JP2002075362A - Graphite powder suitable for secondary battery negative electrode, method for manufacturing graphite powder, and its use - Google Patents

Graphite powder suitable for secondary battery negative electrode, method for manufacturing graphite powder, and its use

Info

Publication number
JP2002075362A
JP2002075362A JP2000261046A JP2000261046A JP2002075362A JP 2002075362 A JP2002075362 A JP 2002075362A JP 2000261046 A JP2000261046 A JP 2000261046A JP 2000261046 A JP2000261046 A JP 2000261046A JP 2002075362 A JP2002075362 A JP 2002075362A
Authority
JP
Japan
Prior art keywords
graphite powder
heat treatment
graphite
closed
closed structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000261046A
Other languages
Japanese (ja)
Other versions
JP4701484B2 (en
Inventor
Wataru Sugimura
渉 杉村
Shinji Muneto
伸治 宗藤
Masaru Abe
賢 阿部
Tokuo Komaru
篤雄 小丸
Yusuke Fujishige
祐介 藤重
Masayuki Nagamine
政幸 永峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Sony Corp
Original Assignee
Sony Corp
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp, Sumitomo Metal Industries Ltd filed Critical Sony Corp
Priority to JP2000261046A priority Critical patent/JP4701484B2/en
Publication of JP2002075362A publication Critical patent/JP2002075362A/en
Application granted granted Critical
Publication of JP4701484B2 publication Critical patent/JP4701484B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a graphite powder suitable for a negative electrode material of lithium ion secondary battery, which has high charging capacity and high charge-discharge efficiency and also give an improved high-rate discharging characteristic. SOLUTION: A graphite powder produced through carbonization, crushing, and a graphitizing heat treatment is subjected to heat treatment for oxidation for shaving off the surface to expose the surface closed structure, and is subjected to another heat treatment with a rapid temperature rise in an inert gas so that a surface closed structure is formed again, and thereby graphite powder is established having a surface form in which closed regions with the end parts of graphite c-plane layers coupled together to generate closed structure are scattered on the powder surfaces in mosaic form where the length (Lc⊥) perpendicular to the graphite c-axis in each closed region is 100 nm or less.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオン二
次電池の負極材料として最適な表面形態を有する黒鉛粉
末とその製造方法に関する。本発明はまた、この黒鉛粉
末を利用したリチウムイオン二次電池の負極およびこの
負極を備えたリチウムイオン二次電池にも関する。本発
明の黒鉛粉末を負極に使用すると、高率放電特性 (レー
ト特性) に優れたリチウムイオン二次電池を作成するこ
とができる。
The present invention relates to a graphite powder having an optimum surface morphology as a negative electrode material of a lithium ion secondary battery and a method for producing the same. The present invention also relates to a negative electrode of a lithium ion secondary battery using the graphite powder and a lithium ion secondary battery including the negative electrode. When the graphite powder of the present invention is used for a negative electrode, a lithium ion secondary battery having excellent high-rate discharge characteristics (rate characteristics) can be produced.

【0002】[0002]

【従来の技術】小型二次電池として急速に普及している
リチウムイオン二次電池では、Liイオンを吸蔵できる炭
素粉末を活物質とする負極が一般に使用されているが、
この負極の多くは黒鉛粉末から製造される。結晶質の黒
鉛粉末は、非晶質の炭素粉末に比べて、単位体積当たり
の放電容量が高く、また充放電効率も優れているからで
ある。
2. Description of the Related Art In a lithium ion secondary battery that is rapidly spreading as a small secondary battery, a negative electrode using an active material of carbon powder capable of storing Li ions is generally used.
Many of the negative electrodes are manufactured from graphite powder. This is because crystalline graphite powder has a higher discharge capacity per unit volume and higher charge / discharge efficiency than amorphous carbon powder.

【0003】この黒鉛粉末は、天然黒鉛を粉砕したもの
も使用可能であるが、品質の安定性の点で人造黒鉛、即
ち、炭素質原料を熱処理して有機物を除去することによ
り炭化した後、得られた炭素材をさらに高温で熱処理し
て結晶化させることにより黒鉛化して得た黒鉛、の粉末
の方が好ましい。
[0003] As the graphite powder, a powder obtained by pulverizing natural graphite can be used. However, artificial graphite, that is, carbonaceous material is carbonized by heat-treating the carbonaceous raw material to remove organic matter from the viewpoint of quality stability. A powder of graphite obtained by further heat-treating the obtained carbon material at a high temperature to be crystallized by crystallization is more preferable.

【0004】リチウムイオン二次電池の負極材料として
使用する黒鉛に対して考慮される特性として、放電容量
および充放電効率 (充電容量に対する放電容量の比) に
加えて、高率放電特性 (低電流密度での放電容量に対す
る高電流密度での放電容量の比) がある。高率放電特性
は、特に急速充電する場合において重要である。
As characteristics considered for graphite used as a negative electrode material of a lithium ion secondary battery, in addition to discharge capacity and charge / discharge efficiency (ratio of discharge capacity to charge capacity), high-rate discharge characteristics (low current Ratio of the discharge capacity at high current density to the discharge capacity at high density). High-rate discharge characteristics are important especially in the case of rapid charging.

【0005】人造黒鉛粉末の表面形態に関して、国際公
開WO 98/29335 号には、黒鉛化熱処理により、六方晶層
状結晶構造を持つ黒鉛結晶のc面層の末端同士が結合し
て形成された閉塞構造が粉末表面に形成されることが指
摘されている。この表面形態を持つ従来の人造黒鉛で
は、隣接する閉塞構造間の隙間である間隙面が、充放電
に関与するLiイオンの主な侵入・脱出サイトになる。
[0005] Regarding the surface morphology of artificial graphite powder, WO 98/29335 describes that clogging formed by bonding the ends of c-plane layers of graphite crystals having a hexagonal layered crystal structure by graphitization heat treatment. It is pointed out that a structure is formed on the powder surface. In the conventional artificial graphite having this surface morphology, a gap surface, which is a gap between adjacent closed structures, serves as a main intrusion / exit site for Li ions involved in charging and discharging.

【0006】[0006]

【発明が解決しようとする課題】上記国際公開では、Li
イオンの主な侵入サイトである前記間隙面の単位長さ当
たりの密度を増大させる (即ち、間隙面のピッチを低下
させる) ことにより、放電容量の増大を図ることが提案
されている。
In the above international publication, Li
It has been proposed to increase the discharge capacity by increasing the density per unit length of the gap surface, which is the main site of entry of ions, (ie, reducing the pitch of the gap surface).

【0007】この黒鉛粉末の間隙面密度の増大は、次の
いずれかの方法で達成することができる: 黒鉛化熱処理前に高速粉砕または剪断粉砕を行って、
粉末表面に原子レベルでの凹凸 (層欠陥) を導入してか
ら黒鉛化熱処理を行う;または 黒鉛化熱処理で得られた黒鉛粉末に、酸化熱処理等の
表面を削ることができる熱処理を施して、粉末表面の閉
塞構造を開放し、その後で再び不活性ガス中で熱処理し
て閉塞構造を再形成する。
[0007] The increase in the interstitial density of the graphite powder can be achieved in any of the following ways:
Introduce irregularities (layer defects) at the atomic level into the powder surface and then perform a graphitization heat treatment; or apply a heat treatment such as an oxidation heat treatment to the graphite powder obtained by the graphitization heat treatment, The closed structure on the powder surface is released, and then heat-treated again in an inert gas to re-form the closed structure.

【0008】特にの方法は間隙面密度が非常に大きな
黒鉛粉末を得ることができる。このようにLiイオンの侵
入サイトである間隙面の密度を増大させると、放電容量
が黒鉛負極の理論容量である372 mAh/g にかなり近づい
た黒鉛粉末が得られる。また、充放電高率も十分に高
い。
[0008] In particular, a graphite powder having a very large gap surface density can be obtained. As described above, when the density of the gap surface, which is a site where Li ions enter, is increased, a graphite powder having a discharge capacity considerably close to the theoretical capacity of the graphite negative electrode of 372 mAh / g can be obtained. Also, the charge / discharge rate is sufficiently high.

【0009】しかし、Liイオンの侵入サイトが間隙面に
限定される限り、この侵入サイトをくぐり抜けたLiイオ
ンはc面層の層間を通って黒鉛粉末の内部に拡散するの
で、Liイオンの拡散経路が長くなる。そのため、Liイオ
ンの侵入・脱出に時間がかかることから、高率放電特性
についての改善の余地があった。これは、電流密度が高
くなるほど多量のLiイオンの侵入・脱出が必要になる
が、拡散経路が長く、Liイオンの侵入・脱出に時間がか
かると、高電流密度時に多量のLiイオンが侵入した場合
に拡散が追いつかず、放電容量が低下するからである。
However, as long as the invasion site of the Li ion is limited to the gap surface, the Li ion which has passed through this intrusion site diffuses into the graphite powder through the interlayer of the c-plane layer. Becomes longer. Therefore, it takes time to inject and escape Li ions, and there is room for improvement in high-rate discharge characteristics. The reason for this is that the higher the current density, the more intrusion and escape of Li ions are required.However, if the diffusion path is long and the intrusion and escape of Li ions take time, a large amount of Li ions enter at high current density. This is because, in such a case, the diffusion cannot catch up and the discharge capacity decreases.

【0010】本発明は、高率放電特性が改善され、放電
容量や充放電効率にも優れた、リチウムイオン二次電池
の負極材料に適した黒鉛粉末とその製造方法を提供する
ことを主な課題とする。
An object of the present invention is to provide a graphite powder having improved high-rate discharge characteristics, excellent discharge capacity and charge / discharge efficiency, and suitable for a negative electrode material of a lithium ion secondary battery, and a method for producing the same. Make it an issue.

【0011】[0011]

【課題を解決するための手段】本発明者らは、黒鉛の閉
塞構造の熱処理による影響を調査するため、国際公開WO
98/29335 号に記載された上記の方法における不活性
ガス中での熱処理条件を変化させて閉塞構造を再形成さ
せ、得られた黒鉛粉末の表面形態を原子間力顕微鏡法を
用いて調べた。その結果、この時の熱処理の昇温速度に
より、表面形態に違いが現れることを見出した。
DISCLOSURE OF THE INVENTION The present inventors have studied the effects of heat treatment on the closed structure of graphite by the international publication WO.
The closed structure was reformed by changing the heat treatment conditions in an inert gas in the above method described in 98/29335, and the surface morphology of the obtained graphite powder was examined by atomic force microscopy. . As a result, it was found that the surface morphology was different depending on the rate of temperature increase in the heat treatment.

