JPH10334915A - Electrode for nonaqueous secondary battery - Google Patents

Electrode for nonaqueous secondary battery

Info

Publication number
JPH10334915A
JPH10334915A JP9141501A JP14150197A JPH10334915A JP H10334915 A JPH10334915 A JP H10334915A JP 9141501 A JP9141501 A JP 9141501A JP 14150197 A JP14150197 A JP 14150197A JP H10334915 A JPH10334915 A JP H10334915A
Authority
JP
Japan
Prior art keywords
treatment
particles
electrode
ratio
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9141501A
Other languages
Japanese (ja)
Other versions
JP3916012B2 (en
Inventor
Manabu Hayashi
学 林
Shoji Yamaguchi
祥司 山口
Keiko Nishioka
圭子 西岡
Hiromi Fujii
裕美 藤井
Takashi Kameda
隆 亀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP14150197A priority Critical patent/JP3916012B2/en
Publication of JPH10334915A publication Critical patent/JPH10334915A/en
Application granted granted Critical
Publication of JP3916012B2 publication Critical patent/JP3916012B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an electrode having a high electrode filling property of a material and a high energy density and superior in quick charging/discharging property by using carbon or graphite grains applied with a dynamic energy process, so that the apparent density ratio and median diameter ratio between before and after the process are in the specific ranges. SOLUTION: A dynamic energy process is applied to carbon or graphite grains so that the apparent density ratio between before and after the process becomes 1.1 or above, and the median diameter ratio between before and after the process becomes 1 or below. The dynamic energy process is specifically pulverization, roundness is introduced to the grain shape, and the filling property of the carbon or graphite grains is increased. The apparent density ratio between before and after the process = tap density after the process/tap density before the process, and this is to become the index of sphericity. The median diameter ratio between before and after the process = median diameter after the process/median diameter before the process, and it is the median diameter ratio of the volume reference grain size distribution.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、黒鉛質粒子を使用
した非水系二次電池用電極に関する。更に詳しくは、高
容量で、良好な急速充放電性を有する非水系二次電池用
電極に関する。
The present invention relates to an electrode for a non-aqueous secondary battery using graphite particles. More specifically, the present invention relates to a non-aqueous secondary battery electrode having a high capacity and good rapid charge / discharge properties.

【0002】[0002]

【従来技術】近年、電子機器の小型化に伴い高容量の二
次電池が必要となってきている。特にニッケル・カドミ
ウム電池、ニッケル・水素電池に比べてエネルギー密度
の高い、リチウム二次電池が注目されてきている。その
負極材料として、はじめリチウム金属を用いることをが
試みられたが、充放電を繰り返す内に樹脂状(デンドラ
イト状)にリチウムが析出し、セパレーターを貫通して
正極まで達し、両極を短絡してしまう可能性があること
が判明した。そのため、金属電極に変わってデンドライ
トの発生を防止できる炭素系の材料が着目されてきてい
る。
2. Description of the Related Art In recent years, high-capacity secondary batteries have been required as electronic devices have become smaller. In particular, lithium secondary batteries, which have a higher energy density than nickel-cadmium batteries and nickel-metal hydride batteries, have attracted attention. Attempts were initially made to use lithium metal as the negative electrode material. However, during repeated charging and discharging, lithium precipitated in a resinous (dendrite) form, penetrated through the separator, reached the positive electrode, and short-circuited both electrodes. It turned out that there was a possibility. Therefore, attention has been paid to a carbon-based material that can prevent the generation of dendrite instead of the metal electrode.

【0003】炭素系材料を使用した非水電解液二次電池
としては、結晶化度の低い難黒鉛性炭素材料を負極材料
に採用した電池が、まず上市された。続いて結晶化度の
高い黒鉛類を用いた電池が上市され、現在に至ってい
る。黒鉛の電気容量は、372mAh/gと理論上最大
であり、電解液の選択を適切に行えば、高い充放電容量
の電池を得ることができる。さらに特開平4−1716
77号公報に示されるような、複層構造を有する炭素質
物を用いることも検討されている。これは、結晶性が高
い黒鉛の長所(高容量かつ不可逆容量が小さい)と短所
(プロピレンカーボネート系電解液を分解する)および
結晶化度の低い炭素質物の長所(電解液との安定性に優
れる)と短所(不可逆容量が大きい)を組み合わせ、互
いの長所を生かしつつ、短所を補うという考えに基づ
く。
As a non-aqueous electrolyte secondary battery using a carbon-based material, a battery using a non-graphitizable carbon material having low crystallinity as a negative electrode material has been put on the market. Subsequently, batteries using graphites having a high degree of crystallinity were put on the market, and have reached the present. The electrical capacity of graphite is 372 mAh / g, which is theoretically the maximum, and a battery having a high charge / discharge capacity can be obtained by appropriately selecting an electrolytic solution. Further, Japanese Unexamined Patent Publication No.
The use of a carbonaceous material having a multilayer structure as disclosed in JP-A-77-77 is also being studied. This is because of the advantages of graphite with high crystallinity (high capacity and small irreversible capacity) and disadvantages (decomposes propylene carbonate-based electrolyte) and the advantage of low crystallinity carbonaceous material (excellent stability with electrolyte). ) And disadvantages (large irreversible capacity) are combined to take advantage of each other's strengths and make up for the disadvantages.

【0004】黒鉛類(黒鉛及び黒鉛を含む複層炭素質
物)は、難黒鉛性炭素材料に比べて結晶性が高く、真密
度が高い。従って、これら黒鉛類の炭素材料を用いて負
極を構成すれば、高い電極充填性が得られ、電池の体積
エネルギー密度を高めることができる。黒鉛系粉末で負
極を構成する場合、粉末とバインダーを混合し、分散媒
を加えたスラリーを作成し、これを集電体である金属箔
に塗布し、その後、分散媒を乾燥する方法が一般的に用
いられている。この際、粉末の集電体への圧着と電極の
極板厚みの均一化、極板容量の向上を目的として、更に
圧縮成型を掛ける工程を設けるのが一般的である。この
圧縮工程により、負極の極板密度は向上し、電池の体積
あたりのエネルギー密度は、更に向上する。
[0004] Graphites (graphite and multilayer carbonaceous materials containing graphite) have higher crystallinity and higher true density than non-graphitizable carbon materials. Therefore, when a negative electrode is formed using these graphite carbon materials, high electrode filling properties can be obtained, and the volume energy density of the battery can be increased. When a negative electrode is composed of a graphite-based powder, a method of mixing a powder and a binder, preparing a slurry containing a dispersion medium, applying this to a metal foil as a current collector, and then drying the dispersion medium is generally used. It is used regularly. At this time, it is general to provide a step of further performing compression molding for the purpose of pressing the powder to the current collector, making the electrode plate thickness uniform, and improving the electrode plate capacity. By this compression step, the electrode density of the negative electrode is improved, and the energy density per volume of the battery is further improved.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、高結晶
性であり、工業的にも入手可能な黒鉛材料は、一般的に
その粒子形状が鱗片状、鱗状、板状である。これら黒鉛
質粒子を上記極板製造工程を経て、極板化すると、極板
密度は圧縮度に応じて上昇するが、一方で粒子間隙が十
分に確保されないため、リチウムイオンの移動が妨げら
れ、電池としての急速充放電性が低下してしまうという
問題があった。更に、板状の黒鉛質粒子を、電極として
成形した場合、スラリーの塗布工程、極板の圧縮工程の
影響により、粉体の板面は、高い確率で電極極板面と平
行に配列される。従って、個々の粉体粒子を構成してい
る黒鉛結晶子のエッジ面は、比較的高い確率で、電極面
と垂直な位置関係に成形される。この様な極板状態で充
放電を行うと、正負極間を移動し、黒鉛に挿入・脱離さ
れるリチウムイオンは、一旦粉体表面を回り込む必要が
あり、電解液中でのイオンの移動効率という点で著しく
不利であるという問題もあった。更に、成形後の電極に
残された空隙は、粒子が板状の形状をしているため、電
極外部に対し、閉ざされてしまうという問題もあった。
すなわち、電極外部との電解液の自由な流通が妨げられ
る為、リチウムイオンの移動が妨げられるという問題が
あった。
However, graphite materials that are highly crystalline and commercially available generally have a flake-like, scale-like, or plate-like particle shape. When these graphitic particles are made into an electrode through the above-mentioned electrode plate manufacturing process, the electrode plate density increases in accordance with the degree of compression, but on the other hand, the particle gap is not sufficiently secured, so that the movement of lithium ions is hindered, There is a problem that the rapid charge / discharge property of the battery is reduced. Further, when the plate-like graphite particles are molded as an electrode, the plate surface of the powder is arranged with a high probability in parallel with the electrode plate surface due to the effect of the slurry application step and the electrode compression step. . Therefore, the edge surfaces of the graphite crystallites constituting the individual powder particles are formed with a relatively high probability in a positional relationship perpendicular to the electrode surfaces. When charging / discharging is performed in such an electrode plate state, lithium ions that move between the positive and negative electrodes and are inserted and desorbed into graphite need to once go around the powder surface, and the ion transfer efficiency in the electrolyte solution There was also a problem that it was extremely disadvantageous in that respect. Further, there is a problem that the voids left in the electrode after molding are closed to the outside of the electrode because the particles have a plate-like shape.
That is, there is a problem in that the free flow of the electrolyte solution outside the electrode is hindered, so that the movement of lithium ions is hindered.

【0006】一方、極板内でのリチウムイオンの移動に
必要な空隙を確保する負極材料として、球状の形態を有
するメソカーボンマイクロビーズの黒鉛化物が提案さ
れ、既に商品化されている。形態が球状であれば、上述
の極板圧縮工程を経ても、個々の粉体粒子には、選択的
な配列がおきず、エッジ面の等方向性が維持され、電極
板中でのイオンの移動速度は、良好に維持される。更に
電極内部に残存した空隙は、その粒子形状に由来して、
電極外部とつながった状態であるため、リチウムイオン
の移動は比較的自由であり、急速充放電にも対応可能な
電極構造となる。しかしながら、メソカーボンマイクロ
ビーズは、マクロな秩序構造が低いために、電気容量の
限界が300mAh/gと低く、鱗片状、鱗状、板状な
黒鉛に劣ることが既に広く知られている。
On the other hand, graphitized mesocarbon microbeads having a spherical shape have been proposed and already commercialized as a negative electrode material for securing a void necessary for the movement of lithium ions in an electrode plate. If the morphology is spherical, even after the above-described electrode plate compression step, the individual powder particles do not have a selective arrangement, the isotropic orientation of the edge surface is maintained, and the ion The moving speed is well maintained. Furthermore, the void remaining inside the electrode is derived from its particle shape,
Since the electrode is connected to the outside of the electrode, the movement of lithium ions is relatively free, and the electrode structure has a structure capable of coping with rapid charge and discharge. However, it is widely known that mesocarbon microbeads have a low electric capacity limit of 300 mAh / g due to a low macroscopic ordered structure, and are inferior to scaly, scaly, and plate-like graphite.

【0007】これらの問題に着目し、非水電解液二次電
池に使用される黒鉛の形状を規定した発明も行われてい
る。特開平8−180873は、鱗片状な粒子と比較的
鱗片状でない粒子の比率等を規定した発明であり、特開
平8−83610は、これとは逆により鱗片状な粒子が
好ましいとしている。実用電池には、高い電気容量と急
速充放電性を兼ね備えた電極が求められており、鱗片
状、鱗状、板状の黒鉛質材料の急速充放電性の改善が望
まれている。そこで、本発明は、材料の電極充填性が高
く、高エネルギー密度であり、且つ急速充放電性に優れ
た、非水系二次電池用電極を提供することを目的とす
る。
In view of these problems, inventions have been made in which the shape of graphite used in non-aqueous electrolyte secondary batteries is specified. JP-A-8-180873 is an invention in which the ratio of scale-like particles to particles that are relatively non-scale-like is specified, and JP-A-8-83610 contradicts that scale-like particles are preferred. Practical batteries are required to have electrodes having both high electric capacity and rapid charge / discharge properties, and it is desired to improve the rapid charge / discharge properties of flaky, scaly, and plate-like graphite materials. Therefore, an object of the present invention is to provide an electrode for a non-aqueous secondary battery, which has a high electrode filling property of a material, a high energy density, and an excellent rapid charge / discharge property.

【0008】[0008]

【課題を解決するための手段】上述の目的を達成するた
めに、本発明者らが鋭意検討を重ねた結果、電極の性能
を改善するためには、黒鉛材料の形状や充填性が重要で
あり、高電気化学容量を有する黒鉛質材料を、球状に処
理して得られる球形化処理黒鉛および炭素質粒子を電極
材料に用いることで、高容量で、急速充放電性、サイク
ル特性を併せ持つ、優れた電極が得られるとの知見を得
るに至った。
Means for Solving the Problems As a result of intensive studies conducted by the present inventors to achieve the above object, the shape and filling property of the graphite material are important for improving the performance of the electrode. There is a high capacity, rapid charge / discharge, and cycle characteristics combined by using spheroidized graphite and carbonaceous particles obtained by processing a graphite material having a high electrochemical capacity into a spherical shape, They have come to the knowledge that excellent electrodes can be obtained.

【0009】本発明の非水系二次電池用電極は、このよ
うな知見に基づいて、完成されたものであって、処理前
後の見かけ密度比を1.1以上、処理前後のメジアン径
比が1以下となるように力学的エネルギー処理を行った
炭素質あるいは黒鉛質粒子を使用することを特徴とする
ものである。また、処理前の黒鉛質粒子の層間距離(d
002)が0.34nm以下、結晶子サイズ(Lc)が
30nm以上、真密度が2.25g/cc以上であるこ
とを特徴とするものである。
The electrode for a non-aqueous secondary battery of the present invention has been completed based on such findings, and has an apparent density ratio of 1.1 or more before and after treatment and a median diameter ratio before and after treatment. It is characterized by using carbonaceous or graphitic particles which have been subjected to mechanical energy treatment so as to be 1 or less. Also, the interlayer distance (d
002) is 0.34 nm or less, the crystallite size (Lc) is 30 nm or more, and the true density is 2.25 g / cc or more.

【0010】また、処理後の黒鉛質粒子のメジアン径
が、5〜50μmであり、BET法比表面積が、25m
2/g以下であることを特徴とするものである。また、
処理前後の見かけ密度比を1.1以上、処理前後のメジ
アン径比が1以下となるように力学的エネルギー処理を
行った炭素質あるいは黒鉛質粒子をを炭素前駆体となる
有機化合物と混合した後に、該有機化合物を炭素化した
複層構造炭素材料を使用することを特徴とするものであ
る。
The treated graphite particles have a median diameter of 5 to 50 μm and a BET specific surface area of 25 m
2 / g or less. Also,
Carbonaceous or graphitic particles that had been subjected to mechanical energy treatment so that the apparent density ratio before and after treatment was 1.1 or more and the median diameter ratio before and after treatment was 1 or less were mixed with an organic compound serving as a carbon precursor. The method is characterized in that a multi-layer structure carbon material obtained by carbonizing the organic compound is used later.

【0011】[0011]

【発明の実施の形態】以下、詳細に本発明を説明する。
本発明における炭素質あるいは黒鉛質粒子は、天然又は
人造の黒鉛質粒子又は黒鉛前駆体である炭素質粉末であ
る。これら処理前の炭素質、黒鉛質粉末は、層間距離
(d002)が0.340nm以下、結晶子サイズ(L
c)が30nm以上、真密度が2.25g/cc以上で
あることが好ましい。更に層間距離(d002)が0.
337nm以下の方がより好ましく、0.336nm以
下が最も好ましい。結晶子サイズ(Lc)は、50nm
以上の方がより好ましく、100nm以上であるものが
最も好ましい。炭素質あるいは黒鉛質粒子の結晶性は、
リチウムイオンを用いた電気化学的容量でも判別するこ
とができる、本発明に用いられる炭素質あるいは黒鉛質
粒子は、充放電レートを0.2mA/cm2とした、半
電池による電気容量にして、330mAh/g以上、よ
り好ましくは350mAh/g以上であることが好まし
い。すなわち、炭素六角網面構造がある程度発達した高
結晶性炭素材料であって、金属イオンがインターカレー
ションした際に、C6Liと表現される組成、炭素6原
子に対しリチウム1原子を収容するステージ1構造を形
成できる材料であることが、特に好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
The carbonaceous or graphitic particles in the present invention are carbonaceous powders that are natural or artificial graphite particles or graphite precursors. The carbonaceous and graphitic powders before these treatments have an interlayer distance (d002) of 0.340 nm or less and a crystallite size (L
c) is preferably 30 nm or more, and the true density is 2.25 g / cc or more. Further, the interlayer distance (d002) is set to 0.
337 nm or less is more preferable, and 0.336 nm or less is most preferable. Crystallite size (Lc) is 50 nm
The above is more preferable, and the one with 100 nm or more is most preferable. The crystallinity of carbonaceous or graphitic particles is
The carbonaceous or graphitic particles used in the present invention, which can also be determined by electrochemical capacity using lithium ions, have a charge / discharge rate of 0.2 mA / cm 2 , and have a half-cell capacity, It is preferably at least 330 mAh / g, more preferably at least 350 mAh / g. That is, a highly crystalline carbon material having a carbon hexagonal network structure developed to some extent. When metal ions are intercalated, the composition is expressed as C 6 Li, and accommodates 1 atom of lithium for 6 atoms of carbon. It is particularly preferred that the material be capable of forming the stage 1 structure.

【0012】処理前の炭素質あるいは黒鉛質粒子の結晶
性が、それほど高くない場合は、力学的エネルギー処理
後に、改めて結晶性を高める熱処理を行うこともでき
る。結晶性が低く、面配向が高度に進んでいない、構造
に乱れが残存している状態で、力学的エネルギー処理を
行えば、その構造故に粉砕面が比較的等方的となり、丸
みを帯びた処理物を得やすくなる。
When the crystallinity of the carbonaceous or graphitic particles before the treatment is not so high, a heat treatment for increasing the crystallinity can be performed again after the mechanical energy treatment. When mechanical energy treatment is performed in a state where crystallinity is low, plane orientation is not advanced to a high degree, and disorder is remaining in the structure, the crushed surface is relatively isotropic due to its structure, and it is rounded It becomes easier to obtain processed products.

【0013】炭素六角網面構造が発達した高結晶性炭素
材料としては、六角網面を面配向的に大きく成長させた
高配向黒鉛と、高配向の黒鉛粒子を等方向に集合させた
等方性高密度黒鉛が挙げられる。高配向黒鉛としては、
スリランカあるいはマダカスカル産の天然黒鉛や、溶融
した鉄から過飽和の炭素として析出させたいわゆるキッ
シュグラファイト、一部の高黒鉛化度の人造黒鉛が、好
適に用いられる。
The highly crystalline carbon material having a developed carbon hexagonal network structure includes a highly oriented graphite in which hexagonal mesh planes are largely grown in a plane orientation, and an isotropic material in which highly oriented graphite particles are aggregated in the same direction. High-density graphite. As highly oriented graphite,
Natural graphite produced from Sri Lanka or Madakascal, so-called quiche graphite precipitated as supersaturated carbon from molten iron, and artificial graphite having a high degree of graphitization are preferably used.

【0014】天然黒鉛は、(株)産業技術センターから
昭和49年に刊行された成書、「粉粒体プロセス技術集
成」の黒鉛の項、及びNoyes Publications刊行の「HAND
BOOKOF CARBON,GRAPHITE,DIAMOND AND FULLERENES」に
従えば、その性状によって、鱗片状黒鉛(Flake Glaphi
te)、鱗状黒鉛(Crystalline(Vein) Glaphite)、土壌黒
鉛(Amorphousu Glaphite)に分けられる。黒鉛化度は、
鱗状黒鉛が100%と最も高く、次いで鱗片状黒鉛の9
9.9%であり、土壌黒鉛は28%と低い。天然黒鉛の
品質は、主な産地、鉱脈により定まるものであり、鱗片
状黒鉛(FlakeGlaphite)は、マダガスカル、中国、ブラ
ジル、ウクライナ、カナダ等に産し、鱗状黒鉛(Crysta
lline(Vein) Glaphite)は、主にスリランカに産する。
土壌黒鉛は、朝鮮半島、中国、メキシコ等を主な産地と
している。これらの天然黒鉛の中で、最終的に本発明に
てフィラーとして使用されるものとしては、土壌黒鉛は
一般に粒径が小さい上、純度が低いため、その黒鉛化
度、不純物量の低さ等により、鱗片状黒鉛、鱗状黒鉛か
ら選択されることがが好ましい。
[0014] Natural graphite is described in a book published in 1974 from the Industrial Technology Center Co., Ltd., in the section on graphite in "Pulverized Particle Process Technology", and in "HAND" published by Noyes Publications.
According to “BOOKOF CARBON, GRAPHITE, DIAMOND AND FULLERENES”, depending on its properties, flake graphite (Flake Glaphi
te), scaly graphite (Crystalline (Vein) Glaphite) and soil graphite (Amorphousu Glaphite). The degree of graphitization is
Scaly graphite is the highest at 100%, followed by 9% of scaly graphite.
9.9% and soil graphite is as low as 28%. The quality of natural graphite is determined by the major production areas and veins, and flaky graphite (FlakeGlaphite) is produced in Madagascar, China, Brazil, Ukraine, Canada, etc., and flaky graphite (Crysta
lline (Vein) Glaphite) mainly comes from Sri Lanka.
Soil graphite is mainly produced in the Korean Peninsula, China, Mexico, etc. Among these natural graphites, those that are finally used as fillers in the present invention include soil graphite, which generally has a small particle size and a low purity. Is preferably selected from flaky graphite and flaky graphite.

【0015】人造黒鉛としては、石油コークス、あるい
は石炭ピッチコークスを1500〜3000℃ の温度
で、非酸化性雰囲気で加熱して製造されるもので、最終
的な熱処理後の状態で、高配向、高電気化学容量を示す
ものであれば、いずれも用いることができる。処理前の
粒子の大きさとしては、メジアン径で、10μm以上、
好ましくは15μm以上、より好ましくは20μm以
上、更に好ましくは30μm以上である。
[0015] Artificial graphite is produced by heating petroleum coke or coal pitch coke at a temperature of 1500 to 3000 ° C in a non-oxidizing atmosphere. Any material that exhibits high electrochemical capacity can be used. As the size of the particles before the treatment, the median diameter is 10 μm or more,
It is preferably at least 15 μm, more preferably at least 20 μm, even more preferably at least 30 μm.

【0016】処理前の粒子の大きさに上限は特にない
が、メジアン径で、好ましくは1mm以下、より好まし
くは500μm以下、更に好ましくは250μm以下、
特に好ましくは200μm以下である。粉体粒子の充填
構造は、粒子の大きさと形状、粒子間相互作用力の程度
等に左右される。充填構造を定量的に議論する指標とし
ては、見かけ密度や充填率が使用される。見かけ密度
は、単位充填体積あたりの質量を示し、かさ密度とも呼
ばれる。
Although there is no particular upper limit on the size of the particles before the treatment, the median diameter is preferably 1 mm or less, more preferably 500 μm or less, still more preferably 250 μm or less.
Particularly preferably, it is 200 μm or less. The filling structure of the powder particles depends on the size and shape of the particles, the degree of interaction between the particles, and the like. As an index for quantitatively discussing the filling structure, an apparent density or a filling ratio is used. The apparent density indicates the mass per unit filling volume, and is also called bulk density.

【0017】 見かけ密度=充填粉体の質量/粉体の充填体積 本発明では、処理前後の見かけ密度比を1.1以上、処
理前後のメジアン径比が1以下となるように力学的エネ
ルギー処理を行う。この様に、力学的エネルギーを加
え、炭素質あるいは黒鉛質粒子の充填性を改良するの
は、充填性の高い炭素質あるいは黒鉛質粒子は、その粒
子形状に丸みが導入されていると考えられるからであ
る。
Apparent density = mass of filled powder / filled volume of powder In the present invention, mechanical energy treatment is performed so that the apparent density ratio before and after treatment is 1.1 or more and the median diameter ratio before and after treatment is 1 or less. I do. As described above, the improvement of the filling property of the carbonaceous or graphitic particles by adding the mechanical energy is considered to be due to the fact that the carbonaceous or graphitic particles having a high filling property are introduced with roundness in the particle shape. Because.

【0018】本発明でいう、処理前後の見かけ密度比と
は、処理前のタップ密度を分母とし、処理後のタップ密
度を分子とした、処理前後のタップ密度比のことであ
る。タップ充填挙動を表す式としては、様々な式が提案
されている。その一例として、次式、ρ−ρn=A・ex
p(−k・n)を挙げることができる。ここで、ρは充
填の終局における見かけ密度、ρnはn回充填時の見か
け密度、k及びAは定数である。本発明の見かけ密度
(タップ密度)とは、20ccセルへの1000回タッ
プ充填時の見かけ密度(ρ1000)を終局の見かけ密度ρ
と見なしたものを指す。
In the present invention, the apparent density ratio before and after the treatment is the tap density ratio before and after the treatment, where the tap density before the treatment is the denominator and the tap density after the treatment is the numerator. Various expressions have been proposed as expressions representing tap filling behavior. As an example, the following equation: ρ−ρ n = A · ex
p (−kn) can be mentioned. Here, ρ is the apparent density at the end of filling, ρn is the apparent density at the time of filling n times, and k and A are constants. The apparent density (tap density) of the present invention is the apparent density (ρ 1000 ) at the time of filling the 20 cc cell 1000 times with taps, and the final apparent density ρ.
Refers to what is considered.

【0019】また、処理前後のメジアン径比とは、レー
ザー式粒径分布測定機で測定した、処理前のメジアン径
を分母とし、処理後のメジアン径を分子とした体積基準
粒径分布のメジアン径比のことである。レーザー式粒径
測定の測定原理は、形状に異方性のある粒子でも等方的
に平均化し、実質的に球として換算した粒子径分布が得
られる。
The median diameter ratio before and after the treatment is defined as the median diameter of the volume-based particle size distribution using the median diameter before the treatment as a denominator and the median diameter after the treatment as a numerator, as measured by a laser type particle size distribution analyzer. It is a diameter ratio. The measurement principle of the laser type particle size measurement is that particles having anisotropic shape are averaged isotropically, and a particle size distribution substantially converted into a sphere can be obtained.

【0020】粉体粒子の充填性を高めるためには、粒子
と粒子の間にできる空隙に内接する様により小さな粒子
を充填すると良いことが知られている。そのため、炭素
質あるいは黒鉛質粒子に対し、粉砕等の処理を行い、粒
径を小さくすることが考えられるが、炭素質あるいは黒
鉛質粒子の結晶構造のためか、粉砕処理後の炭素質粉末
の充填性は低下する。一方、粉体粒子群の中の一つ粒子
(着目粒子)に接触している粒子の個数(配位数n)が
多いほど、充填層の空隙の占める割合は低下する。すな
わち、充填率に影響を与える因子は、粒子の大きさの比
率と組成比、すなわち、粒径分布が重要である。
It is known that in order to enhance the filling property of powder particles, it is better to fill smaller particles so as to inscribe the voids formed between the particles. Therefore, it is conceivable to reduce the particle size by performing a treatment such as pulverization on the carbonaceous or graphitic particles, but probably because of the crystal structure of the carbonaceous or graphitic particles or the carbonaceous powder after the pulverization treatment. Fillability is reduced. On the other hand, as the number of particles (coordination number n) in contact with one particle (particle of interest) in the powder particle group increases, the proportion of the voids in the packed bed decreases. In other words, factors that affect the filling factor are the particle size ratio and the composition ratio, that is, the particle size distribution is important.

【0021】しかし、これらの検討は、モデル的な球形
粒子群で行われたものであり、本発明で取り扱われる処
理前の炭素質あるいは黒鉛質粒子は、鱗片状、鱗状、板
状であり、このまま、単に分級等だけで粒径分布を制御
して、充填率を高めようと試みても、それほどの高充填
状態を生み出すことはできない。一般的に、粒子径分布
が全体的に小粒径側にシフトすれば、配位数が増加し
て、空隙率が低下、結果として充填性が向上することも
期待できるはずである。しかし、現実の鱗片状、鱗状、
板状の炭素質あるいは黒鉛質粒子の粒子径と充填性の関
係を整理すると、粒子径が小さくなるほど充填性が悪化
する傾向にある。すなわち、粒径が小さくなるほど、充
填性は低下している。つまり、期待したほどの配位数の
増加は起こらなかったことになる。これは、炭素質ある
いは黒鉛質粒子の表面に「ささくれ」や「はがれか
け」、「折れ曲がり」とも呼べる、突起物状の微粉末
が、ある程度の強度で接続されており、これらが、隣接
粒子との接点を著しく減少させていると考えられる。
However, these studies were performed on a group of model spherical particles, and the carbonaceous or graphitic particles before treatment handled in the present invention were flake-like, scale-like, plate-like, Even if an attempt is made to increase the filling rate by simply controlling the particle size distribution only by classification or the like, it is not possible to produce such a high filling state. In general, if the particle size distribution shifts toward the small particle size as a whole, it can be expected that the coordination number increases, the porosity decreases, and as a result, the packing property improves. However, real scales, scales,
When the relationship between the particle size and the filling property of the plate-like carbonaceous or graphitic particles is arranged, the filling property tends to deteriorate as the particle diameter decreases. That is, the smaller the particle size, the lower the filling property. In other words, the coordination number did not increase as expected. This is because fine particles in the form of protrusions, which can be called `` saddle '', `` peeling off '', and `` bending '', are connected to the surface of the carbonaceous or graphitic particles with a certain degree of strength, and these are connected to adjacent particles. It is considered that the number of contact points of the above has been significantly reduced.

【0022】本発明者らの検討では、真密度がほぼ等し
く、メジアン径もほぼ等しい炭素質あるいは黒鉛質粒子
では、形状が球状であるほど、見かけ密度(タップ密
度)が高い値を示すことが確認されている。すなわち、
粒子の形状に丸みを帯びさせ、球状に近づけることが重
要である。粒子形状が球状に近づけば、粉体の充填性
も、同時に大きく向上する。なお、形状解析には、粒子
状態あるいは成形体断面でのSEM観察、液中に分散さ
せた数千個の粒子の画像を1個づつCCDカメラを用い
て撮影し、その平均的な形状パラメータを算出すること
が可能なフロー式粒子像解析、液中での沈降速度、BE
T比表面積、粒子径分布から演算される球換算比表面
積、及び両比表面積の比率などを用いた。
According to the study of the present inventors, it is found that the apparent density (tap density) of a carbon or graphite particle having a substantially equal true density and a substantially equal median diameter is higher as the shape is spherical. Has been confirmed. That is,
It is important that the shape of the particles be rounded and close to spherical. If the particle shape approaches a spherical shape, the filling property of the powder is also greatly improved. In the shape analysis, SEM observation in the state of the particles or the cross section of the molded body, images of thousands of particles dispersed in the liquid were taken one by one using a CCD camera, and the average shape parameters were obtained. Flow type particle image analysis that can be calculated, sedimentation velocity in liquid, BE
The T specific surface area, the sphere-converted specific surface area calculated from the particle size distribution, the ratio of both specific surface areas, and the like were used.

【0023】本発明では、以上の理由により、球形化度
の指標に粉体の見かけ密度を採用している。処理後の粉
粒体の充填性が処理前に比べ上昇している場合は、用い
た処理方法により、粒子が球状化した結果と考えること
ができる。処理前後の見かけ密度比は、1.1以上、好
ましくは1.3以上、より好ましくは、1.4以上、更
に好ましくは1.7以上である。
In the present invention, for the above reasons, the apparent density of the powder is used as an index of the degree of spheroidization. When the filling property of the granular material after the treatment is higher than that before the treatment, it can be considered that the particles are spheroidized by the treatment method used. The apparent density ratio before and after the treatment is 1.1 or more, preferably 1.3 or more, more preferably 1.4 or more, and still more preferably 1.7 or more.

【0024】処理後の見かけ密度は、、0.5g/cc
以上2.0以下であることが好ましいが、メジアン径に
応じてその好ましい値が異なる。メジアン径をBμmと
すると、Bが40以下の場合は、下式により定められる
A値に対し、測定された見かけ密度が、A値より大であ
ることが好ましい。
The apparent density after the treatment is 0.5 g / cc.
The value is preferably not less than 2.0 and not more than 2.0, but the preferable value varies depending on the median diameter. Assuming that the median diameter is B μm, when B is 40 or less, the measured apparent density is preferably larger than the A value with respect to the A value defined by the following equation.

【0025】A=−0.012+3.29×10-2×B
−5.41×10-4×B2 Bが40以上の場合は、見かけ密度は、0.6g/cc
以上のものが好ましい。特に全メジアン径領域におい
て、0.65g/cc以上であることがより好ましく、
0.7g/cc以上であることが特に好ましい。ここで
いう見かけ密度は、測定手法により絶対値が若干異なる
が、タップ法により求めたものであり、川北の式に基づ
くものである。
A = −0.012 + 3.29 × 10 −2 × B
When −5.41 × 10 −4 × B 2 B is 40 or more, the apparent density is 0.6 g / cc.
The above are preferred. In particular, in the entire median diameter region, it is more preferably 0.65 g / cc or more,
It is particularly preferred that it be 0.7 g / cc or more. The apparent density here has a slightly different absolute value depending on the measurement method, but is obtained by the tap method and is based on Kawakita's formula.

【0026】本発明でいう、力学的エネルギー処理と
は、処理前後の粉末粒子のメジアン径比が1以下となる
ように粒子サイズを減ずると同時に、形状を制御するも
のであり、粉砕、分級、混合、造粒、表面改質、反応な
どの粒子設計に活用できる工学的単位操作の中では、粉
砕処理に属するものである。粉砕とは、物質に力を加え
て、その大きさを減少させ、物質の粒径や粒度分布、充
填性を調節することを指す。粉砕処理は、物質へ加わる
力の種類、処理形態により分類される。ここで、力の種
類は、たたき割る力(衝撃力)、押しつぶす力(圧縮
力)、すりつぶす力(摩砕力)、削りとる力(剪断力)
の4つに大別される。一方、処理形態は、粒子内部に亀
裂を発生、伝播させていく体積粉砕と粒子表面を削り取
っていく表面粉砕の二つに大別される。体積粉砕は、衝
撃力、圧縮力、剪断力により進行し、表面粉砕は、摩砕
力、剪断力により進行する。粉砕とは、これら被粉砕物
に加えられる力の種類、処理形態が、様々な比率で組合
わされた処理のことである。
In the present invention, the mechanical energy treatment is to reduce the particle size so that the median diameter ratio of the powder particles before and after the treatment becomes 1 or less and to control the shape at the same time. Among the engineering unit operations that can be used for particle design such as mixing, granulation, surface modification, and reaction, the operations belong to the pulverization process. Grinding refers to applying a force to a substance to reduce its size and adjust the particle size, particle size distribution, and filling properties of the substance. The pulverization process is classified according to the type of force applied to the substance and the processing mode. Here, the types of forces are a smashing force (impact force), a crushing force (compression force), a crushing force (milling force), and a shaving force (shearing force).
It is roughly divided into four. On the other hand, treatment forms are roughly classified into two types: volume pulverization in which cracks are generated and propagated inside the particles, and surface pulverization in which the particle surface is scraped off. Volume pulverization proceeds by impact force, compression force, and shear force, and surface pulverization proceeds by attrition force and shear force. Pulverization is a treatment in which the types of forces applied to these objects to be crushed and the processing forms are combined in various ratios.

【0027】粉砕を行うには、爆破など化学的な反応や
体積膨張を用いる場合もあるが、粉砕機など、機械装置
を用いて処理するのが通常、一般的である。これら、力
の加え方と処理形態の組み合わせで分類される粉砕処理
は、その処理の目的に応じて、使い分けられている。本
発明で用いられる粉砕処理とは、粉砕の進行途上での体
積粉砕の有無に関わらず、最終的に表面処理の占める割
合が高く行われる処理が好ましい。つまり、粉砕処理の
初期段階では、メジアン径の減少がおきるが、その段階
がある程度進行した後は、粒子径の変化率が小さくな
り、逆に表面粉砕が進行し、被処理物の表面から、角が
とれるようにして粉砕が進行する処理が好ましい。ある
いは、弱い表面粉砕が進行し、粒子サイズはほぼ一定の
まま、粒子形状が変化し、丸みを帯びた粉粒体の得られ
る処理が好ましい。
In order to carry out the pulverization, a chemical reaction such as blasting or volume expansion may be used. However, it is usually general to use a mechanical device such as a pulverizer. These pulverization processes classified according to a combination of a method of applying a force and a processing mode are properly used according to the purpose of the process. The pulverization treatment used in the present invention is preferably a treatment in which the proportion of the surface treatment is finally high, regardless of the presence or absence of volume pulverization during the pulverization. In other words, in the initial stage of the pulverization process, the median diameter decreases, but after that stage has progressed to some extent, the rate of change in the particle diameter decreases, and conversely, the surface pulverization proceeds, and from the surface of the workpiece, A process in which the pulverization proceeds so that the corner can be removed is preferable. Alternatively, a process is preferred in which weak surface pulverization proceeds, the particle shape changes while the particle size remains substantially constant, and a rounded powder is obtained.

【0028】本発明者らの検討では、体積粉砕を積極的
に行った場合は、充填性が向上せず、粒子形状も粒子サ
イズが減ずるのみで、形状に大きな変化を観察すること
はできなかった。これは、本発明で用いられる炭素質あ
るいは黒鉛質粒子が、鱗片状、鱗状、板状の形態を有す
る為と考えられる。工業的に入手し得る黒鉛材料は、多
結晶体である。しかし、材料中の微結晶は、ある特定の
方向に整列して存在しやすい為に、やはり各種の性質に
おいて、かなりの異方性を有する。力学的強度も異方性
の現れる性質の一つであり、鱗片状、鱗状、板状の形態
を有する炭素質あるいは黒鉛質粒子は、底面に平行に劈
開しやすい性質を示す。従って、積極的に体積粉砕を行
う処理では、劈開を伴いながら、粒子径を減じるため、
粒子形状に丸みを導入することは難しい。
According to the study of the present inventors, when volume pulverization is actively performed, the filling property is not improved, and the particle shape is only reduced in particle size, and no large change in shape can be observed. Was. This is presumably because the carbonaceous or graphitic particles used in the present invention have a flaky, scaly, or plate-like form. Industrially available graphite materials are polycrystalline. However, the microcrystals in the material are likely to be aligned in a specific direction and therefore have considerable anisotropy in various properties. The mechanical strength is also one of the properties in which anisotropy appears, and carbonaceous or graphitic particles having a flake-like, scale-like, or plate-like morphology have a property of being easily cleaved parallel to the bottom surface. Therefore, in the process of actively performing volume pulverization, in order to reduce the particle diameter while accompanied by cleavage,
It is difficult to introduce roundness into the particle shape.

【0029】処理前後のメジアン径比は、1以下となる
ことが好ましい。造粒がおきている場合はメジアン径比
が1以上となり、かつ見かけ密度も上昇する。しかし、
造粒された粉粒体は、最終的に成形する過程で元の処理
前の状態に戻ることが十分予想され、好ましくない。炭
素質あるいは黒鉛質粒子の角が取れて、粒子形状に丸み
を導入するには、表面粉砕が行われることが重要である
が、この為には処理を行う装置種類の選定とその装置の
持つ粉砕能力の見極めが重要である。前者は、被粉砕物
に与える粉砕力の種類により、装置種類を選び出すこと
であり、後者は装置機種毎に存在する粉砕力の限界(粉
砕限界)を利用することである。
The median diameter ratio before and after the treatment is preferably 1 or less. When granulation occurs, the median diameter ratio becomes 1 or more, and the apparent density also increases. But,
It is fully expected that the granulated powder will return to the original state before the treatment in the final molding process, which is not preferable. In order to remove the corners of carbonaceous or graphitic particles and introduce roundness into the particle shape, it is important that surface grinding is performed. It is important to determine the grinding capacity. The former is to select the type of device according to the type of crushing force applied to the object to be crushed, and the latter is to utilize the limit of crushing force (crushing limit) that exists for each device model.

【0030】装置種類の選定に関しては、剪断力により
粉砕が進行する装置機種が有効であることが、発明者ら
の検討で明らかとなっている。表面粉砕を進行させる装
置としては、まず、ボールミルや振動ミル、媒体撹拌ミ
ルなどの粉砕メディアを使用する装置が好ましい。これ
らの機種では、摩砕力と剪弾力中心の粉砕を行われてい
ると考えられ、角を取るような粉砕を行うことができ
る。湿式粉砕も乾式粉砕と同様に好ましい。具体的な装
置名を一例として挙げるとすれば、中央化工機(株)社
製の振動ミルやボールミル、岡田精工(株)社製のメカ
ノミル、(株)栗本鉄工所社製の乾式・湿式両用の媒体
撹拌ミルなどが挙げられる。次に表面粉砕を行うことが
できる装置として、回転する容器と容器内部に取り付け
られたテーパーの間を、処理物が通過することで、回転
する容器とテーパーとの速度差に起因する圧縮力と剪断
力が、処理物に加えられる機種が好ましい。これらの装
置は、元来、2種以上の粉体を複合化し、粉体の表面改
質を行うための装置であるが、剪断力が強く加わる装置
であるために、粉体の充填性の向上、すなわち粒子に丸
みを帯びさせることができたものと考えられる。具体的
な装置名を一例として挙げるとすれば、(株)徳寿工作
所社製のシータ・コンポーサ、ホソカワミクロン(株)
社製のメカノフュージョンシステムなどが挙げられる。
Regarding the selection of the type of the device, it has been clarified by the inventors that the type of the device in which the pulverization proceeds by the shearing force is effective. As a device for advancing the surface pulverization, first, a device using a pulverizing medium such as a ball mill, a vibration mill, and a medium stirring mill is preferable. In these models, it is considered that the grinding is performed at the center of the grinding force and the shearing force, so that the corner can be ground. Wet grinding is also preferred, as is dry grinding. Examples of specific device names include a vibration mill and a ball mill manufactured by Chuo Kakoki Co., Ltd., a mechano mill manufactured by Okada Seiko Co., Ltd., and a dry / wet type manufactured by Kurimoto Iron Works Co., Ltd. And a medium stirring mill. Next, as a device capable of performing surface pulverization, as a processed material passes between a rotating container and a taper attached to the inside of the container, a compressive force caused by a speed difference between the rotating container and the taper is generated. A model in which a shear force is applied to the processed material is preferred. These devices are originally devices for compounding two or more kinds of powders and performing surface modification of the powders. However, since they are devices to which a shear force is strongly applied, the filling property of the powders is high. It is considered that the particles could be improved, that is, the particles could be rounded. As an example of specific equipment names, Theta Composer manufactured by Tokuju Kosakusho Co., Ltd., Hosokawa Micron Corporation
And a mechanofusion system manufactured by the company.

【0031】粉砕限界とは、粒子径の領域のことを指
し、体積粉砕が進行する粒子径としては、最下限界領域
のことである。すなわち、粒子径が小さくなり、衝突確
率が低下し、粒子の自重も小さくなるため、衝突しても
大きな応力を発生せず、体積粉砕が進行しなくなる粒子
径領域のことである。この領域では、体積粉砕に代わ
り、表面粉砕が行われ、処理後の粉体の充填性は、メジ
アン径を大きく変えないままに、充填性のみを向上させ
る。この粉砕限界を利用するには、1回の粉砕処理でも
行えるが、処理装置を通過した粉砕物を再び処理装置に
投入することが好ましい。さらに分級機構を内蔵してい
る装置も好ましい。分級機構を粉砕処理装置に接続し
て、処理物を循環させることは、複数回の粉砕を確実に
することから、更に好ましい。繰り返し処理回数は、1
回以上で、3回以上でより好ましく、4回以上が特に好
ましい。高速回転式ミルは、本来、衝撃力と圧縮力、剪
断力を組み合わせることで体積粉砕を行う機械式粉砕器
である。好ましい装置条件は、衝撃力を押さえ、剪断力
を強める条件であるが、処理を繰り返すことで、処理物
の粒子径領域は、装置固有の粉砕限界に到達し、表面粉
砕が主に行われるようになる。あるいはバッチ式の処理
装置を使用し、長時間処理を行っても、同様の効果を確
実に得ることができ、これも更に好ましい。
The pulverization limit refers to a region of a particle diameter, and is a lowermost limit region as a particle diameter at which volume pulverization proceeds. That is, it is a particle diameter region where the particle diameter is reduced, the collision probability is reduced, and the particle's own weight is also reduced, so that a large stress is not generated even when the particles collide, and the volume pulverization does not progress. In this region, the surface pulverization is performed instead of the volume pulverization, and the filling property of the powder after the treatment improves only the filling property without largely changing the median diameter. To utilize this pulverization limit, a single pulverization process can be performed, but it is preferable that the pulverized material that has passed through the processing device is again fed into the processing device. Further, a device having a built-in classification mechanism is also preferable. It is more preferable to connect the classifying mechanism to the pulverization processing apparatus and circulate the processed material, since the pulverization is performed a plurality of times. The number of repetitions is 1
Or more times, more preferably 3 times or more, particularly preferably 4 times or more. A high-speed rotary mill is essentially a mechanical pulverizer that performs volume pulverization by combining impact force, compression force, and shear force. Preferred apparatus conditions are conditions that suppress the impact force and increase the shearing force, but by repeating the processing, the particle diameter region of the processed product reaches the apparatus-specific pulverization limit, and surface pulverization is mainly performed. become. Alternatively, the same effect can be reliably obtained even when the processing is performed for a long time using a batch-type processing apparatus, and this is further preferable.

【0032】鋭意検討の結果、本発明者らは、粉砕限界
を利用しさえすれば、体積粉砕を進行させることを中心
に設計された処理装置でも、表面粉砕を進行させること
が可能であり、充填性の改良された処理物を得ることが
可能なことを見いだした。このような処理としては、高
速で回転するロータとその周囲に設けられたステータと
から成り立っている高速回転式ミルを、使用することが
好ましい。さらに衝撃力が大きく加わらないように、ロ
ータの回転数を低く押さえて運転することがより好まし
い。更にロータには板状のブレードを取り付けて使用
し、ロータとステータの間隙には、衝撃粉砕が発生しに
くい様に、一定以上の隙間を空けることが好ましい。具
体的な装置名を一例として挙げるとすれば、日本ニュー
マチック工業(株)社製のファインミル、ターボ工業
(株)社製のターボミルなどが挙げられる。
As a result of diligent studies, the present inventors can proceed with surface pulverization even with a processing apparatus designed to promote volume pulverization as long as the pulverization limit is utilized. It has been found that it is possible to obtain treated products with improved filling properties. As such a process, it is preferable to use a high-speed rotary mill composed of a rotor that rotates at a high speed and a stator provided around the rotor. It is more preferable to operate the rotor at a low rotation speed so that a large impact force is not applied. Further, it is preferable that a plate-shaped blade is attached to the rotor for use, and a certain gap or more is provided in the gap between the rotor and the stator so that impact pulverization hardly occurs. As an example of a specific device name, a fine mill manufactured by Nippon Pneumatic Industries Co., Ltd., a turbo mill manufactured by Turbo Kogyo Co., Ltd., or the like may be used.

【0033】しかし、粉砕限界という概念を利用すれ
ば、いかなる装置種を用いても、表面粉砕が進行し、角
に丸みを帯びた、充填性の向上した処理物が得られるわ
けではない。(株)産業技術センターから昭和49年に
刊行された成書、「粉粒体プロセス技術集成」の黒鉛の
項によれば、摩擦粉砕型による処理を行えば、黒鉛は扁
平になりやすく、流体エネルギー型の粉砕を行えば粒子
同士の摩擦が増えるためか、粒子の角がとれた丸みのあ
る形状のものが得られるとの記述がある。しかし、発明
者らの検討の結果、流体エネルギー型の粉砕機では、目
的粒子径である10〜50μの範囲では、充填性の高ま
った粉体を得ることはできなかった。これは、流体エネ
ルギー型粉砕機が、音速に近い気流中で粒子に衝撃を与
えることを粉砕原理としているため、粉砕力が強すぎた
為と考えられる。
However, if the concept of the pulverization limit is used, the surface pulverization progresses, and a processed product having rounded corners and improved filling properties cannot be obtained with any type of apparatus. According to the Graphite section of the “Granular Particle Process Technology Collection” published by the Industrial Technology Center in 1974, graphite can easily be flattened if it is processed by a friction pulverization type. It is described that if energy-type pulverization is performed, friction between particles may increase, or particles having rounded shapes with sharp corners may be obtained. However, as a result of studies by the inventors, a fluid energy type pulverizer could not obtain a powder having enhanced filling properties in a target particle diameter range of 10 to 50 μm. This is considered to be because the pulverizing power was too strong because the fluid energy type pulverizer employs the principle of pulverizing particles in a gas stream close to the speed of sound.

【0034】本発明者らは、更に検討を進めた結果、剪
断力を被処理物に連続的に与え続けることができる装置
として、特定の構造を有する混合装置が、表面粉砕装置
として適当であることを見いだした。特定の構造を有す
る混合装置としては、内部に1本のシャフトとシャフト
に固定された複数のすき状又は鋸歯状ののパドルが、位
相を変えて複数配置された処理室を有し、その内壁面は
パドルの回転の最外線に沿った円筒型に形成されその隙
間を最小限とし、パドルはシャフトの軸方向に複数枚配
列され、更に装置内壁面には、高速で回転するスクリュ
ー型解砕砕翼が、1段あるいは多段に1個あるいは複数
個設置された構造の混合装置を挙げることができる。被
処理物は、スクリュー型解砕機により剪断力を受けると
同時に、パドルの回転により、壁面への圧縮力を受け
る。剪断力と圧縮力を与える構造は、本来は混合機であ
るにも関わらず、本発明者らが好ましいと考える表面粉
砕機構に合致した構造を有する。具体的な装置名を一例
として挙げるとすれば、松坂技研(株)社製のレーディ
ゲミキサー、太平洋機工(株)社製のプローシェアーミ
キサなどが挙げられる。
As a result of further studies by the present inventors, a mixing device having a specific structure is suitable as a surface pulverizing device as a device capable of continuously applying a shearing force to an object to be processed. I found something. As a mixing device having a specific structure, a processing chamber in which a plurality of plow-shaped or saw-tooth-shaped paddles fixed to the shaft and a plurality of puddles are arranged in different phases is provided. The wall is formed in a cylindrical shape along the outermost line of rotation of the paddle to minimize the gap, multiple paddles are arranged in the axial direction of the shaft, and the screw type disintegrator that rotates at high speed on the inner wall of the device A mixing device having a structure in which one or a plurality of crushing blades are provided in one or more stages can be given. The workpiece is subjected to a shearing force by the screw type crusher and, at the same time, receives a compressive force to the wall surface by the rotation of the paddle. The structure that applies the shearing force and the compressive force has a structure that matches the surface crushing mechanism that the present inventors consider preferable, despite being originally a mixer. As an example of a specific device name, a Reedige mixer manufactured by Matsuzaka Giken Co., Ltd., a Plowshare mixer manufactured by Taiheiyo Kiko Co., Ltd., and the like are exemplified.

【0035】処理前の炭素質粉末の真密度が2.25未
満で結晶性がそれほど高くない場合は、上述の力学的エ
ネルギー処理後に、改めて結晶性を高める熱処理を行う
ことが好ましい。熱処理は好ましくは2000℃以上、
より好ましくは2500℃以上、最も好ましくは280
0℃以上で行うのがよい。本発明の処理後の炭素質ある
いは黒鉛質粒子のメジアン径は、5〜50μm、好まし
くは、10〜50μm、更に好ましくは10〜35μ
m、特に15〜25μmの範囲にあることが好ましい。
10μm以下の微粉量は、体積基準粒子径分布で、25
%以下であり、、好ましくは17%以下、更に好ましく
は14%以下、より更に好ましくは12%以下である。
処理後の黒鉛質粒子のBET法比表面積は、0.5m2
/g以上25.0m2/g以下であり、好ましくは2.
0m2/g以上10.0m2/g以下、より好ましくは
3.0m2/g以上7.0m2/g以下、更に好ましくは
3.5m2/g以上5.0m2/g以下である。粒粒子径
とBET比表面積の両立を図る方法として、分級操作に
よる比表面積の制御がある。分級操作による微粉除去を
行うことで、比表面積を効果的に減少させることができ
る。また、アルゴンイオンレーザー光を用いたラマンス
ペクトル分析において1580〜1620cm−1の範
囲にピークPA(ピーク強度IA)および1350〜1
370cm-1の範囲にピークPB(ピーク強度IB)の
強度比R=IB/IAが0.0以上0.5以下、158
0〜1620cm−1の範囲のピークの半値幅が26cm
-1以下であることが好ましい。また、ラマンスペクトル
の強度比Rは0.4以下がより好ましく、0.3以下が
最も好ましい。1580〜1620cm-1の範囲のピー
クの半値幅は25cm-1以下がより好ましく、24cm-1
以下が最も好ましい。また、全粒子を対象とした平均円
形度(粒子面積相当円の周囲長を分子とし、撮像された
粒子投影像の周囲長を分母とした比率で、粒子像が真円
に近いほど1となり、粒子像が細長いあるいはデコボコ
しているほど小さい値になる)は0.940以上となる
ものが好ましい。更に、円相当径による粒径分布に基づ
いて、メジアン径15μm以上の粒子のみを対象とする
ように制限を加えた15μm制限平均円形度が0.85
0以上であるものが、より好ましい。なお、円相当径と
は、撮像した粒子像と同じ投影面積を持つ円(相当円)
の直径であり、円形度とは、相当円の周囲長を分子と
し、撮像された粒子投影像の周囲長を分母とした比率で
ある。
When the true density of the carbonaceous powder before the treatment is less than 2.25 and the crystallinity is not so high, it is preferable to perform a heat treatment for increasing the crystallinity again after the above-mentioned mechanical energy treatment. Heat treatment is preferably 2000 ° C or higher,
More preferably 2500 ° C. or higher, most preferably 280 ° C.
It is better to carry out at 0 ° C. or higher. The median diameter of the carbonaceous or graphitic particles after the treatment of the present invention is 5 to 50 μm, preferably 10 to 50 μm, and more preferably 10 to 35 μm.
m, particularly preferably in the range of 15 to 25 μm.
The amount of fine powder of 10 μm or less is 25% by volume-based particle size distribution.
%, Preferably 17% or less, more preferably 14% or less, even more preferably 12% or less.
The BET specific surface area of the graphite particles after the treatment is 0.5 m 2
/ G or more and 25.0 m 2 / g or less, preferably 2.
0 m 2 / g or more and 10.0 m 2 / g or less, more preferably 3.0 m 2 / g or more and 7.0 m 2 / g or less, still more preferably 3.5 m 2 / g or more and 5.0 m 2 / g or less. . As a method of achieving both the particle diameter and the BET specific surface area, there is a control of the specific surface area by a classification operation. By performing the fine powder removal by the classification operation, the specific surface area can be effectively reduced. Further, in a Raman spectrum analysis using an argon ion laser beam, the peak PA (peak intensity IA) and 1350 to 1
In the range of 370 cm -1 , the intensity ratio R = IB / IA of the peak PB (peak intensity IB) is 0.0 or more and 0.5 or less and 158.
The half width of the peak in the range of 0 to 1620 cm-1 is 26 cm.
It is preferably -1 or less. Further, the intensity ratio R of the Raman spectrum is more preferably 0.4 or less, most preferably 0.3 or less. Half width is more preferably 25 cm-1 or less of the peak in the range of 1580~1620cm -1, 24cm -1
The following are most preferred. In addition, the average circularity for all particles (the ratio of the perimeter of a circle corresponding to the particle area as a numerator and the perimeter of the captured particle projection image as a denominator is 1 as the particle image is closer to a perfect circle, The smaller the particle image is, the smaller the value is when the particle image is elongated or uneven) is preferably 0.940 or more. Further, based on the particle size distribution based on the circle equivalent diameter, a 15 μm limited average circularity of 0.85, which is limited to target only particles having a median diameter of 15 μm or more, is 0.85.
What is 0 or more is more preferable. The equivalent circle diameter is a circle (equivalent circle) having the same projected area as the captured particle image.
And the degree of circularity is a ratio of the perimeter of the equivalent circle as a numerator and the perimeter of the captured particle projection image as a denominator.

【0036】本発明における複層構造炭素材料は、前記
処理後の炭素質あるいは黒鉛質粒子を焼成工程により炭
素化する有機化合物と混合した後に、該有機化合物を焼
成炭素化して得られる。炭素質あるいは黒鉛質粒子と混
合される有機化合物としてはまず、液相で炭素化を進行
させる有機物として、軟ピッチから硬ピッチまでのコー
ルタールピッチ、石炭液化油等の石炭系重質油、アスフ
ァルテン等の直流系重質油、原油、ナフサなどの熱分解
時に副生するナフサタール等分解系重質油等の石油系重
質油、分解系重質油を熱処理することで得られる、エチ
レンタールピッチ、FCCデカントオイル、アシュラン
ドピッチなど熱処理ピッチ等を用いることができる。さ
らにポリ塩化ビニル、ポリビニルアセテート、ポリビニ
ルブチラール、ポリビニルアルコール等のビニル系高分
子と3ーメチルフェノールフォルムアルデヒド樹脂、
3、5ージメチルフェノールフォルムアルデヒド樹脂等
の置換フェノール樹脂、アセナフチレン、デカシクレ
ン、アントラセンなどの芳香族炭化水素、フェナジンや
アクリジンなどの窒素環化合物、チオフェンなどのイオ
ウ環化合物などの物質があげられる。また、固相で炭素
化を進行させる有機物としては、セルロースなどの天然
高分子、ポリ塩化ビニリデンやポリアクリロニトリルな
どの鎖状ビニル樹脂、ポリフェニレン等の芳香族系ポリ
マー、フルフリルアルコール樹脂、フェノール−ホルム
アルデヒド樹脂、イミド樹脂等熱硬化性樹脂やフルフリ
ルアルコールのような熱硬化性樹脂原料などがあげられ
る。これらの有機物を必要に応じて、適宜溶媒を選択し
て溶解希釈することにより、粉末粒子の表面に付着さ
せ、使用することができる。
The carbon material having a multilayer structure in the present invention is obtained by mixing the carbonaceous or graphitic particles after the treatment with an organic compound to be carbonized in a firing step, and then firing the organic compound. As organic compounds to be mixed with carbonaceous or graphitic particles, first, as organic substances that progress carbonization in the liquid phase, coal tar pitch from soft pitch to hard pitch, coal-based heavy oil such as coal liquefied oil, asphaltene Ethylene tar pitch obtained by heat-treating petroleum heavy oils such as naphtha tar and other cracked heavy oils that are by-produced during thermal cracking of direct current heavy oils such as naphtha and naphtha, and cracked heavy oils , FCC decant oil, heat-treated pitch such as Ashland pitch and the like can be used. Further, polyvinyl chloride, polyvinyl acetate, polyvinyl butyral, polyvinyl alcohol and other vinyl polymers and 3-methylphenol formaldehyde resin,
Substituted phenolic resins such as 3,5-dimethylphenol formaldehyde resin; aromatic hydrocarbons such as acenaphthylene, decacyclene and anthracene; nitrogen ring compounds such as phenazine and acridine; and sulfur ring compounds such as thiophene. Examples of the organic substance that progresses carbonization in the solid phase include natural polymers such as cellulose, chain vinyl resins such as polyvinylidene chloride and polyacrylonitrile, aromatic polymers such as polyphenylene, furfuryl alcohol resin, and phenol-formaldehyde. Examples thereof include thermosetting resins such as resins and imide resins, and thermosetting resin raw materials such as furfuryl alcohol. These organic substances can be used by adhering to the surface of the powder particles by appropriately dissolving and diluting the organic substance by selecting a solvent as necessary.

【0037】本願発明においては、通常、かかる炭素質
あるいは黒鉛質粒子と有機化合物を混合したものを加熱
し中間物質を得て、その後炭化焼成、粉砕することによ
り、最終的に粉末粒子の表面に炭素質物の表層を形成さ
せた複層構造の炭素質粉末を得るが、複層構造の炭素質
粉末中の有機化合物由来の炭素質物の割合は50重量%
以下0.1重量%以上、好ましくは25重量%以下0.
5重量%以上、更に好ましくは15重量%以下1重量%
以上、特に好ましくは10重量%以下2重量%以上とな
るように調整する。
In the present invention, usually, a mixture of such carbonaceous or graphitic particles and an organic compound is heated to obtain an intermediate substance, which is then carbonized, fired and pulverized, so that the surface of the powdery particles is finally obtained. A carbonaceous powder having a multilayer structure in which the surface layer of the carbonaceous material is formed is obtained. The proportion of the carbonaceous material derived from the organic compound in the carbonaceous powder having the multilayer structure is 50% by weight.
0.1 wt% or less, preferably 25 wt% or less.
5% by weight or more, more preferably 15% by weight or less 1% by weight
As described above, the content is particularly preferably adjusted to 10% by weight or less and 2% by weight or more.

【0038】一方、本願発明のかかる複層炭素質物を得
るための製造工程は以下の4工程に分けられる。 第1工程 炭素質あるいは黒鉛質粒子と有機化合物を、必要に応じ
て溶媒とを種々の市販の混合機や混練機等を用いて混合
し、混合物を得る工程。 第2工程 必要に応じ前記混合物を攪拌しながら加熱し、溶媒を除
去した中間物質を得る工程。
On the other hand, the production process for obtaining such a multi-layer carbonaceous material according to the present invention is divided into the following four processes. First step: a step of mixing a carbonaceous or graphitic particle and an organic compound with a solvent, if necessary, using various commercially available mixers and kneaders to obtain a mixture. Second step: a step of heating the mixture while stirring, if necessary, to obtain an intermediate substance from which the solvent has been removed.

【0039】第3工程 前記混合物又は中間物質を、窒素ガス、炭酸ガス、アル
ゴンガス不活性ガス雰囲気下、あるいは非酸化性雰囲気
下で500℃以上3000℃以下に加熱し、炭素化物質
を得る工程。
Third step: a step of heating the mixture or the intermediate substance to 500 ° C. or more and 3000 ° C. or less in an atmosphere of an inert gas such as a nitrogen gas, a carbon dioxide gas and an argon gas, or a non-oxidizing atmosphere to obtain a carbonized material. .

【0040】第4工程 前記炭素化物質を必要に応じて粉砕、解砕、分級処理な
ど粉体加工する工程。これらの工程中第2工程及び第4
工程は場合によっては省略可能であり、第4工程は第3
工程の前に行ってもいい。
Fourth step: a step of subjecting the carbonized substance to powder processing such as pulverization, crushing, and classification as required. Among these steps, the second step and the fourth step
The step can be omitted in some cases, and the fourth step is the third step.
It may be performed before the process.

【0041】また、第3工程の加熱処理条件としては、
熱履歴温度条件が重要である。その温度下限は有機化合
物の種類、その熱履歴によっても若干異なるが通常50
0℃以上、好ましくは700℃以上、更に好ましくは9
00℃以上である。一方、上限温度は基本的に炭素質あ
るいは黒鉛質粒子の結晶構造を上回る構造秩序を有しな
い温度まで上げることができる。従って熱処理の上限温
度としては、通常3000℃以下、好ましくは2800
℃以下、更に好ましくは2500℃以下、特に好ましく
は1500℃以下である。このような熱処理条件におい
て、昇温速度、冷却速度、熱処理時間などは目的に応じ
て任意に設定する事ができる。また、比較的低温領域で
熱処理した後、所定の温度に昇温する事もできる。な
お、本工程に用いる反応機は回分式でも連続式でも又、
一基でも複数基でもよい。
The heat treatment conditions in the third step include:
Thermal history temperature conditions are important. The lower limit of the temperature is slightly different depending on the kind of the organic compound and its heat history, but it is usually 50.
0 ° C. or higher, preferably 700 ° C. or higher, more preferably 9 ° C.
It is 00 ° C or higher. On the other hand, the upper limit temperature can be raised to a temperature that does not basically have a structural order exceeding the crystal structure of the carbonaceous or graphitic particles. Therefore, the upper limit temperature of the heat treatment is usually 3000 ° C. or less, preferably 2800 ° C.
C. or lower, more preferably 2500 C. or lower, particularly preferably 1500 C. or lower. Under such heat treatment conditions, the rate of temperature rise, cooling rate, heat treatment time and the like can be arbitrarily set according to the purpose. After the heat treatment in a relatively low temperature range, the temperature can be raised to a predetermined temperature. The reactor used in this step may be a batch type or a continuous type,
One or more groups may be used.

【0042】本発明の複層構造炭素材料は、体積基準メ
ジアン径が5〜70μm、好ましくは10〜40μm、
特に好ましくは15〜30μmである。本願発明による
複層構造炭素材料はのBET法を用いて測定した比表面
積は好ましくは1〜10m2/g、更に好ましくは1〜
4m2/g、特に好ましくは1〜3m2/gの範囲に入る
ことが好ましく、 又、本願発明の複層構造炭素質物
は、波長5145cm-1のアルゴンイオンレーザー光を
用いたラマンスペクトル分析、CuKα線を線源とした
X線広角回折の回折図において、核となる炭素質あるい
は黒鉛質粒子の結晶化度を上回らないことが好ましい。
尚、特に断らない限りスペクトルおよびピークは下記
条件によるラマンスペクトルである。すなわち、158
0〜1620cm-1の範囲にピークPA(ピーク強度I
A)および1350〜1370cm -1の範囲にピークP
B(ピーク強度IB)である。具体的な数値としては、
好ましくは0.01以上、1.0以下、より好ましくは
0.05以上、0.8以下、更に好ましくは0.1以
上、0.6以下である。また、見かけ密度は炭素被覆に
より使用した核黒鉛材料よりも更に向上するが、0.7
−1.2g/ccの範囲に制御することが望ましい。全
粒子を対象とした平均円形度は複層構造化前の0.94
0より大きくなるものが好ましい。更に、円相当径によ
る粒径分布に基づいて、メジアン径15μm以上の粒子
のみを対象とするように制限を加えた15μm制限平均
円形度も複層構造化前の0.850より大きくなるもの
がより好ましい。 複層構造化は、核となる力学的エネ
ルギー処理物の見かけ密度を更に向上し、かつ、その形
状に更なる丸みを導入する効果を有する。
The multilayer carbon material of the present invention has a volume-based
A dian diameter of 5 to 70 μm, preferably 10 to 40 μm,
Particularly preferably, it is 15 to 30 μm. According to the present invention
Specific surface of multi-layered carbon material measured using BET method
The product is preferably 1 to 10 mTwo/ G, more preferably 1 to
4mTwo/ G, particularly preferably 1-3 mTwo/ G range
Preferably, the carbonaceous material having a multilayer structure of the present invention
Has a wavelength of 5145 cm-1Argon ion laser light
Raman spectrum analysis using CuKα radiation as the source
In the diffractogram of X-ray wide-angle diffraction, carbon
Does not exceed the crystallinity of the graphitic particles.
 The spectra and peaks are as follows unless otherwise specified.
It is a Raman spectrum according to conditions. That is, 158
0-1620cm-1PA (peak intensity I
A) and 1350-1370 cm -1Peak P in the range
B (peak intensity IB). As specific numbers,
Preferably 0.01 or more, 1.0 or less, more preferably
0.05 or more, 0.8 or less, more preferably 0.1 or less
Above, it is 0.6 or less. Also, the apparent density is
More improved than the more used nuclear graphite material, but 0.7
It is desirable to control to a range of -1.2 g / cc. all
The average circularity for particles was 0.94 before the multilayer structure was formed.
Those which are larger than 0 are preferred. Furthermore, the circle equivalent diameter
Particles having a median diameter of 15 μm or more
15μm limited average with restriction to target only
The degree of circularity is also greater than 0.850 before the multilayer structure
Is more preferred. Multi-layer structuring is the core dynamic energy
Further improve the apparent density of the processed material
This has the effect of introducing further roundness into the shape.

【0043】本発明の非水系二次電池用電極は、処理後
の炭素質あるいは黒鉛質粒子に結着剤、溶媒等を加え
て、スラリー状とし、銅箔等の金属製の集電体の基板に
スラリーを塗布・乾燥することで電極とする。また、該
電極材料をそのままロール成形、圧縮成形等の方法で電
極の形状に成形することもできる。上記の目的で使用で
きる結着剤としては、溶媒に対して安定な、ポリエチレ
ン、ポリプロピレン、ポリエチレンテレフタレート、芳
香族ポリアミド、セルロース等の樹脂系高分子、スチレ
ン・ブタジエンゴム、イソプレンゴム、ブタジエンゴ
ム、エチレン・プロピレンゴム等のゴム状高分子、スチ
レン・ブタジエン・スチレンブロック共重合体、その水
素添加物、,スチレン・エチレン・ブタジエン・スチレ
ン共重合体,スチレン・イソプレン・スチレンブロック
共重合体、その水素添加物等の熱可塑性エラストマー状
高分子、シンジオタクチック12-ポリブタジエン、エチ
レン・酢酸ヒ゛ニル共重合体、プロピレン・a-オレフィン
(炭素数2〜12)共重合体等の軟質樹脂状高分子、ポリ
フッ化ビニリデン、ポリテトラフルオロエチレン、ポリ
テトラフルオロエチレン・エチレン共重合体等のフッ素
系高分子、アルカリ金属イオン、特にリチウムイオンの
イオン伝導性を有する高分子組成物が挙げられる。上記
のイオン伝導性を有する高分子としては、ポリエチレン
オキシド、ポリプロピレンオキシド等のポリエーテル系
高分子化合物、ポリエーテル化合物の架橋体高分子、ポ
リエピクロルヒドリン、ポリフォスファゼン、ポリシロ
キサン、ポリビニルピロリドン、ポリビニリデンカーボ
ネート、ポリアクリロニトリル等の高分子化合物に、リ
チウム塩、またはリチウムを主体とするアルカリ金属塩
を複合させた系、、あるいはこれに炭酸プロピレン、炭
酸エチレン、g-ブチロラクトン等の高い誘電率を有する
有機化合物と直鎖状カーボネート等低粘度の有機化合物
を配合した系を用いることができる。この様な、イオン
伝導性高分子組成物の室温におけるイオン導電率は、好
ましくは10-5S/cm以上、より好ましくは10-3
/cm以上である。
The electrode for a non-aqueous secondary battery of the present invention is prepared by adding a binder, a solvent and the like to the treated carbonaceous or graphitic particles to form a slurry, and forming a metal current collector such as a copper foil. The slurry is applied to the substrate and dried to form an electrode. Further, the electrode material can be directly formed into an electrode shape by a method such as roll molding or compression molding. Examples of the binder that can be used for the above-mentioned purposes include, but are not limited to, solvents, polyethylene, polypropylene, polyethylene terephthalate, aromatic polyamide, resin polymers such as cellulose, styrene / butadiene rubber, isoprene rubber, butadiene rubber, and ethylene.・ Rubber-like polymer such as propylene rubber, styrene / butadiene / styrene block copolymer, hydrogenated product thereof, styrene / ethylene / butadiene / styrene copolymer, styrene / isoprene / styrene block copolymer, hydrogenated Elastomer-like polymers such as products, soft resin-like polymers such as syndiotactic 12-polybutadiene, ethylene-vinyl acetate copolymer, propylene-a-olefin (C2-12) copolymer, polyfluorinated Vinylidene, polytetrafluoroethylene, polythene Fluorine polymers such as La-ethylene copolymer, an alkali metal ion, the polymeric composition may be mentioned in particular has an ionic conductivity of lithium ions. Examples of the polymer having ion conductivity include polyether-based polymer compounds such as polyethylene oxide and polypropylene oxide, crosslinked polymers of polyether compounds, polyepichlorohydrin, polyphosphazene, polysiloxane, polyvinylpyrrolidone, and polyvinylidene carbonate. , A polymer compound such as polyacrylonitrile, and a complex of lithium salt, or an alkali metal salt mainly composed of lithium, or an organic compound having a high dielectric constant such as propylene carbonate, ethylene carbonate, g-butyrolactone And a low viscosity organic compound such as a linear carbonate. The ionic conductivity of such an ionic conductive polymer composition at room temperature is preferably 10 −5 S / cm or more, more preferably 10 −3 S / cm.
/ Cm or more.

【0044】本発明に用いる炭素質物と上記の結着剤と
の混合形式としては、各種の形態をとることができる。
即ち、両者の粒子が混合した形態、繊維状の結着剤が炭
素質物の粒子に絡み合う形で混合した形態、または結着
剤の層が炭素質物の粒子表面に付着した形態などが挙げ
られる。炭素質物と上記結着剤との混合割合は、炭素質
物に対し、好ましくは0.1〜30重量%、より好ましく
は、0.5〜10重量%である。これ以上の量の結着剤を添
加すると、電極の内部抵抗が大きくなり、好ましくな
く、これ以下の量では集電体と炭素質粉体の結着性に劣
る。
The carbonaceous material used in the present invention and the above-mentioned binder may be mixed in various forms.
That is, a form in which both particles are mixed, a form in which a fibrous binder is entangled with the carbonaceous material particles, or a form in which a binder layer is attached to the surface of the carbonaceous material particles are exemplified. The mixing ratio of the carbonaceous material and the binder is preferably 0.1 to 30% by weight, more preferably 0.5 to 10% by weight, based on the carbonaceous material. If the binder is added in an amount larger than this, the internal resistance of the electrode increases, which is not preferable. If the amount is smaller than this, the binding property between the current collector and the carbonaceous powder is poor.

【0045】この時ロール成形、圧縮成形等の方法で成
形された電極上の活物質層の密度(以下極板密度と呼
ぶ)を1.2より大きく1.6以下とすることにより、
より好ましくは1.3以上1.5以下とすることにより
高効率放電や低温特性を損なうことなく電池の単位体積
当たりの容量を最大引き出すことができるようになる。
このようにして作成した負極と通常使用されるリチウム
イオン電池用の金属カルコゲナイド系正極及びカーボネ
ート系溶媒を主体とする有機電解液を組み合わせて構成
した電池は、容量が大きく、初期サイクルに認められる
不可逆容量が小さく、高温下での放置における電池の保
存性および信頼性が高く、高効率放電特性および低温に
おける放電特性に極めて優れたものとすることができ
る。ただし、正極、電解液等の電池構成上必要な部材の
選択については何ら制約を設けるものではない。
At this time, by setting the density of the active material layer on the electrode formed by a method such as roll forming or compression forming (hereinafter referred to as electrode density) to be larger than 1.2 and 1.6 or less,
More preferably, when the ratio is 1.3 or more and 1.5 or less, the capacity per unit volume of the battery can be maximized without impairing high-efficiency discharge and low-temperature characteristics.
A battery formed by combining the negative electrode prepared in this manner with a metal chalcogenide-based positive electrode for a lithium ion battery and an organic electrolyte mainly containing a carbonate-based solvent has a large capacity and is irreversible observed in the initial cycle. The battery has a small capacity, high storage stability and high reliability of the battery when left at high temperatures, and extremely excellent high-efficiency discharge characteristics and low-temperature discharge characteristics. However, there are no restrictions on the selection of members necessary for the battery configuration such as the positive electrode and the electrolyte.

【0046】[0046]

【実施例】次に実施例により本発明を更に詳細に説明す
るが、本発明はこれらの例によってなんら限定されるも
のではない。 (測定法) (1)体積基準平均粒径 界面活性剤にポリオキシエチレン(20)ソルビタンモ
ノラウレートの2vol%水溶液を約1cc用い、これ
を予め炭素質粉末に混合し、しかる後にイオン交換水を
分散媒として、堀場製作所社製レーザー回折式粒度分布
計「LA−700」にて、体積基準平均粒径(メジアン
径)を測定した。
Next, the present invention will be described in more detail by way of examples, which should not be construed as limiting the present invention. (Measurement method) (1) Volume-based average particle size About 1 cc of a 2 vol% aqueous solution of polyoxyethylene (20) sorbitan monolaurate was used as a surfactant, and this was mixed with carbonaceous powder in advance, and then ion-exchanged water was used. Was used as a dispersion medium, and the volume-based average particle diameter (median diameter) was measured with a laser diffraction particle size distribution analyzer “LA-700” manufactured by Horiba, Ltd.

【0047】(2)見かけ密度(タップ密度) (株)セイシン企業社製粉体密度測定器「タップデンサ
ー KYT−3000」を用い、サンプルが透過する篩
には、目開き300μmの篩を使用し、20ccのタッ
ピングセルに粉体を落下させ、セルが満杯に充填された
後、ストローク長10mmのタッピングを1000回行
って、その時の見かけ密度を測定した。 (3)BET比表面積測定 大倉理研社製AMS−8000を用い、予備乾燥として
350℃ に加熱し、15分間窒素ガスを流した後、窒
素ガス吸着によるBET1点法によって測定した。
(2) Apparent Density (Tap Density) A powder density measuring device “Tap Denser KYT-3000” manufactured by Seishin Enterprise Co., Ltd. was used. The powder was dropped into a 20 cc tapping cell, and after the cell was completely filled, tapping with a stroke length of 10 mm was performed 1,000 times, and the apparent density at that time was measured. (3) Measurement of BET specific surface area Using AMS-8000 manufactured by Okura Riken Co., Ltd., it was heated to 350 ° C. as preliminary drying, nitrogen gas was flowed for 15 minutes, and then measured by the BET one-point method by nitrogen gas adsorption.

【0048】(4)真密度測定 界面活性剤0.1%水溶液を使用し、ピクノメーターに
よる液相置換法によって測定した。 (5)X線回折 試料に対して約15%のX線標準高純度シリコン粉末を
加えて混合し、試料セルに詰め、グラファイトモノクロ
メーターで単色化したCuKα線を線源とし、反射式デ
ィフラクトメーター法によって、広角X線回折曲線を測
定し、学振法を用いて層間距離(d002)及び結晶子
サイズ(Lc)を求めた。
(4) Measurement of True Density Using a 0.1% aqueous solution of a surfactant, the true density was measured by a liquid phase replacement method using a pycnometer. (5) X-ray diffraction X-ray standard high-purity silicon powder of about 15% is added to and mixed with the sample, packed in a sample cell, and a CuKα ray monochromatized with a graphite monochromator is used as a radiation source, and a reflection type diffract is used. The wide-angle X-ray diffraction curve was measured by a meter method, and the interlayer distance (d002) and the crystallite size (Lc) were determined by the Gakushin method.

【0049】(6)ラマン測定 日本分光社製NR−1800を用い、波長514.5n
mのアルゴンイオンレーザー光を用いたラマンスペクト
ル分析において、1580cm-1の付近のピークPAの
強度IA、1360cm-1の範囲のピークPBの強度I
Bを測定し、その強度の比R=IB/IAと1580c
-1の付近のピークの半値幅を測定した。試料の調製に
あたっては、粉末状態のものを自然落下によりセルに充
填し、セル内のサンプル表面にレーザー光を照射しなが
ら、セルをレーザー光と垂直な面内で回転させて測定を
行った。
(6) Raman Measurement Using NR-1800 manufactured by JASCO Corporation, wavelength: 514.5 n
In Raman spectrum analysis using an argon ion laser beam of m, the intensity of the peak PA around the 1580 cm -1 IA, the intensity of the peak PB in the range of 1360 cm -1 I
B is measured, and the ratio of its intensities R = IB / IA and 1580c
The half width of the peak near m -1 was measured. In preparing the sample, the cell was filled in a powder state by natural fall, and the measurement was performed by rotating the cell in a plane perpendicular to the laser light while irradiating the sample surface in the cell with the laser light.

【0050】(7)円形度の測定 東亜医用電子社製フロー式粒子像分析装置「FPIA−
1000」を使用し、円相当径による粒径分布の測定お
よび円形度の算出を行った。分散媒にはイオン交換水を
使用し、界面活性剤には、ポリオキシエチレン(20)
ソルビタンモノラウレートを使用した。まず、全粒子に
対する平均円形度を求めた後、円相当径による粒径分布
に基づいて、メジアン径15μm以上の粒子のみを対象
とするように制限を加え、15μm制限平均円形度の算
出を行った。なお、円相当径とは、撮像した粒子像と同
じ投影面積を持つ円(相当円)の直径であり、円形度と
は、相当円の周囲長を分子とし、撮像された粒子投影像
の周囲長を分母とした比率である。
(7) Measurement of circularity Flow particle image analyzer “FPIA-” manufactured by Toa Medical Electronics Co., Ltd.
Using "1000", the particle size distribution was measured by the equivalent circle diameter and the circularity was calculated. Ion exchange water is used as the dispersion medium, and polyoxyethylene (20) is used as the surfactant.
Sorbitan monolaurate was used. First, after calculating the average circularity for all the particles, based on the particle size distribution based on the equivalent circle diameter, a restriction is applied so that only particles having a median diameter of 15 μm or more are targeted, and the 15 μm limited average circularity is calculated. Was. The equivalent circle diameter is the diameter of a circle (equivalent circle) having the same projected area as the captured particle image, and the circularity is defined as the circumference of the equivalent circle as a numerator and the periphery of the captured particle projection image. This is the ratio with the length as the denominator.

【0051】(8)半電池による電気容量測定 8−1)半電池の作成 電極材料サンプル5gに、ポリフッ化ビニリデン(PVd
F)のジメチルアセトアミド溶液を固形分換算で10重量
%加えたものを攪拌し、スラリーを得た。このスラリー
をドクターブレード法で銅箔上に塗布し、80℃で予備乾
燥を行った。さらに極板密度が1.3g/cc前後とな
るように圧着させたのち、直径15.4mmの円盤状に
打ち抜き、110℃で減圧乾燥をして電極とした。しかる
後に、電解液を含浸させたセパレーターを中心に電極と
リチウム金属電極とを対向させたコインセルを作成し、
充放電試験を行った。電解液としては、エチレンカーボ
ネートとジエチルカーボネートを重量比1:1の比率で
混合した溶媒に過塩素酸リチウムを1.5モル/リット
ルの割合で溶解させたものを使用した。
(8) Measurement of Electric Capacity by Half-Battery 8-1) Preparation of Half-Battery Polyvinylidene fluoride (PVd) was added to 5 g of an electrode material sample.
A solution obtained by adding 10% by weight of a dimethylacetamide solution of F) in terms of solid content was stirred to obtain a slurry. This slurry was applied on a copper foil by a doctor blade method, and pre-dried at 80 ° C. Furthermore, after pressure bonding was performed so that the electrode plate density was about 1.3 g / cc, it was punched into a disk having a diameter of 15.4 mm, and dried at 110 ° C. under reduced pressure to obtain an electrode. Thereafter, a coin cell in which the electrode and the lithium metal electrode face each other around the separator impregnated with the electrolytic solution,
A charge / discharge test was performed. As the electrolytic solution, a solution prepared by dissolving lithium perchlorate at a ratio of 1.5 mol / l in a solvent in which ethylene carbonate and diethyl carbonate were mixed at a weight ratio of 1: 1 was used.

【0052】8−2)電気容量の測定 充放電試験は低充放電速度の電流値を0.2mA、高充
放電速度の電流値を7mAとし、それぞれ両電極間の電
位差が0Vになるまで充電を行い、1.5Vになるまで
放電を行った。炭素質の結晶化度を比較する電気容量に
は、5サイクル目の放電容量を使用した。0.2mAで
の容量を分母に、0.7mAでの容量を分子とした比を
急速充放電性の指標とした。なお、結晶化度の比較に
は、未プレスの極板を使用し、力学的エネルギー処理後
の評価には、プレス処理後の極板を使用した。
8-2) Measurement of Electric Capacity In the charge / discharge test, the current value at the low charge / discharge rate was set to 0.2 mA, and the current value at the high charge / discharge rate was set to 7 mA, and the charge was performed until the potential difference between both electrodes became 0 V. And discharge was performed until the voltage reached 1.5 V. The discharge capacity at the fifth cycle was used as the electric capacity for comparing the degree of crystallinity of the carbonaceous material. The ratio of the capacity at 0.2 mA as a denominator and the capacity at 0.7 mA as a numerator was used as an index of rapid charge / discharge properties. An unpressed electrode plate was used for comparison of crystallinity, and an electrode plate after press treatment was used for evaluation after mechanical energy treatment.

【0053】(処理前の原料の選択)X線回折測定、ラ
マン分光法、電気化学的容量により、粉砕前の原料の選
択を行った。その結果、粒径の異なる石油系人造黒鉛2
種と粒径の異なるスリランカ製の天然黒鉛2種を選択し
た。検討に使用した原料を別表1に整理した。
(Selection of raw materials before treatment) Raw materials before pulverization were selected by X-ray diffraction measurement, Raman spectroscopy, and electrochemical capacity. As a result, petroleum artificial graphite 2 with different particle size
Two kinds of natural graphite made from Sri Lanka with different species and particle sizes were selected. Table 1 lists the raw materials used in the study.

【0054】(力学的エネルギー処理) 1)実施例1 中央化工機(株)社製の研究用ポットミルを使用し、
3.6リットルの円筒型粉砕ポットに 粉砕メディアで
ある直径5mmのステンレスボールと天然黒鉛粉Aを
0.5kg投入し、80rpmで24時間、粉砕処理を
行った。結果を別表2と表3に示す。 2)実施例2 (株)栗本鐵工所社製のφ200型バッチ式乾式撹拌ミ
ルを使用し、 粉砕メディアである直径2mmのアルミ
ナボールと人造黒鉛粉B0.3kgを投入し、480r
pmで25分間、粉砕処理を行った。ラマンスペクトル
強度の比R値は0.19、1580cm-1の付近のピー
クの半値幅は22.2cm-1であった。その他の結果を
別表2と表3に示す。
(Mechanical energy treatment) 1) Example 1 Using a research pot mill manufactured by Chuo Kakoki Co., Ltd.
A stainless steel ball having a diameter of 5 mm and a natural graphite powder A of 0.5 kg were charged into a 3.6-liter cylindrical grinding pot, and grinding treatment was performed at 80 rpm for 24 hours. Tables 2 and 3 show the results. 2) Example 2 Using a φ200 batch dry agitating mill manufactured by Kurimoto Ironworks Co., Ltd., crushing media of 2 mm diameter alumina balls and artificial graphite powder B (0.3 kg) were charged, and 480 r
The crushing treatment was performed at pm for 25 minutes. The ratio R value of Raman spectrum intensity half width of the peak around the 0.19,1580Cm -1 was 22.2cm -1. Other results are shown in Tables 2 and 3.

【0055】3)実施例3 (株)ターボ工業社製のT−400型ターボミル(4J
型)を使用し、ローターを3600rpmで回転させ、
スクリューフィーダーにて処理物を150kg/hrで
供給し、粉砕を行った。回収された粉砕物の粒径は、大
きく変化していなかった。粉砕限界を利用した表面粉砕
を行う目的で、粉砕物の再粉砕を行った。同一の処理物
に対し、合計4回の処理を行った。結果を別表2と表3
に示す。
3) Example 3 T-400 type turbo mill (4J) manufactured by Turbo Kogyo Co., Ltd.
), Rotate the rotor at 3600 rpm,
The processed material was supplied at 150 kg / hr by a screw feeder and pulverized. The particle size of the collected pulverized material did not change significantly. In order to perform surface pulverization using the pulverization limit, the pulverized material was re-pulverized. The same processed material was processed a total of four times. Tables 2 and 3 show the results.
Shown in

【0056】4)実施例4 (株)マツボー社製のM20型レーディゲミキサー(内
容積20リットル)を使用し、天然黒鉛粉Bを4.0k
g投入し、撹拌用のパドルを230rpm、解砕用のチ
ョッパーを3000rpmで回転させ、150分間撹拌
した。ラマンスペクトル強度の比R値は0.22、15
80cm-1の付近のピークの半値幅は21.3cm-1
あった。その他の結果を別表2と表3に示す。 5)実施例5 (株)マツボー社製のFKM−130D型レーディゲミ
キサー(内容積130リットル)を使用し、人造黒鉛粉
Bを50kg投入し、撹拌用のパドルを140rpm、
解砕用のチョッパーを3600rpmで回転させ、30
分間撹拌した。ラマンスペクトル強度の比R値は0.2
5、1580cm-1の付近のピークの半値幅は21.8
cm-1であった。その他の結果を別表2と表3に示す。
4) Example 4 A natural graphite powder B of 4.0 k was prepared using a M20 type Reigeger mixer (20 liters in volume) manufactured by Matsubo Co., Ltd.
g, a paddle for stirring was rotated at 230 rpm, and a chopper for crushing was rotated at 3000 rpm, and the mixture was stirred for 150 minutes. The ratio R value of Raman spectrum intensity is 0.22, 15
The half-value width of the peak in the vicinity of 80 cm -1 was 21.3 cm -1. Other results are shown in Tables 2 and 3. 5) Example 5 Using an FKM-130D type Reedige mixer (manufactured by Matsubo Co., Ltd.) (volume of 130 liters), 50 kg of artificial graphite powder B was charged, and a paddle for stirring was set at 140 rpm.
Rotate the chopper for crushing at 3600 rpm, 30
Stirred for minutes. Raman spectrum intensity ratio R value is 0.2
The half width of the peak near 5, 1580 cm -1 is 21.8.
cm -1 . Other results are shown in Tables 2 and 3.

【0057】6)実施例6 実施例5と同じ装置条件、原料で60分間撹拌した。結
果を別表2と表3に示す。 7)実施例7 実施例5と同じ装置条件、原料で150分間撹拌した。
ラマンスペクトル強度の比R値は0.29、1580c
-1の付近のピークの半値幅は22.4cm -1であっ
た。その他の結果を別表2と表3に示す。 8)実施例8 実施例5と同じ装置条件、原料で、実施例3で得られた
処理物を90分間撹拌した。結果を別表2と表3に示
す。
6) Example 6 The same apparatus conditions as in Example 5 were used and the raw materials were stirred for 60 minutes. Conclusion
Tables 2 and 3 show the results. 7) Example 7 The mixture was stirred for 150 minutes under the same apparatus conditions and raw materials as in Example 5.
Raman spectrum intensity ratio R value is 0.29, 1580c
m-1Of the peak near is 22.4 cm -1So
Was. Other results are shown in Tables 2 and 3. 8) Example 8 The same equipment conditions and raw materials as in Example 5 were used to obtain Example 3.
The treatment was stirred for 90 minutes. Tables 2 and 3 show the results.
You.

【0058】9)実施例9 ホソカワミクロン(株)社製AM−80F型メカノフュ
ージョンシステム(粉砕室の直径800mm)を使用
し、人造黒鉛粉Aを7kg投入し、粉砕室を500rp
mで回転させ、30分間運転した。ラマンスペクトル強
度の比R値は0.35、1580cm-1の付近のピーク
の半値幅は23.5cm-1であった。その他の結果を別
表2と表3に示す。 10)実施例10 ホソカワミクロン(株)社製AM−80F型メカノフュ
ージョンシステム(粉砕室の直径800mm)を使用
し、人造黒鉛粉Aを7kg投入し、粉砕室を500rp
mで回転させ、30分間運転した。ラマンスペクトル強
度の比R値は0.27、1580cm-1の付近のピーク
の半値幅は22.3cm-1であった。その他の結果を別
表2と表3に示す。
9) Example 9 Using an AM-80F type mechanofusion system manufactured by Hosokawa Micron Co., Ltd. (having a grinding chamber diameter of 800 mm), 7 kg of artificial graphite powder A was charged, and the grinding chamber was rotated at 500 rpm.
m and run for 30 minutes. The ratio R value of Raman spectrum intensity half width of the peak around the 0.35,1580Cm -1 was 23.5cm -1. Other results are shown in Tables 2 and 3. 10) Example 10 Using an AM-80F mechanofusion system manufactured by Hosokawa Micron Co., Ltd. (diameter of grinding chamber: 800 mm), 7 kg of artificial graphite powder A was charged, and the grinding chamber was rotated at 500 rpm.
m and run for 30 minutes. The ratio R value of Raman spectrum intensity half width of the peak around the 0.27,1580Cm -1 was 22.3cm -1. Other results are shown in Tables 2 and 3.

【0059】11)実施例11 ホソカワミクロン(株)社製AM−20FS型メカノフ
ュージョンシステム(粉砕室の直径200mm)を使用
し、人造黒鉛粉Bを30gと直径0.5mmのセラミッ
クボールを1kg投入し、粉砕室を450rpmで回転
させ、30分間運転した。ラマンスペクトル強度の比R
値は0.49、1580cm-1の付近のピークの半値幅
は25.8cm-1であった。その他の結果を別表2と表
3に示す。 12)実施例12 (株)徳寿工作所社製製シータ・コンポーザ(内容積5
0L)を使用し、人造黒鉛Bを10kg投入し、ベッセ
ルを20rpmで回転させ、ローターを400rpmで
回転させ、30分間運転した。結果を別表2と表3に示
す。
11) Example 11 30 g of artificial graphite powder B and 1 kg of ceramic balls having a diameter of 0.5 mm were charged using an AM-20FS mechanofusion system manufactured by Hosokawa Micron Corp. (diameter of a grinding chamber of 200 mm). The grinding chamber was rotated at 450 rpm and operated for 30 minutes. Raman spectrum intensity ratio R
Value half width of a peak in the vicinity of 0.49,1580Cm -1 was 25.8cm -1. Other results are shown in Tables 2 and 3. 12) Example 12 Theta Composer (manufactured by Tokuju Corporation)
0L), 10 kg of artificial graphite B was charged, the vessel was rotated at 20 rpm, the rotor was rotated at 400 rpm, and the apparatus was operated for 30 minutes. Tables 2 and 3 show the results.

【0060】13)実施例13 実施例2で得られた処理物4kgと石油系タール1kg
とを、シグマ型ブレードを有するバッチ式ニーダーで混
合した。続いて、窒素雰囲気にて700℃まで昇温し、
脱タール処理を行い、しかる後に1200℃ まで熱処
理を行った。得られた熱処理物を、ピンミルにて解砕
し、粗粒子を除く目的で、分級処理を行い、最終的に複
層構造炭素質物粒子を得た。結果を別表4と表5に示
す。 14)実施例14 実施例3で得られた処理物を用い、実施例13と同様の
処理を行った。結果を別表4と表5に示す。
13) Example 13 4 kg of the treated product obtained in Example 2 and 1 kg of petroleum-based tar
Were mixed in a batch kneader having a sigma type blade. Subsequently, the temperature was raised to 700 ° C. in a nitrogen atmosphere,
A tar removal treatment was performed, followed by a heat treatment to 1200 ° C. The obtained heat-treated product was pulverized with a pin mill, and subjected to a classification treatment for the purpose of removing coarse particles, thereby finally obtaining carbonaceous material particles having a multilayer structure. Tables 4 and 5 show the results. 14) Example 14 The same treatment as in Example 13 was performed using the processed product obtained in Example 3. Tables 4 and 5 show the results.

【0061】15)実施例15 実施例4で得られた処理物を用い、実施例13と同様の
処理を行った。結果を別表4と表5に示す。 16)実施例16 実施例5で得られた処理物3kgと石油系タール7kg
とを、シグマ型ブレードを有するバッチ式ニーダーで混
合した。続いて、窒素雰囲気にて700℃まで昇温し、
脱タール処理を行い、しかる後に1200℃ まで熱処
理を行った。得られた熱処理物を、ピンミルにて解砕
し、粗粒子を除く目的で、分級処理を行い、最終的に複
層構造炭素質物粒子を得た。結果を別表4と表5に示
す。
15) Example 15 The same treatment as in Example 13 was performed using the processed product obtained in Example 4. Tables 4 and 5 show the results. 16) Example 16 3 kg of the treated product obtained in Example 5 and 7 kg of petroleum tar
Were mixed in a batch kneader having a sigma type blade. Subsequently, the temperature was raised to 700 ° C. in a nitrogen atmosphere,
A tar removal treatment was performed, followed by a heat treatment to 1200 ° C. The obtained heat-treated product was pulverized with a pin mill, and subjected to a classification treatment for the purpose of removing coarse particles, thereby finally obtaining carbonaceous material particles having a multilayer structure. Tables 4 and 5 show the results.

【0062】17)比較例1 川崎重工業(株)社製KTM0Z型クリプトロンを使用
し、人造黒鉛粉Aを17kg/hrで供給し、ローター
を9000rpmで回転させ、運転した。結果を別表2
と表3に示す。 18)比較例2 日本ニューマチック工業社製FM−300S型ファイン
ミルを使用し、人造黒鉛粉Aを40kg/hrで供給
し、ローターを3000rpmで回転させ、運転した。
結果を別表2と表3に示す。
17) Comparative Example 1 KTM0Z type Kryptron manufactured by Kawasaki Heavy Industries, Ltd. was used, artificial graphite powder A was supplied at 17 kg / hr, and the rotor was rotated at 9000 rpm for operation. Table 2 shows the results
And Table 3 below. 18) Comparative Example 2 Using an FM-300S type fine mill manufactured by Nippon Pneumatic Industries, artificial graphite powder A was supplied at 40 kg / hr, and the rotor was rotated at 3000 rpm for operation.
Tables 2 and 3 show the results.

【0063】19)比較例3 (株)ターボ工業社製のT−400型ターボミル(4J
型)を使用し、ローターを3600rpmで回転させ、
スクリューフィーダーにて処理物を150kg/hrで
供給し、粉砕を行った。結果を別表2と表3に示す。 20)比較例4 ホソカワミクロン(株)社製ACMパルペライザ10型
を使用し、人造黒鉛粉Bを50kg/hrで供給し、粉
砕羽を7000rpmで回転させ、処理を行った。結果
を別表2と表3に示す。
19) Comparative Example 3 T-400 type turbo mill (4J) manufactured by Turbo Kogyo Co., Ltd.
), Rotate the rotor at 3600 rpm,
The processed material was supplied at 150 kg / hr by a screw feeder and pulverized. Tables 2 and 3 show the results. 20) Comparative Example 4 Using an ACM Pulperizer Model 10 manufactured by Hosokawa Micron Corporation, artificial graphite powder B was supplied at 50 kg / hr, and the pulverizing blade was rotated at 7000 rpm to perform the treatment. Tables 2 and 3 show the results.

【0064】21)比較例5 ホソカワミクロン(株)社製INM−30型イノマイザ
ーを使用し、人造黒鉛粉Bを190kg/hrで供給
し、粉砕羽を5000rpmで回転させ、処理を行っ
た。結果を別表2と表3に示す。 22)比較例6 日本ニューマチック工業社製IDS−2UR型衝突板式
ジェットミルを使用し、人造黒鉛粉Bを30kg/hr
で供給し、粉砕を行った。ラマンスペクトル強度の比R
値は0.81、1580cm-1の付近のピークの半値幅
は28.2cm -1であった。その他の結果を別表2と表
3に示す。 23)比較例7 ホソカワミクロン(株)社製カウンタージェットミル2
00AFG(流動層式、粉と粉の接触で粉砕)を使用
し、人造黒鉛粉Aを75kg/hrで供給し、粉砕を行
った。ラマンスペクトル強度の比R値は0.67、15
80cm-1の付近のピークの半値幅は26.5cm-1
あった。その他の結果を別表2と表3に示す。
21) Comparative Example 5 INM-30 Inomaizer manufactured by Hosokawa Micron Corporation
And supply artificial graphite powder B at 190 kg / hr
Then, the grinding blade is rotated at 5000 rpm to perform the processing.
Was. Tables 2 and 3 show the results. 22) Comparative Example 6 Nippon Pneumatic Industries, Inc. IDS-2UR Type Impact Plate Type
30kg / hr of artificial graphite powder B using jet mill
And pulverized. Raman spectrum intensity ratio R
The value is 0.81, 1580 cm-1Half width of the peak near
Is 28.2cm -1Met. Table 2 and Table 2 show other results
3 is shown. 23) Comparative Example 7 Counter Jet Mill 2 manufactured by Hosokawa Micron Corporation
Uses 00AFG (fluid bed type, pulverized by powder-powder contact)
Then, artificial graphite powder A was supplied at a rate of 75 kg / hr and pulverized.
Was. Raman spectrum intensity ratio R value is 0.67,15
80cm-1Of the peak near is 26.5 cm-1so
there were. Other results are shown in Tables 2 and 3.

【0065】[0065]

【表1】 [Table 1]

【0066】[0066]

【表2】 [Table 2]

【0067】[0067]

【表3】 [Table 3]

【0068】[0068]

【表4】 [Table 4]

【0069】[0069]

【表5】 [Table 5]

【0070】[0070]

【発明の効果】このように、本発明により得られた負極
と通常使用されるリチウムイオン電池用の金属カルコゲ
ナイド系正極及びカーボネート系溶媒を主体とする有機
電解液を組み合わせて構成した電池は、容量が大きく、
初期サイクルに認められる不可逆容量が小さく、高温下
での放置における電池の保存性および信頼性が高く、高
効率放電特性および低温における放電特性に極めて優れ
たものとすることができる。
As described above, the battery constituted by combining the negative electrode obtained according to the present invention, the generally used metal chalcogenide-based positive electrode for a lithium ion battery, and the organic electrolyte mainly composed of a carbonate-based solvent has a large capacity. Is large,
The irreversible capacity observed in the initial cycle is small, the storage stability and reliability of the battery when left at high temperatures are high, and the discharge characteristics at high efficiency and at low temperatures can be extremely excellent.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤井 裕美 茨城県稲敷郡阿見町中央八丁目3番1号 三菱化学株式会社筑波研究所内 (72)発明者 亀田 隆 茨城県稲敷郡阿見町中央八丁目3番1号 三菱化学株式会社筑波研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiromi Fujii 3-1-1 Chuo, Ami-cho, Inashiki-gun, Ibaraki Prefecture Inside the Tsukuba Research Laboratory, Mitsubishi Chemical Corporation (72) Inventor Takashi Kameda 8-Chome, Ami-cho, Inashiki-gun, Ibaraki Prefecture No.3-1 Inside the Tsukuba Research Laboratory, Mitsubishi Chemical Corporation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 処理前後の見かけ密度比を1.1以上、
処理前後のメジアン径比が1以下となるように力学的エ
ネルギー処理を行った炭素質あるいは黒鉛質粒子を含む
ことを特徴とする非水系二次電池用電極。
1. An apparent density ratio before and after treatment of 1.1 or more,
An electrode for a non-aqueous secondary battery, comprising carbonaceous or graphitic particles that have been subjected to mechanical energy treatment so that the median diameter ratio before and after treatment is 1 or less.
【請求項2】 処理前の炭素質あるいは黒鉛質粒子の層
間距離(d002)が0.34nm以下、結晶子サイズ
(Lc)が30nm以上、真密度が2.25g/cc以
上であることを特徴とする請求項1記載の非水系二次電
池用電極。
2. The carbon or graphite particles before treatment have an interlayer distance (d002) of 0.34 nm or less, a crystallite size (Lc) of 30 nm or more, and a true density of 2.25 g / cc or more. The electrode for a non-aqueous secondary battery according to claim 1.
【請求項3】 処理後の炭素質あるいは黒鉛質粒子のメ
ジアン径が、5〜50μmであり、BET法比表面積
が、25m2/g以下、アルゴンイオンレーザーラマン
スペクトルにおける1580cm-1のヒ゜ーク強度に対する
1360cm-1のヒ゜ーク強度比であるR値が0.5以下で
かつ1580cm-1ピークの半値幅が26cm-1以下、
見かけ密度が0.5g/cc以上であることを特徴とす
る請求項1又は2記載の非水系二次電池用電極。
3. The carbonaceous or graphitic particles after treatment have a median diameter of 5 to 50 μm, a BET specific surface area of 25 m 2 / g or less, and a peak intensity of 1580 cm −1 in an argon ion laser Raman spectrum. half-value width of the R value is a ratio ° over click intensity ratio is 0.5 or less and 1580 cm -1 peak of 1360 cm -1 is 26cm -1 or less,
3. The electrode for a non-aqueous secondary battery according to claim 1, wherein the apparent density is 0.5 g / cc or more.
【請求項4】 請求項1〜3記載の処理後の炭素質ある
いは黒鉛質粒子を有機化合物と混合した後に、該有機化
合物を炭素化した複層構造炭素材料を含むことを特徴と
する非水系二次電池用電極。
4. A non-aqueous system comprising a multi-layer carbon material obtained by mixing the carbonaceous or graphitic particles according to claim 1 with an organic compound and then carbonizing the organic compound. Electrodes for secondary batteries.
JP14150197A 1997-05-30 1997-05-30 Non-aqueous secondary battery electrode Expired - Fee Related JP3916012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14150197A JP3916012B2 (en) 1997-05-30 1997-05-30 Non-aqueous secondary battery electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14150197A JP3916012B2 (en) 1997-05-30 1997-05-30 Non-aqueous secondary battery electrode

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007017409A Division JP4199813B2 (en) 2007-01-29 2007-01-29 Carbonaceous or graphite particles

Publications (2)

Publication Number Publication Date
JPH10334915A true JPH10334915A (en) 1998-12-18
JP3916012B2 JP3916012B2 (en) 2007-05-16

Family

ID=15293425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14150197A Expired - Fee Related JP3916012B2 (en) 1997-05-30 1997-05-30 Non-aqueous secondary battery electrode

Country Status (1)

Country Link
JP (1) JP3916012B2 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002059040A1 (en) * 2001-01-25 2002-08-01 Hitachi Chemical Co., Ltd. Artificial graphite particle and method for producing the same, nonaqueous electrolyte secondary battery negative electrode and method for producing the same, and lithium secondary battery
JP2003132889A (en) * 2001-08-10 2003-05-09 Kawasaki Steel Corp Anode material for lithium ion secondary battery and its manufacturing method
US6632569B1 (en) 1998-11-27 2003-10-14 Mitsubishi Chemical Corporation Carbonaceous material for electrode and non-aqueous solvent secondary battery using this material
JP2004063456A (en) * 2002-06-05 2004-02-26 Mitsubishi Chemicals Corp Manufacturing method of carbon material for electrode
JP2004511422A (en) * 2000-10-25 2004-04-15 ハイドロ−ケベック Graphite particles with a potato shape and a small amount of impurities on the surface, and a method for producing the same
JP2004134244A (en) * 2002-10-10 2004-04-30 Jfe Chemical Corp Graphite particle, lithium ion secondary battery, negative electrode material for it, and negative electrode
JP2005302725A (en) * 2004-04-12 2005-10-27 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery, negative electrode including the same and lithium secondary battery
WO2006003849A1 (en) * 2004-06-30 2006-01-12 Mitsubishi Chemical Corporation Negative electrode material for lithium secondary battery, method for producing same, negative electrode for lithium secondary battery using same and lithium secondary battery
JP2006172804A (en) * 2004-12-14 2006-06-29 Dainippon Printing Co Ltd Active material, coating composition containing the same, electrode plate, and nonaqueous electrolytic solution secondary battery
WO2007000982A1 (en) * 2005-06-27 2007-01-04 Mitsubishi Chemical Corporation Non-aqueous secondary battery-use graphite composite particle, cathode active substance material containing it, cathode and non-aqueous secondary battery
JP2007149706A (en) * 1998-11-27 2007-06-14 Mitsubishi Chemicals Corp Carbon material for electrode
JP2007180025A (en) * 2005-12-02 2007-07-12 Mitsubishi Chemicals Corp Lithium ion secondary battery
JP2007194207A (en) * 2005-12-21 2007-08-02 Mitsubishi Chemicals Corp Lithium ion secondary battery
WO2008084675A1 (en) * 2006-12-26 2008-07-17 Mitsubishi Chemical Corporation Composite graphite particles for non-aqueous secondary batteries, negative electrode material containing the same, negative electrodes, and non-aqueous secondary batteries
JP2009110972A (en) * 2001-08-10 2009-05-21 Jfe Chemical Corp Negative electrode material for lithium ion secondary battery and its manufacturing method
JP2009110968A (en) * 2008-12-19 2009-05-21 Jfe Chemical Corp Graphite particle, lithium ion secondary battery, negative electrode material therefor, and negative electrode
JP2009277659A (en) * 2009-07-08 2009-11-26 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
JP2010219036A (en) * 2009-02-20 2010-09-30 Mitsubishi Chemicals Corp Carbon material for lithium ion secondary battery
JP2011040406A (en) * 2002-06-05 2011-02-24 Mitsubishi Chemicals Corp Method for manufacturing electrode carbon material
JP2012221951A (en) * 2011-04-01 2012-11-12 Hitachi Chem Co Ltd Negative electrode material for lithium secondary battery, method for manufacturing the same, negative electrode for lithium secondary battery, and lithium secondary battery
US9029022B2 (en) 2005-10-20 2015-05-12 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
US9059436B2 (en) 2010-10-27 2015-06-16 Toyota Jidosha Kabushiki Kaisha Method for producing lithium ion secondary battery with tap density and electrode density
JP2015155366A (en) * 2014-02-20 2015-08-27 深▲セン▼市貝特瑞新能源材料股▲ふん▼有限公司 Mechanical modification method by ball milling with natural graphite and modified natural graphite-based negative electrode material
JP2017126425A (en) * 2016-01-12 2017-07-20 三菱ケミカル株式会社 Carbon material for nonaqueous secondary battery, and lithium ion secondary battery
WO2021107094A1 (en) * 2019-11-29 2021-06-03 日本黒鉛工業株式会社 Electrode conductive agent for lithium ion battery, electrode composition, and electrode
US11217783B2 (en) 2017-12-22 2022-01-04 Samsung Sdi Co., Ltd. Negative electrode active material for lithium secondary battery, negative electrode including the same, and lithium secondary battery including the negative electrode

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5742153B2 (en) * 2010-09-29 2015-07-01 三菱化学株式会社 Multi-layer carbon material for non-aqueous secondary battery, negative electrode material using the same, and non-aqueous secondary battery

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007149706A (en) * 1998-11-27 2007-06-14 Mitsubishi Chemicals Corp Carbon material for electrode
US6632569B1 (en) 1998-11-27 2003-10-14 Mitsubishi Chemical Corporation Carbonaceous material for electrode and non-aqueous solvent secondary battery using this material
JP2009184915A (en) * 2000-10-25 2009-08-20 Hydro Quebec Potato-shaped graphite particle with low impurity rate at the surface, and method for preparing same
JP2014028753A (en) * 2000-10-25 2014-02-13 Hydro Quebec Potato-shaped graphite particle with low impurity rate at surface, and method for preparing the same
JP2004511422A (en) * 2000-10-25 2004-04-15 ハイドロ−ケベック Graphite particles with a potato shape and a small amount of impurities on the surface, and a method for producing the same
US9184437B2 (en) 2000-10-25 2015-11-10 Hydro-Quebec Potato-shaped graphite particles with low impurity rate at the surface, method for preparing the same
US9312537B2 (en) 2000-10-25 2016-04-12 Hydro-Quebec Potato-shaped graphite particles with low impurity rate at the surface, method for preparing the same
US9508983B2 (en) 2000-10-25 2016-11-29 Hydro-Quebec Potatolike shaped graphite particles with low impurity rate at the surface, process for preparing same
US9444092B2 (en) 2000-10-25 2016-09-13 Hydro-Quebec Potato-shaped graphite particles with low impurity rate at the surface, method for preparing the same
US9412999B2 (en) 2000-10-25 2016-08-09 Hydro-Quebec Potato-shaped graphite particles with low impurity rate at the surface, method for preparing the same
US8211571B2 (en) 2001-01-25 2012-07-03 Hitachi Chemical Company, Ltd. Artificial graphite particles and method for manufacturing same, nonaqueous electrolyte secondary cell negative electrode and method for manufacturing same, and lithium secondary cell
WO2002059040A1 (en) * 2001-01-25 2002-08-01 Hitachi Chemical Co., Ltd. Artificial graphite particle and method for producing the same, nonaqueous electrolyte secondary battery negative electrode and method for producing the same, and lithium secondary battery
US7829222B2 (en) 2001-01-25 2010-11-09 Hitachi Chemical Company, Ltd. Artificial graphite particles and method for manufacturing same, nonaqueous electrolyte secondary cell, negative electrode and method for manufacturing same, and lithium secondary cell
JP2009110972A (en) * 2001-08-10 2009-05-21 Jfe Chemical Corp Negative electrode material for lithium ion secondary battery and its manufacturing method
JP2012227151A (en) * 2001-08-10 2012-11-15 Jfe Chemical Corp Negative electrode material for lithium ion secondary battery, negative electrode mixture for lithium ion secondary battery, negative electrode lithium ion secondary battery, and lithium ion secondary battery
JP2003132889A (en) * 2001-08-10 2003-05-09 Kawasaki Steel Corp Anode material for lithium ion secondary battery and its manufacturing method
JP2010161081A (en) * 2001-08-10 2010-07-22 Jfe Chemical Corp Anode material for lithium ion secondary battery and method for manufacturing the same
JP4672955B2 (en) * 2001-08-10 2011-04-20 Jfeケミカル株式会社 Negative electrode material for lithium ion secondary battery and method for producing the same
JP2004063456A (en) * 2002-06-05 2004-02-26 Mitsubishi Chemicals Corp Manufacturing method of carbon material for electrode
JP2011040406A (en) * 2002-06-05 2011-02-24 Mitsubishi Chemicals Corp Method for manufacturing electrode carbon material
JP4672958B2 (en) * 2002-10-10 2011-04-20 Jfeケミカル株式会社 Graphite particles, lithium ion secondary battery, negative electrode material therefor and negative electrode
JP2004134244A (en) * 2002-10-10 2004-04-30 Jfe Chemical Corp Graphite particle, lithium ion secondary battery, negative electrode material for it, and negative electrode
US8440352B2 (en) 2004-04-12 2013-05-14 Samsung Sdi Co., Ltd. Negative active material for lithium secondary battery and negative electrode and lithium secondary battery comprising same
JP2005302725A (en) * 2004-04-12 2005-10-27 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery, negative electrode including the same and lithium secondary battery
US8110168B2 (en) 2004-04-12 2012-02-07 Samsung Sdi Co., Ltd. Negative active material for lithium secondary battery and negative electrode and lithium secondary battery comprising same
JP4693470B2 (en) * 2004-04-12 2011-06-01 三星エスディアイ株式会社 Negative electrode active material for lithium secondary battery, negative electrode including the same, and lithium secondary battery
US8637187B2 (en) 2004-06-30 2014-01-28 Mitsubishi Chemical Corporation Negative electrode material for lithium secondary battery, method for producing same, negative electrode for lithium secondary battery using same and lithium secondary battery
WO2006003849A1 (en) * 2004-06-30 2006-01-12 Mitsubishi Chemical Corporation Negative electrode material for lithium secondary battery, method for producing same, negative electrode for lithium secondary battery using same and lithium secondary battery
CN100464446C (en) * 2004-06-30 2009-02-25 三菱化学株式会社 Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for the lithium secondary battery using it and the lithium secondary battery
KR100826890B1 (en) * 2004-06-30 2008-05-06 미쓰비시 가가꾸 가부시키가이샤 Negative electrode material for lithium secondary battery, method for producing same, negative electrode for lithium secondary battery using same and lithium secondary battery
JP2006172804A (en) * 2004-12-14 2006-06-29 Dainippon Printing Co Ltd Active material, coating composition containing the same, electrode plate, and nonaqueous electrolytic solution secondary battery
WO2007000982A1 (en) * 2005-06-27 2007-01-04 Mitsubishi Chemical Corporation Non-aqueous secondary battery-use graphite composite particle, cathode active substance material containing it, cathode and non-aqueous secondary battery
US7897283B2 (en) 2005-06-27 2011-03-01 Mitsubishi Chemical Corporation Non-aqueous secondary battery-use graphite composite particle, cathode active substance material containing IT, cathode and non-aqueous secondary battery
US9029022B2 (en) 2005-10-20 2015-05-12 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
US11769871B2 (en) 2005-10-20 2023-09-26 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
JP2007180025A (en) * 2005-12-02 2007-07-12 Mitsubishi Chemicals Corp Lithium ion secondary battery
JP2007194207A (en) * 2005-12-21 2007-08-02 Mitsubishi Chemicals Corp Lithium ion secondary battery
US8431270B2 (en) 2006-12-26 2013-04-30 Mitsubishi Chemical Corporation Composite graphite particles for nonaqueous secondary battery, negative-electrode material containing the same, negative electrode, and nonaqueous secondary battery
WO2008084675A1 (en) * 2006-12-26 2008-07-17 Mitsubishi Chemical Corporation Composite graphite particles for non-aqueous secondary batteries, negative electrode material containing the same, negative electrodes, and non-aqueous secondary batteries
KR101441712B1 (en) * 2006-12-26 2014-09-17 미쓰비시 가가꾸 가부시키가이샤 Composite graphite particles for non-aqueous secondary batteries, negative electrode material containing the same, negative electrodes, and non-aqueous secondary batteries
JP2008181870A (en) * 2006-12-26 2008-08-07 Mitsubishi Chemicals Corp Composite graphite particle for nonaqueous secondary battery, negative electrode material containing the same composite graphite particles, negative electrode, and nonaqueous secondary battery
JP2009110968A (en) * 2008-12-19 2009-05-21 Jfe Chemical Corp Graphite particle, lithium ion secondary battery, negative electrode material therefor, and negative electrode
JP2010219036A (en) * 2009-02-20 2010-09-30 Mitsubishi Chemicals Corp Carbon material for lithium ion secondary battery
JP2009277659A (en) * 2009-07-08 2009-11-26 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
US9059436B2 (en) 2010-10-27 2015-06-16 Toyota Jidosha Kabushiki Kaisha Method for producing lithium ion secondary battery with tap density and electrode density
JP2012221951A (en) * 2011-04-01 2012-11-12 Hitachi Chem Co Ltd Negative electrode material for lithium secondary battery, method for manufacturing the same, negative electrode for lithium secondary battery, and lithium secondary battery
JP2015155366A (en) * 2014-02-20 2015-08-27 深▲セン▼市貝特瑞新能源材料股▲ふん▼有限公司 Mechanical modification method by ball milling with natural graphite and modified natural graphite-based negative electrode material
JP2017126425A (en) * 2016-01-12 2017-07-20 三菱ケミカル株式会社 Carbon material for nonaqueous secondary battery, and lithium ion secondary battery
US11217783B2 (en) 2017-12-22 2022-01-04 Samsung Sdi Co., Ltd. Negative electrode active material for lithium secondary battery, negative electrode including the same, and lithium secondary battery including the negative electrode
WO2021107094A1 (en) * 2019-11-29 2021-06-03 日本黒鉛工業株式会社 Electrode conductive agent for lithium ion battery, electrode composition, and electrode
CN114730881A (en) * 2019-11-29 2022-07-08 日本黑铅工业株式会社 Conductive agent for electrode of lithium ion battery, composition for electrode, and electrode

Also Published As

Publication number Publication date
JP3916012B2 (en) 2007-05-16

Similar Documents

Publication Publication Date Title
JP3916012B2 (en) Non-aqueous secondary battery electrode
JP3534391B2 (en) Carbon material for electrode and non-aqueous secondary battery using the same
KR101942599B1 (en) Negative electrode carbon material for non-aqueous secondary battery, negative electrode, and non-aqueous secondary battery
KR101341695B1 (en) 2 2 graphite composite particle for nonaqueous secondary battery negative electrode active material comprising the same negative electrode and nonaqueous secondary battery
KR101970023B1 (en) Carbon material for non-aqueous secondary battery, anode using said carbon material, and non-aqueous secondary battery
KR101441712B1 (en) Composite graphite particles for non-aqueous secondary batteries, negative electrode material containing the same, negative electrodes, and non-aqueous secondary batteries
KR101538191B1 (en) Carbonaceous material having multilayer structure, process for producing the carbonaceous material, and nonaqueous rechargeable battery using the carbonaceous material
JP6535467B2 (en) Graphite powder for lithium ion secondary battery negative electrode active material
KR20170103003A (en) Carbon material and nonaqueous secondary battery using carbon material
EP0723306B1 (en) Electrode material for nonaqueous solvent secondary cell and method of manufacturing the same
JP7471303B2 (en) Negative electrode active material for lithium secondary battery and method for producing same
JP4160095B2 (en) Highly filling carbonaceous powder for electrode plates of non-aqueous electrolyte secondary batteries
KR20110033134A (en) Composite graphite particle for nonaqueous secondary battery, and negative electrode material, negative electrode, and nonaqueous secondary battery containing the same
JP4199813B2 (en) Carbonaceous or graphite particles
JP2000223120A (en) Carbon material for electrode
CN111517319A (en) Carbon material and nonaqueous secondary battery using same
JP5772939B2 (en) Carbon material for electrodes
JP3712288B2 (en) Nonaqueous solvent secondary battery electrode material and method for producing the same
JP4029947B2 (en) Method for producing highly filling carbonaceous powder
JP3666032B2 (en) Method for producing carbon-based composite material
JP4973247B2 (en) Carbon material for electrodes
JP3698181B2 (en) Negative electrode material for lithium ion secondary battery
JP2002121570A (en) Process for manufacturing bulk mesophase carbon and graphite powder
JP2002121569A (en) Process for manufacturing bulk mesophase carbon and graphite powder

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040402

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041116

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20041216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees