リットル当たり 0.3モル以上、より好
ましくは 0.6モル以上担持することが望ましい。 0.3モ
ル/L未満ではNOx 吸蔵量が急激に低下してしまう。K
の担持量の上限は特に制限されないが、1モル/L程度
でNOx 吸蔵能がほぼ飽和するので、1モル/Lを限度と
するのが好ましい。
Further loading amount of the NO x storage material is preferably set to 0.1 to 2 moles per liter of catalyst. If the supported amount is less than this range, the NO x occlusion ability becomes insufficient. If the supported amount is more than this range, the activity may be reduced by covering the noble metal or accelerating the grain growth of the noble metal. In the case of K, it is desirable to support 0.3 mol or more, more preferably 0.6 mol or more, per liter of the catalyst. If it is less than 0.3 mol / L, the NO x storage amount will drop sharply. K
The upper limit of the supported amount of is not particularly limited, but is preferably about 1 mol / L because the NO x storage ability is almost saturated at about 1 mol / L.

【0017】本発明の高温NOx 吸蔵還元型触媒を用いる
には、空燃比(A/F)が15以上で燃焼されたリーン雰
囲気の排ガスと接触させて排ガス中に含まれるNOを NO2
とし、それをNOx 吸蔵材に吸蔵させる。そして空燃比を
間欠的にストイキ〜燃料過剰に変動させるリッチスパイ
クによって、NOx 吸蔵材に吸蔵されたNOx を還元浄化す
る。
[0017] using a high-temperature NO x storage-and-reduction type catalyst of the present invention, the NO that is contacted with the air-fuel ratio (A / F) is lean atmosphere is combusted in 15 or more exhaust gas contained in an exhaust gas NO 2
And store it in the NO x storage material. And by intermittently rich spike for stoichiometric-fuel excessively varies the air-fuel ratio, to reduce and purify NO x occluded in the NO x storage material.

【0018】本発明の高温NOx 吸蔵還元型触媒は、 750
℃で5時間の耐久試験後におけるリッチスパイク後のNO
x 吸蔵量が、入りガス温度 600℃で1200mg/L以上とす
ることができる。 750度で5時間の耐久試験後にも、こ
のように高温域におけるNOx吸蔵量が多い触媒は、従来
存在しない。これは、NOx 吸蔵材と担体との固相反応が
抑制されていることによるものである。
The high-temperature NO x storage-reduction type catalyst of the present invention is 750
NO after rich spike after endurance test at 5 ° C for 5 hours
x The occlusion amount can be 1200 mg / L or more at an inlet gas temperature of 600 ° C. Even after the durability test of 5 hours at 750 °, NO x storage amount is large catalyst in such high temperature zone, absent the prior art. This is due to the solid phase reaction between the NO x storage material and the carrier is suppressed.

【0019】[0019]

【実施例】以下、実施例及び比較例により本発明を具体
的に説明する。
The present invention will be specifically described below with reference to examples and comparative examples.

【0020】(実施例1)平均粒径17μmの水酸化アル
ミニウム粉末と、平均粒径19μmの水酸化マグネシウム
粉末とを、原子比Al:Mgが2:1となるように混合し、
2リットルの水とともにプロペラ撹拌器で5分間撹拌し
て分散させた。次にZrO2製粉砕メディアからなる媒体撹
拌ミル(ダイノーミル)を用い、撹拌翼回転数 4200rpm
で20時間粉砕を行い(この場合、粉砕媒体にかかる加速
度が重力加速度の 760倍)、水酸化アルミニウムの大部
分と水酸化マグネシウムの大部分とを複合水酸化物の結
晶形態に転化させた。その後、 150℃で10時間乾燥して
水分を除去し、粉末を得た。(撹拌翼直径2R= 7.7c
m、回転数= 4200rpm、円周速度V=π× 7.7×4200/6
0=1693.3cm/s、円運動加速度α=V2 /R=744760.
35 cm/s/s、よってα/g= 759.49) X線回折によると、この粉末の結晶相は、MgAl2(OH)8
Mg2Al(OH)10・xH2O,Mg4Al2(OH)14・3H2Oの3種類の複
合水酸化物と、少量の Mg(OH)2及び未同定相の混合物か
らなることがわかった。なお、ZrO2製粉砕メディアから
混入したZrO2のピークは検出されなかった。また、動的
光散乱法による粒度分析の結果、この粉末は90重量%以
上の粒子の粒子径が 100nm以下であることがわかった。
Example 1 An aluminum hydroxide powder having an average particle diameter of 17 μm and a magnesium hydroxide powder having an average particle diameter of 19 μm were mixed so that the atomic ratio Al: Mg was 2: 1.
The mixture was dispersed with 2 liters of water by stirring with a propeller stirrer for 5 minutes. Next, using a medium stirring mill (Dyno mill) made of ZrO 2 pulverized media, the stirring blade rotation speed was 4200 rpm.
For 20 hours (in this case, the acceleration applied to the grinding medium is 760 times the gravitational acceleration), and most of the aluminum hydroxide and most of the magnesium hydroxide were converted into the crystalline form of the composite hydroxide. Thereafter, the powder was dried at 150 ° C. for 10 hours to remove water, thereby obtaining a powder. (Agitator blade diameter 2R = 7.7c
m, rotation speed = 4200rpm, circumferential speed V = π x 7.7 x 4200/6
0 = 1693.3 cm / s, circular motion acceleration α = V 2 / R = 744760.
35 cm / s / s, so α / g = 759.49) According to X-ray diffraction, the crystalline phase of this powder is MgAl 2 (OH) 8 ,
Mg 2 Al (OH) 10 · xH 2 O, Mg 4 Al 2 (OH) 14 · 3H 2 and 3 kinds of complex hydroxide of O, consist of a mixture of a small amount of Mg (OH) 2 and unidentified phases I understood. The peak of ZrO 2 was mixed from ZrO 2 made grinding media was detected. As a result of a particle size analysis by a dynamic light scattering method, it was found that this powder had a particle size of 90% by weight or more and a particle size of 100 nm or less.

【0021】この複合水酸化物を種成分とする粉末50g
をアルミナ坩堝に入れ、1000℃で5時間加熱処理を行っ
てスピネル粉末を得た。得られたスピネル粉末は、比表
面積が96m2/gで、原子比Mg:Alが1:2の MgAl2O4
ピネルであった。またこのスピネル粉末は、{ 800}面
の格子定数が理論値 8.083±0.02Åであり、X線回折法
によって検出されるマグネシアの最強線のピークがマグ
ネシア・アルミナスピネルの最強線の1/20以下であ
り、かつマグネシウム(Mg)とアルミニウム(Al)の組
成比がMg/2Al=1±0.05(モル比)であった。
50 g of a powder containing the composite hydroxide as a seed component
Was placed in an alumina crucible and heat-treated at 1000 ° C. for 5 hours to obtain spinel powder. The obtained spinel powder was a MgAl 2 O 4 spinel having a specific surface area of 96 m 2 / g and an atomic ratio Mg: Al of 1: 2. The spinel powder has a lattice constant of {800} plane of 8.083 ± 0.02% of theoretical value, and the peak of the strongest line of magnesia detected by X-ray diffraction method is 1/20 or less of the strongest line of magnesia-alumina spinel. And the composition ratio between magnesium (Mg) and aluminum (Al) was Mg / 2Al = 1 ± 0.05 (molar ratio).

【0022】このスピネル粉末を定法でスラリー化し、
コーディエライト製のハニカム基材にコート層を40g/
L形成した。次に所定濃度のジニトロジアミノ白金硝酸
水溶液の所定量をコート層に含浸させ、蒸発乾固してPt
を担持した。Ptの担持量は、ハニカム基材1リットル当
たり2gである。さらに所定濃度の酢酸カリウム水溶液
の所定量をコート層に含浸させ、蒸発乾固してKを担持
した。Kの担持量は、ハニカム基材1リットル当たり
0.3モルである。またKの担持量を 0.6モル/L及び1
モル/Lとしたこと以外は同様にして、3種類の触媒を
調製した。
This spinel powder is slurried by a standard method,
Cordierite honeycomb substrate coated with 40g /
L was formed. Next, a predetermined amount of an aqueous solution of dinitrodiaminoplatinic nitric acid having a predetermined concentration is impregnated into the coat layer, and evaporated to dryness to form Pt.
Was carried. The supported amount of Pt is 2 g per liter of the honeycomb substrate. Further, a predetermined amount of a potassium acetate aqueous solution having a predetermined concentration was impregnated into the coat layer, and evaporated to dryness to carry K. The loading amount of K is per liter of honeycomb substrate.
0.3 mol. In addition, the amount of K carried was 0.6 mol / L and 1
Three kinds of catalysts were prepared in the same manner except that mol / L was used.

【0023】(比較例1)スピネル粉末に代えてSAE Pa
per200-01-1196に記載の担体粉末を用いたこと以外は実
施例1と同様にしてPtとKを担持した。Ptの担持量はハ
ニカム基材1リットル当たり10gと高担持であり、Kの
担持量は 0.3モル/L、 0.6モル/L、 1.5モル/L及
び2モル/Lの4種類を調製した。
Comparative Example 1 SAE Pa was used instead of spinel powder.
Pt and K were loaded in the same manner as in Example 1 except that the carrier powder described in per200-01-1196 was used. The supported amount of Pt was as high as 10 g per liter of the honeycomb substrate, and the supported amounts of K were prepared in four types: 0.3 mol / L, 0.6 mol / L, 1.5 mol / L and 2 mol / L.

【0024】<試験・評価>実施例及び比較例の触媒を
それぞれ評価装置に配置し、表1に示すリーンガス及び
リッチスパイクモデルガスを用いて、入りガス温度が 6
00℃と 700℃の場合におけるリッチスパイク後のNOx
蔵量をそれぞれ測定した。結果を図1及び図2に示す。
リッチスパイク後のNOx 吸蔵量とは、飽和状態の触媒に
3秒間のリッチスパイクを導入した後に飽和状態に至る
までの吸蔵量をいう。
<Test / Evaluation> The catalysts of the examples and the comparative examples were respectively placed in an evaluation apparatus, and the lean gas and the rich spike model gas shown in Table 1 were used.
The NO x storage amounts after the rich spike at 00 ° C. and 700 ° C. were measured, respectively. The results are shown in FIGS.
The NO x occlusion amount after the rich spike refers to the occlusion amount until the saturated state is reached after the rich spike is introduced into the saturated catalyst for 3 seconds.

【0025】また各触媒について表2のリーンとリッチ
モデルガスを用いて 750℃で5時間保持する耐久試験を
行い、その後上記と同様にしてリッチスパイク後のNOx
吸蔵量を測定した。結果を図3及び図4に示す。
For each catalyst, a durability test was conducted at 750 ° C. for 5 hours using the lean and rich model gases shown in Table 2, and then NO x after rich spike was carried out in the same manner as described above.
The amount of occlusion was measured. The results are shown in FIGS.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】さらにK担持量が 0.6モル/Lの実施例1
の触媒と、K担持量が 1.5モル/Lの比較例1の触媒に
ついて、表3に示す(A)モデルガス中 400℃でNOx
飽和するまで吸蔵させ、それを表3の(B)モデルガス
中で10℃/分の昇温速度で 700℃まで昇温するNOx 昇温
脱離試験を行った。そしてその間に出ガス中のNOx 濃度
を連続的に測定し、結果を図5に示す。この試験は、初
期と耐久試験後の触媒についてそれぞれ行った。
Example 1 in which the amount of supported K is 0.6 mol / L
And the catalyst of Comparative Example 1 in which the amount of supported K is 1.5 mol / L, NO x was absorbed at 400 ° C. in a model gas shown in Table 3 until the NO x was saturated. A NO x thermal desorption test was conducted in which the temperature was raised to 700 ° C. in a model gas at a rate of 10 ° C./min. The continuously measure the concentration of NO x in the gas leaving between them, and the results are shown in Figure 5. This test was performed on the catalyst at the initial stage and after the durability test.

【0029】[0029]

【表3】 [Table 3]

【0030】図1及び図2からわかるように、同じK担
持量で比較すると、実施例1の触媒は比較例1に比べて
600〜 700℃の高温域におけるリッチスパイク後のNOx
吸蔵量が格段に多くなっている。ただ比較例1の触媒で
も、Kの担持量を多くすることによって、初期のリッチ
スパイク後のNOx 吸蔵量を実施例1と同等とすることが
できる。そして図5からわかるように、NOx 保持力も実
施例1と同等の性能を示している。
As can be seen from FIGS. 1 and 2, the catalyst of Example 1 was compared with Comparative Example 1 when the amount of K supported was the same.
NO x after the rich spike in a high temperature range of 600 to 700 ° C.
The amount of occlusion is much higher. However, even with the catalyst of Comparative Example 1, the amount of NO x stored after the initial rich spike can be made equal to that of Example 1 by increasing the amount of K carried. As can be seen from FIG. 5, the NO x holding power also shows the same performance as that of the first embodiment.

【0031】ただKの担持量を多くすると、Ptの粒成長
が促進されたり、PtをKが覆ったりするため、触媒活性
が低下する場合があるので好ましくない。
However, it is not preferable to increase the amount of supported K, since the growth of Pt grains is promoted or the Pt is covered with K, which may lower the catalytic activity.

【0032】一方、耐久試験後の特性を比較すると、図
3及び図4からわかるように、比較例1の触媒ではKの
担持量を多くしても、リッチスパイク後のNOx 吸蔵量は
実施例1の触媒に到底及ばない。また図5から、NOx
持力も著しく低下している。
On the other hand, when the characteristics after the durability test are compared, as can be seen from FIGS. 3 and 4, even if the amount of supported K is increased in the catalyst of Comparative Example 1, the NO x storage amount after the rich spike was not reduced. It is far from the catalyst of Example 1. Further, from FIG. 5, the NO x holding power is also significantly reduced.

【0033】すなわち実施例1の触媒では、 750℃で5
時間の耐久試験後においてもスピネル構造の担体とKと
の反応が抑制されているため、NOx 保持力の低下が抑制
され、その結果入りガス温度 600℃で1200mg/L以上の
リッチスパイク後のNOx 吸蔵量が発現されていると考え
られる。一方比較例1の触媒では、耐久試験時に担体と
Kとの固相反応によってKの大部分がNOx 吸蔵能を消失
したと考えられる。
That is, with the catalyst of Example 1, 5
Since the reaction between the carrier and K of the spinel structure is suppressed even after the durability test time, reduction of the NO x holding force is suppressed, so that entering at gas temperature 600 ° C. after 1200 mg / L or more of the rich spike It is considered that the NO x storage amount was expressed. While in the catalyst of Comparative Example 1 is considered to K majority of the solid phase reaction between the carrier and K during the durability test has lost the NO x storage capacity.

【0034】(実施例2)実施例1の触媒のうち、K担
持量が 0.6g/Lのものを実施例2の触媒とした。
Example 2 Among the catalysts of Example 1, those having a K loading of 0.6 g / L were used as the catalyst of Example 2.

【0035】(実施例3)Ptに代えてPdを2g/L担持
したこと以外は実施例2と同様の構成である。
(Example 3) The same configuration as in Example 2 except that 2 g / L of Pd was used instead of Pt.

【0036】(実施例4)Ptに代えてRhを2g/L担持
したこと以外は実施例2と同様の構成である。
(Example 4) The structure is the same as that of Example 2 except that 2 g / L of Rh is used instead of Pt.

【0037】<試験・評価>実施例2〜4の触媒を評価
装置にそれぞれ配置し、表1に示すリーンモデルガスを
流しながら10℃/分の昇温速度で 700℃まで昇温し、そ
の間のNO酸化率をそれぞれ連続的に測定した。結果を図
6に示す。なおNO酸化率は、出ガス中のNOとNOx (NO+N
O2)の量を測定し、これらの差分からNO2 量を算出した
後、 100× NO2量/(NO量+ NO2量)で計算される値で
ある。
<Test / Evaluation> The catalysts of Examples 2 to 4 were respectively placed in an evaluation device, and the temperature was raised to 700 ° C. at a rate of 10 ° C./min while flowing the lean model gas shown in Table 1. Was continuously measured. FIG. 6 shows the results. The NO oxidation rate is determined by comparing NO and NO x (NO + N
After measuring the amount of O 2 ) and calculating the amount of NO 2 from these differences, the value is calculated as 100 × NO 2 amount / (NO amount + NO 2 amount).

【0038】図6からわかるように、 550℃以上の高温
域では貴金属種による差がみられない。しかし 500℃以
下では、NO酸化率はPt>Rh>Pdであり、Ptが特にNO酸化
活性が高いことが明らかである。
As can be seen from FIG. 6, there is no difference between noble metal species in the high temperature range of 550 ° C. or higher. However, below 500 ° C., the NO oxidation rate is Pt>Rh> Pd, and it is clear that Pt has particularly high NO oxidation activity.

【0039】(実施例5)実施例1の触媒のうち、K担
持量が 0.3モル/Lのものを実施例5の触媒とした。
(Example 5) Among the catalysts of Example 1, those having a K loading of 0.3 mol / L were used as the catalyst of Example 5.

【0040】(比較例2)γ-Al2O3コート層をもつハニ
カム基材に、Ptを2g/LとKを 0.3モル/L担持した
触媒を比較例2の触媒とした。
Comparative Example 2 A catalyst in which 2 g / L of Pt and 0.3 mol / L of K were supported on a honeycomb substrate having a γ-Al 2 O 3 coat layer was used as a catalyst of Comparative Example 2.

【0041】(比較例3)比表面積が数m2/gのスピネ
ル粉末からなるコート層をもつハニカム基材に、Ptを2
g/LとKを 0.3モル/L担持した触媒を比較例3の触
媒とした。用いたスピネル粉末は、X線回折の結果マグ
ネシアのピークが検出された。
(Comparative Example 3) Pt was added to a honeycomb substrate having a coat layer made of spinel powder having a specific surface area of several m 2 / g.
A catalyst supporting 0.3 mol / L of g / L and K was used as a catalyst of Comparative Example 3. The spinel powder used had a magnesia peak detected as a result of X-ray diffraction.

【0042】<試験・評価>実施例5と比較例2,3の
触媒を用い、実施例1及び比較例1と同様にして耐久試
験を行った。その後、表1に示すリーンガス及びリッチ
スパイクモデルガスを用いて、入りガス温度 600℃及び
700℃のリッチスパイク後のNOx 吸蔵量をそれぞれ測定
した。結果を図7に示す。
<Test / Evaluation> Using the catalysts of Example 5 and Comparative Examples 2 and 3, a durability test was performed in the same manner as in Example 1 and Comparative Example 1. Then, using the lean gas and rich spike model gas shown in Table 1, the inlet gas temperature was 600 ° C and
The NO x storage amount after the rich spike at 700 ° C. was measured. FIG. 7 shows the results.

【0043】図7より、比較例2〜3の触媒は高温域に
おけるNOx 吸蔵量が著しく低いのに対し、実施例5の触
媒は高温耐久試験後であるにも関わらず低温から高温ま
で安定したNOx 吸蔵能を示していることが明らかであ
る。このことは担体に起因していることが明らかであ
り、実施例5の触媒が高いNOx 吸蔵能を示すのは、比表
面積が大きく、格子定数が理論値に近く、かつX線回折
においてもマグネシアのピークが検出されないスピネル
構造の複合酸化物を用いたことによるものであることが
明らかである。
FIG. 7 shows that the catalysts of Comparative Examples 2 and 3 had a remarkably low NO x storage amount in a high temperature range, while the catalyst of Example 5 was stable from a low temperature to a high temperature despite the high temperature durability test. It is clear that the obtained NO x storage ability was exhibited. It is clear that this is due to the carrier, and the catalyst of Example 5 shows high NO x storage ability because of its large specific surface area, its lattice constant is close to the theoretical value, and also in X-ray diffraction. It is clear that this is due to the use of a composite oxide having a spinel structure in which no magnesia peak is detected.

【0044】[0044]

【発明の効果】すなわち本発明の高温NOx 吸蔵還元型触
媒によれば、 600℃以上の高温域においても高いNOx
蔵能を示し、かつ高温耐久後にもその特性があまり低下
しない。したがって排ガス温度が高温となるエンジンか
らの排ガス中のNOx を、長期間効率よく浄化することが
できる。
According to the high-temperature NO x storage-reduction catalyst of the present invention, high NO x storage capacity is exhibited even in a high temperature range of 600 ° C. or higher, and its characteristics are not significantly degraded even after high-temperature durability. Thus the NO x in the exhaust gas from the engine exhaust gas temperature becomes high, it is possible to purify a long period of time efficiently.

【図面の簡単な説明】[Brief description of the drawings]

【図1】初期触媒の入りガス温度 600℃におけるK担持
量とリッチスパイク後NOx 吸蔵量との関係を示すグラフ
である。
FIG. 1 is a graph showing the relationship between the amount of K carried at an initial gas temperature of 600 ° C. and the amount of NO x stored after a rich spike.

【図2】初期触媒の入りガス温度 700℃におけるK担持
量とリッチスパイク後NOx 吸蔵量との関係を示すグラフ
である。
FIG. 2 is a graph showing the relationship between the amount of K carried at an initial gas temperature of 700 ° C. and the amount of NO x stored after a rich spike.

【図3】耐久後触媒の入りガス温度 600℃におけるK担
持量とリッチスパイク後NOx 吸蔵量との関係を示すグラ
フである。
FIG. 3 is a graph showing the relationship between the amount of K carried and the amount of NO x stored after rich spike at an inlet gas temperature of 600 ° C. of the catalyst after durability.

【図4】耐久後触媒の入りガス温度 700℃におけるK担
持量とリッチスパイク後NOx 吸蔵量との関係を示すグラ
フである。
FIG. 4 is a graph showing the relationship between the amount of K carried and the amount of NO x stored after a rich spike at an inlet gas temperature of 700 ° C. of the catalyst after durability.

【図5】NOx 昇温脱離試験において入りガス温度とNOx
濃度との関係を示すグラフである。
[5] gas temperature entering the NO x temperature-programmed desorption test with NO x
It is a graph which shows the relationship with a density.

【図6】貴金属種とNO酸化率の関係を各温度で示すグラ
フである。
FIG. 6 is a graph showing a relationship between a noble metal species and a NO oxidation rate at each temperature.

【図7】実施例5と比較例2,3の触媒における耐久試
験後のリッチスパイク後のNOx 吸蔵量を各温度で測定し
た結果を示すグラフである。
FIG. 7 is a graph showing the results of measuring the NO x occlusion amount after rich spikes at the respective temperatures after the durability test in the catalysts of Example 5 and Comparative Examples 2 and 3.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01N 3/08 F01N 3/10 A 3/10 3/28 301C 3/28 301 301P B01D 53/36 102B (72)発明者 安藤 千和 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 Fターム(参考) 3G091 AB06 FB10 FB12 GA06 GB02Y GB03Y GB04Y GB05W GB06W GB07W GB10X 4D048 AA06 AB01 BA01X BA01Y BA03X BA03Y BA10X BA14X BA14Y BA15Y BA30X BA30Y BA31X BA33X BB02 EA04 4G066 AA02B AA13B AA16C AA20C AA66C AD10B BA07 BA26 BA32 BA36 BA38 CA28 DA02 FA03 FA12 FA14 FA22 FA37 4G069 AA03 BA01A BA06A BA13B BB06A BB06B BC01A BC03A BC03B BC08A BC10A BC10B BC16A BC16B BC71B BC72B BC75A BC75B CA03 CA07 CA13 DA06 EA19 EC24 FA02 FB14 FB16 FB19 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F01N 3/08 F01N 3/10 A 3/10 3/28 301C 3/28 301 301P B01D 53/36 102B ( 72) Inventor Chiwa Ando 1-41, Chuchu-ji, Yokomichi, Nagakute-cho, Aichi-gun, Aichi F-term in Toyota Central R & D Laboratories Co., Ltd. BA03X BA03Y BA10X BA14X BA14Y BA15Y BA30X BA30Y BA31X BA33X BB02 EA04 4G066 AA02B AA13B AA16C AA20C AA66C AD10B BA07 BA26 BA32 BA36 BA38 CA28 BC02 BC02 BC02 BC02 BC02A02 CA03 CA07 CA13 DA06 EA19 EC24 FA02 FB14 FB16 FB19

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 マグネシア・アルミナスピネル構造を有
する複合酸化物よりなる担体であって、該担体の比表面
積は50m2/g以上であり、該担体に担持された貴金属
と、該担体に担持されたアルカリ金属,アルカリ土類金
属及び希土類元素から選ばれる少なくとも一種のNOx
蔵材と、よりなることを特徴とする高温NOx 吸蔵還元型
触媒。
1. A carrier comprising a composite oxide having a magnesia / alumina spinel structure, wherein the carrier has a specific surface area of 50 m 2 / g or more, and a noble metal supported on the carrier and a carrier supported on the carrier. A high-temperature NO x storage-reduction catalyst, comprising at least one kind of NO x storage material selected from alkali metals, alkaline earth metals and rare earth elements.
【請求項2】 前記複合酸化物の{ 800}面の格子定数
が理論値 8.083±0.02Åであり、X線回折法によって検
出されるマグネシアの最強線のピークがマグネシア・ア
ルミナスピネルの最強線の1/20以下であり、かつマグ
ネシウム(Mg)とアルミニウム(Al)の組成比がMg/2
Al=1±0.05(モル比)であることを特徴とする請求項
1に記載の高温NOx 吸蔵還元型触媒。
2. The composite oxide has a lattice constant of {800} plane of a theoretical value of 8.083 ± 0.02 °, and the peak of the strongest line of magnesia detected by the X-ray diffraction method is the peak of the strongest line of magnesia-alumina spinel. 1/20 or less, and the composition ratio of magnesium (Mg) and aluminum (Al) is Mg / 2
Al = 1 ± 0.05 high temperature NO x storage-and-reduction type catalyst according to claim 1, characterized in that the (molar ratio).
【請求項3】 750℃で5時間の耐久試験後におけるリ
ッチスパイク後のNO x 吸蔵量が、入りガス温度 600℃で
1200mg/L以上となることを特徴とする請求項1に記載
の高温NOx 吸蔵還元型触媒。
3. After the endurance test at 750 ° C. for 5 hours,
NO after touch spike x When the storage amount is 600 ° C
2. The composition according to claim 1, wherein the amount is 1200 mg / L or more.
High temperature NOx Storage reduction catalyst.
【請求項4】 前記NOx 吸蔵材は少なくともカリウムを
含むことを特徴とする請求項1に記載の高温NOx 吸蔵還
元型触媒。
4. A high-temperature NO x storage-and-reduction type catalyst according to claim 1, wherein the the NO x storage material including at least potassium.
【請求項5】 前記カリウムの担持量は 0.3モル/L以
上であることを特徴とする請求項4に記載の高温NOx
蔵還元型触媒。
5. The high-temperature NO x storage-reduction catalyst according to claim 4, wherein the amount of the supported potassium is 0.3 mol / L or more.
【請求項6】 前記貴金属は白金であり2g/L以上担
持されていることを特徴とする請求項1に記載の高温NO
x 吸蔵還元型触媒。
6. The high-temperature NO according to claim 1, wherein the noble metal is platinum and is supported at 2 g / L or more.
x Storage-reduction catalyst.
JP2000273764A 2000-09-08 2000-09-08 HIGH TEMPERATURE NOx ABSORBING AND REDUCTION TYPE CATALYST Pending JP2002079094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000273764A JP2002079094A (en) 2000-09-08 2000-09-08 HIGH TEMPERATURE NOx ABSORBING AND REDUCTION TYPE CATALYST

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000273764A JP2002079094A (en) 2000-09-08 2000-09-08 HIGH TEMPERATURE NOx ABSORBING AND REDUCTION TYPE CATALYST

Publications (1)

Publication Number Publication Date
JP2002079094A true JP2002079094A (en) 2002-03-19

Family

ID=18759644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000273764A Pending JP2002079094A (en) 2000-09-08 2000-09-08 HIGH TEMPERATURE NOx ABSORBING AND REDUCTION TYPE CATALYST

Country Status (1)

Country Link
JP (1) JP2002079094A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006348767A (en) * 2005-06-13 2006-12-28 Mitsubishi Motors Corp Exhaust emission control device for internal combustion engine
WO2007049778A1 (en) * 2005-10-24 2007-05-03 Toyota Jidosha Kabushiki Kaisha Catalyst support and catalyst for exhaust-gas purification
JP2007307485A (en) * 2006-05-18 2007-11-29 Toyota Central Res & Dev Lab Inc Nox storage reduction type catalyst
JP2008012480A (en) * 2006-07-07 2008-01-24 Cataler Corp Catalyst for cleaning exhaust gas
JP2008069724A (en) * 2006-09-14 2008-03-27 Mitsubishi Motors Corp Catalyst diagnostic device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006348767A (en) * 2005-06-13 2006-12-28 Mitsubishi Motors Corp Exhaust emission control device for internal combustion engine
WO2007049778A1 (en) * 2005-10-24 2007-05-03 Toyota Jidosha Kabushiki Kaisha Catalyst support and catalyst for exhaust-gas purification
US7776783B2 (en) 2005-10-24 2010-08-17 Toyota Jidosha Kabushiki Kaisha Catalyst carrier and exhaust gas purification catalyst
JP2007307485A (en) * 2006-05-18 2007-11-29 Toyota Central Res & Dev Lab Inc Nox storage reduction type catalyst
JP4730709B2 (en) * 2006-05-18 2011-07-20 株式会社豊田中央研究所 NOx storage reduction catalyst
JP2008012480A (en) * 2006-07-07 2008-01-24 Cataler Corp Catalyst for cleaning exhaust gas
JP2008069724A (en) * 2006-09-14 2008-03-27 Mitsubishi Motors Corp Catalyst diagnostic device
JP4618221B2 (en) * 2006-09-14 2011-01-26 三菱自動車工業株式会社 Catalyst diagnostic device

Similar Documents

Publication Publication Date Title
JP3741303B2 (en) Exhaust gas purification catalyst
JP3664182B2 (en) High heat-resistant exhaust gas purification catalyst and production method thereof
JPH09141098A (en) Catalyst for purification of exhaust gas and its production
JP2003334442A (en) OCCLUSION-REDUCTION TYPE CATALYST FOR REMOVING NOx
JP2002177781A (en) Exhaust gas cleaning catalyst
JP3988202B2 (en) Exhaust gas purification catalyst
JP2004074138A (en) Catalyst for exhaust gas purification, and exhaust gas purification method
JP4923412B2 (en) Exhaust gas purification catalyst
JP3766568B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP2002079094A (en) HIGH TEMPERATURE NOx ABSORBING AND REDUCTION TYPE CATALYST
JPH09248458A (en) Catalyst and method for exhaust gas-purifying
JPH10165817A (en) Catalyst for cleaning of exhaust gas
JP2003020227A (en) Fine mixed oxide powder, production method thereor and catalyst
JPH08281116A (en) Catalyst for purifying exhaust gas
JP3622893B2 (en) NOx absorbent and exhaust gas purification catalyst using the same
JP3659028B2 (en) Exhaust gas purification device and method of using the same
JP2002239383A (en) NOx SORPTION AND REDUCTION CATALYST AND METHOD FOR USING THE SAME
JP3664201B2 (en) Exhaust gas purification catalyst
JP2002331240A (en) Exhaust gas cleaning catalyst and exhaust gas cleaning apparatus
JP3885376B2 (en) Exhaust gas purification catalyst and method of using the same
JP3503766B2 (en) High heat resistant exhaust gas purification catalyst
JP3897483B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method
JP3839860B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP4103407B2 (en) NOx storage reduction catalyst
JP3739226B2 (en) Exhaust gas purification catalyst and exhaust gas purification method