【0012】具体的には、昇温速度が5℃/秒未満とな
る熱処理を施した黒鉛粉末の表面は、c面層の末端どう
しが結合して形成される閉塞構造が、c面層方向、即
ち、c軸に垂直方向 (c⊥方向) に長く連続し、間隙面
も同じ方向に連続する。従って、間隙面がほぼ一定間隔
で現れる、縞状の閉塞構造になる。
Specifically, the surface of the graphite powder which has been subjected to a heat treatment at a temperature rising rate of less than 5 ° C./sec has a clogging structure formed by bonding the ends of the c-plane layer in the direction of the c-plane layer. That is, it is long continuously in the direction perpendicular to the c-axis (c⊥ direction), and the gap surface is also continuous in the same direction. Accordingly, a striped closed structure in which gap surfaces appear at substantially constant intervals is obtained.

【0013】一方、昇温速度を大きくして急速熱処理
(ラピッドサーマルアニール) を施した黒鉛粉末の表面
は、非平衡時の核発生を起点とした閉塞構造の部分的な
凝集が支配的となる。そのため、粉末表面の閉塞構造が
c⊥方向に連続せず、モザイク状(市松模様)の閉塞構
造が形成されるようになる。さらに、一度形成されたモ
ザイク状閉塞構造は、熱的に安定で不可逆性を有するた
め、降温過程でもその表面形態が保持される。
On the other hand, a rapid heat treatment is performed by increasing the heating rate.
On the surface of the graphite powder that has been subjected to (rapid thermal annealing), partial aggregation of the closed structure starting from nucleation at the time of non-equilibrium becomes dominant. Therefore, the closing structure on the powder surface is not continuous in the c⊥ direction, and a mosaic (checkered) closing structure is formed. Further, the mosaic closed structure once formed is thermally stable and irreversible, so that its surface morphology is maintained even during the cooling process.

【0014】この新規なモザイク状閉塞構造を有する黒
鉛粉末は、高い放電容量と充放電効率を示す上、高率放
電特性も優れている。これは、後で詳しく説明するよう
に、モザイク状閉塞構造は、Liイオンの拡散経路が短か
く、多量のLiイオンを短時間で容易に拡散・置換・放出
することができるためであると考えられる。
The novel graphite powder having a mosaic-shaped closed structure exhibits high discharge capacity and charge / discharge efficiency, and also has excellent high-rate discharge characteristics. This is because, as will be described in detail later, the mosaic block structure has a short diffusion path of Li ions and can easily diffuse, substitute, and release a large amount of Li ions in a short time. Can be

【0015】本発明により、黒鉛c面層の端部どうしが
連結して閉じた閉塞領域が粉末表面に散在している表面
形態を有し、個々の前記閉塞領域の黒鉛c軸に垂直方向
の長さ (Lc⊥) が100 nm以下であることを特徴とする、
黒鉛粉末が提供される。
According to the present invention, the clogged surface of the graphite has a surface configuration in which closed end portions are connected to each other and are closed to the powder surface, and each of the closed regions is perpendicular to the graphite c axis. Characterized in that the length (Lc⊥) is 100 nm or less,
A graphite powder is provided.

【0016】上記表面形態を有する本発明の黒鉛粉末
は、下記工程を含むことを特徴とする方法により製造す
ることができる: (a) 炭素質材料を炭化して得た炭素材を熱処理して黒鉛
化する工程、(b) 炭化前、炭化と黒鉛化の間、および/
または黒鉛化後に行う少なくとも1回の粉砕工程、(c)
工程(a), (b)後に得られた黒鉛粉末を、その表面を削る
ことができる条件下で熱処理する工程、(d) 工程(c) で
得られた黒鉛粉末を、不活性ガス中にて昇温速度5℃/
秒以上で昇温し、500 ℃以上の温度に保持して熱処理す
る工程。
The graphite powder of the present invention having the above surface morphology can be produced by a method characterized by comprising the following steps: (a) heat treating a carbon material obtained by carbonizing a carbonaceous material; Graphitizing, (b) before carbonization, between carbonization and graphitization, and / or
Or at least one grinding step performed after graphitization, (c)
Heat-treating the graphite powder obtained after the steps (a) and (b) under conditions capable of shaving the surface thereof, and (d) placing the graphite powder obtained in the step (c) in an inert gas. 5 ° C /
A process of heating at a temperature of 500 ° C. or more for heat treatment in more than a second.

【0017】上記工程(c) の熱処理は、好ましくは酸化
熱処理である。本発明によれば、上記表面形態を有する
黒鉛粉末を備えた、リチウムイオン二次電池用負極、お
よびこの負極を備えた、リチウムイオン二次電池もまた
提供される。
The heat treatment in the step (c) is preferably an oxidation heat treatment. According to the present invention, there is also provided a negative electrode for a lithium ion secondary battery including the graphite powder having the above surface morphology, and a lithium ion secondary battery including the negative electrode.

【0018】[0018]

【発明の実施の形態】まず、本発明の黒鉛粉末の表面形
態について、図1〜3の模式図を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the surface morphology of the graphite powder of the present invention will be described with reference to FIGS.

【0019】粉砕してから黒鉛化熱処理することにより
得られた、従来の普通の黒鉛粉末は、図1(a) に断面図
にて示すように、数層の閉塞構造が積層した多層閉塞構
造を持ち、この多層閉塞構造が、図示しないが、c面層
方向 (c軸と垂直方向、即ち、c⊥方向) に長く伸びた
表面形態をとる。本発明の製造方法の工程(a), (b)の後
に得られた黒鉛粉末の表面形態もこのようなものであ
る。粉末表面のこのような閉塞構造は、実際に黒鉛粉末
の断面SEMまたはTEM写真で確認することができ
る。
A conventional ordinary graphite powder obtained by pulverizing and then performing a graphitization heat treatment has a multilayer plugging structure in which several layers of plugging structures are laminated as shown in a sectional view of FIG. Although not shown, the multilayered closed structure has a surface form elongated in the c-plane layer direction (a direction perpendicular to the c-axis, that is, a c⊥ direction). The surface morphology of the graphite powder obtained after the steps (a) and (b) of the production method of the present invention is also such. Such a closed structure on the powder surface can be actually confirmed in a cross-sectional SEM or TEM photograph of the graphite powder.

【0020】上記の多層閉塞構造の場合、Liイオンの侵
入サイトとなる間隙面は、例えば、5層に積層した多層
閉塞構造の場合で、c面層10層に1個の割合となり、残
り9層のc面層の末端は閉じているため、Liイオンが侵
入できない。このようにLiイオンの侵入サイトが少ない
ため、放電容量が制限を受け、理論容量に近づけること
ができない。
In the case of the above-mentioned multilayer blocking structure, the number of gap surfaces serving as Li ion intrusion sites is, for example, one in 10 c-plane layers in the case of a multilayer blocking structure in which five layers are stacked, and the remaining 9 Since the end of the c-plane layer of the layer is closed, Li ions cannot enter. Since the number of Li ion intrusion sites is small as described above, the discharge capacity is limited, and cannot be close to the theoretical capacity.

【0021】このような多層の積層閉塞構造を表面に持
つ黒鉛粉末を、本発明の製造方法の工程(c) において酸
化熱処理すると、表面が削られて平坦化する結果、図1
(b)に示すように、閉塞構造が開放され、c面層の末端
は他のc面層と結合せずに切れたままとなる。従って、
全てのc面層末端が間隙面となって、Liイオンの侵入サ
イトとなる。この形態はLiイオンの侵入には有利である
が、化学的に不安定である上、電解液が内部に侵入し易
いため、サイクル寿命が非常に短い負極にしかならず、
実用性に乏しい。
When the graphite powder having such a multilayer laminated closing structure on the surface is subjected to an oxidizing heat treatment in the step (c) of the manufacturing method of the present invention, the surface is ground and flattened.
As shown in (b), the closed structure is opened, and the end of the c-plane layer remains disconnected without being bonded to another c-plane layer. Therefore,
All c-plane layer ends serve as gap surfaces and serve as Li ion intrusion sites. Although this form is advantageous for the intrusion of Li ions, it is chemically unstable, and the electrolyte solution easily penetrates into the inside, so that only a negative electrode having a very short cycle life can be obtained.
Poor practicality.

【0022】その後、工程(d) において、不活性ガス中
で熱処理すると、不安定なc面層末端どうしが安定化の
ために結合し、閉塞構造が再形成される。黒鉛粉末の表
面が削られて平坦になっているため、この時の結合で
は、閉塞構造が多層に積層しても、その積層数は小さく
なる。例えば、図1(c) に示すように、2層が積層した
閉塞構造を持つ表面形態とすることができる。但し、実
際の閉塞構造はこのように一様でないのは当然である。
Thereafter, in step (d), when heat treatment is performed in an inert gas, unstable c-plane layer ends are combined for stabilization, and the closed structure is re-formed. Since the surface of the graphite powder is shaved and flattened, the number of laminations is small even if the closing structure is laminated in multiple layers at this time. For example, as shown in FIG. 1C, the surface may have a closed structure in which two layers are stacked. However, it is natural that the actual closing structure is not uniform.

【0023】しかし、この工程(d) の熱処理の昇温速度
が5℃/秒より小さいと、実質的に平衡状態において末
端の結合が起こるようになるため、図1(c) に示すよう
に、同じc面層どうしの連結が1方向に長く伸びて続
き、間隙面と閉塞構造が縞模様を形成する、いわば縞状
の閉塞構造となる。即ち、図1(a) に示す閉塞構造に比
べて、c面層の積層数は減っているが、閉塞構造がc⊥
方向に連続する点では同じである。但し、積層数が減る
と、間隙面の密度は大きくなり、放電容量が増大する。
However, if the rate of temperature rise in the heat treatment in this step (d) is less than 5 ° C./sec, terminal bonding will occur in a substantially equilibrium state, as shown in FIG. 1 (c). The connection between the same c-plane layers extends in one direction for a long time, and the gap surface and the closing structure form a striped pattern, which is a so-called striped closing structure. That is, although the number of stacked c-plane layers is smaller than that of the closed structure shown in FIG.
It is the same in the points that continue in the direction. However, when the number of layers decreases, the density of the gap surface increases, and the discharge capacity increases.

