JP2006164570A - Method of manufacturing graphite material for lithium secondary battery anode, and lithium secondary battery - Google Patents
Method of manufacturing graphite material for lithium secondary battery anode, and lithium secondary battery Download PDFInfo
- Publication number
- JP2006164570A JP2006164570A JP2004350321A JP2004350321A JP2006164570A JP 2006164570 A JP2006164570 A JP 2006164570A JP 2004350321 A JP2004350321 A JP 2004350321A JP 2004350321 A JP2004350321 A JP 2004350321A JP 2006164570 A JP2006164570 A JP 2006164570A
- Authority
- JP
- Japan
- Prior art keywords
- secondary battery
- lithium secondary
- graphite material
- negative electrode
- graphite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Carbon And Carbon Compounds (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、リチウム二次電池負極用黒鉛材料の製造方法およびリチウム二次電池に関する。 The present invention relates to a method for producing a graphite material for a lithium secondary battery negative electrode and a lithium secondary battery.
リチウム二次電池の負極材料には安全性および寿命の面から炭素材料が一般に用いられる。天然黒鉛、炭素繊維またはメソフェース小球体は、それ自体もしくは単に高温で熱処理するだけでリチウム二次電池負極材料として高い性能を発現することが知られている(例えば、特許文献1、非特許文献1、2参照。)。しかし、天然黒鉛は結晶の配向性が進み過ぎるために負荷特性が悪く、炭素繊維やメソフェース小球体は製造プロセスが複雑であることから製造コストが高い等、それぞれ課題が山積している。
このため、石油や石炭由来のピッチをか焼して得られるコークスを適度に黒鉛化した黒鉛材料が、リチウム二次電池の負極材料に好適に用いられている。
A carbon material is generally used as a negative electrode material for a lithium secondary battery in terms of safety and life. Natural graphite, carbon fiber, or mesophase spherules are known to exhibit high performance as a negative electrode material for a lithium secondary battery by themselves or simply by heat treatment at a high temperature (for example, Patent Document 1 and Non-Patent Document 1). 2). However, natural graphite has poor load characteristics due to excessive crystal orientation, and carbon fibers and mesophase spherules have complicated manufacturing processes, resulting in high manufacturing costs.
For this reason, the graphite material which moderately graphitized the coke obtained by calcining the pitch derived from petroleum or coal is used suitably for the negative electrode material of a lithium secondary battery.
さらに、上記のコークスを黒鉛化して得られる黒鉛材料を高黒鉛化して負極特性を向上させることを目的として、黒鉛材料に硼素を添加する技術が種々検討されている(例えば、特許文献2、3参照。)。 Further, various techniques for adding boron to the graphite material have been studied for the purpose of improving the negative electrode characteristics by graphitizing the graphite material obtained by graphitizing the above coke (for example, Patent Documents 2 and 3). reference.).
上記の硼素添加技術は、いずれも実験炉でその効果が検証されているものであるが、これらの技術をアチソン炉等の工業炉に適用した場合、過電圧が大きくなり、放電容量が低くなり、また、初回の充電時に副反応が起こるため初期効率が低くなるという知見の報告とともにこれを改善するための新たな提案がなされている(特許文献4参照。)。 All of the above boron addition techniques have been verified in an experimental furnace, but when these techniques are applied to an industrial furnace such as an Atchison furnace, the overvoltage increases and the discharge capacity decreases. Moreover, a new proposal for improving this has been made together with a report of the knowledge that the initial efficiency is lowered because a side reaction occurs during the first charge (see Patent Document 4).
上記の知見によれば、工業炉では大気中で長時間の運転によって黒鉛化を実現するために、黒鉛化温度領域において炉内が一酸化炭素および窒素雰囲気となり、材料の表面および微細クラック内壁面に不可避的に絶縁性の窒化硼素を多量に生成し、これにより、(1)負極として用いたときの黒鉛粉末間の接触抵抗が大きくなることおよび(2)副反応が起こることが原因であるとされている。
そして、この知見に基づく上記の提案は、ピッチを原料とする炭素粉末を黒鉛化した材料であって、特定の結晶構造、硼素原子濃度が硼素、炭素および窒素の総原子濃度に対して0.15未満の特定の範囲にあり、特定範囲の比抵抗を有するものを負極用とするものであり、これにより、主として硼素原子濃度を高くしないことで黒鉛粉末間の接触抵抗および副反応を小さくすることができるというものである。
According to the above findings, in order to realize graphitization in an industrial furnace by operating for a long time in the atmosphere, the inside of the furnace becomes a carbon monoxide and nitrogen atmosphere in the graphitization temperature region, and the surface of the material and the inner wall surface of the fine crack Inevitably, a large amount of insulative boron nitride is produced, which causes (1) an increase in contact resistance between graphite powders when used as a negative electrode and (2) a side reaction. It is said that.
The above proposal based on this finding is a material obtained by graphitizing carbon powder using pitch as a raw material, and the specific crystal structure and boron atom concentration are set to 0. 0 relative to the total atom concentration of boron, carbon and nitrogen. A negative electrode having a specific resistance within a specific range of less than 15 is used for the negative electrode, thereby reducing contact resistance and side reactions between graphite powders mainly by not increasing the boron atom concentration. It can be done.
また、上記の提案に関連して、黒鉛材料自体の構造変化や酸化消耗を起こさせずに、黒鉛材料の表面および微細クラック内壁面を被覆している窒化硼素を除去することを目的として、黒鉛化処理後の黒鉛粉末を二酸化炭素を含有するガス雰囲気下で900〜1500℃で1時間以上熱処理することで、窒化硼素を分解する方法が提案されている(特許文献5参照。)。そして、この提案の中で、二酸化炭素に代えて酸化性ガスを用いることは、窒化硼素の分解よりも黒鉛粉末自体の酸化消耗が激しくなり、歩留まり低下が著しくなるので望ましくないとされている。 In addition, in connection with the above proposal, the purpose is to remove boron nitride covering the surface of the graphite material and the inner wall surface of the fine crack without causing structural change and oxidation consumption of the graphite material itself. There has been proposed a method of decomposing boron nitride by heat-treating the graphite powder after the crystallization treatment at 900 to 1500 ° C. for 1 hour or more in a gas atmosphere containing carbon dioxide (see Patent Document 5). In this proposal, the use of an oxidizing gas instead of carbon dioxide is undesirable because the graphite powder itself is more oxidatively consumed than the decomposition of boron nitride and the yield is significantly reduced.
なお、その他の関連技術として、窒化硼素を実質的に生成しない製造条件を前提としたうえで、さらに、黒鉛材料中の炭化硼素が負極特性を阻害するとの認識の下、硼素を効率的に黒鉛材料から取り除くことを目的として、黒鉛化処理後の黒鉛材料を酸化熱処理して炭化硼素を酸化硼素に変えた後、黒鉛材料を洗浄して酸化硼素を取り除く技術、言い換えれば黒鉛材料から硼素化合物を完全に取り除く技術が提案されている(特許文献6参照。)。
また、黒鉛材料のc面層の端部が連結して閉じた閉塞構造を得ることにより電解液が層間に侵入しにくい等の理由により負極特性を改善することができるとの認識の下、硼素の固溶を生じさせる高温で熱処理した硼素含有黒鉛粉末を熱処理等によって表面処理してc面層の表面を削り取って黒鉛化により閉塞した閉塞構造を一旦開放してc面層の端部を平坦に揃えた後、不活性ガス中、800℃以上の温度で熱処理して再びc面層の端部の閉塞構造を得る技術が提案されている(特許文献7参照。)。
これらの技術は、上記2つの提案とは、技術思想が異なるものであり、また、技術の構成も相違するものである。
Boron with the recognition that the negative electrode characteristics can be improved by obtaining a closed structure in which the ends of the c-plane layer of graphite material are connected and closed, for example, because it is difficult for the electrolyte to enter between the layers. The surface of boron-containing graphite powder heat-treated at a high temperature that causes solid solution of the material is surface-treated by heat treatment or the like, the surface of the c-plane layer is scraped off, and the closed structure closed by graphitization is once opened to flatten the end of the c-plane layer. Then, a technique for obtaining a closed structure at the end of the c-plane layer again by heat treatment in an inert gas at a temperature of 800 ° C. or higher has been proposed (see Patent Document 7).
These technologies are different from the above-mentioned two proposals in technical idea and also in the technical configuration.
本発明者らは、窒化硼素の存在に起因する黒鉛粉末間の接触抵抗の増大および初回充電時の副反応が負極特性を低下させているとの前記2つの提案と同一の認識のもとで、これ2つの提案をさらに詳細に検討した結果、前者(特許文献4)については、充放電効率の改善において必ずしも充分な効果が得られているとは言えず、更なる改善が必要であり、一方、後者(特許文献5)については、非酸化性雰囲気下、高温で熱処理することは、実験室的には容易であっても工業的に実施する技術としては必ずしも適当ではない等の不具合があることに思い至った。 Based on the same recognition as the above-mentioned two proposals, the inventors have increased contact resistance between graphite powders due to the presence of boron nitride and that side reactions during the initial charge have deteriorated the negative electrode characteristics. As a result of examining these two proposals in more detail, the former (Patent Document 4) does not necessarily have a sufficient effect in improving the charge / discharge efficiency, and further improvement is necessary. On the other hand, the latter (Patent Document 5) suffers from problems such as heat treatment at a high temperature in a non-oxidizing atmosphere, although it is easy in the laboratory and not necessarily suitable as an industrially implemented technique. I came up with something.
本発明は、上記の課題に鑑みてなされたものであり、良好な負極特性を有するリチウム二次電池負極用黒鉛材料の製造を工業的に容易に実現することができるリチウム二次電池負極用黒鉛材料の製造方法およびリチウム二次電池を提供することを目的とする。 The present invention has been made in view of the above problems, and graphite for lithium secondary battery negative electrodes capable of industrially easily producing a graphite material for lithium secondary battery negative electrodes having good negative electrode characteristics. An object of the present invention is to provide a material manufacturing method and a lithium secondary battery.
上記目的を達成するために、本発明に係るリチウム二次電池負極用黒鉛材料の製造方法は、
硼素化合物を添加した炭素材料を黒鉛化処理して黒鉛化材料を得る黒鉛化処理工程と、
該黒鉛化材料を酸化性ガス雰囲気下で400〜800℃の温度で熱処理する熱処理工程と、
を有することを特徴とする。
In order to achieve the above object, a method for producing a graphite material for a lithium secondary battery negative electrode according to the present invention comprises:
A graphitization treatment step of obtaining a graphitized material by graphitizing a carbon material added with a boron compound;
A heat treatment step of heat-treating the graphitized material at a temperature of 400 to 800 ° C. in an oxidizing gas atmosphere;
It is characterized by having.
また、本発明に係るリチウム二次電池負極用黒鉛材料の製造方法は、前記熱処理工程において、前記黒鉛化材料を予め機械的表面処理しておくことを特徴とする。 The method for producing a graphite material for a negative electrode of a lithium secondary battery according to the present invention is characterized in that the graphitized material is subjected to a mechanical surface treatment in advance in the heat treatment step.
また、本発明に係るリチウム二次電池は、正極、負極および非水系溶媒中に電解質を溶解させた電解液を備えてなる非水系のリチウム二次電池において、上記のリチウム二次電池負極用黒鉛材料の製造方法により得られる黒鉛材料を負極に用いることを特徴とする。 The lithium secondary battery according to the present invention is a non-aqueous lithium secondary battery comprising a positive electrode, a negative electrode, and an electrolyte solution in which an electrolyte is dissolved in a non-aqueous solvent. A graphite material obtained by a material manufacturing method is used for a negative electrode.
本発明のリチウム二次電池負極用黒鉛材料の製造方法およびリチウム二次電池は、硼素化合物を添加して得る黒鉛化材料を酸化性ガス雰囲気下で400〜800℃の温度で熱処理するため、良好な負極特性を有する負極およびその負極を使用したリチウム二次電池を工業的に容易に実現することができる。 The method for producing a graphite material for a negative electrode of a lithium secondary battery and a lithium secondary battery according to the present invention are excellent because a graphitized material obtained by adding a boron compound is heat-treated at a temperature of 400 to 800 ° C. in an oxidizing gas atmosphere. A negative electrode having excellent negative electrode characteristics and a lithium secondary battery using the negative electrode can be easily industrially realized.
本発明の実施の形態について、以下に説明する。 Embodiments of the present invention will be described below.
本発明のリチウム二次電池負極用黒鉛材料の製造方法は、硼素化合物を添加した炭素材料を黒鉛化処理して黒鉛化材料を得る黒鉛化処理工程と、得られた黒鉛化材料を酸化性ガス雰囲気下で400〜800℃の温度で熱処理する熱処理工程と、を有する。 The method for producing a graphite material for a negative electrode of a lithium secondary battery according to the present invention includes a graphitization treatment step of graphitizing a carbon material added with a boron compound to obtain a graphitized material, and the resulting graphitized material as an oxidizing gas. A heat treatment step of performing heat treatment at a temperature of 400 to 800 ° C. in an atmosphere.
本発明に用いられる原料の炭素材料(炭素粉末)は、特に限定するものではないが、リチウム二次電池負極用炭素粉末として最適な黒鉛構造(グラファイト層の積層配列規則性)を形成し易い材料であることが望ましく、例えばピッチを原料とした炭素繊維、ピッチコークスおよびメソフェース小球体等を挙げることができる。
原料としてピッチを用いる場合、焼成によって黒鉛結晶性が発達しやすいもの、いわゆる黒鉛化し易い(易黒鉛化性)であることが本質的に重要であり、例示すれば、石油ピッチ、アスファルトピッチ、コールタールピッチ、ナフタレンピッチ、原油分解ピッチ、石油スラッジピッチおよび高分子重合体の熱分解により得られるピッチ等を挙げることができ、また、これらのピッチに水添処理等を施したものでもよい。
The raw material carbon material (carbon powder) used in the present invention is not particularly limited, but is a material that can easily form an optimal graphite structure (lamination arrangement regularity of the graphite layer) as a carbon powder for a lithium secondary battery negative electrode. For example, carbon fibers using pitch as a raw material, pitch coke and mesophase spherules can be mentioned.
When pitch is used as a raw material, it is essentially important that graphite crystallinity is easily developed by firing, that is, so-called graphitization (easily graphitizable). For example, petroleum pitch, asphalt pitch, coal Examples thereof include tar pitch, naphthalene pitch, crude oil decomposition pitch, petroleum sludge pitch, pitch obtained by thermal decomposition of a polymer, and the like, and these pitches may be subjected to hydrogenation treatment or the like.
本発明に用いられる硼素化合物は、金属硼素(硼素単体)、窒化硼素、酸化硼素、炭化硼素または硼酸等適宜のものを用いることができ、これらの化合物を単独であるいは2種以上を配合したものを用いることができる。 As the boron compound used in the present invention, metal boron (boron alone), boron nitride, boron oxide, boron carbide, boric acid or the like can be used as appropriate, and these compounds are used alone or in combination of two or more. Can be used.
原料である炭素材料と硼素化合物を混合する方法については、両者が均一に分散されるものであれば特に限定するものではなく、例えば、ブレンダーやニーダー等を用いた混合方法を採用することができる。 The method of mixing the raw material carbon material and the boron compound is not particularly limited as long as both are uniformly dispersed. For example, a mixing method using a blender or a kneader can be employed. .
硼素化合物の添加量は、黒鉛化処理される炭素材料に対して硼素として0.01質量%<B<10質量%、好ましくは0.01質量%<B<5質量%、さらに好ましくは0.01質量%<B<3質量%である。あまりに硼素添加量が多い場合、コスト高となって工業的に適切でないことに加え、炭素粒子の焼結が起こり後工程に解砕等が必要となるため好ましくない。 The boron compound is added in an amount of 0.01% by weight <B <10% by weight, preferably 0.01% by weight <B <5% by weight, more preferably 0.8% as boron with respect to the graphitized carbon material. It is 01 mass% <B <3 mass%. If the amount of boron added is too large, it is not preferable because it is expensive and not industrially suitable, and further, sintering of the carbon particles occurs and pulverization or the like is required in the subsequent process.
黒鉛化処理は、適宜の工業炉を用いて行うことができる。本発明では、大気下で黒鉛化処理して窒化硼素を生じても、その後の熱処理により、対応可能なためである。すなわち、雰囲気制御炉に限らず、大量熱処理が可能なアチソン炉またはLWG炉が使用可能である。これらの工業炉で炭素材料を2500℃以上、好ましくは2800℃以上まで昇温した後に、除冷して室温近傍まで降温することによって、得られる黒鉛化材料の黒鉛化度が十分に高くなる。最高温度での保持時間は特に限定しないが1時間以上が好ましい。 The graphitization treatment can be performed using an appropriate industrial furnace. In the present invention, even if boron nitride is produced by graphitizing in the atmosphere, it can be handled by subsequent heat treatment. That is, not only an atmosphere control furnace but also an Atchison furnace or LWG furnace capable of mass heat treatment can be used. After raising the temperature of the carbon material to 2500 ° C. or higher, preferably 2800 ° C. or higher in these industrial furnaces, the graphitized material obtained has a sufficiently high degree of graphitization by cooling and lowering the temperature to near room temperature. The holding time at the maximum temperature is not particularly limited but is preferably 1 hour or longer.
このようにして得られる黒鉛化材料(黒鉛化炭素粉末)は、添加した硼素の触媒効果によって、X線回折で求めた002面の面間隔d002が0.3359nm以下となり、非常に高い黒鉛化度を有する。しかし、材料表面およびクラック内壁部には窒化硼素が生成・被覆しており、そのまま電池に用いると、不可逆容量が大きなものとなってしまう。 The graphitized material (graphitized carbon powder) thus obtained has a very high graphitization because the 002 plane spacing d 002 obtained by X-ray diffraction is 0.3359 nm or less due to the catalytic effect of the added boron. Have a degree. However, boron nitride is formed and coated on the material surface and the inner wall of the crack, and when used in a battery as it is, the irreversible capacity becomes large.
本発明では、黒鉛化処理により得られた黒鉛化材料を、酸化性ガス雰囲気中で、好ましくは大気中または酸素雰囲気中で400〜800℃の範囲の温度で、10分以上、好ましくは30分以上、さらに好ましくは1時間以上熱処理をする。400℃未満の温度では、以下に説明する本発明の効果を十分に得ることができず、800℃を超える温度では、黒鉛化材料の酸化消耗が顕著になり、製品歩留まりの著しい低下を招くためである。
酸素濃度は、高すぎる場合は上記した製品歩留まりの低下を招くため好ましくなく、また10%未満では以下に説明する本発明の効果を十分に得ることができず、あるいは生産性の観点から望ましくない。酸素濃度は、好ましくは、20%程度である。
熱処理に用いる加熱炉は、特に限定されるものではなく、通常工業的に用いられるタンマン炉、マッフル炉またはカルサイナーキルン等の中から適宜選択して用いることができる。また、加熱炉はバッチ式であっても連続式であっても良い。
In the present invention, the graphitized material obtained by the graphitization treatment is used in an oxidizing gas atmosphere, preferably in the air or in an oxygen atmosphere at a temperature in the range of 400 to 800 ° C. for 10 minutes or more, preferably 30 minutes. More preferably, the heat treatment is performed for 1 hour or longer. When the temperature is lower than 400 ° C., the effects of the present invention described below cannot be sufficiently obtained, and when the temperature exceeds 800 ° C., the oxidation consumption of the graphitized material becomes significant and the product yield is significantly reduced. It is.
If the oxygen concentration is too high, it is not preferable because it leads to a decrease in the product yield described above, and if it is less than 10%, the effect of the present invention described below cannot be obtained sufficiently, or is not desirable from the viewpoint of productivity. . The oxygen concentration is preferably about 20%.
The heating furnace used for the heat treatment is not particularly limited, and can be appropriately selected from a Tamman furnace, a muffle furnace, a calsiner kiln, and the like that are usually used industrially. The heating furnace may be a batch type or a continuous type.
上記の熱処理は、窒化硼素が熱力学的に安定な領域における酸化処理である。したがって、従来例のような窒化硼素を分解して除去する機構とは異なり、熱処理を施すことにより、黒鉛化材料の表面構造が電池の負極として好適なものに変わる機構により、負極特性を向上することができるものと考えられる。 The heat treatment is an oxidation treatment in a region where boron nitride is thermodynamically stable. Therefore, unlike the conventional mechanism for decomposing and removing boron nitride, the negative electrode characteristics are improved by a mechanism in which the surface structure of the graphitized material is changed to a suitable one as the negative electrode of the battery by performing heat treatment. Can be considered.
この場合、より好ましくは、熱処理に先立ち、すなわち、黒鉛化材料を酸化処理する前に機械的表面処理を行う。
これにより、予め黒鉛化材料の新たな断面を露出させた状態で酸化、熱処理を行うことにより、熱処理の効果が向上する。したがって、機械的表面処理は、この効果を発現しうる限度で軽度に行う。
In this case, more preferably, the mechanical surface treatment is performed prior to the heat treatment, that is, before the graphitized material is oxidized.
Thereby, the effect of heat treatment is improved by performing oxidation and heat treatment in a state where a new cross section of the graphitized material is previously exposed. Therefore, the mechanical surface treatment is performed lightly as long as this effect can be exhibited.
機械的表面処理には、工業的に用いられる粉砕機を使用することができる。具体的にはアトマイザー、レイモンドミル、インペラーミル、ボールミル、カッターミル、ジェットミル、ハイブリダイザー等を挙げることができるが、特にこれらに限定されるものではない。 An industrially used pulverizer can be used for the mechanical surface treatment. Specific examples include an atomizer, a Raymond mill, an impeller mill, a ball mill, a cutter mill, a jet mill, and a hybridizer, but are not particularly limited thereto.
つぎに、上記した本発明のリチウム二次電池負極用黒鉛材料の製造方法により得られる黒鉛材料(黒鉛化材料)を負極に用いた、本発明のリチウム二次電池について説明する。 Next, the lithium secondary battery of the present invention using the graphite material (graphitized material) obtained by the above-described method for producing a graphite material for a lithium secondary battery negative electrode of the present invention as a negative electrode will be described.
本発明のリチウム二次電池負極用材料を活物質に用いて負極を形成する方法としては、本発明のリチウム二次電池負極用黒鉛材料の性能を充分に引き出し且つ、賦形性が高く、化学的、電気化学的に安定であれば特に限定されるものではない。例示すると、本発明のリチウム二次電池負極用材料にポリフッ化ビニリデン(PVdF)等のフッ素系樹脂粉末あるいはスチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)等の水溶性粘結剤を炭素質バインダーにして、N−メチルピロリドン(NPM)、ジメチルホルムアミドあるいは水、アルコール等の溶媒を用いて混合することによりスラリーを作成し、集電体上に塗布、乾燥することにより成形することができる。 As a method of forming a negative electrode using the negative electrode material for a lithium secondary battery of the present invention as an active material, the performance of the graphite material for a negative electrode of the lithium secondary battery of the present invention is sufficiently drawn, and the shapeability is high, As long as it is stable chemically and electrochemically, it is not particularly limited. For example, a fluorine-based resin powder such as polyvinylidene fluoride (PVdF) or a water-soluble binder such as styrene butadiene rubber (SBR) or carboxymethylcellulose (CMC) is added to the material for the negative electrode of the lithium secondary battery of the present invention as a carbonaceous binder. Then, a slurry can be prepared by mixing using a solvent such as N-methylpyrrolidone (NPM), dimethylformamide, water, alcohol or the like, and can be formed by applying and drying on a current collector.
本発明の負極活物質は、正極活物質と非水系電解質(例えば、有機溶媒系電解質)と適宜に組み合わせて用いることができるが、これらの非水系電解質や正極活物質は、リチウム二次電池に通常用いることのできるものであれば、特にこれに制限するものではない。
なお、本発明のリチウム二次電池負極用材料は、負極の全部に用いてもよく、また、負極の一部に用いるとともに残部を他の負極材料としてもよい。
The negative electrode active material of the present invention can be used in appropriate combination with a positive electrode active material and a non-aqueous electrolyte (for example, an organic solvent-based electrolyte), but these non-aqueous electrolyte and positive electrode active material are used in lithium secondary batteries. There are no particular restrictions on this as long as it can be used normally.
In addition, the lithium secondary battery negative electrode material of the present invention may be used for all of the negative electrode, or may be used for a part of the negative electrode and the remainder may be another negative electrode material.
正極活物質としては、例えばリチウム含有遷移金属酸化物(LiM(1)xO2 式中、xは0≦x≦1の範囲の数値であり、式中M(1)は遷移金属を表し、Co、Ni、Mn、Ti、Cr、V、Fe、Zn、Al、Sn、Inの少なくとも1種類からなる。あるいはLiM(1)yM(2)z−yO4 式中、yは0≦y≦1の範囲の数値であり、式中、M(1)、M(2)は遷移金属を表し、Co、Ni、Mn、Ti、Cr、V、Fe、Zn、Al、Sn、Inの少なくとも1種類からなる。)、Ti、S2、NbSe等の遷移金属カルコゲン化物、V2O5、V6O13、V2O4、V3O6等のバナジウム酸化物およびリチウム化合物、一般式MxMo6Ch6−y (式中、xは0≦x≦4、yは0≦y≦1の範囲の数値であり、式中Mは遷移金属をはじめとする金属、Chはカルコゲン金属を表す。)で表されるシュブレル相化合物、あるいは活性炭、活性炭素繊維等を用いることができる。 As the positive electrode active material, for example, a lithium-containing transition metal oxide (LiM (1) xO 2 where x is a numerical value in the range of 0 ≦ x ≦ 1, where M (1) represents a transition metal, Co , Ni, Mn, Ti, Cr, V, Fe, Zn, Al, Sn, In, or LiM (1) yM (2) z-yO in the formula 4 , y is 0 ≦ y ≦ 1 Where M (1) and M (2) represent transition metals, and are at least one of Co, Ni, Mn, Ti, Cr, V, Fe, Zn, Al, Sn, and In Transition metal chalcogenides such as Ti, S 2 and NbSe, vanadium oxides and lithium compounds such as V 2 O 5 , V 6 O 13 , V 2 O 4 and V 3 O 6 , general formula MxMo 6 Ch 6-y (wherein x is a numerical value in the range of 0 ≦ x ≦ 4, y is 0 ≦ y ≦ 1, M represents a metal including a transition metal, Ch represents a chalcogen metal), activated carbon, activated carbon fiber, or the like.
非水系電解質(例えば、有機溶媒系電解質)における有機溶媒としては、特に限定されるものではないが、例えば、プロピレンカーボネート、エチレンカーボネート、フ゛チレンカーホ゛ネート、クロロエチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、1,1-ジメトキシエタン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、γ-ブチロラクトン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、アニソール、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、クロロニトリル、プロピオニトリル、ホウ酸トリメチル、ケイ酸テトラメチル、ニトロメタン、ジメチルホルムアミド、N-メチルピロリドン、酢酸エチル、トリメチルオルトホルメート、ニトロベンゼン、塩化ベンゾイル、臭化ベンゾイル、テトラヒドロチオフェン、ジメチルスルホキシド、3-メチル-2-オキサゾリドン、エチレングリコール、サルファイト、ジメチルサルファイト等の単独溶媒もしくは2種類以上の混合溶媒を使用できる。 The organic solvent in the non-aqueous electrolyte (for example, organic solvent-based electrolyte) is not particularly limited, and examples thereof include propylene carbonate, ethylene carbonate, butyl carbonate, chloroethylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate. 1,1-dimethoxyethane, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, Anisole, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, chloronitrile, propionitrile, trimethyl borate, tetramethyl silicate, nitromethane, dimethylformamide, N-methylpyrrolidone, ethyl acetate, trimethyl Rutohorumeto, nitrobenzene, benzoyl chloride, benzoyl bromide, tetrahydrothiophene, dimethyl sulfoxide, 3-methyl-2-oxazolidone, ethylene glycol, sulfite, a single solvent or a mixture of two or more solvents such as dimethyl sulfite may be used.
電解質としては、従来より公知のものをいずれも使用することができ、例えばLiClO4、LiBF4、LiPF6、LiAsF6、LiB(C6H5)、LiCl、LiBr、LiCF3SO3、Li(CF3SO2)2N、Li(CF3SO2)3C、Li)CF3CH2OSO2)2N、Li(CF3CF2CH2OSO2)2N、Li(HCF2CF2CH2OSO2)2N、Li((CF3)2CHOSO2)2N、LiB[C6H3(CF3)2]4等の1種または2種以上の混合物を挙げることができる。 As the electrolyte, any known ones conventionally can be used, for example LiClO 4, LiBF 4, LiPF 6 , LiAsF 6, LiB (C 6 H 5), LiCl, LiBr, LiCF 3 SO 3, Li ( CF 3 SO 2 ) 2 N, Li (CF 3 SO 2 ) 3 C, Li) CF 3 CH 2 OSO 2 ) 2 N, Li (CF 3 CF 2 CH 2 OSO 2 ) 2 N, Li (HCF 2 CF 2 One or a mixture of two or more of CH 2 OSO 2 ) 2 N, Li ((CF 3 ) 2 CHOSO 2 ) 2 N, LiB [C 6 H 3 (CF 3 ) 2 ] 4 can be exemplified.
本発明のリチウム二次電池負極用黒鉛材料を負極に用いるリチウム二次電池は、放電容量が大きく、且つ充放電時のロスが少なく、且つ後述するプレス特性に優れる。また、負極材料を工業的に安価に製造することができる。 A lithium secondary battery using the graphite material for a negative electrode of the lithium secondary battery of the present invention as a negative electrode has a large discharge capacity, a small loss during charge and discharge, and excellent press characteristics described later. In addition, the negative electrode material can be produced industrially at low cost.
以下に本発明の実施例および比較例を述べる。これらの実施例、比較例は本発明をよりよく説明するためのものであり、本発明の内容を制限するものではない。
まず、各実施例等における各種物性値の測定方法について以下にまとめて説明する。
比表面積は、窒素ガス吸着によるBET法によって測定した。
タップ密度は、セイシン企業製タップ密度測定装置にて、100cm3の樹脂製メスシリンダーを用いて、20回および300回タップ時のタップ密度を測定した。測定法は、JIS−K1501に準拠した。
粒子径は、レーザー回折法により測定した粒度分布から求め、体積に関して微粉側10%での最大粒径を10%累積粒径、同50%での最大粒径を平均粒径、同90%での最大粒径を90%累積粒径と定めた。
黒鉛材料の歩留まりは、黒鉛化処理を行った黒鉛化材料の質量に対する熱処理(酸化処理)後の黒鉛化材料の残量を%表示した。
電極作成および電池性能評価は、以下の方法に拠った。
試験に供する炭素粉末にバインダーとしてスチレンブタジエンゴム/カルボキシメチルセルロース混合物を3質量%加え、蒸留水を溶媒として混練してスラリーを作成し、これを厚さ18mμの銅箔に均一となるように塗布して負極電極箔を得た。この負極電極箔を乾燥し所定の電極密度にプレスすることにより電極シートを作成し、このシートから直径15mmΦの円形に切り出すことにより負極電極を作成した。この負極電極単極での電極特性を評価するために、対極には約15.5mmΦに切り出した金属リチウムを用いた。電解液としてエチレンカーボネートとジエチルカーボネートの混合溶媒(体積比1:1混合)にLiPF6を1mol/lの濃度で溶解したものを用い、セパレーターにプロピレンの多孔質膜を用いてコインセルを作成し、25℃の恒温下、端子電圧の充電下限電圧を0V、放電の上限電圧を1.5Vとした電圧範囲で0.1mA/cm2の定電流定電圧充電、定電流放電下で充放電試験を行った。
プレス特性は、負極電極箔より10mm角切り出し、厚みおよび質量を測定した後、一軸プレス機を用いて所定圧力にてプレスを行った。その後、再度厚みを測定した後、活物質(炭素粉末およびバインダー)を剥ぎ取り、銅箔の質量を測定することによって活物質質量の値を求め密度を算出した。
Examples of the present invention and comparative examples will be described below. These examples and comparative examples are provided to better explain the present invention and do not limit the contents of the present invention.
First, a method for measuring various physical property values in each example will be described below.
The specific surface area was measured by the BET method using nitrogen gas adsorption.
The tap density was measured at a tap density of 20 times and 300 times using a 100 cm 3 resin graduated cylinder with a tap density measuring device manufactured by Seishin Corporation. The measuring method was based on JIS-K1501.
The particle diameter is obtained from the particle size distribution measured by the laser diffraction method. The maximum particle diameter at 10% of the fine powder side with respect to the volume is 10% cumulative particle diameter, the maximum particle diameter at 50% is the average particle diameter, and 90%. Was determined as 90% cumulative particle size.
For the yield of the graphite material, the remaining amount of the graphitized material after heat treatment (oxidation treatment) with respect to the mass of the graphitized material subjected to the graphitization treatment was expressed in%.
Electrode preparation and battery performance evaluation were based on the following methods.
Add 3% by mass of a styrene butadiene rubber / carboxymethyl cellulose mixture as a binder to the carbon powder to be used for the test, knead it with distilled water as a solvent to create a slurry, and apply it uniformly to a copper foil with a thickness of 18 mμ. Thus, a negative electrode foil was obtained. This negative electrode foil was dried and pressed to a predetermined electrode density to prepare an electrode sheet, and a negative electrode was prepared by cutting out from this sheet into a circle having a diameter of 15 mmΦ. In order to evaluate the electrode characteristics of the single electrode of the negative electrode, metallic lithium cut into about 15.5 mmΦ was used for the counter electrode. Using a solution of LiPF 6 dissolved at a concentration of 1 mol / l in a mixed solvent of ethylene carbonate and diethyl carbonate (volume ratio 1: 1 mixture) as an electrolytic solution, a coin cell was prepared using a porous membrane of propylene as a separator, Charge and discharge test under constant current and constant voltage discharge at constant current of 0.1 mA / cm 2 at a constant temperature of 25 ° C. and a voltage range where the lower limit voltage of terminal voltage is 0 V and the upper limit voltage of discharge is 1.5 V. went.
As for the press characteristics, a 10 mm square was cut out from the negative electrode foil, the thickness and the mass were measured, and then pressed at a predetermined pressure using a uniaxial press. Then, after measuring the thickness again, the active material (carbon powder and binder) was peeled off, and the mass of the copper foil was measured to determine the value of the active material mass, and the density was calculated.
(実施例1)
石炭系重質油を用いて、ディレードコーキング法によって製造した塊状生コークスを、レイモンドミルにて粉砕し、平均粒径20μmとした。これを、リードハンマー炉を用いて約800℃で炭化処理して炭化物を得た。この炭化物に硼素換算量で1.5質量%の炭化硼素を添加し、黒鉛製容器に充填した後アチソン炉にて約3000℃で黒鉛化を行った。得られた黒鉛化物を、篩目開き75μmの篩を用いて分級、また空気分級により微粉末の除去を行う粒度調整を行なった。さらに、黒鉛材料を大気中、600℃で1時間酸化処理を行った。
得られた黒鉛材料は、20回タップ時のタップ密度が0.86g/cm3、300回タップ時のタップ密度が1.14g/cm3、BET比表面積が1.0m2/g
であった。また、黒鉛材料の10%累積粒径は14.4μm、平均粒径は24.5μm、90%累積粒径は44.8μmであった。また、黒鉛材料の歩留まりは、99.5%であった。
この材料を負極に用いた電池の電極特性は、初回充電容量が491mAh/g、初回放電容量が342mAh/gで、初回不可逆容量が149mAh/gであった。
また、この材料を用いて得られたプレス特性は、1.5ton/cm2の圧力下で1.70g/cm3であり、後述する比較例1とほぼ同等の値であった。
Example 1
Bulk raw coke produced by a delayed coking method using coal-based heavy oil was pulverized by a Raymond mill to obtain an average particle size of 20 μm. This was carbonized at about 800 ° C. using a lead hammer furnace to obtain a carbide. Boron carbide in an amount of 1.5% by mass in terms of boron was added to the carbide, filled in a graphite vessel, and graphitized at about 3000 ° C. in an Atchison furnace. The obtained graphitized material was classified using a sieve having a sieve opening of 75 μm, and particle size adjustment was performed to remove fine powder by air classification. Furthermore, the graphite material was oxidized in the atmosphere at 600 ° C. for 1 hour.
The obtained graphite material has a tap density at 20 taps of 0.86 g / cm 3 , a tap density at 300 taps of 1.14 g / cm 3 , and a BET specific surface area of 1.0 m 2 / g.
Met. Further, the 10% cumulative particle size of the graphite material was 14.4 μm, the average particle size was 24.5 μm, and the 90% cumulative particle size was 44.8 μm. Moreover, the yield of the graphite material was 99.5%.
The electrode characteristics of the battery using this material as the negative electrode were an initial charge capacity of 491 mAh / g, an initial discharge capacity of 342 mAh / g, and an initial irreversible capacity of 149 mAh / g.
Moreover, the press characteristic obtained using this material was 1.70 g / cm 3 under a pressure of 1.5 ton / cm 2 , which was a value almost equivalent to Comparative Example 1 described later.
(実施例2)
黒鉛材料を大気中、600℃で5時間酸化処理を行ったほかは、実施例1と同様に処理した。
得られた黒鉛材料は、20回タップ時のタップ密度が0.80g/cm3、300回タップ時のタップ密度が1.10g/cm3、BET比表面積が1.5m2/g
であった。また、黒鉛材料の10%累積粒径は14.3μm、平均粒径は24.3μm、90%累積粒径は44.2μmであった。また、黒鉛材料の歩留まりは、99.3%であった。
この材料を負極に用いた電池の電極特性は、初回充電容量が381mAh/g、初回放電容量が342mAh/gで、初回不可逆容量が39mAh/gであった。
また、この材料を用いて得られたプレス特性は、1.5ton/cm2の圧力下で1.73g/cm3であった。
(Example 2)
The graphite material was treated in the same manner as in Example 1 except that it was oxidized at 600 ° C. for 5 hours in the atmosphere.
Obtained graphite material is 20 times the tap density of the tap is 0.80 g / cm 3, 300 times the tap density of the tap is 1.10 g / cm 3, BET specific surface area of 1.5 m 2 / g
Met. The 10% cumulative particle size of the graphite material was 14.3 μm, the average particle size was 24.3 μm, and the 90% cumulative particle size was 44.2 μm. Moreover, the yield of the graphite material was 99.3%.
The electrode characteristics of the battery using this material as the negative electrode were an initial charge capacity of 381 mAh / g, an initial discharge capacity of 342 mAh / g, and an initial irreversible capacity of 39 mAh / g.
Moreover, the press characteristic obtained using this material was 1.73 g / cm 3 under a pressure of 1.5 ton / cm 2 .
(実施例3)
黒鉛材料を大気中、700℃で1時間酸化処理を行ったほかは、実施例1と同様に処理した。
得られた黒鉛材料は、20回タップ時のタップ密度が0.77g/cm3、300回タップ時のタップ密度が1.07g/cm3、BET比表面積が1.6m2/g
であった。また、黒鉛材料の10%累積粒径は13.9μm、平均粒径は23.7μm、90%累積粒径は42.6μmであった。また、黒鉛材料の歩留まりは、98.1%であった。
この材料を負極に用いた電池の電極特性は、初回充電容量が360mAh/g、初回放電容量が346mAh/gで、初回不可逆容量が14mAh/gであった。
また、この材料を用いて得られたプレス特性は、1.5ton/cm2の圧力下で1.78g/cm3であった。
(Example 3)
The graphite material was treated in the same manner as in Example 1 except that it was oxidized in the atmosphere at 700 ° C. for 1 hour.
The obtained graphite material has a tap density at 20 taps of 0.77 g / cm 3 , a tap density at 300 taps of 1.07 g / cm 3 , and a BET specific surface area of 1.6 m 2 / g.
Met. The 10% cumulative particle size of the graphite material was 13.9 μm, the average particle size was 23.7 μm, and the 90% cumulative particle size was 42.6 μm. Moreover, the yield of the graphite material was 98.1%.
The electrode characteristics of the battery using this material for the negative electrode were initial charge capacity of 360 mAh / g, initial discharge capacity of 346 mAh / g, and initial irreversible capacity of 14 mAh / g.
Moreover, the press characteristic obtained using this material was 1.78 g / cm 3 under a pressure of 1.5 ton / cm 2 .
(実施例4)
黒鉛材料を大気中、700℃で5時間酸化処理を行ったほかは、実施例1と同様に処理した。
得られた黒鉛材料は、20回タップ時のタップ密度が0.74g/cm3、300回タップ時のタップ密度が1.03g/cm3、BET比表面積が1.9m2/g
であった。また、黒鉛材料の10%累積粒径は13.8μm、平均粒径は23.9μm、90%累積粒径は43.7μmであった。また、黒鉛材料の歩留まりは、94.5%であった。
この材料を負極に用いた電池の電極特性は、初回充電容量が356mAh/g、初回放電容量が346mAh/gで、初回不可逆容量が10mAh/gであった。
また、この材料を用いて得られたプレス特性は、1.5ton/cm2の圧力下で1.81g/cm3であった。
Example 4
The graphite material was treated in the same manner as in Example 1 except that it was oxidized at 700 ° C. for 5 hours in the atmosphere.
Obtained graphite material is 20 times the tap density of the tap is 0.74 g / cm 3, a tap density of at 300 taps is 1.03 g / cm 3, BET specific surface area of 1.9m 2 / g
Met. Further, the 10% cumulative particle size of the graphite material was 13.8 μm, the average particle size was 23.9 μm, and the 90% cumulative particle size was 43.7 μm. Moreover, the yield of the graphite material was 94.5%.
The electrode characteristics of the battery using this material for the negative electrode were an initial charge capacity of 356 mAh / g, an initial discharge capacity of 346 mAh / g, and an initial irreversible capacity of 10 mAh / g.
Moreover, the press characteristic obtained using this material was 1.81 g / cm 3 under a pressure of 1.5 ton / cm 2 .
(実施例5)
酸化処理に先立ち、アトマイザーによって黒鉛材料の機械的表面処理を行ったほかは、実施例4と同様に処理した。
得られた黒鉛材料は、20回タップ時のタップ密度が0.69g/cm3、300回タップ時のタップ密度が0.97g/cm3、BET比表面積が2.4m2/g であった。また、黒鉛材料の10%累積粒径は13.6μm、平均粒径は23.6μm、90%累積粒径は42.9μmであった。また、黒鉛材料の歩留まりは、89.8%であった。
この材料を負極に用いた電池の電極特性は、初回充電容量が358mAh/g、初回放電容量が344mAh/gで、初回不可逆容量が14mAh/gであった。
また、この材料を用いて得られたプレス特性は、1.5ton/cm2の圧力下で1.76g/cm3であった。
(Example 5)
Prior to the oxidation treatment, the same treatment as in Example 4 was performed except that the mechanical surface treatment of the graphite material was performed by an atomizer.
The obtained graphite material had a tap density of 0.69 g / cm 3 at 20 taps, a 0.97 g / cm 3 tap density at 300 taps, and a BET specific surface area of 2.4 m 2 / g. . The 10% cumulative particle size of the graphite material was 13.6 μm, the average particle size was 23.6 μm, and the 90% cumulative particle size was 42.9 μm. Moreover, the yield of the graphite material was 89.8%.
The electrode characteristics of the battery using this material for the negative electrode were an initial charge capacity of 358 mAh / g, an initial discharge capacity of 344 mAh / g, and an initial irreversible capacity of 14 mAh / g.
Moreover, the press characteristic obtained using this material was 1.76 g / cm 3 under a pressure of 1.5 ton / cm 2 .
(比較例)
酸化処理を施さなかったことを除いて実施例1と同様の処理により黒鉛材料を得た。
得られた黒鉛材料は、20回タップ時のタップ密度が0.88g/cm3、300回タップ時のタップ密度が1.16g/cm3、BET比表面積が0.8m2/g であった。また、黒鉛材料の10%累積粒径は14.2μm、平均粒径は24.2μm、90%累積粒径は44.5μmであった。
この材料を負極に用いた電池の電極特性は、初回充電容量が531mAh/g、初回放電容量が339mAh/gで、初回不可逆容量が192mAh/gであった。
また、この材料を用いて得られたプレス特性は、1.5ton/cm2の圧力下で1.68g/cm3であった。
(Comparative example)
A graphite material was obtained by the same treatment as in Example 1 except that the oxidation treatment was not performed.
The obtained graphite material had a tap density at 20 taps of 0.88 g / cm 3 , a tap density at 300 taps of 1.16 g / cm 3 , and a BET specific surface area of 0.8 m 2 / g. . The 10% cumulative particle size of the graphite material was 14.2 μm, the average particle size was 24.2 μm, and the 90% cumulative particle size was 44.5 μm.
The electrode characteristics of the battery using this material as the negative electrode were an initial charge capacity of 531 mAh / g, an initial discharge capacity of 339 mAh / g, and an initial irreversible capacity of 192 mAh / g.
Moreover, the press characteristic obtained using this material was 1.68 g / cm 3 under a pressure of 1.5 ton / cm 2 .
Claims (3)
該黒鉛化材料を酸化性ガス雰囲気下で400〜800℃の温度で熱処理する熱処理工程と、
を有することを特徴とするリチウム二次電池負極用黒鉛材料の製造方法。 A graphitization treatment step of obtaining a graphitized material by graphitizing a carbon material added with a boron compound;
A heat treatment step of heat-treating the graphitized material at a temperature of 400 to 800 ° C. in an oxidizing gas atmosphere;
A method for producing a graphite material for a negative electrode of a lithium secondary battery, comprising:
請求項1または2に記載のリチウム二次電池負極用黒鉛材料の製造方法により得られる黒鉛材料を負極に用いることを特徴とするリチウム二次電池。
In a non-aqueous lithium secondary battery comprising an electrolyte in which an electrolyte is dissolved in a positive electrode, a negative electrode, and a non-aqueous solvent,
3. A lithium secondary battery, wherein a graphite material obtained by the method for producing a graphite material for a negative electrode of a lithium secondary battery according to claim 1 or 2 is used for a negative electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004350321A JP2006164570A (en) | 2004-12-02 | 2004-12-02 | Method of manufacturing graphite material for lithium secondary battery anode, and lithium secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004350321A JP2006164570A (en) | 2004-12-02 | 2004-12-02 | Method of manufacturing graphite material for lithium secondary battery anode, and lithium secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006164570A true JP2006164570A (en) | 2006-06-22 |
Family
ID=36666354
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004350321A Pending JP2006164570A (en) | 2004-12-02 | 2004-12-02 | Method of manufacturing graphite material for lithium secondary battery anode, and lithium secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006164570A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006172804A (en) * | 2004-12-14 | 2006-06-29 | Dainippon Printing Co Ltd | Active material, coating composition containing the same, electrode plate, and nonaqueous electrolytic solution secondary battery |
CN102022908A (en) * | 2009-09-14 | 2011-04-20 | 高砂工业株式会社 | Rotary kiln and battery material manufactured by the rotary kiln |
WO2014046405A2 (en) * | 2012-09-19 | 2014-03-27 | 전자부품연구원 | Anode active material, nonaqueous lithium secondary battery comprising same, and preparation method thereof |
CN104969389A (en) * | 2013-02-04 | 2015-10-07 | 昭和电工株式会社 | Graphite powder for negative electrode active material of lithium-ion secondary battery |
WO2016157508A1 (en) * | 2015-03-27 | 2016-10-06 | Nec Corporation | Boron-doped activated carbon material |
US11670774B2 (en) * | 2017-09-26 | 2023-06-06 | Beijing Hina Battery Technology Co., Ltd. | Pitch-based negative electrode material for sodium-ion battery, and preparation method therefor and applications thereof |
WO2023133662A1 (en) * | 2022-01-11 | 2023-07-20 | 宁德时代新能源科技股份有限公司 | Modified graphite and preparation method therefor, carbon-coated negative electrode active material and preparation method therefor, negative electrode piece, secondary battery, battery module, battery pack, and electric device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10312807A (en) * | 1997-03-11 | 1998-11-24 | Toshiba Corp | Lithium secondary battery and manufacture of negative electrode |
JP2003077471A (en) * | 2001-09-06 | 2003-03-14 | Kashima Oil Co Ltd | Graphite material for lithium ion secondary battery negative electrode and its manufacturing method |
JP2003077473A (en) * | 2001-09-06 | 2003-03-14 | Kashima Oil Co Ltd | Graphite material for lithium ion secondary battery negative electrode |
JP2003077472A (en) * | 2001-09-06 | 2003-03-14 | Kashima Oil Co Ltd | Manufacturing method of graphite material for lithium ion secondary battery negative electrode |
JP2003331834A (en) * | 2002-05-09 | 2003-11-21 | Mitsubishi Gas Chem Co Inc | Method of manufacturing carbon material for nonaqueous solvent secondary battery |
-
2004
- 2004-12-02 JP JP2004350321A patent/JP2006164570A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10312807A (en) * | 1997-03-11 | 1998-11-24 | Toshiba Corp | Lithium secondary battery and manufacture of negative electrode |
JP2003077471A (en) * | 2001-09-06 | 2003-03-14 | Kashima Oil Co Ltd | Graphite material for lithium ion secondary battery negative electrode and its manufacturing method |
JP2003077473A (en) * | 2001-09-06 | 2003-03-14 | Kashima Oil Co Ltd | Graphite material for lithium ion secondary battery negative electrode |
JP2003077472A (en) * | 2001-09-06 | 2003-03-14 | Kashima Oil Co Ltd | Manufacturing method of graphite material for lithium ion secondary battery negative electrode |
JP2003331834A (en) * | 2002-05-09 | 2003-11-21 | Mitsubishi Gas Chem Co Inc | Method of manufacturing carbon material for nonaqueous solvent secondary battery |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006172804A (en) * | 2004-12-14 | 2006-06-29 | Dainippon Printing Co Ltd | Active material, coating composition containing the same, electrode plate, and nonaqueous electrolytic solution secondary battery |
CN102022908A (en) * | 2009-09-14 | 2011-04-20 | 高砂工业株式会社 | Rotary kiln and battery material manufactured by the rotary kiln |
CN102022908B (en) * | 2009-09-14 | 2015-07-01 | 高砂工业株式会社 | Rotary kiln and battery material manufactured by the rotary kiln |
WO2014046405A2 (en) * | 2012-09-19 | 2014-03-27 | 전자부품연구원 | Anode active material, nonaqueous lithium secondary battery comprising same, and preparation method thereof |
KR101392738B1 (en) | 2012-09-19 | 2014-05-12 | 에스케이 테크놀로지 이노베이션 컴퍼니 | Method of manufacturing anode active material for lithium secondary battery |
WO2014046405A3 (en) * | 2012-09-19 | 2014-05-22 | 전자부품연구원 | Anode active material, nonaqueous lithium secondary battery comprising same, and preparation method thereof |
CN104969389A (en) * | 2013-02-04 | 2015-10-07 | 昭和电工株式会社 | Graphite powder for negative electrode active material of lithium-ion secondary battery |
JPWO2014119776A1 (en) * | 2013-02-04 | 2017-01-26 | 昭和電工株式会社 | Graphite powder for negative electrode active material of lithium ion secondary battery |
WO2016157508A1 (en) * | 2015-03-27 | 2016-10-06 | Nec Corporation | Boron-doped activated carbon material |
JP2018514936A (en) * | 2015-03-27 | 2018-06-07 | 日本電気株式会社 | Boron doped activated carbon material |
US11670774B2 (en) * | 2017-09-26 | 2023-06-06 | Beijing Hina Battery Technology Co., Ltd. | Pitch-based negative electrode material for sodium-ion battery, and preparation method therefor and applications thereof |
WO2023133662A1 (en) * | 2022-01-11 | 2023-07-20 | 宁德时代新能源科技股份有限公司 | Modified graphite and preparation method therefor, carbon-coated negative electrode active material and preparation method therefor, negative electrode piece, secondary battery, battery module, battery pack, and electric device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6683213B2 (en) | Anode material for lithium-ion secondary battery, anode for lithium-ion secondary battery, and lithium-ion secondary battery | |
JP5235282B2 (en) | Cathode active material and battery for non-aqueous electrolyte secondary battery | |
JP2020529709A (en) | Negative electrode active material, negative electrode containing it and lithium secondary battery | |
KR20190062319A (en) | Negative electrode active material, negative electrode and lithium secondary battery comprising the same | |
JP5162092B2 (en) | Graphite material, carbon material for battery electrode, and battery | |
WO2007066673A1 (en) | Graphite material, carbon material for battery electrode and battery | |
JP2009295465A (en) | Positive electrode active material for lithium secondary battery and manufacturing method | |
JP7029680B2 (en) | Negative electrode material and non-aqueous electrolyte secondary battery | |
JP2018006270A (en) | Graphite carbon material for lithium ion secondary battery negative electrode, method for manufacturing the same, and negative electrode or battery arranged by use thereof | |
JP2013258032A (en) | Negative-electrode active material for nonaqueous electrolytic secondary battery, negative electrode material, manufacturing method thereof, lithium ion secondary battery, and electrochemical capacitor | |
JPH10326611A (en) | Carbon material for negative electrode of lithium secondary battery | |
WO2016136226A1 (en) | Method for manufacturing nonaqueous electrolyte secondary battery | |
JP3311104B2 (en) | Lithium secondary battery | |
JPH09147860A (en) | Negative electrode material for lithium ion secondary battery | |
JPH0831422A (en) | Carbon material for negative electrode of lithium secondary battery and manufacture thereof | |
JP5469347B2 (en) | Method for producing negative electrode active material for lithium secondary battery | |
WO2021166359A1 (en) | Negative electrode carbon material for lithium ion secondary battery, production method therefor, and negative electrode and lithium ion secondary battery using same | |
JP5603589B2 (en) | Negative electrode active material for lithium secondary battery and in-vehicle lithium secondary battery using the same | |
JPH10228896A (en) | Non-aqueous electrolyte secondary battery | |
JP4308571B2 (en) | Positive electrode active material for lithium secondary battery, production method thereof, and positive electrode for lithium secondary battery and lithium secondary battery using the same | |
JP2009231113A (en) | Active material for negative electrode of nonaqueous electrolyte secondary battery, and method of manufacturing nonaqueous electrolyte secondary battery | |
JP7009049B2 (en) | Lithium-ion secondary battery Carbon material for negative electrode, its intermediate, its manufacturing method, and negative electrode or battery using it | |
JP2006164570A (en) | Method of manufacturing graphite material for lithium secondary battery anode, and lithium secondary battery | |
WO2009104690A1 (en) | Negative electrode active material for rechargeable battery with nonaqueous electrolyte and process for producing negative electrode active material for rechargeable battery with nonaqueous electrolyte | |
US6083646A (en) | Non-aqueous electrolyte secondary battery and method for producing cathode material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071023 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101207 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110405 |