JP2006172804A - Active material, coating composition containing the same, electrode plate, and nonaqueous electrolytic solution secondary battery - Google Patents

Active material, coating composition containing the same, electrode plate, and nonaqueous electrolytic solution secondary battery Download PDF

Info

Publication number
JP2006172804A
JP2006172804A JP2004361305A JP2004361305A JP2006172804A JP 2006172804 A JP2006172804 A JP 2006172804A JP 2004361305 A JP2004361305 A JP 2004361305A JP 2004361305 A JP2004361305 A JP 2004361305A JP 2006172804 A JP2006172804 A JP 2006172804A
Authority
JP
Japan
Prior art keywords
active material
secondary battery
coating composition
electrode plate
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004361305A
Other languages
Japanese (ja)
Inventor
Satoshi Goishibara
聡 後石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2004361305A priority Critical patent/JP2006172804A/en
Publication of JP2006172804A publication Critical patent/JP2006172804A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an active material for a secondary battery which active material is provided with characteristics superior in pot life (storage characteristics). <P>SOLUTION: The active material has a tap density of 0.67 to 0.70, and is contained in a coating composition for the secondary battery. The coating composition forms electrode plates, which is included in the nonaqueous electrolytic solution secondary battery. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、二次電池の活物質、該活物質を含有する二次電池用塗工組成物、該組成物から形成される電極板および該電極板を有する非水電解液二次電池に関する。   The present invention relates to an active material for a secondary battery, a coating composition for a secondary battery containing the active material, an electrode plate formed from the composition, and a non-aqueous electrolyte secondary battery having the electrode plate.

近年、電子機器や通信機器の小型化および軽量化が急速に進んでおり、これらの駆動用電源として用いられる二次電池に対しても小型化および軽量化が要求されている。このため、従来のアルカリ蓄電池に代わり、高エネルギー密度で高電圧を有する非水電解液二次電池、代表的にはリチウムイオン二次電池が提案されている。   In recent years, electronic devices and communication devices are rapidly becoming smaller and lighter, and secondary batteries used as power sources for driving these devices are also required to be smaller and lighter. For this reason, in place of the conventional alkaline storage battery, a non-aqueous electrolyte secondary battery having a high energy density and a high voltage, typically a lithium ion secondary battery has been proposed.

非水電解液二次電池の正極用電極板(正極板)は、マンガン酸リチウムやコバルト酸リチウム等の複合酸化物を正極活物質として用い、そのような正極活物質と結着材(バインダー)とを適当な湿潤剤(溶剤)に分散または溶解させてスラリー状の塗工組成物を調製し、当該塗工組成物を金属箔からなる集電体上に塗工して正極活物質層を形成することにより作製される。   A positive electrode plate (positive electrode plate) of a non-aqueous electrolyte secondary battery uses a composite oxide such as lithium manganate or lithium cobaltate as a positive electrode active material, and such a positive electrode active material and a binder (binder). Is dispersed or dissolved in a suitable wetting agent (solvent) to prepare a slurry-like coating composition, and the coating composition is applied onto a current collector made of a metal foil to form a positive electrode active material layer. It is produced by forming.

一方、非水電解液二次電池の負極用電極板(負極板)は、充電時に正極活物質層から放出されるリチウムイオン等の陽イオンを吸蔵できるカーボン等の炭素質材料を負極活物質として用い、そのような負極活物質と結着材(バインダー)とを適当な湿潤剤(溶剤)に分散または溶解させてスラリー状の塗工組成物を調製し、当該塗工組成物を金属箔からなる集電体上に塗工して負極活物質層を形成することにより作製される。   On the other hand, the negative electrode plate (negative electrode plate) of the non-aqueous electrolyte secondary battery uses a carbonaceous material such as carbon that can occlude cations such as lithium ions released from the positive electrode active material layer during charging as the negative electrode active material. A slurry-like coating composition is prepared by dispersing or dissolving such a negative electrode active material and a binder (binder) in an appropriate wetting agent (solvent), and the coating composition is removed from the metal foil. The negative electrode active material layer is formed by coating on the current collector.

二次電池は、正極電極板と負極電極板それぞれに電流を取り出すための端子を取り付け、両電極板の間に短絡を防止するためのセパレータを挟んで巻き取り、非水電解質溶液を満たした容器に密封することにより組み立てられる。   The secondary battery is equipped with a terminal for taking out current in each of the positive electrode plate and the negative electrode plate, wound with a separator for preventing a short circuit between both electrode plates, and sealed in a container filled with a non-aqueous electrolyte solution It is assembled by doing.

本発明は、二次電池活物質に関するものであり、特に二次電池の電極を形成するための塗工組成物の特性改良に有効な活物質を提供するものである。例えば非水電解液二次電池の負極を形成するための塗工組成物は種々知られているが(例えば特許文献1)、一般に、塗工組成物が調製されてから、集電体上に塗工されるまでに、塗工組成物の保管、運搬等のため、一定の時間あるいは日数(以下、「保管期間」という)を要する。金属泊等の集電体上に均一な電極活物質層を形成するためには、保管期間中に組成物の沈降、沈殿などを生じず、組成物が均一に溶解、分散していることが要求される。
特開2003−173780号公報
The present invention relates to a secondary battery active material, and in particular, provides an active material effective for improving the properties of a coating composition for forming an electrode of a secondary battery. For example, various coating compositions for forming a negative electrode of a non-aqueous electrolyte secondary battery are known (for example, Patent Document 1). Generally, after the coating composition is prepared, the coating composition is formed on the current collector. It takes a certain time or number of days (hereinafter referred to as “storage period”) for storage and transportation of the coating composition before coating. In order to form a uniform electrode active material layer on a current collector such as a metal stay, the composition should be uniformly dissolved and dispersed without causing precipitation or precipitation of the composition during the storage period. Required.
JP 2003-173780 A

本発明は上記事情に鑑みなされたもので、ポットライフ(保管特性)に優れた特性を付与できる二次電池の活物質、該活物質を含有する塗工組成物、該組成物から形成される電極板および該電極板を有する非水電解液二次電池を提供することを目的とする。   The present invention has been made in view of the above circumstances, and is formed from an active material for a secondary battery capable of imparting excellent pot life (storage characteristics), a coating composition containing the active material, and the composition. An object is to provide an electrode plate and a nonaqueous electrolyte secondary battery having the electrode plate.

上記目的は、二次電池の活物質としてタップ密度が0.67〜0.70のものを使用することにより達成できる。本発明におけるタップ密度は、下記実施例中に記載したタップ密度測定法により測定される値を意味している。タップ密度は、活物質の種類、結晶形態、大きさ等種々の要因の結果として得られる値であるが、例えばタップ密度を上げたい場合は、粒径を大きくすればよく、逆に下げたい場合は、粒径を小さくすればよい。タップ密度が大きすぎると、電極用塗工組成物の粘度が増大する為、電極を作製する際に、尾引き長が長くなる傾向にあり、タップ密度が小さすぎると、電極組成物のポットライフが短くなる問題がある。   The above object can be achieved by using a secondary battery having a tap density of 0.67 to 0.70. The tap density in this invention means the value measured by the tap density measuring method described in the following Example. The tap density is a value obtained as a result of various factors such as the type, crystal form, and size of the active material. For example, if you want to increase the tap density, you only need to increase the grain size, and conversely The particle size may be reduced. If the tap density is too large, the viscosity of the electrode coating composition increases. Therefore, the tailing length tends to be long when the electrode is produced. If the tap density is too small, the pot life of the electrode composition is increased. There is a problem that becomes shorter.

また、タップ密度には加成性があるので、本発明の規定外のタップ密度を有する活物質であっても、それらの活物質を混合し、本発明が規定するタップ密度に調整することにより、本発明の活物質として使用することができる。   In addition, since the tap density has an additivity, even if the active material has a tap density outside the specified range of the present invention, the active material is mixed and adjusted to the tap density specified by the present invention. Can be used as the active material of the present invention.

正極活物質としては、例えば、従来から非水電解液二次電池の正極活物質として用いられている材料を用いることができ、例えば、LiMn(マンガン酸リチウム)、LiCoO(コバルト酸リチウム)若しくはLiNiO(ニッケル酸リチウム)等のリチウム酸化物、またはTiS、MnO、MoOもしくはV等のカルコゲン化合物を例示することができる。特に、LiCoOを正極活物質として用い、炭素質材料を負極活物質として用いることにより、4ボルト程度の高い放電電圧を有するリチウム系二次電池が得られる。 As the positive electrode active material, for example, it is possible to use a material used as a positive electrode active material of nonaqueous electrolyte secondary batteries conventionally, for example, LiMn 2 O 4 (lithium manganate), LiCoO 2 (cobaltate Examples thereof include lithium oxides such as lithium) or LiNiO 2 (lithium nickelate), or chalcogen compounds such as TiS 2 , MnO 2 , MoO 3, or V 2 O 5 . In particular, by using LiCoO 2 as a positive electrode active material and a carbonaceous material as a negative electrode active material, a lithium secondary battery having a high discharge voltage of about 4 volts can be obtained.

正極活物質は、塗工層中に均一分散させるために、1〜100μmの範囲の粒径を有し、且つ平均粒径が3〜30μmの粉体であることが好ましい。これらの正極活物質は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。   The positive electrode active material is preferably a powder having a particle size in the range of 1 to 100 μm and an average particle size of 3 to 30 μm in order to uniformly disperse it in the coating layer. These positive electrode active materials may be used alone or in combination of two or more.

負極活物質としては、例えば、従来から非水電解液二次電池の負極活物質として用いられている材料を用いることができ、例えば、天然グラファイト、人造グラファイト、アモルファス炭素、カーボンブラック、または、これらの成分に異種元素を添加したもののような炭素質材料が好んで用いられる。溶媒が有機系の場合には金属リチウムまたはリチウム合金のようなリチウム含有金属が好適に用いられる。   As a negative electrode active material, the material conventionally used as a negative electrode active material of a nonaqueous electrolyte secondary battery can be used, for example, natural graphite, artificial graphite, amorphous carbon, carbon black, or these Carbonaceous materials such as those obtained by adding different elements to these components are preferably used. When the solvent is organic, a lithium-containing metal such as lithium metal or a lithium alloy is preferably used.

負極活物質の粒子形状は特に限定されないが、例えば鱗片状、塊状、繊維状、球状のものが使用可能である。負極活物質は、塗工層中に均一に分散させるために、1〜100μmの範囲の粒径を有し、且つ平均粒径が3〜30μmの粉体であることが好ましい。これらの負極活物質単独で用いてもよいし、2種以上を組み合わせて用いてもよい。なお、本発明においては、平均粒径はレーザー回折式粒度分布測定装置により測定した値を用いている)。   Although the particle shape of a negative electrode active material is not specifically limited, For example, a flaky shape, a lump shape, a fiber shape, and a spherical shape can be used. The negative electrode active material is preferably a powder having a particle size in the range of 1 to 100 μm and an average particle size of 3 to 30 μm in order to be uniformly dispersed in the coating layer. These negative electrode active materials may be used alone or in combination of two or more. In the present invention, the average particle diameter is a value measured by a laser diffraction particle size distribution analyzer.

本発明においては、負極活物質がタップ密度0.67〜0.70に調整されたものを使用した場合、本発明の目的効果をより享受できる。好ましくは、タップ密度0.67〜0.70に調整されたグラファイト、特に鱗片状のグラファイトが好ましい。   In the present invention, when the negative electrode active material whose tap density is adjusted to 0.67 to 0.70 is used, the object effect of the present invention can be further enjoyed. Preferably, graphite adjusted to a tap density of 0.67 to 0.70, particularly scaly graphite is preferable.

塗工組成物中の正極又は負極活物質の配合割合は、溶剤を除く配合成分を基準(固形分基準)としたときに、高い電池容量の実現とサイクル特性とのバランスとの点から90〜98.5重量%、好ましくは96〜98.5重量%とする。   The blending ratio of the positive electrode or negative electrode active material in the coating composition is 90 to 90% from the viewpoint of realizing a high battery capacity and a balance with cycle characteristics when the blending component excluding the solvent is used as a standard (solid content standard). 98.5% by weight, preferably 96 to 98.5% by weight.

活物質層用塗工組成物は、少なくとも上記正又は負極活物質、結着材及び通常は導電剤含有する。その他にも界面活性剤等を含有していてもよい。   The active material layer coating composition contains at least the positive or negative electrode active material, the binder, and usually a conductive agent. In addition, a surfactant or the like may be contained.

結着材として従来から用いられているもの、例えば、非水電解液二次電池用電極板であれば、熱可塑性樹脂、より具体的にはポリエステル樹脂、ポリアミド樹脂、ポリアクリル酸エステル樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、セルロース樹脂、ポリオレフィン樹脂、ポリビニル樹脂、フッ素系樹脂又はポリイミド樹脂等を使用することができる。この際、反応性官能基を導入したアクリレートモノマー又はオリゴマーを結着材中に混入させることも可能である。そのほかにも、ゴム系の樹脂や、アクリル樹脂、ウレタン樹脂等の熱硬化性樹脂、アクリレートモノマー、アクリレートオリゴマー或いはそれらの混合物からなる電離放射線硬化性樹脂、上記各種の混合物を使用することもできる。   If it is conventionally used as a binder, for example, an electrode plate for a non-aqueous electrolyte secondary battery, a thermoplastic resin, more specifically, a polyester resin, a polyamide resin, a polyacrylate resin, a polycarbonate Resin, polyurethane resin, cellulose resin, polyolefin resin, polyvinyl resin, fluorine-based resin, polyimide resin, or the like can be used. At this time, an acrylate monomer or oligomer into which a reactive functional group is introduced can be mixed in the binder. In addition, rubber-based resins, thermosetting resins such as acrylic resins and urethane resins, ionizing radiation curable resins composed of acrylate monomers, acrylate oligomers, or mixtures thereof, and the various mixtures described above can also be used.

活物質層塗工組成物の結着材の配合割合は、例えば、通常の非水電解液二次電池用電極板であれば、固形分基準で0.5〜10重量%程度である。   The blending ratio of the binder of the active material layer coating composition is, for example, about 0.5 to 10% by weight based on the solid content in the case of a normal electrode plate for a non-aqueous electrolyte secondary battery.

正極又は負極活物質層用塗工組成物には、導電材を添加しても良い。導電材としては、例えば、非水電解液二次電池用電極板であれば、グラファイト、カーボンブラック又はアセチレンブラック等の炭素質材料が必要に応じて用いられる。塗工組成物中の導電材の配合割合は、例えば、非水電解液二次電池用電極板であれば、通常、固形分基準で1.5〜2.5重量%とする。   A conductive material may be added to the positive electrode or negative electrode active material layer coating composition. As the conductive material, for example, in the case of an electrode plate for a non-aqueous electrolyte secondary battery, a carbonaceous material such as graphite, carbon black, or acetylene black is used as necessary. For example, in the case of an electrode plate for a non-aqueous electrolyte secondary battery, the blending ratio of the conductive material in the coating composition is usually 1.5 to 2.5% by weight based on the solid content.

活物質塗工組成物を調製する溶剤としては、IPA(イソプロピルアルコール)トルエン、メチルエチルケトン、N−メチル−2−ピロリドン或いはこれらの混合物等の有機溶剤、水を用いることができる。塗工組成物中の溶剤は、通常は固形分が組成物全体に対して40〜85重量%、好ましくは50〜80、より好ましくは60〜80重量%となるように配合し、塗工液をスラリー状に調製する。
負極用塗工組成物を調整する場合は、特に、溶剤として水を用いると共に、水中でコロイド状分散可能なゴム系結着材を選択することにより、水性エマルジョン塗工液を調製することもできる。水を用いる場合には、不純物の影響を防ぐために通常はイオン交換水を用いる。本発明は、このような水性エマルジョン塗工液に特に有用である。
As a solvent for preparing the active material coating composition, an organic solvent such as IPA (isopropyl alcohol) toluene, methyl ethyl ketone, N-methyl-2-pyrrolidone or a mixture thereof, and water can be used. The solvent in the coating composition is usually blended so that the solid content is 40 to 85% by weight, preferably 50 to 80, more preferably 60 to 80% by weight, based on the entire composition, Is prepared in a slurry state.
When preparing a negative electrode coating composition, in particular, water can be used as a solvent, and an aqueous emulsion coating liquid can be prepared by selecting a rubber-based binder that can be colloidally dispersed in water. . When water is used, ion exchange water is usually used to prevent the influence of impurities. The present invention is particularly useful for such an aqueous emulsion coating solution.

活物質塗工組成物は、少なくとも適宜選択した活物質及び結着材、さらに通常は適宜選択した導電材、及び他の配合成分を適切な溶剤に混合し、ホモジナイザー、ボールミル、サンドミル、ロールミルまたはプラネタリーミキサー等の分散機により混合分散して、スラリー状に調製すればよい。塗工組成物の粘度挙動については、活物質の比表面積や粒径との相関があることは広く知られている。しかし、その粘度挙動については、粒度分布等の状態も影響を受けることがあるので考慮しなければならない。一方、タップ密度については、活物質の比表面積や粒径との相関もあるが、上記タップ密度を有する活物質を使用して塗工組成物を調製すれば、塗工適正およびポットライフ(保管特性)のよい塗工組成物とすることができる。   The active material coating composition is prepared by mixing at least an appropriately selected active material and binder, and usually an appropriately selected conductive material and other compounding ingredients in an appropriate solvent, and then homogenizer, ball mill, sand mill, roll mill or planetary. What is necessary is just to mix and disperse | distribute with dispersers, such as a Lee mixer, and to prepare in a slurry form. It is widely known that the viscosity behavior of the coating composition is correlated with the specific surface area and particle size of the active material. However, the viscosity behavior must be taken into account because conditions such as particle size distribution may be affected. On the other hand, the tap density has a correlation with the specific surface area and particle size of the active material. However, if the coating composition is prepared using the active material having the tap density, the coating suitability and pot life (storage) It is possible to obtain a coating composition having good characteristics.

最終的に調製される活物質塗工組成物は、チキソトロピーインデックスとして1.7〜3.0を有するように粘度を調整するようにする。本発明において、チキソトロピーインデックスは、B型粘度計にローターNo4の測定子を取り付け、測定子の回転数が6rpmと60rpm時の活物質塗工組成物の粘度比を用いて表現する値である。
チキソトロピーインデックス=6rpmの粘度/60rpmの粘度
The active material coating composition finally prepared is adjusted to have a viscosity of 1.7 to 3.0 as a thixotropic index. In the present invention, the thixotropy index is a value expressed using the viscosity ratio of the active material coating composition when a probe of rotor No. 4 is attached to a B-type viscometer and the probe rotates at 6 rpm and 60 rpm.
Thixotropic index = 6 rpm viscosity / 60 rpm viscosity

<電極板>
上記したような方法により調製された正極又は負極活物質層用塗工組成物を、基体である集電休の一面又両面に塗布、乾燥して正極又は負極活物質層を形成する。正極板の集電体としては、例えば、非水電解液二次電池用電極板であれば、通常、アルミニウム箔が好ましく用いられる。一方、負極板の集電休としては、例えば、非水電解液二次電池用の電極板であれば、電解銅箔や圧延銅箔等の銅箔が好ましく用いられる。集電体の厚さは、例えば、非水電解液二次電池用電極板であれば、通常5〜50μm程度とする。
<Electrode plate>
The positive electrode or negative electrode active material layer coating composition prepared by the method as described above is applied to one or both sides of a current collecting holiday as a substrate and dried to form a positive electrode or negative electrode active material layer. As the current collector of the positive electrode plate, for example, an aluminum foil is usually preferably used as long as it is an electrode plate for a non-aqueous electrolyte secondary battery. On the other hand, as the current collecting holiday of the negative electrode plate, for example, if it is an electrode plate for a non-aqueous electrolyte secondary battery, a copper foil such as an electrolytic copper foil or a rolled copper foil is preferably used. The thickness of the current collector is usually about 5 to 50 μm in the case of an electrode plate for a non-aqueous electrolyte secondary battery, for example.

活物質層用塗工組成物の塗布方法は、特に限定されないが、例えばスライドダイコート、コンマダイレクトコート、コンマリバースコート等のように、厚い塗工層を形成できる方法が適している。ただし、活物質層に求められる厚さが比較的薄い場合には、グラビアコートやグラビアリバースコート等により塗布してもよい。活物質層は、複数回塗布、乾燥を繰り返すことにより形成してもよい。   The method for applying the coating composition for the active material layer is not particularly limited, but a method capable of forming a thick coating layer such as a slide die coat, a comma direct coat, a comma reverse coat and the like is suitable. However, when the thickness required for the active material layer is relatively thin, it may be applied by gravure coating or gravure reverse coating. The active material layer may be formed by repeating application and drying a plurality of times.

乾燥工程における熱源としては、熱風、赤外線、遠赤外線、マイクロ波、高周波、或いはそれらを組み合わせて利用できる。乾燥工程において集電体をサポートする金属ローラーや金属シートを加熱して放出させた熱によって乾燥してもよい。また、乾燥後、電子線または放射線を照射することにより結着材を架橋反応させて活物質層を得ることもできる。塗布と乾燥は、複数回繰り返してもよい。   As a heat source in the drying process, hot air, infrared rays, far infrared rays, microwaves, high frequencies, or a combination thereof can be used. You may dry with the heat which discharge | released the metal roller and metal sheet which support a collector in a drying process. Moreover, after drying, the active material layer can also be obtained by crosslinking reaction of the binder by irradiating an electron beam or radiation. Application and drying may be repeated a plurality of times.

更に、得られた活物質層をプレス加工することにより、活物質層の密度、集電体に対する密着性、均質性を向上させることができる。   Furthermore, the density of the active material layer, the adhesion to the current collector, and the homogeneity can be improved by pressing the obtained active material layer.

プレス加工は、例えば、金属ロール、弾性ロール、加熱ロールまたはシートプレス機等を用いて行う。プレス温度は、活物質層の塗工膜を乾燥させる温度よりも低い温度とする限り、室温で行っても良いし又は加湿して行っても良いが、通常は室温(室温の目安としては15〜35℃である)で行う。   The press working is performed using, for example, a metal roll, an elastic roll, a heating roll, a sheet press machine, or the like. The pressing temperature may be performed at room temperature or humidified as long as the temperature is lower than the temperature at which the coated film of the active material layer is dried. ~ 35 ° C).

ロールプレスは、ロングシート状の電極板を連続的にプレス加工できるので好ましい。ロールプレスを行う場合には定位プレス、定圧プレスいずれを行っても良い。プレスのライン速度は通常、5〜50m/min.とする。ロールプレスの圧力を線圧で管理する場合加圧ロールの直径に応じて調節するが、通常は線圧を0.5kgf/cm〜1tf/cmとする。   The roll press is preferable because a long sheet electrode plate can be continuously pressed. When performing the roll press, either a stereotaxic press or a constant pressure press may be performed. The line speed of the press is usually 5 to 50 m / min. And When the pressure of the roll press is managed by linear pressure, the pressure is adjusted according to the diameter of the pressure roll, but the linear pressure is usually 0.5 kgf / cm to 1 tf / cm.

また、シートプレスを行う場合には通常、4903〜73550N/cm(500〜7500kgf/cm)、好ましくは29420〜49033N/cm(3000〜5000kgf/cm)の範囲に圧力を調節する。プレス圧力が小さすぎると活物質層の均質性が得られにくく、プレス圧力が大きすぎると集電体を含めて電極板自体が破損してしまう場合がある。活物質層は、一回のプレスで所定の厚さにしてもよく、均質性を向上させる目的で数回に分けてプレスしてもよい。 Also, normally when performing sheet pressing, 4903~73550N / cm 2 (500~7500kgf / cm 2), preferably to adjust the pressure in the range of 29420~49033N / cm 2 (3000~5000kgf / cm 2). If the pressing pressure is too low, it is difficult to obtain the homogeneity of the active material layer. If the pressing pressure is too high, the electrode plate itself including the current collector may be damaged. The active material layer may have a predetermined thickness by a single press, or may be pressed several times for the purpose of improving homogeneity.

活物質層の塗工量は通常、20〜350g/mとし、その厚さは、乾燥、プレス後に通常10〜200μm、好ましくは50〜190μmの範囲にする。活物質層の密度は、塗工後は1.0g/cc程度であるが、プレス後は1.5g/cc以上(通常は1.5〜1.75g/cc程度)まで増大する。従って、プレス加工を支障なく行って体積エネルギー密度を向上させることにより、電池の高容量化を図ることができる。 The coating amount of the active material layer is usually 20 to 350 g / m 2 , and the thickness is usually 10 to 200 μm, preferably 50 to 190 μm after drying and pressing. The density of the active material layer is about 1.0 g / cc after coating, but increases to 1.5 g / cc or more (usually about 1.5 to 1.75 g / cc) after pressing. Therefore, the capacity of the battery can be increased by improving the volume energy density by performing the pressing without hindrance.

<非水電解液二次電池>
以上のようにして電極板が得られ、この電極板を用いて非水電解液二次電池を作製することができる。
<Nonaqueous electrolyte secondary battery>
An electrode plate is obtained as described above, and a nonaqueous electrolyte secondary battery can be produced using this electrode plate.

本発明に係る電極板を用いて非水電解液二次電池を作製する際には、電池の組立工程に移る前に活物質層中の水分及び/又は溶剤を除去するために、真空オープン等で加熱処理や減圧処理等のエージングをあらかじめ行うことが好ましい。   When producing a non-aqueous electrolyte secondary battery using the electrode plate according to the present invention, a vacuum open or the like is used to remove moisture and / or solvent in the active material layer before moving to the battery assembly process. It is preferable to perform aging such as heat treatment or reduced pressure treatment in advance.

上記したような方法により作製された電極板(正極板、負極板)を、ポリエチレン製多孔質フィルムのようなセパレータを介して渦巻状に巻き回し、外装容器に挿入する。挿入後、正極板の端子接続部(集電休の露出面)と外装容器の上面に設けた正極端子をリードで接続し、一方、負極板の端子接続部(集電休の露出面)と外装容器の底面に設けた負極端子をリードで接続し、外装容器に非水電解液を充填し、密封することによって、本発明に係る電極板を備えた非水電解液二次電池が完成する。   The electrode plate (positive electrode plate, negative electrode plate) produced by the method as described above is spirally wound through a separator such as a polyethylene porous film and inserted into an outer container. After insertion, connect the terminal connection part of the positive electrode plate (exposed surface of current collection holiday) and the positive electrode terminal provided on the upper surface of the outer container with the lead, while the terminal connection part of the negative electrode plate (exposed surface of current collection holiday) The negative electrode terminal provided on the bottom surface of the outer container is connected with a lead, and the outer container is filled with a nonaqueous electrolyte and sealed, thereby completing a nonaqueous electrolyte secondary battery including the electrode plate according to the present invention. .

リチウム系二次電池を作製する場合には、溶質であるリチウム塩を有機溶媒に溶かした非水電解液が用いられる。リチウム塩としては、例えば、LiClO、LiBF、LiPF、LiAsF、LiC1、LiBr等の無機リチウム塩、または、LiB(C、LiN(SOCF、LiC(SOCF、LiOSOCF、LiOSO、LiOSO、LiOSO、LiOSO11、LiOSO13、LiOSO15等の有機リチウム塩等が用いられる。 When producing a lithium secondary battery, a nonaqueous electrolytic solution in which a lithium salt as a solute is dissolved in an organic solvent is used. Examples of the lithium salt include inorganic lithium salts such as LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiC 1, LiBr, or LiB (C 6 H 5 ) 4 , LiN (SO 2 CF 3 ) 2 , LiC ( SO 2 CF 3) 3, LiOSO 2 CF 3, LiOSO 2 C 2 F 5, LiOSO 2 C 3 F 7, LiOSO 2 C 4 F 9, LiOSO 2 C 5 F 11, LiOSO 2 C 6 F 13, LiOSO 2 C An organic lithium salt such as 7 F 15 is used.

リチウム塩を溶解するための有機溶媒としては、環状エステル類、鎖状エステル類、環状エーテル類、鎖状エーテル類等を例示できる。より具体的には、環状エステル類としては、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、ビニレンカーボネート、2−メチル−γ−ブチロラクトン、アセチル−γ−ブチロラクトン、γ−バレロラクトン等を例示できる。   Examples of the organic solvent for dissolving the lithium salt include cyclic esters, chain esters, cyclic ethers, chain ethers and the like. More specifically, examples of cyclic esters include propylene carbonate, butylene carbonate, γ-butyrolactone, vinylene carbonate, 2-methyl-γ-butyrolactone, acetyl-γ-butyrolactone, γ-valerolactone, and the like.

鎖状エステル類としては、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジプロピルカーボネート、メチルエチルカーボネート、メチルブチルカーボネート、メチルプロピルカーボネート、エチルブチルカーボネート、エチルプロピルカーボネート、ブチルプロピルカーボネート、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステル等を例示できる。   Chain esters include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, methyl ethyl carbonate, methyl butyl carbonate, methyl propyl carbonate, ethyl butyl carbonate, ethyl propyl carbonate, butyl propyl carbonate, propionic acid alkyl ester, malon Examples thereof include acid dialkyl esters and acetic acid alkyl esters.

環状エーテル類としでは、テトラヒドロフラン、アルキルテトラヒドロフラン、ジアルキルテトラヒドロフラン、アルコキシテトラヒドロフラン、ジアルコキシテトラヒドロフラン、1,3−ジオキソラン、アルキル−1,3−ジオキソラン、1,4−ジオキソラン等を例示できる。   Examples of cyclic ethers include tetrahydrofuran, alkyltetrahydrofuran, dialkyltetrahydrofuran, alkoxytetrahydrofuran, dialkoxytetrahydrofuran, 1,3-dioxolane, alkyl-1,3-dioxolane, 1,4-dioxolane and the like.

鎖状エーテル類としては、1,2−ジメトキシエタン、1,2−ジエトキシエタン、ジエチルエーテル、エチレングリコールジアルキルエーテル、ジエチレングリコールジアルキルエーテル、トリエチレングリコールジアルキルエーテル、テトラエチレングリコールジアルキルエーテル等を例示することができる。   Examples of chain ethers include 1,2-dimethoxyethane, 1,2-diethoxyethane, diethyl ether, ethylene glycol dialkyl ether, diethylene glycol dialkyl ether, triethylene glycol dialkyl ether, and tetraethylene glycol dialkyl ether. Can do.

活物質のタップ密度を特定の値に規定することで、ポットライフと塗工精度が確保された電極用塗工組成物、特に負極用塗工組成物を得ることが出来る。   By defining the tap density of the active material to a specific value, it is possible to obtain an electrode coating composition, particularly a negative electrode coating composition, in which pot life and coating accuracy are ensured.

(負極構成材料)
活物質:麟片状の人造黒鉛(日立化成工業製:MAGE)
(下記表1〜3に示したタップ密度の異なるサンプルを用意した)
SBR(スチレン−ブタジエン−ラバーエマルジョン:BM−400B(日本ゼオン製)
増粘材:セロゲンEP(第一工業製薬製)
(Negative electrode material)
Active material: Flake-shaped artificial graphite (manufactured by Hitachi Chemical Co., Ltd .: MAGE)
(Samples with different tap densities shown in Tables 1 to 3 below were prepared)
SBR (styrene-butadiene-rubber emulsion: BM-400B (made by Nippon Zeon)
Thickener: Serogen EP (Daiichi Kogyo Seiyaku)

(負極用塗工組成物の製造)
活物質である炭素材料として麟片状の人造黒鉛(日立化成工業製:MAGE)、バインダーとしてSBRエマルジョン(日本ゼオン製:BM−400B)および増粘材としてCMC(カルボキシメチルセルロース)(第一工業製薬製:セロゲンEP)を98.0:1.0:1.0の配合比(重量比)で混合し、プラネタリーミキサーにて練合して、イオン交換水を適宜加え、固形分(50重量%)の負極用塗工組成物を調製した。
(Manufacture of negative electrode coating composition)
A flake-shaped artificial graphite (manufactured by Hitachi Chemical Co., Ltd .: MAGE) as a carbon material as an active material, an SBR emulsion (manufactured by ZEON Co., Ltd .: BM-400B) as a binder, and a CMC (carboxymethyl cellulose) (Daiichi Kogyo Seiyaku Co., Ltd.) as a thickener (Product: Serogen EP) is mixed at a blending ratio (weight ratio) of 98.0: 1.0: 1.0, kneaded with a planetary mixer, ion-exchanged water is added as appropriate, and the solid content (50 weight) %) Negative electrode coating composition was prepared.

得られた負極用塗工組成物のチキソトロピーインデックス、沈降の有無、尾引きを評価し、下記表1〜2にまとめた。   The resulting negative electrode coating composition was evaluated for thixotropy index, presence / absence of sedimentation, and tailing, and summarized in Tables 1 and 2 below.

(タップ密度測定法)
活物質を150mlメスシリンダーに100cc入れ、試料重量を測定した。メスシリンダーを5cmの高さから30回タッピングした後、試料容積を測定し、次式よりタップ密度を算出した。
D=m/V
(D:タップ密度(g/cm)、m:試料重量(g)、V:30回タッピング後の試料体積(cm))
なお、本密度測定は、タッピング回数30回で行った以外、JIS K 1469に従い行った。
(Tap density measurement method)
100 cc of the active material was placed in a 150 ml graduated cylinder and the sample weight was measured. After tapping the measuring cylinder 30 times from a height of 5 cm, the sample volume was measured, and the tap density was calculated from the following equation.
D = m / V
(D: Tap density (g / cm 3 ), m: Sample weight (g), V: Sample volume after 30 times tapping (cm 3 ))
This density measurement was performed according to JIS K 1469 except that the tapping number was 30 times.

(チキソトロピーインデックス(粘度測定))
B型粘度計にローターNo4の測定子を取り付け、測定子の回転数が6rpmと60rpm時の負極用塗工組成物の粘度を記録した。負極用塗工組成物の性状の目安を得る為にチキソ性の指標(チキソトロピーインデックス)として、6rpmと60rpmの粘度比を用いて表現した。
チキソトロピーインデックス=6rpmの粘度/60rpmの粘度
(Thixotropic index (viscosity measurement))
A rotor No. 4 probe was attached to the B-type viscometer, and the viscosity of the coating composition for a negative electrode when the probe was rotated at 6 rpm and 60 rpm was recorded. In order to obtain an indication of the properties of the negative electrode coating composition, it was expressed using a viscosity ratio of 6 rpm and 60 rpm as a thixotropic index (thixotropic index).
Thixotropic index = 6 rpm viscosity / 60 rpm viscosity

(ポットライフ測定(沈降の有無))
得られた負極用塗工組成物を樹脂容器(φ60mm×H80mm)に100g入れ、静置した。静置7日後に、一様に分散していた負極塗工組成物が、分離していないか目視にて確認を行った。更にヘラを用いて容器底部に負極用塗工組成物の構成物が沈降していないか確認を行った。ヘラを引き上げたときにヘラ先に沈殿物が認められず、スラリーの分離がない場合、「沈降なし」、ヘラを引き上げたときにヘラ先に沈殿物が認められ、スラリーの分離が認められる場合、「沈降あり」と評価した。
(Pot life measurement (presence or absence of sedimentation))
100 g of the obtained negative electrode coating composition was placed in a resin container (φ60 mm × H80 mm) and allowed to stand. Seven days after standing, it was visually confirmed whether or not the negative electrode coating composition that had been uniformly dispersed was separated. Further, using a spatula, it was confirmed whether or not the composition of the negative electrode coating composition had settled on the bottom of the container. When the spatula is lifted, no precipitate is observed at the tip of the spatula, and there is no separation of the slurry. When there is no settling, when the spatula is lifted, precipitate is found at the tip of the spatula, and separation of the slurry is recognized. , “With sedimentation”.

(尾引き長の測定)
ダイヘッドから集電体である銅箔(10μm)に向けて負極用塗工組成物の吐出(幅60cm、塗工量100g/m)、停止(0.3秒)を連続的に30回繰り返して、間欠塗工を行った(図1参照)。図2に概略的に示したように、得られた間欠塗工物の塗工終端部の尾引き根元からその先端までの長さを測定し、その平均値を、尾引き長とした。
(Measurement of tail length)
From the die head toward the collector copper foil (10 μm), discharge of the negative electrode coating composition (width 60 cm, coating amount 100 g / m 2 ) and stop (0.3 seconds) were repeated 30 times continuously. Then, intermittent coating was performed (see FIG. 1). As schematically shown in FIG. 2, the length from the base of the tail end of the coating end of the intermittently applied product to its tip was measured, and the average value was taken as the tail length.

総合評価
沈降が観察されず、尾引き長さが1.5mm未満のとき、「OK」と評価した。
沈降が観察されるか、尾引き長さが1.5mm以上のとき、「NG」と評価した。
Comprehensive evaluation When sedimentation was not observed and the tailing length was less than 1.5 mm, it was evaluated as “OK”.
When sedimentation was observed or the tail length was 1.5 mm or more, it was evaluated as “NG”.

Figure 2006172804
Figure 2006172804

実施例1〜実施例4の場合、尾引きは軽微であり、沈降もなかった。ポットライフおよび塗工精度を確保できた。   In the case of Examples 1 to 4, the tailing was slight and there was no sedimentation. The pot life and coating accuracy were secured.

Figure 2006172804
Figure 2006172804

比較例1、2の場合、尾引き長は問題ないが、沈降が生じたため、塗工液としての使用は困難であった。比較例3、4では、沈降は生じなかったが、尾引きの長さが長く、塗工精度に問題が生じた。   In Comparative Examples 1 and 2, there is no problem with the length of the tail, but since sedimentation occurred, it was difficult to use as a coating liquid. In Comparative Examples 3 and 4, settling did not occur, but the length of the tail was long, causing a problem in coating accuracy.

(実施例5)
タップ密度0.66とタップ密度0.71のタップ密度の異なる2種の活物質を50:50(重量比)で混合した場合の混合後のタップ密度、チキソトロピーインデックス、沈降の有無および引き長を実施例1と同様に評価し、下記表3にまとめた。
(Example 5)
The tap density, thixotropy index, presence / absence of settling, and length when mixing two active materials with different tap densities of tap density 0.66 and tap density 0.71 at 50:50 (weight ratio) Evaluation was conducted in the same manner as in Example 1, and the results are summarized in Table 3 below.

Figure 2006172804
Figure 2006172804

単体ではNGと判断されるタップ密度を有する活物質であっても、それらを混合することで本発明に使用可能なタップ密度とするとこができた。そのような活物質を使用した負極用塗工組成物は沈降もなく、塗工終端部の尾引きも軽微であった。ポットライフおよび塗工精度を確保できた。   Even if the active material has a tap density determined to be NG by itself, the tap density usable in the present invention could be obtained by mixing them. The coating composition for negative electrodes using such an active material did not settle, and the tailing of the coating end portion was slight. The pot life and coating accuracy were secured.

間欠塗工の概略概念図Schematic conceptual diagram of intermittent coating 尾引き長を説明するための概略図Schematic for explaining tail length

Claims (10)

タップ密度が0.67〜0.70である二次電池用活物質。   A secondary battery active material having a tap density of 0.67 to 0.70. タップ密度が0.67〜0.70である二次電池負極用活物質。   A secondary battery negative electrode active material having a tap density of 0.67 to 0.70. 活物質が、鱗片状のグラファイトである、請求項2記載の二次電池負極用活物質。   The active material for secondary battery negative electrodes of Claim 2 whose active material is a scaly graphite. タップ密度が0.67〜0.70である活物質を含有する、二次電池用塗工組成物。   The coating composition for secondary batteries containing the active material whose tap density is 0.67-0.70. タップ密度が0.67〜0.70である活物質を含有する、二次電池負極用塗工組成物。   A secondary battery negative electrode coating composition comprising an active material having a tap density of 0.67 to 0.70. 活物質が、鱗片状のグラファイトである、請求項5に記載の二次電池負極用塗工組成物。   The coating composition for a secondary battery negative electrode according to claim 5, wherein the active material is scaly graphite. チキソトロピーインデックスが、1.7〜3.0である、請求項5または6に記載のリチウムイオン二次電池負極用塗工組成物。   The coating composition for lithium ion secondary battery negative electrodes according to claim 5 or 6, wherein the thixotropy index is 1.7 to 3.0. 集電体上に、少なくとも、タップ密度が0.67〜0.70である負極用活物質を含有する活性物質層を有することを特徴とする電極板。   An electrode plate comprising an active material layer containing at least a negative electrode active material having a tap density of 0.67 to 0.70 on a current collector. 活物質が、鱗片状のグラファイトである、請求項8に記載の電極板。   The electrode plate according to claim 8, wherein the active material is scaly graphite. 請求項9に記載の電極板を有することを特徴とする、非水電解液二次電池。

A non-aqueous electrolyte secondary battery comprising the electrode plate according to claim 9.

JP2004361305A 2004-12-14 2004-12-14 Active material, coating composition containing the same, electrode plate, and nonaqueous electrolytic solution secondary battery Pending JP2006172804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004361305A JP2006172804A (en) 2004-12-14 2004-12-14 Active material, coating composition containing the same, electrode plate, and nonaqueous electrolytic solution secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004361305A JP2006172804A (en) 2004-12-14 2004-12-14 Active material, coating composition containing the same, electrode plate, and nonaqueous electrolytic solution secondary battery

Publications (1)

Publication Number Publication Date
JP2006172804A true JP2006172804A (en) 2006-06-29

Family

ID=36673333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004361305A Pending JP2006172804A (en) 2004-12-14 2004-12-14 Active material, coating composition containing the same, electrode plate, and nonaqueous electrolytic solution secondary battery

Country Status (1)

Country Link
JP (1) JP2006172804A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012099251A (en) * 2010-10-29 2012-05-24 Nippon Zeon Co Ltd Anode for lithium secondary battery, conducting agent composition, composition for lithium secondary battery anode, and manufacturing method of anode for lithium secondary battery
JP2014011077A (en) * 2012-06-29 2014-01-20 Toyota Motor Corp Nonaqueous electrolyte secondary battery manufacturing method and nonaqueous electrolyte secondary battery
JPWO2013081152A1 (en) * 2011-12-02 2015-04-27 三菱レイヨン株式会社 Non-aqueous secondary battery electrode binder resin, non-aqueous secondary battery electrode binder resin composition, non-aqueous secondary battery electrode slurry composition, non-aqueous secondary battery electrode, non-aqueous secondary battery
JP2019192597A (en) * 2018-04-27 2019-10-31 トヨタ自動車株式会社 Manufacturing method for solid electrolyte layer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10334915A (en) * 1997-05-30 1998-12-18 Mitsubishi Chem Corp Electrode for nonaqueous secondary battery
JP2000223120A (en) * 1998-11-27 2000-08-11 Mitsubishi Chemicals Corp Carbon material for electrode
JP2001213615A (en) * 2000-01-31 2001-08-07 Mitsui Mining Co Ltd Consolidated graphite particles, production process thereof and anode material for lithium secondary battery
JP2001357849A (en) * 2000-06-13 2001-12-26 Sec Corp Negative electrode material for lithium secondary battery, its manufacturing method, and lithium secondary battery
JP2002348110A (en) * 2001-05-28 2002-12-04 Mitsui Mining Co Ltd Graphite particle and method for producing the same
JP2006164570A (en) * 2004-12-02 2006-06-22 Nippon Steel Chem Co Ltd Method of manufacturing graphite material for lithium secondary battery anode, and lithium secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10334915A (en) * 1997-05-30 1998-12-18 Mitsubishi Chem Corp Electrode for nonaqueous secondary battery
JP2000223120A (en) * 1998-11-27 2000-08-11 Mitsubishi Chemicals Corp Carbon material for electrode
JP2001213615A (en) * 2000-01-31 2001-08-07 Mitsui Mining Co Ltd Consolidated graphite particles, production process thereof and anode material for lithium secondary battery
JP2001357849A (en) * 2000-06-13 2001-12-26 Sec Corp Negative electrode material for lithium secondary battery, its manufacturing method, and lithium secondary battery
JP2002348110A (en) * 2001-05-28 2002-12-04 Mitsui Mining Co Ltd Graphite particle and method for producing the same
JP2006164570A (en) * 2004-12-02 2006-06-22 Nippon Steel Chem Co Ltd Method of manufacturing graphite material for lithium secondary battery anode, and lithium secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012099251A (en) * 2010-10-29 2012-05-24 Nippon Zeon Co Ltd Anode for lithium secondary battery, conducting agent composition, composition for lithium secondary battery anode, and manufacturing method of anode for lithium secondary battery
JPWO2013081152A1 (en) * 2011-12-02 2015-04-27 三菱レイヨン株式会社 Non-aqueous secondary battery electrode binder resin, non-aqueous secondary battery electrode binder resin composition, non-aqueous secondary battery electrode slurry composition, non-aqueous secondary battery electrode, non-aqueous secondary battery
US9774038B2 (en) 2011-12-02 2017-09-26 Mitsubishi Chemical Corporation Binder resin for nonaqueous secondary battery electrode, binder resin composition for nonaqueous secondary battery electrode slurry composition for nonaqueous secondary battery electrode, electrode for nonaqueous secondary battery, and nonaqueous secondary battery
US10361434B2 (en) 2011-12-02 2019-07-23 Mitsubishi Chemical Corporation Binder resin for nonaqueous secondary battery electrode, binder resin composition for nonaqueous secondary battery electrode slurry composition for nonaqueous secondary battery electrode, electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP2014011077A (en) * 2012-06-29 2014-01-20 Toyota Motor Corp Nonaqueous electrolyte secondary battery manufacturing method and nonaqueous electrolyte secondary battery
JP2019192597A (en) * 2018-04-27 2019-10-31 トヨタ自動車株式会社 Manufacturing method for solid electrolyte layer

Similar Documents

Publication Publication Date Title
JP4116784B2 (en) Negative electrode coating composition, negative electrode plate, method for producing the same, and nonaqueous electrolyte secondary battery
JP4848723B2 (en) Electrode plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP3652769B2 (en) Electrode plate for non-aqueous electrolyte secondary battery
JP2971451B1 (en) Lithium secondary battery
JP2012059488A (en) Negative electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same
US20080113265A1 (en) Electrode plate for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2008204886A (en) Negative electrode active material, its evaluation method, negative electrode plate for nonaqueous electrolyte secondary battery using it, and nonaqueous electrolyte secondary battery
JP2009099441A (en) Negative electrode plate for nonaqueous electrolyte solution secondary battery, its manufacturing method, and nonaqueous electrolyte solution secondary battery
JP4848725B2 (en) Electrode plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5322259B2 (en) Positive electrode for secondary battery and lithium secondary battery using the same
JP4830434B2 (en) Electrode plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2001266855A (en) Manufacturing method of electrode for non-aqueous electrolite secondary battery and non-aqueous elecrolyte secondary battery
JP4357857B2 (en) Slurries for electrode mixture layers, electrode plates, and non-aqueous electrolyte batteries
KR20090067769A (en) Anode for secondary battery
JP4834975B2 (en) Coating composition for active material layer, electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2007103065A (en) Electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and evaluation method
JP2007258087A (en) Nonaqueous electrolytic solution secondary battery, and electrode plate therefor and its manufacturing method
JP4233785B2 (en) Negative electrode coating composition, negative electrode plate, and non-aqueous electrolyte secondary battery
JP2006172804A (en) Active material, coating composition containing the same, electrode plate, and nonaqueous electrolytic solution secondary battery
JP5181607B2 (en) Method for producing electrode plate for negative electrode of non-aqueous electrolyte secondary battery
JP4527423B2 (en) Coating composition for active material layer, electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
KR100696795B1 (en) Negative active material composition for rechargeable lithium ion battery and rechargeable lithium ion battery comprising same
JP4774728B2 (en) Coating composition for positive electrode active material layer, positive electrode plate formed from the composition, and nonaqueous electrolyte secondary battery having the positive electrode plate
JP5044890B2 (en) Method for producing negative plate for non-aqueous electrolyte secondary battery, negative plate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP4929573B2 (en) Coating composition for active material layer, electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070531

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110712