【0024】本発明では、工程(d) の熱処理を、昇温速
度が5℃/秒以上の急速熱処理とする。それにより、c
面層末端の格子振動が瞬間的に大きくなり、非平衡状態
のままでc面層末端の結合が起こる。その結果、図2
(a), (b)に示すように、結合手が左右に振り分けられ、
c面層間で末端どうしが部分的に互い違いに連結する。
つまり、黒鉛粉末表面でのc面層末端の閉塞構造が、c
⊥方向に長く伸びて続かず、短く途切れる結果、モザイ
ク状 (市松模様) の閉塞構造となる。
In the present invention, the heat treatment in the step (d) is a rapid heat treatment at a temperature rising rate of 5 ° C./sec or more. Thereby, c
The lattice vibration at the end of the face layer instantaneously increases, and the end of the c-plane layer is coupled while maintaining the non-equilibrium state. As a result, FIG.
As shown in (a) and (b), the bond is divided into left and right,
The ends are partially alternately connected between the c-plane layers.
That is, the clogging structure at the end of the c-plane layer on the graphite powder surface is represented by c
As a result, it does not extend and continue in the direction of 、 but is short and interrupted, resulting in a mosaic (checkered) blockage structure.

【0025】この本発明の黒鉛粉末の表面に現れるモザ
イク状閉塞構造は、図2(a) に示すように、積層せずに
単層の閉塞構造でもよく、あるいは図2(b) に示すよう
に、2層以上に積層した閉塞構造でもよく、その両者の
共存状態でもよい。閉塞構造の積層数は、一般に、工程
(a), (b)後に得られた黒鉛粉末に比べると小さくなる
が、特に制限はない。本発明の黒鉛粉末のモザイク状閉
塞構造は、表面の微細な凹凸形態を再現できる原子間力
顕微鏡法で黒鉛粉末を観察することにより見ることがで
きる。
The mosaic closing structure appearing on the surface of the graphite powder of the present invention may be a single-layer closing structure without lamination as shown in FIG. 2 (a), or as shown in FIG. 2 (b). Alternatively, a closed structure in which two or more layers are stacked may be used, or both may coexist. The number of layers of the closed structure generally depends on the process
(a) and (b) are smaller than the graphite powder obtained later, but are not particularly limited. The mosaic occlusion structure of the graphite powder of the present invention can be seen by observing the graphite powder with an atomic force microscope, which can reproduce the fine irregularities on the surface.

【0026】黒鉛粉末表面の閉塞構造が、図1(a) また
は(c) に示すように縞状であると、閉塞構造により完全
に閉塞されているc面層については、c⊥方向にどこま
でいっても閉塞構造のままである。従って、c面層と垂
直のc軸方向 (c‖方向) において、Liイオンの侵入サ
イトである間隙面は、数層ないし十数層おきの特定の隣
接c面層の間にしか現れない。Liイオンは、c面層内
(c⊥方向) の移動は容易であり、これと垂直のc軸方
向 (c‖方向) の移動は、c面層を通過しなければなら
ないので、より困難である。従って、間隙面が間隔をあ
けて特定のc面層だけに現れると、Liイオンの拡散距離
が長くなる上、拡散もより困難となる。
If the closed structure on the surface of the graphite powder is striped as shown in FIG. 1 (a) or (c), the c-plane layer completely closed by the closed structure will be c. Even if it does, it remains a closed structure. Therefore, in the c-axis direction (c‖ direction) perpendicular to the c-plane layer, the gap plane, which is the intrusion site of Li ions, appears only between specific adjacent c-plane layers every several to several tens of layers. Li ions in the c-plane layer
The movement in the (c⊥ direction) is easy, and the movement in the c-axis direction (c‖ direction) perpendicular to the (c の direction) is more difficult because it must pass through the c-plane layer. Therefore, when the gap surface appears only in a specific c-plane layer with an interval, the diffusion distance of Li ions becomes longer and diffusion becomes more difficult.

【0027】これに対し、本発明のように、黒鉛粉末の
表面閉塞構造が市松模様のモザイク状であると、例え
ば、図2(b) に示すように、閉塞構造が多層に積層して
いても、ほぼ全ての隣接c面層がc面層方向 (c⊥方
向) のどこかの位置で間隙面となる部分 (本発明では間
隙口という) を有している。全てのc面層層が間隙口を
持ち、この間隙口からLiイオンがそのc面層内に侵入し
てc面層内をc⊥方向に容易に移動できるので、Liイオ
ンの拡散がすばやく起こる。その結果、高率放電で多量
のLiイオンが侵入しても、Liイオンが粉末内部まで容易
に拡散することができ、高率放電特性が改善される。
On the other hand, when the surface closing structure of the graphite powder has a checkerboard mosaic shape as in the present invention, for example, as shown in FIG. Also, almost all of the adjacent c-plane layers have a portion that becomes a gap surface at any position in the c-plane layer direction (c⊥ direction) (in the present invention, a gap opening). All the c-plane layers have gaps, and Li ions can easily enter the c-plane through the gaps and move in the c⊥ direction in the c-plane, so that diffusion of Li ions occurs quickly. . As a result, even if a large amount of Li ions intrude in the high-rate discharge, the Li ions can easily diffuse into the inside of the powder, and the high-rate discharge characteristics are improved.

【0028】本発明の黒鉛粉末は、上述したモザイク状
閉塞構造の表面形態を有する。このモザイク状閉塞構造
の個々の閉塞部分を本発明では閉塞領域と称する。各閉
塞領域は、いずれも黒鉛c面層の端部どうしが連結して
閉じることにより形成されたものである。
The graphite powder of the present invention has the surface morphology of the above-mentioned mosaic closed structure. The individual closed portions of the mosaic closed structure are referred to as closed regions in the present invention. Each closed region is formed by connecting and closing the ends of the graphite c-plane layer.

【0029】この個々の閉塞領域は、黒鉛c軸に垂直方
向の長さ (Lc⊥) はバラツキがあるが、いずれも100 nm
以下である。個々の閉塞領域のLc⊥値が100 nmを超える
モザイク状閉塞構造を持つ黒鉛粉末は、実質的に作製不
可能であり、そのようなものを作製しようとすると、図
1(c) に示すような、閉塞領域がc⊥方向に連続した(L
c=∞) 表面形態となってしまう。
The length of each of the closed regions in the direction perpendicular to the graphite c-axis (Lc⊥) varies, but each is 100 nm.
It is as follows. Graphite powder having a mosaic closed structure in which the Lc⊥ value of each closed region exceeds 100 nm is practically impossible to prepare, and when such a material is to be prepared, as shown in FIG. 1 (c). The closed area is continuous in the c⊥ direction (L
c = ∞) Surface morphology.

【0030】個々の閉塞領域のLc⊥の値が小さい方が、
Liイオンの拡散距離が短くなり、高率放電特性が向上す
る。この値は好ましくは50 nm 以下であり、より好まし
くは20 nm 以下、特に好ましくは10 nm 以下である。閉
塞領域のLc⊥値の大きさは、工程(d) の熱処理時の昇温
速度と保持温度に依存し、これらが高いほど小さくなる
傾向がある。
The smaller the value of Lc⊥ of each closed area is,
The diffusion distance of Li ions is shortened, and high-rate discharge characteristics are improved. This value is preferably at most 50 nm, more preferably at most 20 nm, particularly preferably at most 10 nm. The magnitude of the Lc⊥ value of the closed region depends on the temperature rising rate and the holding temperature during the heat treatment in step (d), and the higher these are, the smaller the tendency is.

【0031】モザイク状閉塞構造の個々の閉塞領域のc
軸方向の幅 (Lc‖) は特に制限されない。この幅は、前
述した閉塞構造の積層数に依存し、一般に0.3354 nm か
ら10nm の範囲である。0.3354 nm は黒鉛の層間距離d0
02 の最低値であり、完全な黒鉛結晶で単層の閉塞領域
のLc‖の理論値である。Lc‖が10 nm を超えるには、十
数層以上に積層した閉塞構造とする必要があり、実質的
に作製不可能である。好ましいLc‖の値は5nm以下であ
る。
C of the individual occluded regions of the mosaic occluded structure
The axial width (Lc‖) is not particularly limited. This width depends on the number of layers of the closed structure described above, and is generally in the range of 0.3354 nm to 10 nm. 0.3354 nm is the graphite interlayer distance d0
02, which is the theoretical value of Lc‖ in a closed region of a single layer of perfect graphite crystals. In order for Lc‖ to exceed 10 nm, it is necessary to form a closed structure in which more than a dozen layers are stacked, and it is practically impossible to fabricate it. A preferred value of Lc‖ is 5 nm or less.

【0032】本発明の黒鉛粉末の表面に現れるモザイク
状閉塞構造の閉塞領域のc軸方向の幅 (Lc‖値) は、黒
鉛粉末の表面付近の断面SEMまたはTEM写真から測
定することができる。一方、この閉塞領域のc軸垂直方
向の長さ (Lc⊥値) は、黒鉛粉末表面の原子間力顕微鏡
写真およびTEM写真から測定することができる。
The c-axis direction width (Lc‖ value) of the occluded region of the mosaic occluded structure appearing on the surface of the graphite powder of the present invention can be measured from a cross-sectional SEM or TEM photograph near the surface of the graphite powder. On the other hand, the length (Lc⊥ value) of the clogged region in the c-axis perpendicular direction can be measured from an atomic force microscope photograph and a TEM photograph of the graphite powder surface.

【0033】次に本発明の黒鉛粉末の製造方法について
説明する。まず、工程(a) において、炭素質材料を熱処
理して炭化 (有機物を分解) し、得られた炭素材をさら
に高温で熱処理して黒鉛化する。
Next, a method for producing the graphite powder of the present invention will be described. First, in the step (a), the carbonaceous material is heat-treated to carbonize (decompose organic matter), and the obtained carbon material is further heat-treated at a high temperature to be graphitized.

【0034】原料の炭素質材料は特に制限されず、従来
より黒鉛の製造に用いられてきたものと同様でよい。具
体例としては、コールタールピッチまたは石油ピッチ、
さらにはこれらの熱処理により生ずるメソフェーズ小球
体と、この小球体のマトリックスであるバルクメソフェ
ーズ、ならびに有機樹脂等の他の有機物等が挙げられ
る。特に好ましい炭素質原料はメソフェーズ小球体とバ
ルクメソフェーズであり、中でもコスト面と量産性から
バルクメソフェーズが好ましい。
The carbonaceous material as the raw material is not particularly limited, and may be the same as that conventionally used for producing graphite. Specific examples include coal tar pitch or petroleum pitch,
Further, there are mesophase microspheres generated by these heat treatments, bulk mesophase which is a matrix of the microspheres, and other organic substances such as organic resins. Particularly preferred carbonaceous raw materials are mesophase microspheres and bulk mesophase, and among them, bulk mesophase is preferred from the viewpoint of cost and mass productivity.

