JP2007307485A - Nox storage reduction type catalyst - Google Patents

Nox storage reduction type catalyst Download PDF

Info

Publication number
JP2007307485A
JP2007307485A JP2006139195A JP2006139195A JP2007307485A JP 2007307485 A JP2007307485 A JP 2007307485A JP 2006139195 A JP2006139195 A JP 2006139195A JP 2006139195 A JP2006139195 A JP 2006139195A JP 2007307485 A JP2007307485 A JP 2007307485A
Authority
JP
Japan
Prior art keywords
amount
oxide
iron
storage
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006139195A
Other languages
Japanese (ja)
Other versions
JP4730709B2 (en
Inventor
Shinichi Matsunaga
真一 松永
Toshiyuki Tanaka
寿幸 田中
Yukikazu Kato
千和 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2006139195A priority Critical patent/JP4730709B2/en
Publication of JP2007307485A publication Critical patent/JP2007307485A/en
Application granted granted Critical
Publication of JP4730709B2 publication Critical patent/JP4730709B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an NOx storage reduction type catalyst having a sufficiently high NOx storage capability in high temperature regions such as 400°C or higher even if an amount of noble metals supported is small, in particular, even in case of using neither platinum nor palladium. <P>SOLUTION: The NOx storage reduction type catalyst is provided with hematite of a particle diameter of 3 nm-20 μm, an alkali metal, rhodium, and an oxide carrier comprising a metal oxide hard to form a complex oxide with iron. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、NO吸蔵還元型触媒に関し、より詳しくは、特に高温域において高いNO浄化率を示すNO吸蔵還元型の排ガス浄化用触媒に関する。 The present invention relates to a NO x storage reduction catalyst, and more particularly to a NO x storage reduction type exhaust gas purification catalyst exhibiting a high NO x purification rate particularly in a high temperature range.

近年、地球環境保護の観点から、自動車等の内燃機関から排出される排ガス中の二酸化炭素(CO)が問題にされている。そこで温室効果ガスであるCOを低減するために、酸素過剰雰囲気下において希薄燃焼させる、いわゆるリーンバーンが実用化されている。このリーンバーンにおいては、燃料の使用量が低減でき、排ガスとして排出されるCO量を低減することができる。 In recent years, carbon dioxide (CO 2 ) in exhaust gas discharged from internal combustion engines such as automobiles has become a problem from the viewpoint of protecting the global environment. Therefore, in order to reduce CO 2 which is a greenhouse gas, so-called lean burn in which lean combustion is performed in an oxygen-excess atmosphere has been put into practical use. In this lean burn, the amount of fuel used can be reduced, and the amount of CO 2 discharged as exhaust gas can be reduced.

そして、例えば特開平5−317625号公報(特許文献1)においては、アルカリ土類金属等のNO吸蔵材と貴金属とをアルミナ等の多孔質担体に担持したNO吸蔵還元型の排ガス浄化用触媒が開示されている。このような触媒によれば、空燃比をリーン側からパルス状にストイキ又はリッチ側となるように制御(リッチスパイク)することにより、リーン側でNOがNO吸蔵材に吸蔵され、それがストイキ又はリッチ側でHCやCO等の還元性成分と反応して浄化されるため、リーンバーンにおいてもNOを効率良く浄化することができた。 Then, for example, in JP-A 5-317625 (Patent Document 1), for purifying exhaust gas of the NO x storage reduction of the the NO x storage material and the noble metal is supported on a porous carrier such as alumina, such as alkaline earth metal A catalyst is disclosed. According to such a catalyst, by controlling the air-fuel ratio from the lean side so that it becomes stoichiometric or rich from the lean side (rich spike), NO x is occluded by the NO x storage material on the lean side, Since it is purified by reacting with reducing components such as HC and CO on the stoichiometric or rich side, NO x can be efficiently purified even in lean burn.

しかしながら、直噴ガソリンエンジンの高出力化あるいは高速走行の増加等を背景に、近年の自動車から排出される排ガスの温度は高温となっており、このような400℃以上という高温領域においては、特許文献1に記載のようなNO吸蔵還元型触媒ではNO吸蔵材が担体と固相反応を起こして失活してしまうという問題があった。 However, the temperature of exhaust gas discharged from automobiles in recent years has been high against the background of high output of a direct-injection gasoline engine or an increase in high-speed driving. In such a high temperature range of 400 ° C. or higher, patents the NO x storage material is disadvantageously inactivated causing the carrier and the solid phase reaction in the NO x storage-reduction type catalyst as described in the literature 1.

そこで、特開2002−79094号公報(特許文献2)においては、高温安定性の高いマグネシア・アルミナスピネル構造を有する複合酸化物を担体として用いることにより、高温用のNO吸蔵還元型触媒を得ている。 Therefore, in JP-A-2002-79094 (Patent Document 2), a high-temperature NO x storage reduction catalyst is obtained by using a composite oxide having a magnesia-alumina spinel structure with high temperature stability as a carrier. ing.

しかしながら、400℃以上という高温領域においては、NOの生成反応(NO+1/2O→NO)の平衡が大きくNO側に寄っており、NOは容易にNOへと分解されてしまい、NO吸蔵材に保持される前にNOとして再び気相に出てしまう。そのため、それを防ぐためにできるだけ多くのNOからNOへの反応活性点を触媒上に形成する必要があり、特許文献2に記載のようなNO吸蔵還元型触媒においてはその反応活性点としてPtやPdといった高価で稀少な貴金属を比較的多量に使用する必要があった。 However, in the high temperature region of 400 ° C. or higher, formation reaction of NO 2 (NO + 1 / 2O 2 → NO 2) equilibrium of and closer to the big NO side, NO 2 is will be decomposed into readily NO, NO Before being held in the x- occlusion material, it comes out again in the gas phase as NO. Therefore, in order to prevent this, it is necessary to form as many reaction active points as possible from NO to NO 2 on the catalyst. In the NO x storage reduction catalyst as described in Patent Document 2, Pt is used as the reaction active point. It was necessary to use a relatively large amount of expensive and rare noble metals such as Pd and Pd.

一方、特開平10−338号公報(特許文献3)においては、燃料組成中の硫黄による被毒対策として、チタニア、シリカ、アルミナ等の多孔質担体にFeを担持したものをコーティングした触媒が開示されているが、FeはSOの吸着材として添加されたものであって、やはり比較的多量の貴金属を使用する必要があった。
特開平5−317625号公報 特開2002−79094号公報 特開平10−338号公報
On the other hand, in Japanese Patent Laid-Open No. 10-338 (Patent Document 3), as a countermeasure against poisoning by sulfur in the fuel composition, a porous carrier such as titania, silica, alumina or the like carrying Fe 2 O 3 is coated. Although a catalyst is disclosed, Fe 2 O 3 was added as an adsorbent for SO x , and it was necessary to use a relatively large amount of noble metal.
JP-A-5-317625 JP 2002-79094 A Japanese Patent Laid-Open No. 10-338

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、貴金属の担持量が少なく、特に白金やパラジウムを用いない場合であっても、400℃以上という高温領域において十分に高いNO吸蔵能を有するNO吸蔵還元型触媒を提供することを目的とする。 The present invention has been made in view of the above-described problems of the prior art. The amount of noble metal supported is small, and even when platinum or palladium is not used, the NO is sufficiently high in a high temperature range of 400 ° C. or higher. An object of the present invention is to provide a NO x storage reduction catalyst having x storage capacity.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、卑金属触媒であるFeは高温で酸化活性を有するもののアルミナ等の担体と容易に固相反応して失活してしまうため貴金属の代わりに用いることはできないという認識が従来の技術常識であったにも拘らず、粒径3nm〜20μmのヘマタイトを、鉄と複合酸化物を形成し難い金属酸化物からなる酸化物担体と組み合わせて用い、さらにNO吸蔵材としてアルカリ金属、貴金属としてロジウムを採用することにより、驚くべきことに貴金属の担持量が少ない場合であっても高温領域において十分に高いNO吸蔵能が達成されるようになることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventors have found that Fe, which is a base metal catalyst, has an oxidation activity at a high temperature, but easily deactivates by a solid-phase reaction with a support such as alumina. Despite the recognition of the fact that it cannot be used in place of noble metals, hematite with a particle size of 3 nm to 20 μm is formed from an oxide carrier made of a metal oxide that is difficult to form a complex oxide with iron. When used in combination, and by using alkali metal as the NO x storage material and rhodium as the noble metal, surprisingly, a sufficiently high NO x storage capacity can be achieved even in the case of a small amount of noble metal supported. As a result, the present invention has been completed.

すなわち、本発明のNO吸蔵還元型触媒は、
粒径3nm〜20μmのヘマタイトと、
アルカリ金属と、
ロジウムと、
鉄と複合酸化物を形成し難い金属酸化物からなる酸化物担体と、
を備えることを特徴とするものである。
That is, the NO x storage reduction catalyst of the present invention is
Hematite with a particle size of 3 nm to 20 μm,
With alkali metals,
Rhodium,
An oxide carrier made of a metal oxide that is difficult to form a complex oxide with iron;
It is characterized by providing.

上記本発明にかかる前記の鉄と複合酸化物を形成し難い金属酸化物としては、該金属酸化物200gに対して0.01〜1.0molの鉄を含む化合物と接触した状態で大気中750℃で5時間熱処理した後に粒径3nm〜20μmのヘマタイトを存在させ得る金属酸化物であることが好ましく、マグネシア・アルミナスピネル構造を有する複合酸化物であることが特に好ましい。   The metal oxide which is difficult to form a composite oxide with iron according to the present invention is 750 in the atmosphere in contact with a compound containing 0.01 to 1.0 mol of iron with respect to 200 g of the metal oxide. It is preferably a metal oxide capable of allowing hematite having a particle size of 3 nm to 20 μm to be present after heat treatment at 5 ° C. for 5 hours, and particularly preferably a composite oxide having a magnesia-alumina spinel structure.

また、本発明のNO吸蔵還元型触媒においては、貴金属の担持量が少なく、特に白金やパラジウムを用いない場合であっても高温領域において十分に高いNO吸蔵能が発揮されるため、白金及びパラジウムを実質的に含有していないことが好ましく、ロジウムの担持量が触媒1リットル当たり0.01〜2.0gであることが好ましい。 In addition, the NO x storage reduction catalyst of the present invention has a small amount of noble metal supported, and in particular, even when platinum or palladium is not used, a sufficiently high NO x storage capacity is exhibited in a high temperature region. And palladium is preferably substantially not contained, and the supported amount of rhodium is preferably 0.01 to 2.0 g per liter of the catalyst.

なお、本発明にかかる粒径3nm〜20μmのヘマタイトの存在は、以下の方法により確認できる。すなわち、一般にX線回折分析によって粒径を求める場合は、以下の「シェラー式」が使われる。
d=(0.9λ)/(Bcosθ
(式中、dは粒径、λは使用したX線固有値、Bはピーク半価幅、θはピークの角度を示す。)
例えば、X線源としてCuのKαを使用した場合、ヘマタイトで観測される33.152°において半価幅が2.8°より細いピークが認められることによって、粒径3nm以上のヘマタイトの存在が確認される。
The presence of hematite having a particle size of 3 nm to 20 μm according to the present invention can be confirmed by the following method. That is, in general, when the particle size is obtained by X-ray diffraction analysis, the following “Scherrer equation” is used.
d = (0.9λ) / (Bcosθ B )
(In the formula, d is the particle size, λ is the X-ray characteristic value used, B is the peak half width, and θ B is the peak angle.)
For example, when using K alpha of Cu as an X-ray source, by the half-width is observed peak narrower than 2.8 ° in 33.152 ° observed in hematite, the presence of the particle size 3nm or more hematite Is confirmed.

本発明によれば、貴金属の担持量が少なく、特に白金やパラジウムを用いない場合であっても、400℃以上という高温領域において十分に高いNO吸蔵能を有するNO吸蔵還元型触媒を提供することが可能となる。 According to the present invention, there is provided a NO x occlusion reduction type catalyst having a sufficiently high NO x occlusion ability in a high temperature range of 400 ° C. or higher even when the amount of noble metal supported is small and platinum or palladium is not particularly used. It becomes possible to do.

以下、本発明をその好適な実施形態に即して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to preferred embodiments thereof.

本発明のNO吸蔵還元型触媒は、
粒径3nm〜20μmのヘマタイトと、
アルカリ金属と、
ロジウムと、
鉄と複合酸化物を形成し難い金属酸化物からなる酸化物担体と、
を備えることを特徴とするものである。
The NO x storage reduction catalyst of the present invention is
Hematite with a particle size of 3 nm to 20 μm,
With alkali metals,
Rhodium,
An oxide carrier made of a metal oxide that is difficult to form a complex oxide with iron;
It is characterized by providing.

本発明において用いられるヘマタイトは、Feで表される酸化鉄の一種であり、その粒径は3nm〜20μmであることが必要であり、5nm〜1000nmであることがより好ましい。その活性発現機構は必ずしも明らかではないが、ヘマタイトの粒径が3nm未満ではFeと担体との相互作用が強すぎるためNO酸化が抑制され、、他方、20μmを超えると酸化したNOの吸蔵材への移動が起こりにくくなる。 The hematite used in the present invention is a kind of iron oxide represented by Fe 2 O 3 , and its particle size needs to be 3 nm to 20 μm, and more preferably 5 nm to 1000 nm. The mechanism of expression of the activity is not necessarily clear, but when the particle size of hematite is less than 3 nm, the interaction between Fe 2 O 3 and the carrier is too strong, so that NO oxidation is suppressed. On the other hand, when the particle size exceeds 20 μm, oxidized NO 3 The movement to the occlusion material is less likely to occur.

また、本発明のNO吸蔵還元型触媒に含有されるFeの含有量は、触媒1リットル(担体200g)当たり0.01〜1.0molであることが好ましく、0.05〜0.5molであることがより好ましい。前記Feの含有量が前記下限未満ではNOをNOに酸化して吸蔵材に送るのに十分な活性点数が不足する傾向にあり、他方、前記上限を超えると担体との固溶反応が起こり比表面積の低下を招く傾向にある。 In addition, the content of Fe contained in the NO x storage reduction catalyst of the present invention is preferably 0.01 to 1.0 mol per liter of catalyst (200 g of support), and 0.05 to 0.5 mol. More preferably. If the Fe content is less than the lower limit, the number of active sites sufficient to oxidize NO to NO 3 and send it to the storage material tends to be insufficient. On the other hand, when the upper limit is exceeded, a solid solution reaction with the carrier occurs. The specific surface area tends to decrease.

また、本発明において用いられる鉄と複合酸化物を形成し難い金属酸化物からなる酸化物担体としては、該金属酸化物200gに対して0.01〜1.0molの鉄を含む化合物と接触した状態で大気中750℃で5時間熱処理した後に粒径3nm〜20μmのヘマタイトを存在させ得る金属酸化物であることが好ましく、以下に説明するマグネシア・アルミナスピネル構造を有する複合酸化物であることが特に好ましい。   In addition, as an oxide carrier made of a metal oxide that is difficult to form a complex oxide with iron used in the present invention, it was in contact with a compound containing 0.01 to 1.0 mol of iron with respect to 200 g of the metal oxide. The metal oxide is preferably a metal oxide capable of allowing hematite having a particle size of 3 nm to 20 μm to exist after heat treatment at 750 ° C. in the atmosphere for 5 hours. Particularly preferred.

このようなマグネシア・アルミナスピネル構造を有する複合酸化物は、MgAl構造を有する複合酸化物であり、この複合酸化物はそれ自体耐熱性が高く、高比表面積のものが比較的得やすいものである。 Such a composite oxide having a magnesia-alumina spinel structure is a composite oxide having an MgAl 2 O 4 structure, and the composite oxide itself has high heat resistance and is relatively easy to obtain having a high specific surface area. Is.

このようなマグネシア・アルミナスピネル構造を有する複合酸化物の{800}面の格子定数は理論値8.083±0.02Åであり、X線回折法によって検出されるマグネシアの最強線のピークがマグネシア・アルミナスピネルの最強線の1/20以下であり、かつマグネシウム(Mg)とアルミニウム(Al)の組成比がMg/2Al=1±0.05(モル比)であることが望ましい。   The lattice constant of the {800} plane of the composite oxide having such a magnesia-alumina spinel structure is a theoretical value of 8.083 ± 0.02Å, and the peak of the strongest line of magnesia detected by the X-ray diffraction method is magnesia. It is desirable that it is 1/20 or less of the strongest line of alumina spinel and the composition ratio of magnesium (Mg) and aluminum (Al) is Mg / 2Al = 1 ± 0.05 (molar ratio).

また、本発明にかかる担体の比表面積が、50m/g以上であることが好ましく、80m/g以上であることがより好ましく、100m/g以上であることがさらに好ましい。比表面積が大きいほど前記ヘマタイト、NOx吸蔵材及び貴金属の分散性が向上し、高温域でもより高いNO吸蔵能を示す傾向にある。 Further, the specific surface area of the carrier according to the present invention is preferably 50 m 2 / g or more, more preferably 80 m 2 / g or more, and further preferably 100 m 2 / g or more. The hematite as the specific surface area is large, to improve the dispersibility of the NOx-absorbing material and a noble metal, they tend to exhibit higher the NO x storage ability in a high temperature region.

このようなマグネシア・アルミナスピネル構造を有する複合酸化物は、例えば特開2000−128527号公報に記載の製造方法を用いて製造することができる。すなわち、水酸化マグネシウムと水酸化アルミニウムを原子比でAl:Mg=2:1となるように混合し、機械的に混合・粉砕して複合水酸化物を含む水酸化物の混合組成物とし、それを加熱処理することでマグネシア・アルミナスピネル構造を有する複合酸化物とする。混合・粉砕時に、混合物に機械的に十分なエネルギーを与えることにより、両水酸化物の少なくとも一部を複合水酸化物に転化させるとともに、80重量%以上の粒子の粒子径が100nm以下となるまで十分に微細化する。そして得られた混合組成物を1100℃以下の温度で加熱処理することにより、前記マグネシア・アルミナスピネル構造を有する複合酸化物からなる担体が得られる。また、このような担体は、ゾルゲル法あるいは共沈法によっても製造することができる。   Such a composite oxide having a magnesia-alumina spinel structure can be produced, for example, using the production method described in JP-A No. 2000-128527. That is, magnesium hydroxide and aluminum hydroxide are mixed so as to have an atomic ratio of Al: Mg = 2: 1, and mechanically mixed and pulverized to obtain a mixed composition of hydroxide including a composite hydroxide, By heating it, a composite oxide having a magnesia-alumina spinel structure is obtained. At the time of mixing and pulverization, mechanically sufficient energy is given to the mixture to convert at least a part of both hydroxides into composite hydroxides, and the particle diameter of 80% by weight or more becomes 100 nm or less. Until it is sufficiently refined. And the support | carrier consisting of the complex oxide which has the said magnesia alumina spinel structure is obtained by heat-processing the obtained mixed composition at the temperature of 1100 degrees C or less. Such a carrier can also be produced by a sol-gel method or a coprecipitation method.

なお、本発明のNO吸蔵還元型触媒に含有される酸化物担体の全てが前述の鉄と複合酸化物を形成し難い金属酸化物からなるものである必要はないが、該触媒に含有される酸化物担体のうち前述の鉄と複合酸化物を形成し難い金属酸化物の含有量が20wt%以上であることが好ましく、80wt%以上であることがより好ましい。前述の鉄と複合酸化物を形成し難い金属酸化物の含有量が前記下限未満では、鉄が担体と固溶反応して活性点を失うため、高温領域におけるNO吸蔵能が低下する傾向にある。前述の鉄と複合酸化物を形成し難い金属酸化物以外の金属酸化物であって、本発明のNO吸蔵還元型触媒に含有され得るものとしては、ジルコニア、アルミナ、チタニア、セリア、シリカ、或いはこれらの複合酸化物が挙げられる。 Note that it is not necessary that all of the oxide support contained in the NO x storage-reduction catalyst of the present invention is made of the metal oxide that is difficult to form a composite oxide with iron, but is contained in the catalyst. Among the oxide carriers, the content of the metal oxide that is difficult to form a composite oxide with iron is preferably 20 wt% or more, and more preferably 80 wt% or more. If the content of the metal oxide that is difficult to form a complex oxide with iron is less than the lower limit, iron loses its active site due to a solid solution reaction with the support, so that the NO x storage ability in a high temperature region tends to decrease. is there. Examples of metal oxides other than metal oxides that are difficult to form complex oxides with iron as described above and can be contained in the NO x storage reduction catalyst of the present invention include zirconia, alumina, titania, ceria, silica, Or these complex oxides are mentioned.

また、本発明のNO吸蔵還元型触媒においては、前記酸化物担体を後述する他の基材に担持させて構成されるものであってもよく、その場合、前記酸化物担体の担持量は、触媒1リットル当たり50〜300gであることが好ましく、200〜300gであることがより好ましい。前記酸化物担体の担持量が前記下限未満では反応ガスとの接触確率が低下するため、十分な吸蔵性能が得られなくなる傾向にあり、他方、前記上限を超えるとコート量が多すぎるため、基材全体としての背圧が上昇し、エンジン出力の低下をもたらす傾向にある。 Further, the NO x storage-reduction catalyst of the present invention may be constituted by supporting the oxide carrier on another substrate described later, in which case the amount of the oxide carrier supported is The amount is preferably 50 to 300 g per liter of catalyst, more preferably 200 to 300 g. If the supported amount of the oxide carrier is less than the lower limit, the contact probability with the reaction gas decreases, so that sufficient occlusion performance tends not to be obtained.On the other hand, if the upper limit is exceeded, the coat amount is too large. There is a tendency that the back pressure of the entire material increases and the engine output decreases.

本発明のNO吸蔵還元型触媒においては、NO吸蔵材としてアルカリ金属が用いられる。このようなアルカリ金属としては、Li、Na、K、Csが例示され、中でもアルカリ度が高く高温でも飛散しないKが特に好ましい。なお、本発明のNO吸蔵還元型触媒においては、前記アルカリ金属と同様にNO吸蔵材として知られているアルカリ土類金属や希土類元素を用いた場合には、その塩基性の低さのため、高温領域においてNO吸蔵能が高いという本発明の効果は達成されない。 In the NO x storage reduction catalyst of the present invention, an alkali metal is used as the NO x storage material. Examples of such alkali metals include Li, Na, K, and Cs. Among them, K is particularly preferable because it has a high alkalinity and does not scatter even at high temperatures. In the NO x storage-and-reduction type catalyst of the present invention, in the case of using the alkali metal as well as NO x alkaline earth metal or a rare earth element, known as storage component, the basic low Therefore, the effect of the present invention that the NO x storage capacity is high in the high temperature region is not achieved.

本発明のNO吸蔵還元型触媒におけるアルカリ金属の担持量は、触媒1リットル当たり0.1〜2.0モルとすることが好ましく、0.3〜1.0モルとすることがより好ましい。アルカリ金属の担持量が前記下限未満ではNO吸蔵能が不十分となる傾向にあり、他方、前記上限を超えると活性点である鉄を覆ったり、担体の細孔を閉塞して比表面積の低下を招くといった原因により活性が低下する傾向にある。 The supported amount of alkali metal in the NO x storage-reduction catalyst of the present invention is preferably 0.1 to 2.0 mol, more preferably 0.3 to 1.0 mol per liter of the catalyst. When the amount of alkali metal supported is less than the lower limit, the NO x storage capacity tends to be insufficient. On the other hand, when the upper limit is exceeded, iron, which is an active site, is covered or pores of the support are blocked. Activity tends to decrease due to causes such as reduction.

なお、アルカリ金属としてKを用いる場合には、触媒1リットル当たり0.3モル以上、より好ましくは0.6モル以上担持することが好ましい。Kの担持量が0.3モル/L未満ではNO吸蔵量が低下する傾向にある。また、Kの担持量の上限は特に制限されないが、1モル/L程度でNO吸蔵能がほぼ飽和する傾向にあるので、1モル/Lを限度とすることが好ましい。 When K is used as the alkali metal, it is preferable to carry 0.3 mol or more, more preferably 0.6 mol or more per liter of the catalyst. When the loading amount of K is less than 0.3 mol / L, the NO x storage amount tends to decrease. The upper limit of the amount of K supported is not particularly limited, but the NO x storage capacity tends to be almost saturated at about 1 mol / L, so it is preferable to limit the amount to 1 mol / L.

本発明のNO吸蔵還元型触媒においては、貴金属としてロジウムが用いられる。前述のとおり、本発明のNO吸蔵還元型触媒においては、貴金属の担持量が少なく、特に白金やパラジウムを用いない場合であっても高温領域において十分に高いNO吸蔵能が発揮されるため、白金及びパラジウムを実質的に含有していないことが好ましい。 In the NO x storage reduction catalyst of the present invention, rhodium is used as a noble metal. As described above, the NO x storage-reduction catalyst of the present invention has a small amount of noble metal supported, and exhibits a sufficiently high NO x storage capacity in a high temperature region even when platinum or palladium is not used. It is preferable that platinum and palladium are not substantially contained.

また、ロジウムの担持量は、触媒1リットル当たり0.01〜2.0gであることが好ましく、0.1〜1.0gであることがより好ましい。ロジウムの担持量が前記下限未満では吸蔵NOの還元が不十分となる傾向にあり、他方、前記上限を超えると経済的に本発明の優位性が低下する傾向にある。 Further, the supported amount of rhodium is preferably 0.01 to 2.0 g, more preferably 0.1 to 1.0 g, per liter of the catalyst. If the amount of rhodium supported is less than the lower limit, the reduction of occluded NO x tends to be insufficient, whereas if it exceeds the upper limit, the superiority of the present invention tends to decrease economically.

本発明のNO吸蔵還元型触媒の形態は特に制限されず、ハニカム形状のモノリス触媒、ペレット形状のペレット触媒等の形態とすることができる。ここで用いられる基材も特に制限されず、得られる触媒の用途等に応じて適宜選択されるが、DPF基材、モノリス状基材、ペレット状基材、プレート状基材等が好適に採用される。また、このような基材の材質も特に制限されないが、コーディエライト、炭化ケイ素、ムライト等のセラミックスからなる基材や、クロム及びアルミニウムを含むステンレススチール等の金属からなる基材が好適に採用される。 The form of the NO x storage-reduction catalyst of the present invention is not particularly limited, and may be a honeycomb-shaped monolith catalyst, a pellet-shaped pellet catalyst, or the like. The substrate used here is not particularly limited, and is appropriately selected depending on the use of the obtained catalyst, etc., but a DPF substrate, a monolith substrate, a pellet substrate, a plate substrate, etc. are suitably employed. Is done. Also, the material of such a base material is not particularly limited, but a base material made of a ceramic such as cordierite, silicon carbide, mullite, or a base material made of a metal such as stainless steel including chromium and aluminum is suitably employed. Is done.

さらに、本発明のNO吸蔵還元型触媒を製造する方法も特に制限されず、例えば、モノリス触媒を製造する場合は、コーディエライト等により形成されたハニカム形状の基材に、上述の本発明にかかる諸成分からなるコート層を順次または一括して形成せしめる方法が適宜採用される。なお、上述の酸化物担体の粉末に予めアルカリ金属及び/又はロジウムを担持せしめた後に粉末を用いて基材にコート層を形成する方法でも、上述の酸化物担体の粉末を用いて基材にコート層を形成した後にアルカリ金属及び/又はロジウムを担持せしめる方法でもよい。 Furthermore, the method for producing the NO x storage reduction catalyst of the present invention is not particularly limited. For example, in the case of producing a monolith catalyst, the above-described present invention is applied to a honeycomb-shaped substrate formed of cordierite or the like. A method of sequentially or collectively forming a coat layer composed of the various components according to the above is appropriately employed. In the method of forming a coat layer on the base material using the powder after the alkali metal and / or rhodium is previously supported on the above-mentioned oxide carrier powder, the above-mentioned oxide carrier powder is used for the base material. A method of supporting an alkali metal and / or rhodium after forming the coating layer may be used.

また、本発明のNO吸蔵還元型触媒に前記ヘマタイトを含有させる方法も特に制限されず、例えば、鉄の塩(例えば、硝酸鉄・9水和物、塩化鉄(II)、臭化鉄(II)、シュウ酸鉄・2水和物、酢酸鉄(II)、クエン酸鉄)を含有する水溶液を前記酸化物担体に接触させた後に乾燥し、更に焼成する方法が挙げられる。また、前記ヘマタイトの全体又は一部として、ヘマタイトの粉末を前記酸化物担体の粉末と共に混合して用いてもよい。 Further, the method for incorporating the hematite into the NO x storage reduction catalyst of the present invention is not particularly limited, and examples thereof include iron salts (for example, iron nitrate.9 hydrate, iron chloride (II), iron bromide ( II), an aqueous solution containing iron oxalate dihydrate, iron acetate (II), iron citrate) is brought into contact with the oxide carrier, dried, and further calcined. Further, hematite powder may be mixed with the oxide carrier powder as the whole or a part of the hematite.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

(予備実施例1)
通常の共沈法によって作製した比表面積が100m/gのMgAlスピネル粉末200gに所定量の硝酸鉄・9水和物水溶液を含浸し、空気中で300℃×3時間の仮焼を行い、さらに空気中で750℃×5時間の熱処理を行って予備実施例1の試料を得た。Feの担持量は0.12mol/Lであった。
(Preliminary Example 1)
200 g of MgAl 2 O 4 spinel powder having a specific surface area of 100 m 2 / g prepared by a common coprecipitation method is impregnated with a predetermined amount of an aqueous iron nitrate nonahydrate solution and calcined in air at 300 ° C. for 3 hours. And a heat treatment at 750 ° C. for 5 hours in air was performed to obtain the sample of Preparatory Example 1. The amount of Fe supported was 0.12 mol / L.

(予備比較例1)
MgAlスピネル粉末の代わりに市販のアルミナ粉末(WRグレース社製、MI386)を使用したこと以外は予備実施例1と同様にして予備比較例1の試料を得た。
(Preliminary comparative example 1)
A sample of Preliminary Comparative Example 1 was obtained in the same manner as Preparative Example 1 except that a commercially available alumina powder (MI 386, manufactured by WR Grace Co.) was used instead of the MgAl 2 O 4 spinel powder.

(予備比較例2)
MgAlスピネル粉末の代わりに市販のマグネシア粉末(宇部マテリアルズ社製、500A)を使用したこと以外は予備実施例1と同様にして予備比較例2の試料を得た。
(Preliminary comparative example 2)
A sample of Preliminary Comparative Example 2 was obtained in the same manner as Preparative Example 1 except that a commercially available magnesia powder (500 A manufactured by Ube Materials Co., Ltd.) was used instead of the MgAl 2 O 4 spinel powder.

(予備比較例3)
MgAlスピネル粉末の代わりに市販のジルコニア粉末(第1稀元素化学工業社製、RC100)を使用したこと以外は予備実施例1と同様にして予備比較例3の試料を得た。
(Preliminary comparative example 3)
A sample of Preliminary Comparative Example 3 was obtained in the same manner as Preparative Example 1 except that a commercially available zirconia powder (RC100, manufactured by 1st Rare Element Chemical Industry Co., Ltd.) was used instead of the MgAl 2 O 4 spinel powder.

<XRD測定>
予備実施例1及び予備比較例1〜3で得られた試料について、X線回折装置((株)リガク社製、RINT−2200)を用いて30°〜35°の回折線を測定した。得られた結果を図1に示す。
<XRD measurement>
The samples obtained in Preparatory Example 1 and Preliminary Comparative Examples 1 to 3 were measured for diffraction lines of 30 ° to 35 ° using an X-ray diffractometer (RINT-2200, manufactured by Rigaku Corporation). The obtained results are shown in FIG.

図1に示した結果から、予備実施例1で得られた試料においてはヘマタイトで観測される33.152°において細いピークが認められ、平均粒径44.6nmのヘマタイトの存在が確認されたが、予備比較例1〜3で得られた試料においてはそのピークは認められなかった。   From the results shown in FIG. 1, a thin peak was observed at 33.152 ° observed in hematite in the sample obtained in Preparative Example 1, and the presence of hematite having an average particle diameter of 44.6 nm was confirmed. In the samples obtained in Preliminary Comparative Examples 1 to 3, the peak was not recognized.

<FE−TEM測定>
予備実施例1及び予備比較例1で得られた試料について、透過型電子顕微鏡((株)日立社製、HF−2000)を用いてFE−TEM写真を撮影した。得られた結果を図2(予備実施例1)及び図3(予備比較例1)に示す。
<FE-TEM measurement>
For the samples obtained in Preparatory Example 1 and Preliminary Comparative Example 1, FE-TEM photographs were taken using a transmission electron microscope (manufactured by Hitachi, Ltd., HF-2000). The obtained results are shown in FIG. 2 (Preliminary Example 1) and FIG. 3 (Preliminary Comparative Example 1).

図2において、白丸で示したコントラストの濃い部分1と比較的薄い部分2における元素組成(atom%)を以下に示す。   In FIG. 2, the elemental composition (atom%) in the dark portion 1 and the relatively thin portion 2 indicated by white circles is shown below.

1 2
Mg 35.51 33.46
Al 33.80 62.4
Fe 30.68 4.08
この結果から、予備実施例1で得られた試料においては、コントラストの濃い部分にFeが存在することが確認された。そして、図2において、黒丸3〜7で示す部分にコントラストの濃いFeの粒子が確認された。
1 2
Mg 35.51 33.46
Al 33.80 62.4
Fe 30.68 4.08
From this result, it was confirmed that in the sample obtained in Preparatory Example 1, Fe 2 O 3 was present in a portion having a high contrast. In FIG. 2, Fe 2 O 3 particles having a high contrast were confirmed in the portions indicated by black circles 3 to 7.

一方、図3において、黒丸1〜4で示す部分における元素組成(atom%)を以下に示す。   On the other hand, in FIG. 3, the elemental composition (atom%) in the part shown by the black circles 1-4 is shown below.

1 2 3 4
Al 97.19 97.64 98.42 98.21
Fe 2.81 2.36 1.58 1.79
この結果から、予備比較例1で得られた試料においては、コントラストに拘わらず、Feが粒子として集中して存在するところはなく、広く一様に存在していることが確認された。
1 2 3 4
Al 97.19 97.64 98.42 98.21
Fe 2.81 2.36 1.58 1.79
From this result, it was confirmed that in the sample obtained in Preliminary Comparative Example 1, there was no place where Fe 2 O 3 was concentrated and present in a wide and uniform manner regardless of the contrast. .

従って、MgAlスピネル粉末は本発明にかかる鉄と複合酸化物を形成し難い金属酸化物からなる酸化物担体に相当するが、アルミナ粉末、マグネシア粉末及びジルコニア粉末は本発明にかかる鉄と複合酸化物を形成し難い金属酸化物からなる酸化物担体に相当しないことが確認された。 Accordingly, the MgAl 2 O 4 spinel powder corresponds to an oxide carrier made of a metal oxide that is difficult to form a composite oxide with iron according to the present invention, while the alumina powder, magnesia powder, and zirconia powder are the iron support according to the present invention. It was confirmed that it does not correspond to an oxide carrier made of a metal oxide which is difficult to form a complex oxide.

(実施例1)
MgAlスピネル粉末と、Rhの担持量が0.5g/LとなるようにRhが担持された市販ZrO粉末(第1稀元素化学工業社製、RC100)との混合粉末を定法でスラリー化し、コーディエライト製のモノリス基材(直径30mm、長さ50mm、体積35cc)にMgAlスピネル粉末の担持量が200g/L、ZrO粉末の担持量が50g/Lとなるようにコート層を形成した。次に、所定量の硝酸鉄・9水和物水溶液をコート層に含浸させ、空気中で300℃×3時間の仮焼を行った。さらに、所定量の酢酸カリウム水溶液をコート層に含浸させ、空気中で300℃×3時間の仮焼を行った。Feの担持量は0.12mol/L、Kの担持量は0.6mol/Lであった。さらに、表1に示すリッチモデルガス及びリーンモデルガスを用いて10L/minの流速でリッチとリーンを10秒/110秒で切り替えながら、750℃×5時間の熱処理を行い、実施例1の試料を得た。
Example 1
A mixed powder of MgAl 2 O 4 spinel powder and commercially available ZrO 2 powder (RC100, manufactured by 1st Rare Element Chemical Industry Co., Ltd.) on which Rh is supported so that the amount of Rh supported is 0.5 g / L is determined by a conventional method. It is made into a slurry so that the supported amount of MgAl 2 O 4 spinel powder is 200 g / L and the supported amount of ZrO 2 powder is 50 g / L on a cordierite monolith substrate (diameter 30 mm, length 50 mm, volume 35 cc). A coat layer was formed. Next, the coating layer was impregnated with a predetermined amount of an aqueous iron nitrate nonahydrate solution and calcined at 300 ° C. for 3 hours in air. Further, a predetermined amount of potassium acetate aqueous solution was impregnated in the coat layer, and calcination was performed in air at 300 ° C. for 3 hours. The amount of Fe supported was 0.12 mol / L, and the amount of K supported was 0.6 mol / L. Further, the sample of Example 1 was subjected to heat treatment at 750 ° C. for 5 hours while switching between rich and lean at a flow rate of 10 L / min using a rich model gas and a lean model gas shown in Table 1 at a rate of 10 seconds / 110 seconds. Got.

実施例1で得られた試料について前記と同様にXRD測定を行ったところ、33.152°付近に細いピークが観測され、粒径3nm〜20μmのヘマタイトの存在が確認された。   When XRD measurement was performed on the sample obtained in Example 1 in the same manner as described above, a thin peak was observed around 33.152 °, and the presence of hematite with a particle size of 3 nm to 20 μm was confirmed.

(実施例2)
MgAlスピネル粉末と、Rhの担持量が0.5g/LとなるようにRhが担持された市販ZrO粉末(第1稀元素化学工業社製、RC100)と、Fe粉末(戸田工業社製、100ED、平均粒径:0.1μm)との混合粉末を定法でスラリー化し、コーディエライト製のモノリス基材(直径30mm、長さ50mm、体積35cc)にMgAlスピネル粉末の担持量が200g/L、ZrO粉末の担持量が50g/L、Fe粉末の担持量がFeとして0.12mol/Lとなるようにコート層を形成した。次に、所定量の酢酸カリウム水溶液をコート層に含浸させ、空気中で300℃×3時間の仮焼を行った。Kの担持量は0.6mol/Lであった。さらに、表1に示すリッチモデルガス及びリーンモデルガスを用いて10L/minの流速でリッチとリーンを10秒/110秒で切り替えながら、750℃×5時間の熱処理を行い、実施例2の試料を得た。
(Example 2)
MgAl 2 O 4 spinel powder, commercially available ZrO 2 powder (RC100, manufactured by 1 Rare Elemental Chemical Co., Ltd.) on which Rh is supported so that the amount of Rh supported is 0.5 g / L, and Fe 2 O 3 powder (Made by Toda Kogyo Co., Ltd., 100ED, average particle size: 0.1 μm) was mixed with a conventional method and slurried with a monolith base material (diameter 30 mm, length 50 mm, volume 35 cc) made of cordierite with MgAl 2 O 4 The coat layer was formed so that the supported amount of spinel powder was 200 g / L, the supported amount of ZrO 2 powder was 50 g / L, and the supported amount of Fe 2 O 3 powder was 0.12 mol / L as Fe. Next, a predetermined amount of potassium acetate aqueous solution was impregnated into the coat layer, and calcination was performed in air at 300 ° C. for 3 hours. The amount of K supported was 0.6 mol / L. Further, the sample of Example 2 was subjected to heat treatment at 750 ° C. for 5 hours while switching between rich and lean at a flow rate of 10 L / min using a rich model gas and a lean model gas shown in Table 1 at a rate of 10 seconds / 110 seconds. Got.

実施例2で得られた試料について前記と同様にXRD測定を行ったところ、平均粒径0.1μmのヘマタイトの存在が確認された。   When XRD measurement was performed on the sample obtained in Example 2 in the same manner as described above, the presence of hematite having an average particle size of 0.1 μm was confirmed.

(実施例3)
Rhの担持量が0.5g/LとなるようにRhが担持された市販ZrO粉末に代えてRhの担持量が0.5g/LとなるようにRhが担持されたMgAlスピネル粉末を使用したこと以外は実施例1と同様にして実施例3の試料を得た。
(Example 3)
MgAl 2 O 4 spinel on which Rh is supported so that the amount of Rh supported is 0.5 g / L instead of commercially available ZrO 2 powder on which Rh is supported so that the amount of Rh is 0.5 g / L A sample of Example 3 was obtained in the same manner as Example 1 except that powder was used.

実施例3で得られた試料について前記と同様にXRD測定を行ったところ、33.152°付近に細いピークが観測され、粒径3nm〜20μmのヘマタイトの存在が確認された。   When XRD measurement was performed on the sample obtained in Example 3 in the same manner as described above, a thin peak was observed around 33.152 °, and the presence of hematite with a particle size of 3 nm to 20 μm was confirmed.

(実施例4)
MgAlスピネル粉末を定法でスラリー化し、コーディエライト製のモノリス基材(直径30mm、長さ50mm、体積35cc)にMgAlスピネル粉末の担持量が200g/Lとなるようにコート層を形成した。次に、所定量の硝酸ロジウム水溶液をコート層に含浸させ、空気中で300℃×3時間の仮焼を行った。次いで、所定量の硝酸鉄・9水和物水溶液をコート層に含浸させ、空気中で300℃×3時間の仮焼を行った。さらに、所定量の酢酸カリウム水溶液をコート層に含浸させ、空気中で300℃×3時間の仮焼を行った。Rhの担持量は0.5g/L、Feの担持量は0.12mol/L、Kの担持量は0.6mol/Lであった。さらに、表1に示すリッチモデルガス及びリーンモデルガスを用いて10L/minの流速でリッチとリーンを10秒/110秒で切り替えながら、750℃×5時間の熱処理を行い、実施例4の試料を得た。
Example 4
Slurry MgAl 2 O 4 spinel powder by a regular method and coat it on a cordierite monolith substrate (diameter 30 mm, length 50 mm, volume 35 cc) so that the supported amount of MgAl 2 O 4 spinel powder is 200 g / L A layer was formed. Next, the coating layer was impregnated with a predetermined amount of an aqueous rhodium nitrate solution and calcined at 300 ° C. for 3 hours in air. Subsequently, the coating layer was impregnated with a predetermined amount of an aqueous iron nitrate nonahydrate solution, and calcined at 300 ° C. for 3 hours in air. Further, a predetermined amount of potassium acetate aqueous solution was impregnated in the coat layer, and calcination was performed in air at 300 ° C. for 3 hours. The supported amount of Rh was 0.5 g / L, the supported amount of Fe was 0.12 mol / L, and the supported amount of K was 0.6 mol / L. Further, the sample of Example 4 was subjected to heat treatment at 750 ° C. for 5 hours while switching between rich and lean at a flow rate of 10 L / min using a rich model gas and a lean model gas shown in Table 1 at a rate of 10 seconds / 110 seconds. Got.

実施例4で得られた試料について前記と同様にXRD測定を行ったところ、33.152°付近に細いピークが観測され、粒径3nm〜20μmのヘマタイトの存在が確認された。   When XRD measurement was performed on the sample obtained in Example 4 in the same manner as described above, a thin peak was observed around 33.152 °, and the presence of hematite with a particle size of 3 nm to 20 μm was confirmed.

(実施例5)
担持するK量を0.3mol/Lとしたこと以外は実施例1と同様にして実施例5の試料を得た。
(Example 5)
A sample of Example 5 was obtained in the same manner as in Example 1 except that the amount of K to be supported was 0.3 mol / L.

(実施例6)
担持するK量を0.15mol/Lとしたこと以外は実施例1と同様にして実施例6の試料を得た。
(Example 6)
A sample of Example 6 was obtained in the same manner as in Example 1 except that the amount of K to be supported was 0.15 mol / L.

(比較例1)
MgAlスピネル粉末の代わりに市販のアルミナ粉末(WRグレース社製、MI386)を使用したこと以外は実施例1と同様にして比較例1の試料を得た。比較例1で得られた試料について前記と同様にXRD測定を行ったところ、33.152°付近にピークは観測されず、ヘマタイトの存在は確認されなかった。
(Comparative Example 1)
A sample of Comparative Example 1 was obtained in the same manner as Example 1 except that a commercially available alumina powder (MI386 manufactured by WR Grace Co.) was used instead of the MgAl 2 O 4 spinel powder. When XRD measurement was performed on the sample obtained in Comparative Example 1 in the same manner as described above, no peak was observed near 33.152 °, and the presence of hematite was not confirmed.

(比較例2)
MgAlスピネル粉末の代わりに市販のマグネシア粉末(宇部マテリアルズ社製、500A)を使用したこと以外は実施例1と同様にして比較例2の試料を得た。比較例2で得られた試料について前記と同様にXRD測定を行ったところ、33.152°付近にピークは観測されず、ヘマタイトの存在は確認されなかった。
(Comparative Example 2)
A sample of Comparative Example 2 was obtained in the same manner as in Example 1 except that a commercially available magnesia powder (500 A manufactured by Ube Materials Co., Ltd.) was used instead of the MgAl 2 O 4 spinel powder. When the XRD measurement was performed on the sample obtained in Comparative Example 2 in the same manner as described above, no peak was observed near 33.152 °, and the presence of hematite was not confirmed.

(比較例3)
MgAlスピネル粉末の代わりに市販のジルコニア粉末(第1稀元素化学工業社製、RC100)を使用したこと以外は実施例1と同様にして比較例3の試料を得た。比較例3で得られた試料について前記と同様にXRD測定を行ったところ、33.152°付近にピークは観測されず、ヘマタイトの存在は確認されなかった。
(Comparative Example 3)
A sample of Comparative Example 3 was obtained in the same manner as in Example 1 except that a commercially available zirconia powder (RC100, manufactured by 1st Rare Element Chemical Industry Co., Ltd.) was used instead of the MgAl 2 O 4 spinel powder. When the XRD measurement was performed on the sample obtained in Comparative Example 3 in the same manner as described above, no peak was observed near 33.152 °, and the presence of hematite was not confirmed.

(比較例4)
Feを含浸担持せしめる代わりに、ジニトロジアミノ白金水溶液を用いて担持量が2g/LとなるようにPtを担持せしめたこと以外は実施例1と同様にして比較例4の試料を得た。
(Comparative Example 4)
A sample of Comparative Example 4 was obtained in the same manner as in Example 1 except that instead of impregnating and supporting Fe, Pt was supported using a dinitrodiaminoplatinum aqueous solution so that the supported amount was 2 g / L.

(比較例5)
Feを含浸担持せしめる代わりに、ジニトロジアミノ白金水溶液を用いて担持量が2g/LとなるようにPtを担持せしめたこと以外は比較例1と同様にして比較例5の試料を得た。
(Comparative Example 5)
A sample of Comparative Example 5 was obtained in the same manner as Comparative Example 1 except that instead of impregnating and supporting Fe, Pt was supported using a dinitrodiaminoplatinum aqueous solution so that the supported amount was 2 g / L.

(比較例6)
Kを含浸担持せしめる代わりに、酢酸バリウム水溶液を用いて担持量が0.4mol/LとなるようにBaを担持せしめたこと以外は実施例1と同様にして比較例6の試料を得た。
(Comparative Example 6)
A sample of Comparative Example 6 was obtained in the same manner as in Example 1 except that instead of impregnating and supporting K, Ba was supported using an aqueous barium acetate solution so that the supported amount was 0.4 mol / L.

(比較例7)
Kを含浸担持せしめる代わりに、酢酸バリウム水溶液を用いて担持量が0.2mol/LとなるようにBaを担持せしめたこと以外は実施例1と同様にして比較例7の試料を得た。
(Comparative Example 7)
A sample of Comparative Example 7 was obtained in the same manner as in Example 1 except that, instead of impregnating and supporting K, Ba was supported using an aqueous barium acetate solution so that the supported amount was 0.2 mol / L.

<95%NO吸蔵量の評価>
実施例1〜4及び比較例1〜7で得られた試料をそれぞれ評価装置に配置し、表2に示すリッチモデルガスを用いて、入りガス温度が600℃、SVが51400h−1の条件下でリッチ状態を5分間続けた後、ガスを表2に示すリーンモデルガスに切り替え、出ガス中のNO濃度を算出し、以下のようにして600℃における95%NO吸蔵量を求めた。
<Evaluation of 95% NO x storage amount>
The samples obtained in Examples 1 to 4 and Comparative Examples 1 to 7 was placed in each evaluation device, with a rich model gas shown in Table 2, enters the gas temperature is 600 ° C., SV is 51400H -1 conditions After the rich state was continued for 5 minutes, the gas was switched to the lean model gas shown in Table 2, the NO x concentration in the outgas was calculated, and the 95% NO x occlusion amount at 600 ° C. was determined as follows. .

すなわち、出ガス中のNO濃度は、リッチ状態からリーン状態に切り替わった直後から図4に模式的に示すように徐々に増大する(触媒通過後のNO濃度)。そして、リッチ状態からリーン状態に切り替わった直後から時間tが経過するまでに、触媒に流入したNO総量は図4に示すA+Bの面積で表され、触媒に吸蔵されたNO量はAの部分の面積で表される。そこで、Aの部分の面積がA+Bの面積の95%以上となるときの時間tを測定し、Aの部分の面積に相当するNO量を算出して600℃95%NO吸蔵量とした。実施例1〜4及び比較例1〜7で得られた試料について測定した結果を表3にに示す。 That is, the NO x concentration in the output gas gradually increases as shown schematically in FIG. 4 immediately after switching from the rich state to the lean state (NO x concentration after passing through the catalyst). The total amount of NO x flowing into the catalyst from the time immediately after switching from the rich state to the lean state until the elapse of time t 1 is represented by the area of A + B shown in FIG. 4, and the amount of NO x occluded in the catalyst is A It is represented by the area of the part. Therefore, the time t 1 when the area of the A portion becomes 95% or more of the area of A + B is measured, and the NO x amount corresponding to the area of the A portion is calculated to obtain a 600 ° C. 95% NO x occlusion amount. did. Table 3 shows the measurement results of the samples obtained in Examples 1 to 4 and Comparative Examples 1 to 7.

表3に示した結果から明らかなとおり、MgAlスピネル粉末を担体として使用し、Feを含浸あるいは粉末で添加して粒径3nm〜20μmのヘマタイトを担持せしめた本発明の触媒においては、非常に高い95%NO吸蔵量を示すことが確認された。 As is apparent from the results shown in Table 3, in the catalyst of the present invention in which MgAl 2 O 4 spinel powder was used as a carrier and Fe was impregnated or added as a powder to support hematite with a particle size of 3 nm to 20 μm, It was confirmed to show a very high 95% NO x storage amount.

また、実施例1、5,6で得られた試料について前記と同様にして600℃における95%NO吸蔵量を求め、得られた結果を図5に示す。図5に示した結果から、Kの担持量は0.3mol/Lより多いことが好ましいことが確認された。 Also, determine the 95% NO x storage amount in the and 600 ° C. in the same manner for the samples obtained in Examples 1, 5 and 6, Figure 5 shows the results obtained. From the results shown in FIG. 5, it was confirmed that the supported amount of K is preferably more than 0.3 mol / L.

以上説明したように、本発明によれば、貴金属の担持量が少なく、特に白金やパラジウムを用いない場合であっても、400℃以上という高温領域において十分に高いNO吸蔵能を有するNO吸蔵還元型触媒を提供することが可能となる。 As described above, according to the present invention, NO x having a sufficiently high NO x storage capacity in a high temperature region of 400 ° C. or higher is obtained even when the amount of noble metal supported is small and platinum or palladium is not particularly used. It is possible to provide an occlusion reduction catalyst.

したがって、本発明のNO吸蔵還元型触媒は、特に高温域において高いNO浄化率を示すNO吸蔵還元型の排ガス浄化用触媒として非常に有用である。 Therefore, the NO x storage reduction catalyst of the present invention is very useful as an NO x storage reduction type exhaust gas purification catalyst exhibiting a high NO x purification rate particularly in a high temperature range.

予備実施例1及び予備比較例1〜3で得られた試料のX線回折プロファイルを示すグラフである。It is a graph which shows the X-ray-diffraction profile of the sample obtained by the preliminary Example 1 and preliminary comparative examples 1-3. 予備実施例1で得られた試料のFE−TEM写真である。2 is an FE-TEM photograph of a sample obtained in Preparatory Example 1. 予備比較例1で得られた試料のFE−TEM写真である。2 is an FE-TEM photograph of a sample obtained in Preliminary Comparative Example 1. リッチ状態からリーン状態に切り替わった直後における出ガス中のNO濃度を模式的に示すグラフである。The concentration of NO x output in the gas immediately after switching from the rich state to the lean state is a graph showing schematically. 実施例1、5,6で得られた試料における600℃95%NO吸蔵量を示すグラフである。4 is a graph showing the 600 ° C. 95% NO x occlusion amount in the samples obtained in Examples 1, 5, and 6. FIG.

Claims (4)

粒径3nm〜20μmのヘマタイトと、
アルカリ金属と、
ロジウムと、
鉄と複合酸化物を形成し難い金属酸化物からなる酸化物担体と、
を備えることを特徴とするNO吸蔵還元型触媒。
Hematite with a particle size of 3 nm to 20 μm,
With alkali metals,
Rhodium,
An oxide carrier made of a metal oxide that is difficult to form a complex oxide with iron;
NO x storage-and-reduction type catalyst, characterized in that it comprises a.
前記の鉄と複合酸化物を形成し難い金属酸化物が、該金属酸化物200gに対して0.01〜1.0molの鉄を含む化合物と接触した状態で大気中750℃で5時間熱処理した後に粒径3nm〜20μmのヘマタイトを存在させ得る金属酸化物であることを特徴とする請求項1に記載のNO吸蔵還元型触媒。 The metal oxide which is difficult to form a complex oxide with iron was heat-treated at 750 ° C. for 5 hours in the atmosphere in contact with a compound containing 0.01 to 1.0 mol of iron with respect to 200 g of the metal oxide. NO x storage-and-reduction type catalyst according to claim 1, characterized in that a metal oxide that may be present hematite particle size 3nm~20μm later. 前記の鉄と複合酸化物を形成し難い金属酸化物が、マグネシア・アルミナスピネル構造を有する複合酸化物であることを特徴とする請求項1又は2に記載のNO吸蔵還元型触媒。 3. The NO x storage reduction catalyst according to claim 1, wherein the metal oxide which is difficult to form a composite oxide with iron is a composite oxide having a magnesia-alumina spinel structure. 白金及びパラジウムを実質的に含有しておらず、前記ロジウムの担持量が触媒1リットル当たり0.01〜2.0gであることを特徴とする請求項1〜3のうちのいずれか一項に記載のNO吸蔵還元型触媒。 It contains substantially no platinum and palladium, and the supported amount of rhodium is 0.01 to 2.0 g per liter of the catalyst. The NO x storage-reduction catalyst as described.
JP2006139195A 2006-05-18 2006-05-18 NOx storage reduction catalyst Expired - Fee Related JP4730709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006139195A JP4730709B2 (en) 2006-05-18 2006-05-18 NOx storage reduction catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006139195A JP4730709B2 (en) 2006-05-18 2006-05-18 NOx storage reduction catalyst

Publications (2)

Publication Number Publication Date
JP2007307485A true JP2007307485A (en) 2007-11-29
JP4730709B2 JP4730709B2 (en) 2011-07-20

Family

ID=38840818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006139195A Expired - Fee Related JP4730709B2 (en) 2006-05-18 2006-05-18 NOx storage reduction catalyst

Country Status (1)

Country Link
JP (1) JP4730709B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009285622A (en) * 2008-05-30 2009-12-10 Mazda Motor Corp Exhaust gas purification catalyst
JP2009285620A (en) * 2008-05-30 2009-12-10 Mazda Motor Corp Exhaust gas purification catalyst
JP2009285619A (en) * 2008-05-30 2009-12-10 Mazda Motor Corp Exhaust gas purification catalyst
JP2009285621A (en) * 2008-05-30 2009-12-10 Mazda Motor Corp Exhaust gas purification catalyst
JP2009285624A (en) * 2008-05-30 2009-12-10 Mazda Motor Corp Catalyst for cleaning exhaust gas
JP2010104973A (en) * 2007-12-14 2010-05-13 Nissan Motor Co Ltd Purifying catalyst
JP2012239942A (en) * 2011-05-16 2012-12-10 Toyota Motor Corp Exhaust gas cleaning catalyst
JP2013202473A (en) * 2012-03-28 2013-10-07 Cataler Corp Supported catalyst for exhaust gas cleaning
WO2015122561A1 (en) * 2014-02-12 2015-08-20 한국과학기술원 Method for preparing bimetallic catalyst with high nitrate removal efficiency and nitrogen selectivity, and catalyst prepared thereby

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002079094A (en) * 2000-09-08 2002-03-19 Toyota Central Res & Dev Lab Inc HIGH TEMPERATURE NOx ABSORBING AND REDUCTION TYPE CATALYST
JP2004267807A (en) * 2003-03-05 2004-09-30 Okura Ind Co Ltd Catalyst for removing particle substance in exhaust gas of diesel engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002079094A (en) * 2000-09-08 2002-03-19 Toyota Central Res & Dev Lab Inc HIGH TEMPERATURE NOx ABSORBING AND REDUCTION TYPE CATALYST
JP2004267807A (en) * 2003-03-05 2004-09-30 Okura Ind Co Ltd Catalyst for removing particle substance in exhaust gas of diesel engine

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010104973A (en) * 2007-12-14 2010-05-13 Nissan Motor Co Ltd Purifying catalyst
JP4577408B2 (en) * 2008-05-30 2010-11-10 マツダ株式会社 Exhaust gas purification catalyst
JP4666007B2 (en) * 2008-05-30 2011-04-06 マツダ株式会社 Exhaust gas purification catalyst
JP2009285621A (en) * 2008-05-30 2009-12-10 Mazda Motor Corp Exhaust gas purification catalyst
JP2009285624A (en) * 2008-05-30 2009-12-10 Mazda Motor Corp Catalyst for cleaning exhaust gas
JP2009285620A (en) * 2008-05-30 2009-12-10 Mazda Motor Corp Exhaust gas purification catalyst
JP2009285622A (en) * 2008-05-30 2009-12-10 Mazda Motor Corp Exhaust gas purification catalyst
JP4656188B2 (en) * 2008-05-30 2011-03-23 マツダ株式会社 Exhaust gas purification catalyst
JP2009285619A (en) * 2008-05-30 2009-12-10 Mazda Motor Corp Exhaust gas purification catalyst
JP4666006B2 (en) * 2008-05-30 2011-04-06 マツダ株式会社 Exhaust gas purification catalyst
JP2012239942A (en) * 2011-05-16 2012-12-10 Toyota Motor Corp Exhaust gas cleaning catalyst
JP2013202473A (en) * 2012-03-28 2013-10-07 Cataler Corp Supported catalyst for exhaust gas cleaning
WO2015122561A1 (en) * 2014-02-12 2015-08-20 한국과학기술원 Method for preparing bimetallic catalyst with high nitrate removal efficiency and nitrogen selectivity, and catalyst prepared thereby
KR101547100B1 (en) 2014-02-12 2015-08-25 한국과학기술원 Bimetallic catalyst for high nitrate reduction and selectivity and Manufacturing method thereof
US9764969B2 (en) 2014-02-12 2017-09-19 Korea Advanced Institute Of Science And Technology Bimetallic catalyst for high nitrate nitrogen reduction and selectivity and manufacturing methods thereof

Also Published As

Publication number Publication date
JP4730709B2 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
JP4730709B2 (en) NOx storage reduction catalyst
JP6907890B2 (en) Exhaust gas purification catalyst
JP2002331238A (en) Composite oxide, method for manufacturing the same, exhaust gas cleaning catalyst and method for manufacturing the same
JP2014522725A (en) Palladium solid solution catalyst and production method
WO2014002667A1 (en) Catalyst composition for exhaust gas purification and exhaust gas purifying catalyst for automobiles
JP6604815B2 (en) Exhaust gas purification device
JPH10286462A (en) Catalyst of purifying exhaust gas
JP2006051431A (en) Ternary catalyst for exhaust gas purification, and its production method
JP2010046656A (en) Catalyst for purifying exhaust gas and exhaust gas purification method using the catalyst
JP7355775B2 (en) Exhaust gas purification catalyst
JP5827567B2 (en) Method for producing catalyst carrier or catalyst
JP2010119994A (en) Catalyst for cleaning exhaust
WO2011051803A1 (en) Oxygen adsorbent based on lanthanoide oxysulfate, method for producing it, and exhaust gas purifying catalyst containing it
JP6401740B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2007301471A (en) Catalyst for cleaning exhaust gas
JP7262975B2 (en) Ceria-Zirconia Composite Oxygen Absorption-Desorption Material and Exhaust Gas Purification Catalyst
JP4807620B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP7448620B2 (en) Nitrogen oxide storage materials and exhaust gas purification catalysts
JP2007203160A (en) Catalyst support for purification of exhaust gas, catalyst for purification of exhaust gas using it and method of purifying exhaust gas
JP2007260564A (en) Exhaust gas-purifying catalyst and method for regenerating the same
JP4239679B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3897483B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method
JP6096818B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method using the same
JP4737149B2 (en) Catalyst carrier and catalyst
JP2010051847A (en) Catalyst for cleaning exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110106

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110328

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110410

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees