JP3503766B2 - High heat resistant exhaust gas purification catalyst - Google Patents

High heat resistant exhaust gas purification catalyst

Info

Publication number
JP3503766B2
JP3503766B2 JP19569394A JP19569394A JP3503766B2 JP 3503766 B2 JP3503766 B2 JP 3503766B2 JP 19569394 A JP19569394 A JP 19569394A JP 19569394 A JP19569394 A JP 19569394A JP 3503766 B2 JP3503766 B2 JP 3503766B2
Authority
JP
Japan
Prior art keywords
exhaust gas
carrier
amount
catalyst
high heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19569394A
Other languages
Japanese (ja)
Other versions
JPH0857312A (en
Inventor
慎二 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP19569394A priority Critical patent/JP3503766B2/en
Publication of JPH0857312A publication Critical patent/JPH0857312A/en
Application granted granted Critical
Publication of JP3503766B2 publication Critical patent/JP3503766B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は排気ガス浄化用触媒に関
し、詳しくは耐熱性に優れ、高い耐熱性を長期間維持で
きる排気ガス浄化用触媒に関する。 【0002】 【従来の技術】従来より、自動車の排気ガス浄化用触媒
として、CO及びHCの酸化とNOxの還元とを同時に
行って排気ガスを浄化する三元触媒が用いられている。
このような触媒としては、例えばコージェライトなどの
耐熱性担体基材にγ−アルミナからなる多孔質担体から
担持層を形成し、その担持層にPt,Pd,Rhなどの
貴金属触媒を担持させたものが広く知られている。 【0003】ところで、このような排気ガス浄化用触媒
の浄化性能は、エンジンの空燃比(A/F)によって大
きく異なる。すなわち、空燃比の大きい、つまり燃料濃
度が希薄なリーン側では排気ガス中の酸素量が多くな
り、COやHCを浄化する酸化反応が活発である反面N
Oxを浄化する還元反応が不活発になる。逆に空燃比の
小さい、つまり燃料濃度が濃いリッチ側では排気ガス中
の酸素量が少なくなり、酸化反応は不活発となるが還元
反応は活発になる。 【0004】一方、自動車の走行において、市街地走行
の場合には加速・減速が頻繁に行われ、空燃比はストイ
キ(理論空燃比)近傍からリッチ状態までの範囲内で頻
繁に変化する。このような走行における低燃費化の要請
に応えるには、なるべく酸素過剰の混合気を供給するリ
ーン側での運転が必要となる。したがってリーン側にお
いてもNOxを十分に浄化できる触媒の開発が望まれて
いる。 【0005】そこで本願出願人は、Baに代表されるア
ルカリ土類金属とPtを活性アルミナ担体に担持した触
媒(特願平4-130904号)を提案している。この触媒によ
れば、NOxはリーン側での運転時にアルカリ土類金属
などのNOx吸蔵材に吸蔵され、それがストイキ又はリ
ッチ側での運転となった時に排気ガス中に含まれるH
C、COなどの還元性ガスと反応して浄化されるため、
リーン側においてもNOxの浄化性能に優れている。 【0006】 【発明が解決しようとする課題】ところがアルカリ土類
金属とPtを活性アルミナ担体に担持した触媒では、8
00℃前後でアルカリ土類金属とアルミナからなる結晶
性アルミネートが生成してNOx吸蔵量が低下するとい
う不具合があり、耐熱性が不十分であった。またストイ
キ近傍の過渡域においては、酸素が少なくなるとPt上
でのNOの酸化反応が行われずNOxの吸蔵量が少なく
なり、逆に酸素が多くなると吸蔵されているNOxの放
出が減るため、いずれにしてもNOxの浄化性能が低下
するという問題がある。 【0007】本発明はこのような事情に鑑みてなされた
ものであり、高温時の結晶性アルミネート及び結晶性セ
リウム酸化物の生成を防止して耐熱性を満足させるとと
もに、ストイキ近傍の過渡域においても高いNOx浄化
性能を有するようにすることを目的とする。 【0008】 【課題を解決するための手段】上記課題を解決する本発
明の高耐熱性排気ガス浄化用触媒は、次の組成式で表さ
れる非晶質アルミネートの担体と、その担体に担持され
た触媒貴金属と、からなり、MOを4.8〜28.8重
量%、CeO 2 を17.0〜27.2重量%、Al 2
3 を51.0〜72.9重量%含むことを特徴とする。 組成式 aMO・bCeO2 ・cAl2 3 (ここでMOはアルカリ金属、アルカリ土類金属及び希
土類元素から選ばれる元素の酸化物、モル比a:cは
1:6〜1:3、モル比b:cは2:11〜3:11) 【0009】 【作用】本発明の排気ガス浄化用触媒では、リーン雰囲
気においては、排気ガス中のNOは触媒貴金属上で酸化
されてNO2 となり、NOx吸蔵元素に硝酸塩として吸
蔵される。そしてリッチ雰囲気になると、NOx吸蔵元
素に吸蔵されていたNOxが放出され、触媒貴金属上で
HC及びCOによって還元されてN2 となる。これによ
り高いNOx浄化性能が得られる。 【0010】一方、ストイキ近傍の過渡域において酸素
量が変動した場合には、セリウムの酸素吸蔵・放出作用
により酸素量の変動が緩和され、上記酸化・還元反応が
活発に行われるので高いNOx浄化性能を示す。そして
本発明の排気ガス浄化用触媒では、組成式aMO・bC
eO2 ・cAl 2 3 の非晶質アルミネートにおいて、
各酸化物のモル比を、a:cは1:6〜1:3、b:c
は2:11〜3:11とすることにより、800℃〜1
000℃の高温において各元素が均質に分散した非晶質
の状態を維持することができる。したがって、高比表面
積を維持することができ高い触媒活性を示す。 【0011】そして800℃〜1000℃の高温におい
てNOx吸蔵元素及びセリウムの結晶化が防止されてい
るので、NOx吸蔵元素及びセリウムは高分散状態が維
持され、上記NOx吸蔵作用と酸素の吸蔵・放出作用の
低下がない。これによりNOx浄化性能の低下がなく高
い耐熱性を有している。モル比a:cで1:6よりaが
小さくなると、つまりアルミナに対してNOx吸蔵元素
が所定量より少なくなるとNOx吸蔵能が小さくなり、
1:3よりaが大きくなると、つまりアルミナに対して
NOx吸蔵元素が所定量より多くなると、結晶性のアル
ミネートが生成するため耐熱性が低下する。 【0012】またモル比b:cで2:11よりbが小さ
くなると、つまりアルミナに対してセリウムが所定量よ
り少なくなると結晶性のセリウム酸化物が生成し易くな
り、3:11よりbが大きくなると、つまりアルミナに
対してセリウムが所定量より多くなっても、結晶性のセ
リウム酸化物が生成するため耐熱性が低下する。 【0013】 【実施例】 (発明の具体例)触媒貴金属としては、白金(Pt)、
パラジウム(Pd)、ロジウム(Rh)の少なくとも一
種が用いられる。白金又はパラジウムの担持量は、担体
1リットルに対して0.1〜20.0gの範囲が望まし
く、0.3〜10.0gの範囲が特に好ましい。担持量
が0.1g/Lより少ないと初期及び耐久後のNOx浄
化性能が低下し、20.0g/Lを超えて担持しても効
果が飽和し、過剰に担持された触媒貴金属の有効利用が
図れない。 【0014】ロジウムの担持量は、担体1リットルに対
して0.001〜1.0gの範囲が望ましく、0.05
〜0.5gの範囲が特に好ましい。担持量が0.001
g/Lより少ないと初期及び耐久後のNOx浄化性能が
低下し、1.0g/Lを超えると白金あるいはパラジウ
ムの効果が逆に低下する。ロジウムの担持量は白金ある
いはパラジウムの担持量と相対的に決定されるのが望ま
しく、白金あるいはパラジウムの担持量の合計量の1/
3以下、さらに好ましくは1/5以下とするのがよい。 【0015】アルカリ金属としてはリチウム、ナトリウ
ム、カリウム、ルビジウム、セシウム、フランシウムが
挙げられる。また、アルカリ土類金属とは周期表2A族
元素をいい、バリウム、ベリリウム、マグネシウム、カ
ルシウム、ストロンチウムが挙げられる。また希土類元
素としては、スカンジウム、イットリウム、ランタン、
セリウム、プラセオジム、ネオジムなどが例示される。 【0016】組成式のような非晶質アルミネート担体を
形成するには、各金属原料のアルコキシド、酢酸塩また
は硝酸塩などを用いて、ゾル−ゲル法、共沈法あるいは
クエン酸法などにより液相から均質に合成する方法を利
用するのが望ましい。 (実施例1)ゾル−ゲル合成用還流装置付きフラスコ中
に2−プロパノールを1リットル入れ、80℃に保持す
る。そして攪拌しながらアルミニウムイソプロポキシド
480gを添加して溶解させ、80℃で2時間攪拌す
る。 【0017】次に、溶液を80℃で攪拌しながら、バリ
ウムジイソプロポキシド50gと硝酸セリウム41gを
滴下し、全量添加後80℃でさらに2時間攪拌を続け
る。その後、溶液を80℃で攪拌しながら、純水270
gと2−プロパノール0.45リットルの混合溶液を滴
下する。滴下速度は20cc/minであり、滴下後8
0℃で12時間攪拌を続けて熟成する。なお、水は全ア
ルコキシドに対してモル比で3倍の量である。 【0018】その後、真空中にて加熱してプロパノール
を回収する。得られた乾燥物を鉄芯入りナイロンコート
ボールを用いて粉砕して粉末とし、450℃で仮焼後、
800℃で5時間焼成した。また焼成温度を900℃又
は1000℃として5時間焼成したものもそれぞれ作製
した。得られた3種類の粉末は、X線回折分析の結果そ
れぞれ非晶質であることが確認された。 【0019】得られた担体粉末の組成と比表面積を表1
に示す。次に、上記担体粉末に所定量のジニトロジアン
ミン白金水溶液を含浸させ、110℃で乾燥後250℃
で1時間焼成した。担持されたPt量は、担体粉末中の
アルミナ量100gに対してPt1.5gである。さら
にPt担持粉末に所定量の硝酸ロジウム水溶液を含浸さ
せ、110℃で乾燥後250℃で1時間焼成した。担持
されたRh量は、担体粉末中のアルミナ量100gに対
してRh0.4gである。 【0020】得られた粉末をペレット状に成形し、実施
例1の排気ガス浄化用触媒とした。 (他の実施例)出発原料の金属アルコキシドの種類・比
率を表1の組成となるように種々選択し、実施例1と同
様にして非晶質の担体粉末を調製し、実施例1と同様に
してPtとRhを同量担持させて各実施例の排気ガス浄
化用触媒を調製した。 (比較例1)表1の組成となるように実施例1と同様に
して担体粉末を調製した。そしてX線回折の結果、90
0℃以上で焼成した担体粉末にはセリウム酸化物が結晶
状態で含まれていることが確認された。この担体粉末に
も実施例1と同様にしてPtとRhを同量担持させ、比
較例1の排気ガス浄化用触媒を調製した。 (比較例2)表1の組成となるように実施例1と同様に
して担体粉末を調製した。そしてX線回折の結果、80
0℃以上で焼成した担体粉末には、晶性のバリウムア
ルミネートと結晶性のセリウム酸化物が含まれているこ
とが確認された。この担体粉末にも実施例1と同様にし
てPtとRhを同量担持させ、比較例1の排気ガス浄化
用触媒を調製した。 (比較例3,4)セリウムまたはバリウムの一方を含ま
ないこと以外は実施例1と同様にして、表1の組成で担
体粉末を調製し、実施例1と同様にしてPtとRhを同
量担持させ、比較例3,4の排気ガス浄化用触媒を調製
した。 【0021】 【表1】【0022】(評価)図1に示すモデルガス流通評価装
置を用い、上記各触媒に対して表2に示す組成のモデル
ガスを800℃又は900℃で100時間流通させた。
リーン雰囲気とストイキ雰囲気の両モデルガスは2分間
隔で流通された。 【0023】 【表2】 その後、各触媒について比表面積を測定した。また、上
記流通条件と同条件でモデルガスを流通させたときのN
Ox浄化率及びHCの50%浄化温度(T50)を測定
し、結果を表3に示す。 【0024】 【表3】【0025】表1より、比較例1及び比較例2の触媒
は、焼成により結晶性のセリウム酸化物及び結晶性のア
ルミネートが生成し比表面積も小さくなっている。これ
は前記組成式におけるa,b,cのモル比が本発明の範
囲から外れていることに起因していることが明らかであ
る。そして表3より、各実施例の排気ガス浄化用触媒は
比表面積が大きく、ストイキ近傍の過渡域においてもN
Ox浄化性能及びHCの浄化性能に優れていることがわ
かる。 【0026】しかし比較例1〜4はNOx浄化率に劣
り、比較例3はセリウムを含まないためにHCの浄化性
能が低く、比較例4ではバリウムを含まないためにNO
x浄化率が特に低いことがわかる。 【0027】 【発明の効果】すなわち本発明の排気ガス浄化用触媒に
よれば、ストイキ近傍の過渡域においても高いNOx浄
化性能を有するとともに、800〜1000℃の高温域
においても高い比表面積をもつ非晶質状態を維持でき、
かつNOx吸蔵元素とセリウムの高分散担持状態を維持
できるため、極めて耐熱性に優れている。
DETAILED DESCRIPTION OF THE INVENTION [0001] BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst.
In particular, it has excellent heat resistance and can maintain high heat resistance for a long period of time.
And a catalyst for purifying exhaust gas. [0002] 2. Description of the Related Art Conventionally, catalysts for purifying exhaust gas of automobiles
Simultaneously, oxidation of CO and HC and reduction of NOx
A three-way catalyst for purifying exhaust gas is used.
Such catalysts include, for example, cordierite and the like.
From porous carrier consisting of γ-alumina to heat-resistant carrier substrate
A carrier layer is formed, and Pt, Pd, Rh, etc.
Those supporting a noble metal catalyst are widely known. [0003] By the way, such an exhaust gas purifying catalyst is used.
The purification performance of the engine depends on the air-fuel ratio (A / F) of the engine.
Different. That is, the air-fuel ratio is large,
On the lean side, the amount of oxygen in the exhaust gas is large.
And the oxidation reaction for purifying CO and HC is active, but N
The reduction reaction for purifying Ox becomes inactive. Conversely, the air-fuel ratio
On the small side, that is, on the rich side where the fuel concentration is rich,
Oxygen reaction becomes inactive while the amount of oxygen in
The reaction becomes active. [0004] On the other hand, in the driving of automobiles, driving in urban areas
In this case, acceleration and deceleration are frequently performed, and the air-fuel ratio
G (stoichiometric air-fuel ratio) to a rich state.
It changes frequently. Demand for low fuel consumption in such driving
In order to respond to the
It is necessary to drive on the road side. So on the lean side
Development of a catalyst that can sufficiently purify NOx
I have. Accordingly, the applicant of the present application has proposed an apparatus represented by Ba.
Contact with alkaline earth metal and Pt supported on activated alumina carrier
A medium (Japanese Patent Application No. 4-130904) has been proposed. This catalyst
NOx will be alkaline earth metal during lean operation
Is stored in a NOx storage material such as stoichiometric
Contained in the exhaust gas when operating on the switch side
Because it is purified by reacting with reducing gases such as C and CO,
Also on the lean side, it has excellent NOx purification performance. [0006] SUMMARY OF THE INVENTION However, alkaline earths
In a catalyst in which metal and Pt are supported on an activated alumina carrier, 8
Crystal composed of alkaline earth metal and alumina at around 00 ℃
Aluminate is generated and NOx storage amount decreases
And the heat resistance was insufficient. Also Stoy
In the transition region near the key, when oxygen decreases, Pt increases.
NO oxidation reaction does not take place and NOx storage amount is small
Conversely, when the amount of oxygen increases, the released NOx is released.
In any case, NOx purification performance is reduced due to reduced emissions
There is a problem of doing. The present invention has been made in view of such circumstances.
Crystalline aluminate and crystalline cell at high temperatures.
To prevent the formation of lithium oxide and satisfy heat resistance
High NOx purification even in the transient region near stoichiometry
The purpose is to have performance. [0008] [MEANS FOR SOLVING THE PROBLEMS]
Ming's highly heat-resistant exhaust gas purification catalyst is represented by the following composition formula.
Amorphous aluminate carrier and the carrier
Catalyst noble metal and body4.8 to 28.8 MO
Amount%, CeO Two From 17.0 to 27.2% by weight of Al Two O
Three From 51.0 to 72.9% by weightIt is characterized by the following. Composition formula aMO.bCeOTwo・ CAlTwoOThree (Where MO is an alkali metal, alkaline earth metal and rare metal
Oxides of elements selected from earth elements, molar ratio a: c
1: 6 to 1: 3, molar ratio b: c is 2:11 to 3:11) [0009] The exhaust gas purifying catalyst of the present invention has a lean atmosphere.
NO in exhaust gas is oxidized on catalytic noble metal
NOTwoAnd the NOx storage element absorbs as nitrate.
Is stored. And when it becomes rich atmosphere, NOx storage source
NOx stored in the element is released,
N reduced by HC and COTwoBecomes This
Higher NOx purification performance can be obtained. On the other hand, in the transition region near the stoichiometry, oxygen
When the amount fluctuates, cerium oxygen storage / release action
As a result, fluctuations in the amount of oxygen are reduced,
Since it is actively performed, it exhibits high NOx purification performance. And
In the exhaust gas purifying catalyst of the present invention, the composition formula aMO · bC
eOTwo・ CAl TwoOThreeIn the amorphous aluminate,
The molar ratio of each oxide, a: c is 1: 6 to 1: 3, b: c
Is from 800 ° C. to 1 by setting 2:11 to 3:11.
Amorphous with each element homogeneously dispersed at high temperature of 000 ℃
Can be maintained. Therefore, high specific surface
And maintain high catalytic activity. And a high temperature of 800 ° C. to 1000 ° C.
Crystallization of NOx storage element and cerium
Therefore, the NOx storage element and cerium remain in a highly dispersed state.
Of the NOx storage function and the oxygen storage / release function
There is no drop. As a result, there is no decrease in NOx purification performance
Has high heat resistance. A is greater than 1: 6 in the molar ratio a: c.
When it becomes smaller, that is, NOx storage element for alumina
Is less than the predetermined amount, the NOx storage capacity decreases,
When a is greater than 1: 3, that is, for alumina
When the NOx storage element exceeds a predetermined amount, crystalline Al
Heat resistance is reduced due to the formation of minate. B is smaller than 2:11 in the molar ratio b: c.
Is reached, that is, a certain amount of cerium is
When the amount is too low, crystalline cerium oxide is likely to be formed.
Is larger than 3:11, that is, alumina
On the other hand, even if the amount of cerium exceeds
Heat resistance is reduced due to the formation of lithium oxide. [0013] 【Example】 (Specific Examples of the Invention) Platinum (Pt),
At least one of palladium (Pd) and rhodium (Rh)
Seeds are used. The supported amount of platinum or palladium depends on the carrier
A range of 0.1 to 20.0 g per liter is desirable.
And the range of 0.3 to 10.0 g is particularly preferable. Carry amount
Is less than 0.1 g / L, NOx purification after initial and endurance
Performance is reduced, and it is effective even if it exceeds 20.0 g / L.
Fruits are saturated and the excess catalyst noble metal is effectively used.
I can't. The amount of rhodium supported is per liter of carrier.
Is preferably in the range of 0.001 to 1.0 g, and 0.05
A range of .about.0.5 g is particularly preferred. 0.001 supported
g / L, the NOx purification performance at the initial stage and after the endurance is
If it decreases and exceeds 1.0 g / L, platinum or palladium
The effect of the system is reduced. Rhodium loading is platinum
Or palladium loading should be determined
1/1 of the total amount of platinum or palladium carried
It is preferably 3 or less, more preferably 1/5 or less. As the alkali metal, lithium and sodium
, Potassium, rubidium, cesium, and francium
No. Alkaline earth metals are defined as group 2A in the periodic table.
Element means barium, beryllium, magnesium, mosquito
Lucium and strontium. Also rare earth element
The raw materials are scandium, yttrium, lanthanum,
Cerium, praseodymium, neodymium and the like are exemplified. An amorphous aluminate carrier of the composition formula
To form, the alkoxide, acetate or
Is a sol-gel method, a coprecipitation method or
Use a method of homogeneous synthesis from the liquid phase using the citric acid method, etc.
It is desirable to use Example 1 In a flask with a reflux device for sol-gel synthesis
1 liter of 2-propanol into the flask and keep at 80 ° C
You. And while stirring aluminum isopropoxide
Add 480 g to dissolve and stir at 80 ° C for 2 hours
You. Next, while stirring the solution at 80 ° C.,
50 g of umdiisopropoxide and 41 g of cerium nitrate
Add dropwise and continue stirring at 80 ° C for another 2 hours.
You. Thereafter, while stirring the solution at 80 ° C.,
g and 0.45 liter of 2-propanol in drops
Down. The dripping speed was 20 cc / min, and 8
Stir at 0 ° C. for 12 hours for aging. In addition, water is
It is three times the molar amount of lucoxide. Thereafter, the mixture is heated in a vacuum to obtain propanol.
Collect. Nylon coat with iron core
Pulverize with a ball to powder, calcine at 450 ° C,
It was baked at 800 ° C. for 5 hours. If the firing temperature is 900 ° C or
Also made each baked at 1000 ° C for 5 hours
did. The three types of powders obtained were analyzed by X-ray diffraction analysis.
It was confirmed that each was amorphous. Table 1 shows the composition and specific surface area of the obtained carrier powder.
Shown in Next, a predetermined amount of dinitrodian is added to the carrier powder.
Impregnated with an aqueous solution of minplatinum, dried at 110 ° C, and dried at 250 ° C
For 1 hour. The amount of supported Pt is
1.5 g of Pt for 100 g of alumina. Further
Is impregnated with a predetermined amount of rhodium nitrate aqueous solution
After drying at 110 ° C., it was baked at 250 ° C. for 1 hour. Carrying
The amount of Rh thus determined is based on 100 g of alumina in the carrier powder.
And 0.4 g of Rh. The obtained powder is formed into a pellet and
The exhaust gas purifying catalyst of Example 1 was used. (Other Examples) Kinds and ratios of metal alkoxides as starting materials
The ratio was variously selected so as to have the composition shown in Table 1, and the same as in Example 1.
In the same manner as in Example 1, an amorphous carrier powder was prepared.
To carry the same amount of Pt and Rh to purify the exhaust gas of each embodiment.
A catalyst for chemical conversion was prepared. (Comparative Example 1) In the same manner as in Example 1 so as to have the composition shown in Table 1,
Thus, a carrier powder was prepared. And as a result of X-ray diffraction, 90
Cerium oxide crystallized on carrier powder fired at 0 ° C or higher
It was confirmed that it was included in the state. This carrier powder
In the same manner as in Example 1, the same amount of Pt and Rh
An exhaust gas purifying catalyst of Comparative Example 1 was prepared. (Comparative Example 2) In the same manner as in Example 1 so as to have the composition shown in Table 1,
Thus, a carrier powder was prepared. And as a result of X-ray diffraction, 80
The carrier powder calcined at 0 ° C or higher containsConclusionCrystalline barium oxide
Luminate and crystalline cerium oxide
And was confirmed. This carrier powder was prepared in the same manner as in Example 1.
To carry the same amount of Pt and Rh, and purify the exhaust gas of Comparative Example 1.
A catalyst for use was prepared. (Comparative Examples 3 and 4) Contains one of cerium and barium
In the same manner as in Example 1 except that there was no
A body powder was prepared, and Pt and Rh were the same as in Example 1.
To prepare the exhaust gas purifying catalysts of Comparative Examples 3 and 4.
did. [0021] [Table 1](Evaluation) Model gas flow evaluation device shown in FIG.
Model of the composition shown in Table 2 for each of the above catalysts
The gas was passed at 800 ° C. or 900 ° C. for 100 hours.
Lean and stoichiometric gas for 2 minutes
It was distributed at a distance. [0023] [Table 2] Thereafter, the specific surface area of each catalyst was measured. Also on
N when the model gas is circulated under the same conditions as
Measures Ox purification rate and HC 50% purification temperature (T50)
The results are shown in Table 3. [0024] [Table 3]As shown in Table 1, the catalysts of Comparative Examples 1 and 2
Is a crystalline cerium oxide and a crystalline
Luminates are formed and the specific surface area is reduced. this
Is that the molar ratio of a, b, and c in the above composition formula is within the range of the present invention.
It is clear that the
You. From Table 3, the exhaust gas purifying catalyst of each embodiment is
The specific surface area is large, and even in the transient region near stoichiometry, N
It is clear that Ox purification performance and HC purification performance are excellent.
Call However, Comparative Examples 1-4 were inferior in NOx purification rate.
Comparative Example 3 does not contain cerium, so that it does not purify HC.
NO in Comparative Example 4 because barium was not contained.
It can be seen that the x purification rate is particularly low. [0027] That is, the exhaust gas purifying catalyst of the present invention can be used.
According to this, high NOx purification is achieved even in the transient region near stoichiometric.
And high temperature range of 800-1000 ° C
Can maintain an amorphous state with a high specific surface area,
And maintain high dispersion carrying state of NOx storage element and cerium
Because it can be made, it is extremely excellent in heat resistance.

【図面の簡単な説明】 【図1】本発明の実施例で用いたモデルガス流通評価装
置の構成を説明するブロックダイヤグラムである。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram illustrating a configuration of a model gas flow evaluation device used in an embodiment of the present invention.

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 38/74 B01D 53/94 Continuation of the front page (58) Field surveyed (Int. Cl. 7 , DB name) B01J 21/00-38/74 B01D 53/94

Claims (1)

(57)【特許請求の範囲】 【請求項1】 次の組成式で表される非晶質アルミネー
トの担体と、 該担体に担持された触媒貴金属と、からなり、MOを
4.8〜28.8重量%、CeO 2 を17.0〜27.
2重量%、Al 2 3 を51.0〜72.9重量%含む
ことを特徴とする高耐熱性排気ガス浄化用触媒。 組成式 aMO・bCeO2 ・cAl2 3 (ここでMOはアルカリ金属、アルカリ土類金属及び希
土類元素から選ばれる元素の酸化物、モル比a:cは
1:6〜1:3、モル比b:cは2:11〜3:11)
(57) and carrier of the Claims 1 Amorphous aluminate represented by the following composition formula, a catalytic precious metal supported on the carrier, Tona is, the MO
4.8 to 28.8% by weight, CeO 2 is 17.0 to 27.
2 wt%, high heat resistance exhaust gas purifying catalyst according to claim <br/> comprise Al 2 O 3 from 51.0 to 72.9 wt%. Formula aMO · bCeO 2 · cAl 2 O 3 ( where MO is an alkali metal, oxide of an element selected from alkaline earth metals and rare earth elements, the molar ratio of a: c is 1: 6 to 1: 3 molar ratio b: c is 2:11 to 3:11)
JP19569394A 1994-08-19 1994-08-19 High heat resistant exhaust gas purification catalyst Expired - Lifetime JP3503766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19569394A JP3503766B2 (en) 1994-08-19 1994-08-19 High heat resistant exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19569394A JP3503766B2 (en) 1994-08-19 1994-08-19 High heat resistant exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JPH0857312A JPH0857312A (en) 1996-03-05
JP3503766B2 true JP3503766B2 (en) 2004-03-08

Family

ID=16345431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19569394A Expired - Lifetime JP3503766B2 (en) 1994-08-19 1994-08-19 High heat resistant exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP3503766B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3664182B2 (en) * 1994-12-19 2005-06-22 トヨタ自動車株式会社 High heat-resistant exhaust gas purification catalyst and production method thereof
US6540968B1 (en) * 1999-05-19 2003-04-01 Ford Global Technologies, Inc. Low-precious metal/high-rare earth oxide catalysts
FR2901155B1 (en) * 2006-05-16 2008-10-10 Rhodia Recherches & Tech COMPOSITIONS USED IN PARTICULAR FOR TRACING NITROGEN OXIDES (NOX)

Also Published As

Publication number Publication date
JPH0857312A (en) 1996-03-05

Similar Documents

Publication Publication Date Title
JP3664182B2 (en) High heat-resistant exhaust gas purification catalyst and production method thereof
EP1729872B1 (en) Nitrogen oxide storage catalyst
JPH09141098A (en) Catalyst for purification of exhaust gas and its production
JPH10235192A (en) Catalyst for cleaning exhaust gas
CN108883397B (en) Exhaust gas purifying catalyst, method for producing same, and exhaust gas purifying apparatus using same
JP3988202B2 (en) Exhaust gas purification catalyst
JP3827838B2 (en) Exhaust gas purification catalyst
JP3216858B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3430823B2 (en) Exhaust gas purification catalyst
JPH09313938A (en) Catalyst for cleaning exhaust gas
JP2000262898A (en) Catalyst for purifying exhaust gas
JPH09248462A (en) Exhaust gas-purifying catalyst
JP3624277B2 (en) Exhaust gas purification catalyst
JP3503766B2 (en) High heat resistant exhaust gas purification catalyst
JPH09248458A (en) Catalyst and method for exhaust gas-purifying
JP3378096B2 (en) Exhaust gas purification catalyst
JPH08281116A (en) Catalyst for purifying exhaust gas
JP2002331240A (en) Exhaust gas cleaning catalyst and exhaust gas cleaning apparatus
JPH10165817A (en) Catalyst for cleaning of exhaust gas
JP3622893B2 (en) NOx absorbent and exhaust gas purification catalyst using the same
JP2001232199A (en) Exhaust gas cleaning catalyst
JP2000246107A (en) Catalyst for cleaning exhaust gas, its production and method for cleaning exhaust gas
JPH11221467A (en) Catalyst for purifying exhaust gas
JPH10174868A (en) Catalyst for cleaning of exhaust gas
JP3897483B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 10

EXPY Cancellation because of completion of term