【0035】炭素質材料の炭化条件は、この材料が分解
して原料に含まれていた炭素以外の元素がほぼ完全に除
去されるように選択すればよい。炭素の酸化 (燃焼) を
防止するため、炭化熱処理は不活性雰囲気または真空中
で実施する。炭化の熱処理温度は、通常は 800〜1500℃
の範囲内であり、特に1000℃前後が好ましい。炭化に要
する熱処理時間は、原料の種類、熱処理、温度にもよる
が温度が1000℃の場合で30分〜3時間程度である。
The carbonization condition of the carbonaceous material may be selected so that the material is decomposed and elements other than carbon contained in the raw material are almost completely removed. To prevent oxidation (combustion) of carbon, the carbonization heat treatment is performed in an inert atmosphere or vacuum. The heat treatment temperature for carbonization is usually 800 ~ 1500 ℃
And particularly preferably around 1000 ° C. The heat treatment time required for carbonization depends on the type of raw material, heat treatment, and temperature, but is about 30 minutes to 3 hours when the temperature is 1000 ° C.

【0036】次に、得られた炭素材を熱処理して黒鉛化
する。黒鉛化には通常は2500℃以上の温度が必要であ
る。黒鉛化温度を下げるため、適当な黒鉛化触媒 (例、
硼素)を少量添加してもよく、その場合には黒鉛化触媒
を炭化前に添加することもできる。黒鉛化触媒を添加し
た場合、黒鉛化温度を1500℃程度まで下げることができ
る。黒鉛化熱処理温度の上限は、現在の加熱技術では32
00℃程度である。好ましい黒鉛化熱処理温度は、触媒を
添加しない場合、2800〜3000℃である。
Next, the obtained carbon material is heat-treated to be graphitized. Graphitization usually requires temperatures above 2500 ° C. To lower the graphitization temperature, a suitable graphitization catalyst (eg,
(Boron) may be added in a small amount, in which case the graphitization catalyst may be added before carbonization. When a graphitization catalyst is added, the graphitization temperature can be lowered to about 1500 ° C. The upper limit of the graphitization heat treatment temperature is 32 with current heating technology.
It is about 00 ° C. A preferred graphitization heat treatment temperature is 2800 to 3000 ° C. when no catalyst is added.

【0037】この熱処理は黒鉛化 (結晶化) が完了する
まで行う。この時間は触媒の有無や処理量によっても異
なるが、一般には20分〜10時間である。熱処理雰囲気は
非酸化性雰囲気 (例、不活性ガス雰囲気または真空) で
ある。黒鉛化熱処理には、工業的にはアチソン炉 (周囲
の充填炭素粉に通電し加熱) やLWG炉 (直接通電して
加熱) が用いられる。このような工業用焼成炉は大気中
で運転されるが、炉内は窒素および一酸化炭素からなる
非酸化性雰囲気となる。
This heat treatment is performed until the graphitization (crystallization) is completed. This time varies depending on the presence or absence of the catalyst and the treatment amount, but is generally 20 minutes to 10 hours. The heat treatment atmosphere is a non-oxidizing atmosphere (eg, an inert gas atmosphere or a vacuum). For the graphitization heat treatment, an Acheson furnace (heated by energizing the surrounding charged carbon powder) and an LWG furnace (heated by direct energizing) are industrially used. Although such an industrial firing furnace is operated in the atmosphere, the inside of the furnace has a non-oxidizing atmosphere composed of nitrogen and carbon monoxide.

【0038】工程(b) は、粉末とするための粉砕工程で
ある。この粉砕は、炭化前の炭素質原料、炭化後の炭素
材、黒鉛化後の黒鉛、のいずれの段階の材料に対して行
ってもよいが、黒鉛化後は層状構造が発達し、粉砕しに
くくなるので、黒鉛化前に粉砕しておくことが好まし
い。また、これらの2段階以上で粉砕することもでき
る。ただし、次の工程(c) 以後には粉砕を行わない。
Step (b) is a pulverizing step for making a powder. This pulverization may be performed on any material of the carbonaceous raw material before carbonization, the carbon material after carbonization, and the graphite after graphitization, but after the graphitization, the layered structure develops and the pulverization is performed. Since it becomes difficult, it is preferable to grind before graphitization. In addition, pulverization can be performed in two or more of these steps. However, pulverization is not performed after the next step (c).

【0039】粉砕は、例えば、ハンマーミル、ファイン
ミル、アトリションミル、ボールミル、ディスクミルな
どの慣用の粉砕機を用いて実施することができる。粒径
については、リチウムイオン二次電池の負極材料に用い
る場合、平均粒径が大きすぎると充填密度が低下し、1
μmより小さい粒径のものは初期充放電特性を劣化させ
ることが知られているので、平均粒径が5〜50μmの範
囲内で、かつ1μmより小さい微細な粒子が存在しない
ようにすることが好ましい。
The pulverization can be carried out using a conventional pulverizer such as a hammer mill, a fine mill, an attrition mill, a ball mill, a disk mill and the like. Regarding the particle size, when used as a negative electrode material of a lithium ion secondary battery, if the average particle size is too large, the packing density decreases, and
It is known that particles having a particle size smaller than μm deteriorate the initial charge / discharge characteristics, so that the average particle size is in the range of 5 to 50 μm, and the presence of fine particles smaller than 1 μm should be avoided. preferable.

【0040】工程(a) と(b) は、従来の黒鉛粉末の製造
方法と同じである。こうして得られた黒鉛粉末は、前述
したように、黒鉛化前に粉砕しておけば、図1(a) に示
すように、通常は多層の積層閉塞構造がc⊥方向に伸び
た、縞状の閉塞構造を持つ表面形態を有する。従来は、
工程(a) と(b) より得られる黒鉛粉末をそのままリチウ
ムイオン二次電池の負極材料に使用していたが、本発明
ではさらに工程(c) および(d) を受けさせる。
Steps (a) and (b) are the same as the conventional method for producing graphite powder. As described above, if the thus obtained graphite powder is pulverized before graphitization, as shown in FIG. 1 (a), a multilayered closed structure usually extends in the c⊥ direction, as shown in FIG. It has a surface configuration with a closed structure. conventionally,
The graphite powder obtained from the steps (a) and (b) has been used as it is for a negative electrode material of a lithium ion secondary battery. In the present invention, the steps (c) and (d) are further performed.

【0041】工程(c) では、工程(a), (b)を経て得られ
た黒鉛粉末に対して、例えば、酸化熱処理を施し、黒鉛
粉末のc面層の表面を削り取ることによって、黒鉛化熱
処理で生成した閉塞構造をいったん開放し、他のc面層
と結合していない状態にする。この表面の削り取りによ
り、粉末表面のc面層の端部が比較的平坦に揃う。
In the step (c), the graphite powder obtained through the steps (a) and (b) is subjected to, for example, an oxidizing heat treatment to scrape off the surface of the c-plane layer of the graphite powder to thereby graphitize. The closed structure generated by the heat treatment is once opened to make it not bonded to another c-plane layer. By shaving off this surface, the edges of the c-plane layer on the powder surface are relatively flat.

【0042】酸化熱処理の条件は、酸化によって閉塞構
造の開放が実質的に起これば特に制限されないが、熱処
理温度は 600〜800 ℃程度とすることが好ましい。閉塞
構造を持つ黒鉛粉末は耐酸化性が高いため、600 ℃より
低いと酸化されにくく、800℃以上では酸化が急速に進
み、黒鉛粉末全体の劣化が進む。酸化熱処理の時間は温
度や処理量によって異なるが、一般には1〜10時間であ
る。熱処理雰囲気は酸素含有雰囲気であり、純酸素雰囲
気でも、酸素と不活性ガスとの混合ガス雰囲気(例、大
気) でもよい。
The conditions of the oxidizing heat treatment are not particularly limited as long as the closed structure is substantially opened by the oxidation, but the heat treatment temperature is preferably about 600 to 800 ° C. Since the graphite powder having a closed structure has high oxidation resistance, it is hardly oxidized at a temperature lower than 600 ° C., and at a temperature of 800 ° C. or more, the oxidation proceeds rapidly and the entire graphite powder deteriorates. The time for the oxidizing heat treatment varies depending on the temperature and the treatment amount, but is generally 1 to 10 hours. The heat treatment atmosphere is an oxygen-containing atmosphere, and may be a pure oxygen atmosphere or a mixed gas atmosphere of oxygen and an inert gas (eg, air).

【0043】この酸化熱処理により粉末表面が除去され
る結果、黒鉛粉末の重量は2〜5%程度減少する。ま
た、粉末の粒径はわずかに小さくなる (例、1〜2μm
程度)。必要であれば、この粒径の減少を見込んで粉砕
条件を設定する。
As a result of the removal of the powder surface by the oxidation heat treatment, the weight of the graphite powder is reduced by about 2 to 5%. Also, the particle size of the powder becomes slightly smaller (eg, 1-2 μm
degree). If necessary, pulverization conditions are set in consideration of the decrease in the particle size.

【0044】なお、閉塞構造の開放は、酸化熱処理に限
られるものではない。黒鉛粉末の表面構造を削り取るこ
とにより閉塞構造を開放して平坦なc面層の積層構造を
得ることができれば、他の方法を採用することもでき
る。他の方法としては、例えば、フッ化熱処理あるいは
水素化熱処理などがある。この場合の熱処理条件は、表
面の削り取りにより閉塞構造の開放が起こるように、実
験により適宜設定すればよい。
The opening of the closed structure is not limited to the oxidation heat treatment. As long as the closed structure can be opened by shaving off the surface structure of the graphite powder to obtain a flat laminated structure of the c-plane layer, another method can be adopted. Other methods include, for example, fluorination heat treatment or hydrogenation heat treatment. The heat treatment conditions in this case may be appropriately set by experiments so that the closed structure is opened by scraping the surface.

【0045】こうして表面を削り取った黒鉛粉末を、工
程(d) において、不活性ガス雰囲気中で熱処理すると、
開放されていたc面層の末端どうしが安定化のために結
合するので、黒鉛粉末の表面に再び閉塞構造が形成され
る。
The graphite powder whose surface has been shaved in this way is heat-treated in an inert gas atmosphere in step (d).
Since the ends of the c-plane layer that have been opened are bonded together for stabilization, a closed structure is formed again on the surface of the graphite powder.

【0046】本発明ではこの閉塞構造を再形成するとき
の熱処理条件が重要である。即ち、この熱処理は、昇温
速度が5℃/秒以上の急速熱処理とし、保持温度を500
℃以上の温度とする。既に説明したように、このような
急速熱処理とすることで、c面層末端が非平衡状態で結
合する結果、結合手が左右に振り分けられ、再形成され
る閉塞構造は、Lc⊥方向に連続せずに、市松模様のモザ
イク状となる。それにより、高率放電特性の改善が得ら
れる。
In the present invention, the heat treatment conditions for reforming the closed structure are important. That is, this heat treatment is a rapid heat treatment at a temperature rising rate of 5 ° C./sec or more, and the holding temperature is 500
The temperature is at least ℃. As described above, by performing such a rapid heat treatment, the c-plane layer ends are bonded in a non-equilibrium state, so that the bonding hands are distributed to the left and right, and the closed structure to be reformed is continuous in the Lc⊥ direction. Without it, it becomes a checkered mosaic. Thereby, high rate discharge characteristics can be improved.

【0047】この急速熱処理により形成されるモザイク
状閉塞構造は、昇温速度が大きいほど、閉塞構造の個々
の閉塞領域のc軸⊥方向の長さ (Lc⊥) の値が小さくな
り、高率放電特性の改善効果が大きくなり、有利であ
る。その意味で、昇温速度は好ましくは10℃/秒以上、
より好ましく25℃/秒以上、さらに好ましくは50℃/秒
以上であり、100 ℃/秒以上という非常に高い昇温速度
とすることできる。しかし、昇温速度が200 ℃を超えて
も、効果はそれほど改善されないので、200 ℃/秒以下
とすることが好ましい。
In the mosaic closed structure formed by this rapid heat treatment, the value of the length (Lc⊥) of each closed region of the closed structure in the c-axis ⊥ direction becomes smaller as the heating rate increases, and the The effect of improving the discharge characteristics is increased, which is advantageous. In that sense, the heating rate is preferably 10 ° C./sec or more,
It is more preferably at least 25 ° C./sec, even more preferably at least 50 ° C./sec, and can have a very high temperature rising rate of at least 100 ° C./sec. However, even if the heating rate exceeds 200 ° C., the effect is not so much improved, so that it is preferable to set the temperature to 200 ° C./sec or less.

【0048】このように急速熱処理によって黒鉛粉末表
面のモザイク状閉塞構造を形成するには、その前に酸化
熱処理等により黒鉛粉末の表面を削って閉塞構造を開放
しておく必要がある。予め閉塞構造の開放をしておかな
いと、急速熱処理しても、モザイク状閉塞構造を形成す
ることはできない。
In order to form a mosaic closed structure on the surface of the graphite powder by rapid heat treatment, it is necessary to open the closed structure by shaving the surface of the graphite powder by an oxidation heat treatment or the like. Unless the closing structure is opened in advance, a mosaic closing structure cannot be formed even by rapid heat treatment.

【0049】熱処理の保持温度は、上記のモザイク状閉
塞構造を形成するには、500 ℃以上の温度とする必要が
ある。保持温度がこれより低いと、c面層末端どうしの
結合に必要な大きさの格子振動を与えることができず、
閉塞構造が形成されにくくなる。昇温速度が同じ場合、
この保持温度が高いほど、形成されるモザイク状閉塞構
造の個々の閉塞領域のLc⊥の値が小さくなり、高率放電
特性の改善効果が大きくなり有利である。その意味で、
熱処理保持温度は好ましくは700 ℃以上、より好ましく
は1000℃以上、さらに好ましくは1500℃以上であり、例
えば2000〜3000℃またはそれ以上の高温とすることも可
能である。
The holding temperature of the heat treatment must be at least 500 ° C. in order to form the above-mentioned mosaic closed structure. If the holding temperature is lower than this, it is not possible to give a lattice vibration of a magnitude necessary for bonding between the c-plane layer ends,
It becomes difficult to form a closed structure. If the heating rate is the same,
The higher the holding temperature, the smaller the value of Lc⊥ of each closed region of the formed mosaic closed structure, and the greater the effect of improving the high rate discharge characteristics, which is advantageous. In that sense,
The heat treatment holding temperature is preferably 700 ° C. or higher, more preferably 1000 ° C. or higher, and even more preferably 1500 ° C. or higher. For example, a high temperature of 2000 to 3000 ° C. or higher can be used.

【0050】なお、モザイク状閉塞構造の個々の閉塞領
域のc軸方向の幅 (Lc‖) の値は、この熱処理条件 (昇
温速度および保持温度) にはあまり影響されない。Lc‖
の値は主に黒鉛化温度により支配される。
The value of the width (Lc‖) in the c-axis direction of each closed region of the mosaic-shaped closed structure is not significantly affected by the heat treatment conditions (heating rate and holding temperature). Lc‖
Is mainly governed by the graphitization temperature.

【0051】工程(d) の熱処理は不活性ガス雰囲気中で
行う。不活性ガス雰囲気は、例えばAr、He、Ne等の1種
もしくは2種以上でよい。熱処理時間は、閉塞構造が形
成されればよく、温度により異なるが、一般には1〜10
時間である。例えば1000℃では約5時間が目安となる。
The heat treatment in the step (d) is performed in an inert gas atmosphere. The inert gas atmosphere may be, for example, one or more of Ar, He, and Ne. The heat treatment time may vary depending on the temperature as long as the closed structure is formed.
Time. For example, at 1000 ° C., about 5 hours is a standard.

【0052】工程(d) により得られた、モザイク状の閉
塞構造からなる表面形態を有する本発明の黒鉛粉末は、
リチウムイオン二次電池の負極材料として好適であり、
放電容量と充放電効率に優れ、かつ高率放電特性が改善
されたリチウムイオン二次電池の負極を作製することが
できる。
The graphite powder of the present invention having a surface morphology consisting of a mosaic-shaped closed structure obtained in step (d) comprises:
Suitable as a negative electrode material of a lithium ion secondary battery,
A negative electrode of a lithium ion secondary battery having excellent discharge capacity and charge / discharge efficiency and improved high-rate discharge characteristics can be manufactured.

【0053】リチウムイオン二次電池の負極は、従来と
同様に製作することができる。一般に、黒鉛粉末は、適
当な結着剤を用いて、電極基板となる集電体上に成型す
ることにより電極にする。集電体としては、黒鉛粉末の
担持性が良く、負極として使用した時に分解による溶出
が起こらない任意の金属の箔 (例、電解銅箔、圧延銅箔
などの銅箔) を使用することができる。
The negative electrode of the lithium ion secondary battery can be manufactured in a conventional manner. Generally, graphite powder is formed into an electrode by molding on a current collector serving as an electrode substrate using an appropriate binder. As the current collector, any metal foil (e.g., copper foil such as electrolytic copper foil and rolled copper foil) that has good graphite powder supportability and does not elute due to decomposition when used as a negative electrode may be used. it can.

【0054】成型は、従来より粉末状の活物質から電極
を作製する際に利用されてきた適当な方法で実施するこ
とができ、黒鉛粉末の負極性能を十分に引き出し、粉末
に対する賦型性が高く、化学的、電気化学的に安定であ
れば、何ら制限されない。例えば、黒鉛粉末にポリテト
ラフルオロエチレン、ポリフッ化ビニリデン等のフッ素
樹脂粉末からなる結着剤とイソプロピルアルコール等の
有機溶媒を加えて混練してペースト化し、このペースト
を集電体上にスクリーン印刷する方法;黒鉛粉末にポリ
エチレン、ポリビニルアルコール等の樹脂粉末を添加し
て乾式混合し、この混合物を金型を用いてホットプレス
して成型すると同時に集電体に熱圧着させる方法;さら
には黒鉛粉末を上記のフッ素樹脂粉末あるいはカルボキ
シメチルセルロース等の水溶性粘結剤を結着剤として、
N−メチルピロリドン、ジメチルホルムアミドあるいは
水、アルコール等の溶媒を用いてスラリー化し、このス
ラリーを集電体に塗布し、乾燥する方法などが挙げられ
る。
The molding can be carried out by an appropriate method which has been conventionally used when producing an electrode from a powdery active material. The negative electrode performance of the graphite powder is sufficiently brought out, and the moldability to the powder is improved. If it is high, chemically and electrochemically stable, there is no restriction. For example, a binder made of a fluororesin powder such as polytetrafluoroethylene and polyvinylidene fluoride and an organic solvent such as isopropyl alcohol are added to graphite powder, kneaded to form a paste, and this paste is screen-printed on a current collector. Method: A method in which a resin powder such as polyethylene or polyvinyl alcohol is added to graphite powder and dry-mixed, and the mixture is hot-pressed and molded using a mold and simultaneously thermocompression-bonded to a current collector; As a binder, a water-soluble binder such as the above fluororesin powder or carboxymethyl cellulose,
A method of forming a slurry using a solvent such as N-methylpyrrolidone, dimethylformamide or water or an alcohol, applying the slurry to a current collector, and drying the slurry is used.

【0055】本発明の黒鉛粉末から作製した負極は、リ
チウムイオン二次電池に使用できる適当な正極活物質お
よびリチウム化合物を有機溶媒に溶解させた非水系電解
液と組み合わせて、リチウムイオン二次電池を作製する
ことができる。
The negative electrode prepared from the graphite powder of the present invention can be used in combination with a suitable positive electrode active material usable for a lithium ion secondary battery and a non-aqueous electrolyte in which a lithium compound is dissolved in an organic solvent. Can be produced.

【0056】正極活物質としては、例えば、リチウム含
有遷移金属酸化物 LiM1 1-xM2 xO2または LiM1 2y M2 y O4
(式中、Xは0≦X≦4、Yは0≦Y≦1の範囲の数値
であり、M1、M2は遷移金属を表し、Co、Ni、Mn、Cr、T
i、V、Fe、Zn、Al、In、Snの少なくとも1種類からな
る) 、遷移金属カルコゲン化物、バナジウム酸化物 (V2
O5、V6O13 、V2O4、V3O8等) およびそのリチウム化合
物、一般式 MxMo6S8-y (式中、Xは0≦X≦4、Yは0
≦Y≦1の範囲の数値であり、Mは遷移金属をはじめと
する金属を表す) で表されるシェブレル相化合物、さら
には活性炭、活性炭素繊維等を用いることができる。
[0056] As the positive electrode active material, for example, lithium-containing transition metal oxides LiM 1 1-x M 2 x O 2 or LiM 1 2y M 2 y O 4
(Wherein X is a numerical value in the range of 0 ≦ X ≦ 4, Y is a numerical value in the range of 0 ≦ Y ≦ 1, M 1 and M 2 represent transition metals, and Co, Ni, Mn, Cr, T
i, V, Fe, Zn, Al, In, Sn), transition metal chalcogenide, vanadium oxide (V 2
O 5 , V 6 O 13 , V 2 O 4 , V 3 O 8 and the like, a lithium compound thereof, and a general formula M x Mo 6 S 8-y (where X is 0 ≦ X ≦ 4 and Y is 0
≦ Y ≦ 1 and M represents a metal such as a transition metal), activated carbon, activated carbon fiber and the like.

【0057】非水系電解液に用いる有機溶媒は、特に制
限されるものではないが、例えば、プロピレンカーボネ
ート、エチレンカーボネート、ジメチルカーボネート、
ジエチルカーボネート、1,1 −及び1,2 −ジメトキシエ
タン、1,2 −ジエトキシエタン、γ−ブチロラクタム、
テトラヒドロフラン、1,3 −ジオキソラン、4−メチル
−1,3 −ジオキソラン、アニソール、ジエチルエーテ
ル、スルホラン、メチルスルホラン、アセトニトリル、
クロロニトリル、プロピオニトリル、ホウ酸トリメチ
ル、ケイ酸テトラメチル、ニトロメタン、ジメチルホル
ムアミド、N−メチルピロリドン、酢酸エチル、トリメ
チルオルトホルメート、ニトロベンゼン等の1種もしく
は2種以上が例示できる。
The organic solvent used for the non-aqueous electrolyte is not particularly limited, but may be, for example, propylene carbonate, ethylene carbonate, dimethyl carbonate,
Diethyl carbonate, 1,1- and 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactam,
Tetrahydrofuran, 1,3-dioxolan, 4-methyl-1,3-dioxolan, anisole, diethyl ether, sulfolane, methylsulfolane, acetonitrile,
One or more of chloronitrile, propionitrile, trimethyl borate, tetramethyl silicate, nitromethane, dimethylformamide, N-methylpyrrolidone, ethyl acetate, trimethyl orthoformate, nitrobenzene and the like can be exemplified.

【0058】電解質のリチウム化合物としては、使用す
る有機溶媒に可溶性の有機または無機リチウム化合物を
使用すればよい。適当なリチウム化合物の具体例として
は、LiClO4、LiBF4 、LiPF6 、LiAsF6、LiB(C6H5) 、Li
Cl、LiBr、LiCF3SO3、LiCH3SO3 等の1種または2種以
上を挙げることができる。
As the lithium compound of the electrolyte, an organic or inorganic lithium compound soluble in the organic solvent used may be used. Examples of suitable lithium compounds, LiClO 4, LiBF 4, LiPF 6, LiAsF 6, LiB (C 6 H 5), Li
One or more of Cl, LiBr, LiCF 3 SO 3 , LiCH 3 SO 3 and the like can be mentioned.

【0059】[0059]

【実施例】(実施例1)石油ピッチから得たバルクメソフ
ェーズピッチを粗粉砕し、アルゴン雰囲気下1000℃に1
時間加熱することにより炭化して炭素材を得た。この炭
素材を、約90体積%が粒度1〜80μmとなるようにアト
リションミルで粉砕した。次いで、粉砕した炭素材をア
ルゴン雰囲気下3000℃の温度で30分間熱処理して黒鉛化
を行い、さらに酸素雰囲気中700 ℃で3時間の酸化熱処
理を行うことにより、黒鉛粉末表面に削り取った。その
後、Ar雰囲気中で昇温速度100 ℃、保持温度2000℃、保
持時間6時間の急速熱処理を実施することにより、本発
明の黒鉛粉末を得た。
EXAMPLES Example 1 Bulk mesophase pitch obtained from petroleum pitch was coarsely pulverized and heated to 1000 ° C. under an argon atmosphere.
The material was carbonized by heating for an hour to obtain a carbon material. This carbon material was pulverized with an attrition mill so that about 90% by volume had a particle size of 1 to 80 μm. Next, the pulverized carbon material was heat-treated at a temperature of 3000 ° C. for 30 minutes in an argon atmosphere to perform graphitization, and further subjected to an oxidation heat treatment at 700 ° C. for 3 hours in an oxygen atmosphere, thereby shaving off the surface of the graphite powder. Thereafter, rapid heat treatment was performed in an Ar atmosphere at a heating rate of 100 ° C., a holding temperature of 2000 ° C., and a holding time of 6 hours to obtain a graphite powder of the present invention.

【0060】この黒鉛粉末を5μm以上、45μm以下に
篩い分けしてから、電極の作製に供した。この黒鉛粉末
の平均粒径は12μmであった。図3に、得られた黒鉛粉
末の原子間力顕微鏡写真を示す。この写真から、黒鉛粉
末の表面には、長さ0nm超〜20nmの周期的な閉塞領域が
c軸垂直方向に数珠状に連なった、モザイク状の表面閉
塞構造を持つことが認められる。即ち、このモザイク状
閉塞構造のLc⊥は0nm超〜20nmである。
The graphite powder was sieved to 5 μm or more and 45 μm or less, and then provided for production of an electrode. The average particle size of the graphite powder was 12 μm. FIG. 3 shows an atomic force micrograph of the obtained graphite powder. From this photograph, it is recognized that the surface of the graphite powder has a mosaic surface block structure in which periodic block regions having a length of more than 0 nm to 20 nm are connected in a bead shape in the c-axis vertical direction. That is, Lc⊥ of the mosaic closed structure is more than 0 nm to 20 nm.

【0061】図4には、黒鉛粉末をc軸方向に切った断
面TEM写真を示す。この写真から、粉末表面に多層積
層型の閉塞構造が形成されており、そのc軸方向のピッ
チ幅(即ち、閉塞領域のc‖) は2〜10 nm であること
がわかる。
FIG. 4 shows a cross-sectional TEM photograph of the graphite powder cut in the c-axis direction. From this photograph, it can be seen that a multilayer lamination type closed structure is formed on the powder surface, and the pitch width in the c-axis direction (that is, c‖ of the closed region) is 2 to 10 nm.

【0062】さらに、図5は黒鉛粉末の表面を真上から
観察した構造を示す。本発明によれば、図5に示すよう
に、aの部分が閉塞領域となり、bの部分が間隙口とな
った、閉塞領域がモザイク状に散在した閉塞構造が黒鉛
表面に形成される。
FIG. 5 shows a structure in which the surface of the graphite powder is observed from directly above. According to the present invention, as shown in FIG. 5, a closed structure in which the closed area is scattered in a mosaic shape, in which the area a is the closed area and the area b is the gap, is formed on the graphite surface.

【0063】上で得たモザイク状閉塞構造を持つ本発明
の黒鉛粉末を用いて、以下の方法で電極を作製した。上
述の黒鉛粉末90質量部とポリフッ化ビニリデン粉末10質
量部とを、溶剤であるN−メチルピロリドン中で混合
し、乾燥させペースト状にした。得られたペーストを集
電体となる厚さ20μmの銅箔上にドクターブレードを用
いて均一厚さに塗布した後、80℃で乾燥させた。ここか
ら直径15.2 mm の円形 (面積1.8 cm2)に切り出した試験
片を負極とした。
Using the graphite powder of the present invention having the mosaic closed structure obtained above, an electrode was produced by the following method. 90 parts by mass of the above graphite powder and 10 parts by mass of polyvinylidene fluoride powder were mixed in N-methylpyrrolidone as a solvent and dried to form a paste. The obtained paste was applied to a 20 μm-thick copper foil as a current collector to a uniform thickness using a doctor blade, and then dried at 80 ° C. A test piece cut out from this into a circle (area: 1.8 cm 2 ) with a diameter of 15.2 mm was used as a negative electrode.

【0064】この負極の高率放電特性を、対極、参照極
に金属リチウムを用いた3極式定電流充放電試験で評価
した。電解液はエチレンカーボネートとジメチルカーボ
ネートの体積比1:3の混合溶液1mol/l の濃度でLiPF
6 を溶解させたものを使用した。充放電電流は0.85、4.
0 、8.0 、12、20 mA の5条件を用いた。電流密度に換
算すると、それぞれ0.47、2.2 、4.4 、6.6 および11.1
mA/cm2 になる。なお、電極形成時のプレス圧は750 kg
f/cm2 である。初回は0.85 mA の定電流定電圧で充電を
終了した後、同じ電流で放電させ、2サイクル目では、
上記5条件による電流密度を用いて充放電容量を測定
し、初回に対する放電容量比を算出した。
The high-rate discharge characteristics of the negative electrode were evaluated by a three-electrode constant current charge / discharge test using lithium metal as a counter electrode and a reference electrode. The electrolyte was LiPF at a concentration of 1 mol / l of a mixed solution of ethylene carbonate and dimethyl carbonate in a volume ratio of 1: 3.
What melt | dissolved 6 was used. Charge and discharge current is 0.85, 4.
Five conditions of 0, 8.0, 12, and 20 mA were used. Converted to current density, 0.47, 2.2, 4.4, 6.6 and 11.1 respectively
mA / cm 2 . The press pressure during electrode formation is 750 kg
f / cm 2 . At the first time, charging is completed at a constant current and constant voltage of 0.85 mA, then discharged at the same current, and in the second cycle,
The charge / discharge capacity was measured using the current density under the above five conditions, and the discharge capacity ratio to the first time was calculated.

【0065】比較のために、バルクメソフェーズピッチ
を、炭化前に約90体積%が1〜80μmとなるようにアト
リションミルで粉砕した後、Ar雰囲気下700 ℃に1時間
加熱して炭化させ、次いでそのまま加熱温度を3000℃に
上げて、Ar雰囲気下で実施例と同様に熱処理を行って黒
鉛化して得た、従来の黒鉛粉末 (即ち、本発明の製造方
法における工程(a) と(b) だけで得た黒鉛粉末) につい
ても、同様に高率放電特性を調べた。
For comparison, the bulk mesophase pitch was pulverized by an attrition mill so that about 90% by volume became 1 to 80 μm before carbonization, and then heated at 700 ° C. for 1 hour in an Ar atmosphere to carbonize. Next, the heating temperature was raised to 3000 ° C. as it was, and heat treatment was carried out in the same manner as in the example in an Ar atmosphere to obtain a graphitized graphite powder (i.e., the steps (a) and (b) ) Alone was also examined for high-rate discharge characteristics.

【0066】本発明による黒鉛粉末と従来の黒鉛粉末の
種々の電流密度での放電特性の試験結果を図6に示す。
図6からわかるように、本発明の黒鉛化後に酸化処理と
急速アニール処理とを施した黒鉛粉末を活物質とする負
極では、電流を20 mA と高くしても、0.85 mAの時の95
%という高い放電容量を示し、高率放電特性に優れてい
た。また、20 mA での放電容量は313mAh/g、充放電効率
(充電電気量に対する放電電気量の百分率)は92%であ
り、いずれも十分に高かった。
FIG. 6 shows the test results of the discharge characteristics of the graphite powder according to the present invention and the conventional graphite powder at various current densities.
As can be seen from FIG. 6, in the negative electrode of the present invention using graphite powder as an active material, which has been subjected to oxidation treatment and rapid annealing treatment after graphitization, even when the current is increased to 20 mA, 95% at 0.85 mA is obtained.
%, And was excellent in high-rate discharge characteristics. The discharge capacity at 20 mA is 313 mAh / g, and the charge and discharge efficiency
(Percentage of the amount of discharged electricity to the amount of charged electricity) was 92%, which was sufficiently high in each case.

【0067】一方、図6に示すように、従来の黒鉛粉末
を用いた負極では、電流が12 mA で放電容量の低下が認
められ、20 mA では、0.85 mA の時の80%まで容量が低
下した。この時の放電容量は272mAh/g、充放電効率は80
%であった。
On the other hand, as shown in FIG. 6, in the negative electrode using the conventional graphite powder, a decrease in discharge capacity was observed at a current of 12 mA, and at 20 mA, the capacity decreased to 80% of that at 0.85 mA. did. The discharge capacity at this time is 272 mAh / g, and the charge / discharge efficiency is 80
%Met.

【0068】本発明の黒鉛粉末が高率放電特性に優れて
いるのは、急速熱処理によるモザイク状表面閉塞構造の
形成により空隙が網目状に拡がり、Liイオンの侵入・拡
散経路を容易に確保できる点にあると考えるのが妥当で
ある。
The graphite powder of the present invention is excellent in high-rate discharge characteristics because voids are expanded in a network-like manner due to formation of a mosaic-like surface closed structure by rapid heat treatment, and a path for intrusion and diffusion of Li ions can be easily secured. It is reasonable to think that there is a point.

【0069】(実施例2)酸化熱処理後のAr雰囲気中での
熱処理の昇温速度と保持温度を表1に示すように変化さ
せた以外は実施例1と同様にして黒鉛粉末を製造した。
Example 2 A graphite powder was produced in the same manner as in Example 1 except that the heating rate in the Ar atmosphere after the oxidation heat treatment and the holding temperature were changed as shown in Table 1.

【0070】得られた黒鉛粉末の表面に形成されている
閉塞領域のLc‖およびLc⊥の値と、これから作製した負
極の高率放電特性 (2回目の充放電電流が20mA (=電流
密度11.1 mA/cm2)の場合の放電容量の初回0.85 mA の場
合の放電容量に対する比) を、いずれも実施例1と同様
に求めた結果を表1に併記する。
The values of Lc‖ and Lc⊥ in the closed region formed on the surface of the obtained graphite powder and the high-rate discharge characteristics of the negative electrode produced therefrom (the second charge / discharge current was 20 mA (= current density of 11.1) The ratio of the discharge capacity in the case of mA / cm 2 ) to the discharge capacity in the case of the initial 0.85 mA) was determined in the same manner as in Example 1, and the results are also shown in Table 1.

【0071】[0071]

【表1】 表1に示すように、酸化熱処理後のAr雰囲気中での熱処
理時の昇温速度3℃/秒の場合には、得られた黒鉛粉末
の表面の閉塞構造がモザイク状にならず、閉塞領域がc
⊥方向に連続して、閉塞領域のLc⊥値が∞である表面形
態となる。
[Table 1] As shown in Table 1, when the heating rate was 3 ° C./sec during the heat treatment in the Ar atmosphere after the oxidizing heat treatment, the surface of the obtained graphite powder did not have a mosaic closed structure, but had a closed region. Is c
Continuously in the 連 続 direction, the surface morphology is such that the Lc⊥ value of the closed area is 領域.

【0072】これに対し、この熱処理の昇温速度が5℃
/秒以上になると、モザイク状の閉塞構造が生成し、そ
れに伴って高率放電特性の改善が得られた。表1から、
熱処理時の昇温速度が速いほど、また保持温度が高いほ
ど、生成したモザイク状閉塞構造の個々の閉塞領域のLc
⊥値が小さくなる傾向があり、このLc⊥値が小さいほど
高率放電特性が向上することがわかる。
On the other hand, the heating rate of this heat treatment was 5 ° C.
/ S or more, a mosaic-shaped closed structure was generated, and the high-rate discharge characteristics were improved accordingly. From Table 1,
The higher the rate of temperature rise during heat treatment and the higher the holding temperature, the higher the Lc of each closed area of the generated mosaic-shaped closed structure.
The わ か る value tends to be small, and it can be seen that the smaller the Lc ⊥ value, the higher the high-rate discharge characteristics.

【0073】[0073]

【発明の効果】本発明により、高率放電特性に優れ、か
つ放電容量と充放電効率も十分に高い、リチウムイオン
二次電池の負極として最適の黒鉛粉末が提供される。そ
れにより、リチウムイオン二次電池の高性能化を図るこ
とができる。従って、本発明は特に高率充放電が求めら
れる用途におけるリチウムイオン二次電池の普及に貢献
する技術である。
According to the present invention, there is provided a graphite powder which is excellent as a negative electrode of a lithium ion secondary battery and has excellent high rate discharge characteristics and sufficiently high discharge capacity and charge / discharge efficiency. Thereby, the performance of the lithium ion secondary battery can be improved. Therefore, the present invention is a technology that contributes to the spread of lithium ion secondary batteries particularly in applications requiring high rate charging and discharging.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の黒鉛粉末の表面閉塞構造と本発明の範囲
外の条件での熱処理による閉塞構造の変化を示す模式的
説明図である。
FIG. 1 is a schematic explanatory view showing a conventional surface closing structure of graphite powder and a change in the closing structure by heat treatment under conditions outside the scope of the present invention.

【図2】本発明の黒鉛粉末の製造過程における表面閉塞
構造の形成の異なる態様を示す模式的説明図である。
FIG. 2 is a schematic explanatory view showing a different aspect of the formation of a surface blocking structure in the process of producing the graphite powder of the present invention.

【図3】本発明の黒鉛粉末の表面形態を示す原子間力顕
微鏡写真である。
FIG. 3 is an atomic force micrograph showing the surface morphology of the graphite powder of the present invention.

【図4】本発明の黒鉛粉末の表面付近の断面TEM写真
である。
FIG. 4 is a TEM photograph of a cross section near the surface of the graphite powder of the present invention.

【図5】本発明の黒鉛粉末の表面を真上から観察した模
式図であり、aは閉塞領域の部分、bは間隙口の部分を
示す。
FIG. 5 is a schematic view of the surface of the graphite powder of the present invention observed from directly above, where “a” indicates a closed area portion and “b” indicates a gap portion.

【図6】本発明の黒鉛粉末と従来の黒鉛粉末について、
充放電電流密度に対する放電容量の変化を示すグラフで
ある。
FIG. 6 shows the graphite powder of the present invention and a conventional graphite powder.
5 is a graph showing a change in discharge capacity with respect to charge / discharge current density.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宗藤 伸治 兵庫県尼崎市扶桑町1番8号 住友金属工 業株式会社エレクトロニクス技術研究所内 (72)発明者 阿部 賢 兵庫県尼崎市扶桑町1番8号 住友金属工 業株式会社エレクトロニクス技術研究所内 (72)発明者 小丸 篤雄 福島県安達郡本宮町字樋ノ口2番地 ソニ ー福島株式会社内 (72)発明者 藤重 祐介 東京都品川区北品川6丁目7番35号 ソニ ー株式会社内 (72)発明者 永峰 政幸 福島県安達郡本宮町字樋ノ口2番地 ソニ ー福島株式会社内 Fターム(参考) 4G046 EA02 EB02 EB04 EB13 EC02 EC06 5H029 AJ03 AJ14 AK03 AL07 AM03 AM04 AM05 AM07 BJ14 CJ02 CJ28 DJ16 DJ17 HJ04 HJ14 5H050 AA08 AA19 BA17 CA08 CA09 CB08 EA10 EA24 FA19 GA02 GA05 GA27 HA13 HA14 HA20 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Shinji Soto, 1-8 Fuso-cho, Amagasaki-shi, Hyogo Sumitomo Metal Industries, Ltd. Inside Electronics Research Laboratory (72) Inventor Ken Abe 1-8 Fuso-cho, Amagasaki-shi, Hyogo No. Sumitomo Metal Industries, Ltd. Electronics Research Laboratory (72) Inventor Atsushi Komaru 2nd Hinoguchi, Motomiya-cho, Adachi-gun, Fukushima Prefecture Inside Sony Fukushima Corporation (72) Inventor Yusuke Fujishige 6-7 Kita Shinagawa, Shinagawa-ku, Tokyo No. 35 Inside Sony Corporation (72) Inventor Masayuki Nagamine No. 2 Hinoguchi, Motomiya-cho, Adachi-gun, Fukushima Prefecture F-term inside Sony Fukushima Corporation (reference) 4G046 EA02 EB02 EB04 EB13 EC02 EC06 5H029 AJ03 AJ14 AK03 AL07 AM03 AM04 AM05 AM07 BJ14 CJ02 CJ28 DJ16 DJ17 HJ04 HJ14 5H050 AA08 AA19 BA17 CA08 CA09 CB08 EA10 EA24 FA19 GA02 GA05 GA27 H A13 HA14 HA20

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 黒鉛c面層の端部どうしが連結して閉じ
た閉塞領域が粉末表面に散在している表面形態を有し、
個々の前記閉塞領域の黒鉛c軸に垂直方向の長さ (Lc
⊥) が100 nm以下であることを特徴とする、黒鉛粉末。
An end surface of a graphite c-plane layer is connected to each other to form a closed closed area scattered on a powder surface,
The length (Lc
Ii) a graphite powder having a particle size of 100 nm or less.
【請求項2】 下記工程を含むことを特徴とする、請求
項1記載の黒鉛粉末の製造方法。 (a) 炭素質材料を炭化して得た炭素材を熱処理して黒鉛
化する工程、(b) 炭化前、炭化と黒鉛化の間、および/
または黒鉛化後に行う少なくとも1回の粉砕工程、(c)
工程(a), (b)後に得られた黒鉛粉末を、その表面を削る
ことができる条件下で熱処理する工程、(d) 工程(c) で
得られた黒鉛粉末を、不活性ガス中にて昇温速度5℃/
秒以上で昇温し、500 ℃以上の温度に保持して熱処理す
る工程。
2. The method for producing graphite powder according to claim 1, comprising the following steps. (a) heat-treating the carbon material obtained by carbonizing the carbonaceous material to graphitize; (b) before carbonization, between carbonization and graphitization, and / or
Or at least one grinding step performed after graphitization, (c)
Heat-treating the graphite powder obtained after the steps (a) and (b) under conditions capable of shaving the surface thereof, and (d) placing the graphite powder obtained in the step (c) in an inert gas. 5 ° C /
A process of heating at a temperature of 500 ° C. or more for heat treatment in more than a second.
【請求項3】 工程(c) での熱処理が酸化熱処理であ
る、請求項2記載の黒鉛粉末の製造方法。
3. The method for producing graphite powder according to claim 2, wherein the heat treatment in the step (c) is an oxidation heat treatment.
【請求項4】 請求項1記載の黒鉛粉末を備えた、リチ
ウムイオン二次電池用負極。
4. A negative electrode for a lithium ion secondary battery, comprising the graphite powder according to claim 1.
【請求項5】 請求項4記載の負極を備えた、リチウム
イオン二次電池。
5. A lithium ion secondary battery comprising the negative electrode according to claim 4.
JP2000261046A 2000-08-30 2000-08-30 Graphite powder suitable for negative electrode of secondary battery, its production method and use Expired - Fee Related JP4701484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000261046A JP4701484B2 (en) 2000-08-30 2000-08-30 Graphite powder suitable for negative electrode of secondary battery, its production method and use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000261046A JP4701484B2 (en) 2000-08-30 2000-08-30 Graphite powder suitable for negative electrode of secondary battery, its production method and use

Publications (2)

Publication Number Publication Date
JP2002075362A true JP2002075362A (en) 2002-03-15
JP4701484B2 JP4701484B2 (en) 2011-06-15

Family

ID=18748962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000261046A Expired - Fee Related JP4701484B2 (en) 2000-08-30 2000-08-30 Graphite powder suitable for negative electrode of secondary battery, its production method and use

Country Status (1)

Country Link
JP (1) JP4701484B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007076929A (en) * 2005-09-12 2007-03-29 Jfe Chemical Corp Manufacturing method for graphitized powder of mesocarbon microspheres
CN100355128C (en) * 2002-12-26 2007-12-12 三星Sdi株式会社 Negative electrode active material for rechargeable lithium cell and its preparing method
KR101429975B1 (en) 2007-12-21 2014-08-18 재단법인 포항산업과학연구원 Method for heat treatment of activated carbons for electrodes
WO2015146900A1 (en) * 2014-03-26 2015-10-01 日本電気株式会社 Negative electrode carbon material, method for producing negative electrode carbon material, negative electrode for lithium secondary cell, and lithium secondary cell
JP2017033947A (en) * 2011-10-21 2017-02-09 昭和電工株式会社 Production method of graphite material for electrode material of lithium ion battery
JP2017033946A (en) * 2011-10-21 2017-02-09 昭和電工株式会社 Production method of graphite material of electrode material for lithium ion battery
US11217783B2 (en) 2017-12-22 2022-01-04 Samsung Sdi Co., Ltd. Negative electrode active material for lithium secondary battery, negative electrode including the same, and lithium secondary battery including the negative electrode
CN114784231A (en) * 2022-05-07 2022-07-22 万向一二三股份公司 Preparation method of graphite cathode of lithium battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10125322A (en) * 1996-10-22 1998-05-15 Sumitomo Metal Ind Ltd Graphite suited for negative electrode material of lithium secondary battery
WO1998029335A1 (en) * 1996-12-25 1998-07-09 Sumitomo Metal Industries, Ltd. Graphite powder suitable for negative electrode material of lithium ion secondary cell
JPH10218615A (en) * 1997-02-06 1998-08-18 Sumitomo Metal Ind Ltd Cathode material for lithium secondary battery
JPH10226506A (en) * 1997-02-13 1998-08-25 Sumitomo Metal Ind Ltd Graphite powder suitable for negative-electrode material of lithium secondary battery
JPH11307095A (en) * 1998-04-21 1999-11-05 Sumitomo Metal Ind Ltd Graphite powder suitable for negative electrode material of lithium ion secondary battery
JP2000164219A (en) * 1998-11-25 2000-06-16 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery and its manufacture

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10125322A (en) * 1996-10-22 1998-05-15 Sumitomo Metal Ind Ltd Graphite suited for negative electrode material of lithium secondary battery
WO1998029335A1 (en) * 1996-12-25 1998-07-09 Sumitomo Metal Industries, Ltd. Graphite powder suitable for negative electrode material of lithium ion secondary cell
JPH10218615A (en) * 1997-02-06 1998-08-18 Sumitomo Metal Ind Ltd Cathode material for lithium secondary battery
JPH10226506A (en) * 1997-02-13 1998-08-25 Sumitomo Metal Ind Ltd Graphite powder suitable for negative-electrode material of lithium secondary battery
JPH11307095A (en) * 1998-04-21 1999-11-05 Sumitomo Metal Ind Ltd Graphite powder suitable for negative electrode material of lithium ion secondary battery
JP2000164219A (en) * 1998-11-25 2000-06-16 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery and its manufacture

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100355128C (en) * 2002-12-26 2007-12-12 三星Sdi株式会社 Negative electrode active material for rechargeable lithium cell and its preparing method
US7485395B2 (en) 2002-12-26 2009-02-03 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and method of preparing same
JP2007076929A (en) * 2005-09-12 2007-03-29 Jfe Chemical Corp Manufacturing method for graphitized powder of mesocarbon microspheres
KR101429975B1 (en) 2007-12-21 2014-08-18 재단법인 포항산업과학연구원 Method for heat treatment of activated carbons for electrodes
JP2017033946A (en) * 2011-10-21 2017-02-09 昭和電工株式会社 Production method of graphite material of electrode material for lithium ion battery
JP2017033947A (en) * 2011-10-21 2017-02-09 昭和電工株式会社 Production method of graphite material for electrode material of lithium ion battery
WO2015146900A1 (en) * 2014-03-26 2015-10-01 日本電気株式会社 Negative electrode carbon material, method for producing negative electrode carbon material, negative electrode for lithium secondary cell, and lithium secondary cell
JPWO2015146900A1 (en) * 2014-03-26 2017-04-13 日本電気株式会社 Negative electrode carbon material, production method of negative electrode carbon material, negative electrode for lithium secondary battery, and lithium secondary battery
US20170133680A1 (en) * 2014-03-26 2017-05-11 Nec Corporation Negative electrode carbon material, method for producing negative electrode carbon material, negative electrode for lithium secondary battery, and lithium secondary battery
EP3136481A4 (en) * 2014-03-26 2018-02-21 Nec Corporation Negative electrode carbon material, method for producing negative electrode carbon material, negative electrode for lithium secondary cell, and lithium secondary cell
US10431824B2 (en) 2014-03-26 2019-10-01 Nec Corporation Negative electrode carbon material, method for producing negative electrode carbon material, negative electrode for lithium secondary battery, and lithium secondary battery
US11217783B2 (en) 2017-12-22 2022-01-04 Samsung Sdi Co., Ltd. Negative electrode active material for lithium secondary battery, negative electrode including the same, and lithium secondary battery including the negative electrode
CN114784231A (en) * 2022-05-07 2022-07-22 万向一二三股份公司 Preparation method of graphite cathode of lithium battery

Also Published As

Publication number Publication date
JP4701484B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
TW503214B (en) Graphite powders suited for negative electrode material of lithium ion secondary battery
JP6160770B2 (en) Negative electrode material for lithium ion secondary battery, method for producing negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR100508839B1 (en) Graphite powder suitable as a cathode material for lithium ion secondary batteries
EP3355389B1 (en) Anode active material for lithium secondary battery and method for producing same
EP3355388B1 (en) Anode active material for lithium secondary battery and method for producing same
JP4040606B2 (en) Negative electrode material for lithium ion secondary battery and production method thereof, and negative electrode for lithium ion secondary battery and lithium ion secondary battery
EP2768051A1 (en) Silicon-based composite and method for manufacturing same
JP4670908B2 (en) Negative electrode material for lithium secondary battery and lithium secondary battery
JP2017228439A (en) Lithium ion secondary battery and method for manufacturing the same
JP7276324B2 (en) Positive electrode active material for lithium ion secondary battery and method for producing the same
JP3311104B2 (en) Lithium secondary battery
KR102237949B1 (en) Negative electrode active material particle and method of preparing for the same
JP2001023638A (en) Manufacture of graphite powder for lithium ion secondary battery negative electrode
JP4933092B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5516929B2 (en) Carbon nanotube material for negative electrode and lithium ion secondary battery using the same as negative electrode
JP6584975B2 (en) Carbon material for negative electrode of lithium ion secondary battery, negative electrode of lithium ion secondary battery, and method for producing lithium ion secondary battery
JP4701484B2 (en) Graphite powder suitable for negative electrode of secondary battery, its production method and use
JP5133543B2 (en) Method for producing mesocarbon microsphere graphitized material
JPH11191408A (en) Negative active material for lithium ion secondary battery, and negative electrode plate and lithium ion secondary battery using the same
JP4547504B2 (en) Graphite material suitable for negative electrode of lithium ion secondary battery and method for producing the same
JP2010009948A (en) Nonaqueous electrolyte secondary battery
JP5021979B2 (en) Mesocarbon microsphere graphitized material for lithium ion secondary battery negative electrode material and method for producing the same, lithium ion secondary battery negative electrode material, lithium ion secondary battery negative electrode and lithium ion secondary battery
JP2006164570A (en) Method of manufacturing graphite material for lithium secondary battery anode, and lithium secondary battery
JP2001106518A (en) Graphite powder including boron, its producing method and usage thereof
JP4403325B2 (en) Method for producing graphite powder for negative electrode of lithium ion secondary battery and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110221

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees