JP4547504B2 - Graphite material suitable for negative electrode of lithium ion secondary battery and method for producing the same - Google Patents

Graphite material suitable for negative electrode of lithium ion secondary battery and method for producing the same Download PDF

Info

Publication number
JP4547504B2
JP4547504B2 JP28340599A JP28340599A JP4547504B2 JP 4547504 B2 JP4547504 B2 JP 4547504B2 JP 28340599 A JP28340599 A JP 28340599A JP 28340599 A JP28340599 A JP 28340599A JP 4547504 B2 JP4547504 B2 JP 4547504B2
Authority
JP
Japan
Prior art keywords
graphite powder
graphite
titanium
negative electrode
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28340599A
Other languages
Japanese (ja)
Other versions
JP2001106519A (en
Inventor
浩司 山本
俊介 森澤
賢 阿部
晃治 森口
徹 藤原
政幸 永峰
篤雄 小丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Denki Kogyo Co Ltd
Sony Corp
Original Assignee
Chuo Denki Kogyo Co Ltd
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo Denki Kogyo Co Ltd, Sony Corp filed Critical Chuo Denki Kogyo Co Ltd
Priority to JP28340599A priority Critical patent/JP4547504B2/en
Publication of JP2001106519A publication Critical patent/JP2001106519A/en
Application granted granted Critical
Publication of JP4547504B2 publication Critical patent/JP4547504B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、安価な炭素質原料から大量生産可能な方法で製造可能で、かつ放電容量が大きく、容量ロスが少ないために充放電効率に優れたリチウムイオン二次電池の負極を作製することができる黒鉛 (グラファイト) 粉末とその製造方法、ならびにこの黒鉛粉末を利用したリチウムイオン二次電池およびその負極材料に関する。
【0002】
【従来の技術】
リチウムイオンを可逆的に吸蔵・放出するホストとして機能する炭素材料を負極に用い、リチウム塩の有機溶媒溶液を電解液に用いた非水電解質二次電池であるリチウムイオン二次電池は、自己放電が少なく、起電力とエネルギー密度が高い小型二次電池として、携帯機器用の電源を中心に急速に利用が拡大しており、将来的には電気自動車や電力貯蔵用といった大規模用途への利用も期待されている。
【0003】
金属リチウムからなる負極の理論容量が約3800 mAh/gと非常に高いのに比べ、炭素材料からなる負極では、黒鉛の層間にリチウムイオンが密に格納された層間化合物であるLiC6組成の理論容量である372 mAh/g が限界容量になると考えられており、容量は金属リチウムよりずっと低くなる。しかし、金属リチウム負極では避けられない充電時のデンドライト析出 (これは短絡を生じ、サイクル寿命の悪化と危険性の増大をもたらす) が起こらないことから、炭素材料を負極材料に用いたリチウムイオン二次電池が開発され、急速に普及してきたのである。
【0004】
リチウムイオン二次電池の負極に用いる炭素材料には、結晶質の黒鉛、黒鉛の前駆体である易黒鉛化性炭素 (ソフトカーボン) 、高温熱処理しても黒鉛にならない難黒鉛化性炭素 (ハードカーボン) がある。ピッチや樹脂等の有機物を不活性雰囲気中1000℃程度にて揮発分がなくなるまで熱処理することでソフトカーボンやハードカーボンが得られる。ハードカーボンは結晶性が低く、非晶質な構造を持つ炭素材料である。一方、ソフトカーボンを2500℃程度以上の高温で熱処理すると、黒鉛が得られる。いずれの炭素材料も、粉末化した材料を通常は焦慮の結着剤 (一般に有機樹脂) を用いて成形し、集電体となる電極基板に圧着させることにより電極 (負極) が製造される。
【0005】
黒鉛を負極に用いた場合には、上記の372 mAh/g が限界容量となるが、リチウムイオンの侵入を阻害する表面活性サイトや、リチウムイオン格納に対する死領域等が存在することから、実際の放電容量はこれよりかなり低くなるので、この限界容量に近づけることが目標となる。
【0006】
黒鉛からなるリチウムイオン二次電池の負極の別の問題点は、充放電効率である。黒鉛は表面の反応性が高いため、充電時に電解液の分解に伴って不動態皮膜が付着し易い。この時に使用される電気量がロスとなるため、充電容量と放電容量の差が大きくなり、充放電効率が低下する。
【0007】
リチウムイオン二次電池の炭素材負極の容量増大についてはこれまでに多くの提案がある。例えば、ピッチ類の炭化過程で生じるメソフェーズ小球体の炭化物を用いることが特開平4−115458号、同5−234584号、同5−307958号各公報に提案されている。特開平7−282812号公報には、黒鉛化した炭素繊維において、黒鉛層の積層配列の規制性を高めると高容量化することが記載されている。
【0008】
特開平6−187972号公報には、特殊な樹脂を原料とする高容量の炭化材料が提案されている。特開平3−245548号公報には、ホウ素0.1 〜2.0 wt%含有する、有機樹脂 (例、フェノール樹脂) を炭化した炭素質材料が開示されている。これらはいずれも高価な原料を使用するので、原料コストが高くなる。また、密度の低い難黒鉛化性炭素 (ハードカーボン) であるため、重量当たりの容量は高くても、体積当たりの容量は低くなる。容積が決まっている小型電池では、体積当たりの容量が重要である。
【0009】
特開平8−31422 号公報には、ピッチから得た炭素粉末をホウ素化合物 (例、ホウ素、炭化ホウ素、酸化ホウ素、ホウ酸) の存在下で熱処理して黒鉛化した、放電容量と充放電効率に優れた炭素粉末が提案されている。特開平10−236808号公報には、黒鉛化可能な骨材 (例、コークス) または黒鉛と、黒鉛化可能なバインダー (例、ピッチ、有機樹脂) との混合物に、鉄、ニッケル、チタン、ケイ素、ホウ素、これらの炭化物および窒化物から選んだ黒鉛化触媒を添加して黒鉛化することにより得られた黒鉛粒子が、高容量で急速充放電特性に優れていることが記載されている。
【0010】
【発明が解決しようとする課題】
炭素材をホウ素の存在下で熱処理して得た、黒鉛化度の高い黒鉛化炭素粉末が放電容量と充放電効率に優れたリチウムイオン二次電池用負極材料となることが特開平8−31422 号公報に記載されている。また、ホウ素が黒鉛化触媒であることは特開平10−236808号公報等から知られている。
【0011】
ホウ素の存在下で黒鉛化して得た黒鉛化粉末のリチウムイオン二次電池用負極材料としての性能について本発明者らが検討したところ、ホウ素の存在下で黒鉛化しただけでは、放電容量の向上が十分ではなく、逆に容量ロスが増加 (即ち、充放電効率が低下) することが判明した。
【0012】
本発明は、放電容量が十分に高く、かつ充放電効率が良好で、容量ロスの少ないリチウムイオン二次電池用負極材料として用いることのできる黒鉛粉末とその製造方法を提供することを課題とする。
【0013】
【課題を解決するための手段】
本発明者らは、ホウ素とチタンを添加した炭素材を熱処理して黒鉛化することにより、ホウ素単独添加の場合と比較して、放電容量が向上し、かつ充放電効率が高まり、容量ロスの小さい黒鉛粉末を得ることができることを見いだした。
【0014】
本発明により、ホウ素 0.001〜5.0 wt%およびチタン 0.001〜5.0 wt%を含有することを特徴とする黒鉛 (グラファイト) 粉末が提供される。
【0015】
本発明によればまた、ホウ素およびチタンを含有する炭素材を熱処理して黒鉛化する工程を含むことを特徴とする、黒鉛粉末の製造方法も提供される。
【0016】
好適態様にあっては、本発明の上記黒鉛粉末は、粉末表面の黒鉛c面層の端部が2層ずつ連結して閉じた閉塞構造を有し、黒鉛c軸方向での該閉塞構造間の間隙面密度が100 個/μm以上、1500個/μm以下である。
【0017】
ここで、「黒鉛c面層の端部が2層ずつ連結して閉じた閉塞構造」とは、図1に模式的に示すように、黒鉛c面層の近接した2層の末端同士が連結して環状に閉じた構造を意味し、この連結端部は図示のように積層 (図示例では3層) 構造をとっていてもよい。
【0018】
「間隙面」とは、図1に矢印で示すように、隣接する2つの閉塞構造の間の、外部に開いた層間の面を意味する。図示のように、隣接する連結閉塞構造がいずれも積層構造である場合には、その積層構造の最外層の層間面が間隙面となる。
隣接する間隙面の間に挟まれた閉塞構造 (多層か単層かにかかわらず) を、単位閉塞構造とする。
【0019】
「間隙面の密度」とは黒鉛c面に垂直なc軸方向における1μm当たりの間隙面の個数として定義する。この間隙面の密度は、単位閉塞構造の密度と実質的に同じである。
【0020】
上記の間隙面密度を有する黒鉛粉末は、▲1▼炭化の前および/または後に高速粉砕と剪断粉砕の少なくとも一方の方法で粉砕された、ホウ素およびチタンを含有する炭素材を熱処理して黒鉛化する工程を含むことを特徴とする方法、または▲2▼炭化の前および/または後に粉砕された、ホウ素およびチタンを含有する炭素材を熱処理して黒鉛化する工程、得られた黒鉛粉末をその表面を削ることができる条件下で表面処理する工程、および表面処理した黒鉛粉末を不活性ガス中、800 ℃以上の温度で熱処理する工程を含むことを特徴とする方法、のいずれかにより製造することができる。
【0021】
本発明によればまた、上記黒鉛粉末を主成分とする、リチウムイオン二次電池の負極材料、ならびにこの負極材料から作成された負極を備えた、リチウムイオン二次電池もまた提供される。
【0022】
前述したように、特開平10−236808号公報には、鉄、ニッケル、チタン、ケイ素、ホウ素、これらの炭化物および窒化物から選んだ黒鉛化触媒の存在下で黒鉛化することが記載されている。しかし、この公報には、ホウ素とチタンを触媒として併用することは記載されていない。また、この触媒は、得られた黒鉛粉末の粒子形態を変化させ、急速充放電特性を改善するために使用されており、本発明とは目的が異なる。
【0023】
【発明の実施の形態】
本発明の黒鉛粉末は、ホウ素およびチタンを含有する炭素材を熱処理して黒鉛化することにより得られ、ホウ素 (B) 0.001〜5.0 wt%とチタン (Ti) 0.001〜5.0 wt%とを含有する。
【0024】
黒鉛粉末のホウ素含有量が0.001 wt%より少ないと、黒鉛化熱処理中に実質的な黒鉛化触媒としての機能が発揮されず、黒鉛構造の発達が不十分となって、放電容量の向上が認められない。一方、ホウ素含有量が5wt%より多くなると、充放電に寄与しない部分が増え、見掛けの容量が低下する。好ましいホウ素含有量の範囲は0.01〜1.5 wt%である。
【0025】
黒鉛粉末のチタン含有量が0.001 wt%より少ないと、ホウ素との共添加による効果を実質的に得ることができず、放電容量の向上が得られないばかりか、ホウ素添加による容量ロスの増大を抑制できない。チタン含有量が5wt%より多いと、充放電に寄与しない部分が増え、見掛けの容量が低下する。チタン含有量の好ましい範囲は0.01〜1.5 wt%である。
【0026】
ホウ素とチタンの添加時期は黒鉛化のための熱処理前であれば、いつでもよい。黒鉛粉末は、一般に炭素質原料から炭化と黒鉛化の2段階の熱処理工程を経て製造される。この場合、ホウ素およびチタンは、炭化前の炭素質原料、または黒鉛化前の炭素材のいずれに添加してもよい。特にタールやピッチといった炭素質原料を使用する場合には、この原料を炭化温度より低温で熱処理して、層状構造がある程度発現し、光学的に異方性になったメソフェーズ (メソフェーズ小球体またはバルクメソフェーズ) にし、このメソフェーズ材を炭化すると、層状の黒鉛構造が発達し易いことが知られている。この場合は、メソフェーズ化前の炭素質原料と、メソフェーズ化後のメソフェーズ材のいずれに、ホウ素やチタンを添加してもよい。もちろん、メソフェーズ化または炭化の熱処理中に添加することも可能である。ホウ素とチタンは異なる時期に添加しても、同時に添加してもよい。
【0027】
ホウ素およびチタンは、これら元素の単体またはその化合物として添加することができる。使用できる材料を次に例示するが、これらに制限されるものではない。
【0028】
ホウ素原料:ホウ素、炭化ホウ素(B4C等) 、酸化ホウ素(B2O3 等) 、ホウ酸(H3BO3等) 、金属ホウ化物(TiB2, CrB, FeB, NiB, CoB, ZrB2, AlB2 等;
チタン原料:チタン、酸化チタン (TiO, Ti2O3, TiO2, TinO2n-1 系列) 、炭化チタン(TiC) 、窒化チタン(TiN) 、ホウ化チタン(TiB2)、塩化チタン(TiCl2, TiCl3, TiCl4) 、チタン合金(Ti-Al) 等。
【0029】
好ましい原料は、B、Ti以外の金属を含まず、かつ入手が比較的容易なものである。具体的には、ホウ素原料ではB4C 、B2O3、チタン原料ではTiO2、およびホウ素/チタンの両原料となるTiB2である。
【0030】
ホウ素原料とチタン原料の添加量は、その原料の種類、添加時期、熱処理条件 (温度、雰囲気、時間など) によって蒸発量が異なるため、最終生成物である黒鉛材料中に所定量のBおよびTiが含まれるように、製造条件を考慮し、必要であれば実験を行って適宜設定する。但し、後述するように、特にチタンは高温の黒鉛化熱処理中に実質的に完全に蒸発してしまっても、本発明の放電容量増大と容量ロスの低下という効果を得ることができる。
【0031】
本発明の黒鉛粉末は、X線回折による格子定数精密測定法で求めたc軸(002) 面格子間隔 (d002) が好ましくは3.3650Å以下、より好ましくは3.3600Å以下である。c軸(002) 面格子間隔 (d002) とは、図1にd002 と表示した、隣接するc面層間の間隔、即ち、層間距離である。層間距離d002 は結晶性の指標であり、このd002 の値が小さくなり、理想的な黒鉛での値 (=3.354 Å) に近づくほど、黒鉛粉末の結晶性が高く (層状構造が発達し) 、放電容量が増大する。黒鉛粉末の結晶性は、黒鉛化熱処理条件に依存し、熱処理温度が高いほど、また時間が長いほど結晶性の高い黒鉛粉末が得られる傾向がある。
【0032】
本発明の黒鉛粉末は、上述したように、黒鉛化熱処理前にホウ素およびチタンを添加し、ホウ素およびチタンを含有する炭素材を黒鉛化熱処理する点を除いて、従来と同様に製造することができる。
【0033】
炭化に用いる炭素質材料は特に制限されず、従来より黒鉛の製造に用いられてきたものと同様でよい。炭素質原料の具体例としては、コールタールピッチまたは石油ピッチ、さらにはこれらの熱処理により生ずるメソフェーズ小球体と、この小球体のマトリックスであるバルクメソフェーズ、ならびに有機樹脂または有機物 (例、ポリアクリロニトリル、レーヨン、または特開平2−282812号公報に記載の樹脂) を加熱して炭化したもの等が挙げられる。特に好ましい炭素質原料はメソフェーズ小球体とバルクメソフェーズである。
【0034】
炭素質原料を粉砕および炭化して、炭素材を得る。粉砕は、炭化の前と後のいずれの時点で行ってもよく、また炭化の前と後の両方で行ってもよい。粉砕は、例えば、ハンマーミル、ファインミル、アトリションミル、ボールミルなどの慣用の粉砕機を用いて実施することができる。好ましい粉砕機は、衝撃粉砕を行うもの、代表的にはハンマーミルや一部のボールミルである。
【0035】
粉砕した炭素質原料の炭化条件は、原料が分解して原料中に含まれていた炭素以外 (既にホウ素および/またはチタンが添加されている原料の場合には、炭素とホウ素および/またはチタン以外) の元素がほぼ完全に除去されるように選択すればよい。炭素の燃焼を防止するため、この炭化熱処理は、不活性雰囲気または真空中で実施する。炭化熱処理温度は、通常は 800〜1500℃の範囲内であり、特に1000℃前後が好ましい。炭化に要する熱処理時間は、原料の種類、熱処理、温度にもよるが、温度が1000℃の場合で30分〜3時間程度である。
【0036】
粉砕および炭化によって得られた粉末状の炭素材を熱処理して、黒鉛化する。
炭化までに必要量のホウ素および/またはチタンを添加していない場合には、炭素材にホウ素および/またはチタンを添加してから、黒鉛化熱処理を行う。ホウ素の存在により黒鉛化 (結晶化) が起こる温度が下がるので、ホウ素を含まない炭素材より低い温度で黒鉛化することができる。熱処理温度は1500〜3000℃の範囲が好ましく、より好ましくは2000〜3000℃である。ホウ素を含まない場合は、通常は2500℃以上の熱処理温度が必要であるが、2500℃より低温でも黒鉛化が可能となる。また、同じ熱処理温度で黒鉛化した場合、ホウ素添加材の方が無添加材より結晶性が高い (d002の小さい) 黒鉛粉末を得ることができる。
【0037】
上記の2種類の熱処理、特に温度の高い黒鉛化熱処理中に、添加したホウ素およびチタンの一部が蒸発または熱分解によって粉末から除去されることが多い。
特にチタンは、黒鉛化熱処理条件によっては実質的に完全に粉末から除去されてしまうことがある。即ち、得られた黒鉛粉末は、ホウ素は含有するものの、チタンを検出可能な量で含有しないことがある。このように黒鉛化熱処理中にチタンが実質的に完全に消失してしまっても、理由は不明であるが、得られた黒鉛粉末は放電容量の向上と容量ロスの低下(充放電効率の向上) という本発明の効果を十分に達成することができる。
【0038】
つまり、本発明の効果を得るには、黒鉛粉末の製造方法において黒鉛化熱処理前の炭素材がチタンとホウ素を含有していればよく、熱処理後に得られた黒鉛粉末におけるチタンの含有は必ずしも必須ではない。熱処理中のホウ素やチタンの消失量を考慮し、また、炭素粉末中へこれらをより均一に拡散させ、放電容量がより高く容量ロスのより少ない黒鉛粉末を得るためには、炭素材へのホウ素とチタンの添加量は、それぞれ0.01wt%以上とすることが好ましい。
【0039】
本発明のBおよびTi含有黒鉛粉末は、黒鉛c面層の端部が2層ずつ連結して閉じた閉塞構造を有し、黒鉛c軸方向における該閉塞構造間の間隙面密度が100 個/μm以上、1500個/μm以下であることが好ましい。このような黒鉛粉末は非常に高い放電容量を示すことができる。
【0040】
図1に模式的に示した黒鉛粉末の連結閉塞構造および間隙面は、黒鉛粉末の表面付近の断面の高分解能電子顕微鏡写真により観察することができ、この電子顕微鏡写真から間隙面の密度を求めることができる。そのような電子顕微鏡写真の1例を図2に示す。黒鉛粉末は、一般にはc軸方向が異なる多くの領域から構成され、各領域 (即ち、c軸方向が同一のひとかたまりの領域) を結晶子という。
本発明の黒鉛粉末は上記の閉塞構造を持ち、その間隙面密度の粉末表面での値が上記範囲であればよい。
【0041】
c面層の端部が閉塞構造をとる方が、端部が切れている構造より、化学的に安定であり、かつ電解液が侵入しにくいので、サイクル特性が向上し、また充放電効率もよくなる。一方、隣接する閉塞構造間の間隙面は、Liイオンの侵入サイトとなる。この間隙面のc軸方向における密度が100 個/μmより少ないと、Liイオンの侵入サイトが少なく、放電容量を非常に高くすることができない。間隙面密度の1500個/μmという上限は、全てのc面層が隣接する2層間で単層の閉塞構造をとった場合の間隙面密度、即ち、理論上予測される最大限の間隙面密度である。
【0042】
上記の閉塞構造および間隙面密度を有する黒鉛粉末は、炭化の前および/または後に高速粉砕または剪断粉砕を受けた炭素材 (BおよびTi含有) を黒鉛化熱処理することにより製造することができる。以下、この方法を第1の方法という。
第1の方法により製造された黒鉛粉末の間隙面密度は100 個/μmをやや上回る程度 (例、100 〜120 個/μm) となるのが普通である。
【0043】
別の製造方法 (第2の方法) によれば、黒鉛化熱処理により得られたBおよびTi含有黒鉛粉末に、その表面を削ることができる条件下での熱処理 (例、600 〜800 ℃の温度での酸化熱処理) を施し、さらに不活性ガス中にて800 ℃以上の温度で熱処理する。この方法も非常に高い間隙面密度を持つ黒鉛粉末を製造することができる。
【0044】
第1の方法では、粉砕により導入された粉末表面の原子レベルでの凹凸 (層欠陥) により、黒鉛化熱処理時に上記の閉塞構造が形成される。従って、粉砕を黒鉛化処理前に行うことが、高密度の閉塞構造を有する黒鉛粉末を得るのに不可欠である。黒鉛化熱処理後に粉砕処理すると、熱処理で生成した黒鉛のc面層に層欠陥が発生する上、導入された閉塞構造が粉砕で破壊される可能性もあるため、第1の方法では、黒鉛化熱処理後に粉砕を行うことは望ましくない。従って、黒鉛化前に最終粒度になるように粉砕を行うことが好ましい。但し、解砕を目的とする軽度の粉砕は黒鉛化後に実施してもよい。
【0045】
第1の方法では、黒鉛粉末の結晶構造に及ぼす粉砕条件の影響が大きい。間隙面密度が100 個/μm以上の閉塞構造を持つ黒鉛粉末を得るには、通常の衝撃型粉砕機の場合、高速粉砕を採用する必要がある。また、個々の粉末の表面に均等に原子レベルの凹凸 (層欠陥) を作るためには一定時間以上の粉砕時間が必要である。具体的な粉砕条件 (例、回転数、粉砕時間) は、使用する粉砕機の種類や炭素質原料の種類によっても異なるので、黒鉛化熱処理後に間隙面密度が100 個/μm以上の黒鉛粉末が生成し、かつ所望の粒度の粉末が得られるように、実験により決定すればよい。第1の方法に従って、剪断粉砕以外の粉砕により黒鉛化熱処理後に間隙面密度が100 個/μm以上の黒鉛粉末が生成する粉砕条件を、本発明では高速粉砕とする。
【0046】
例えば、ハンマーミルやアトリションミルといった衝撃粉砕では、5000 rpm以上の回転数で一定時間以上の粉砕を施すと、黒鉛化熱処理後に間隙面密度が100 個/μm以上の閉塞構造を持つ黒鉛粉末を得ることができる。これより回転数が低いと、粉砕時間を長くしても、間隙面の密度が100 個/μmに達しないことが多い。粉砕時間は回転数に応じて調節する。ハンマーミルでの好ましい粉砕条件の例は、5000〜7500 rpmで15〜30分程度である。ただし、これはあくまで例示であり、粉砕機や原料の種類が変われば適正な回転数や粉砕時間も変動する。
【0047】
ヘキ開を主とした粉砕になるため層欠陥を効率よく導入することができる剪断粉砕 (例、ディスクミルによる粉砕) を採用する場合には、粉砕条件を高速とする必要はない。ディスクミルでの粉砕は、例えば 150〜300 rpm 程度の回転数で2〜10分程度実施することができる。剪断粉砕と他の粉砕を併用してもよい。その場合、他の粉砕は、上記の高速粉砕としてもよい。
【0048】
第2の方法では粉砕条件は特に問わない。また、黒鉛化後に粉砕してもよい。
第2の方法では、BおよびTiを含有する炭素材の黒鉛化熱処理で得られた黒鉛粉末に、酸化熱処理 (または他の表面を削り取るための熱処理) と不活性ガス雰囲気中での熱処理という2回の熱処理を施す。
【0049】
最初に施す酸化熱処理は、酸化により粉末のc面層の表面を削り取り、黒鉛化熱処理で生成した閉塞構造をいったん開放するために行う。それにより、粉末表面でc面層端部の閉塞構造が切れて、c面層端部同士がほとんど連結しておらず、粉末表面のc面層の端部が比較的平坦に揃った構造となる。
【0050】
酸化熱処理の条件は、酸化によって閉塞構造の開放が実質的に起これば特に制限されないが、熱処理温度は 600〜800 ℃程度とすることが好ましい。閉塞構造を持つ黒鉛粉末は耐酸化性が高いため、600 ℃より低いと酸化されにくく、800 ℃以上では酸化が急速に進み、黒鉛粉末全体の劣化が進むからである。酸化熱処理の時間は温度や処理量によって異なるが、一般には1〜10時間である。熱処理雰囲気は酸素含有雰囲気であり、純酸素雰囲気でも、酸素と不活性ガスとの混合ガス雰囲気 (例、大気) でもよい。
【0051】
この酸化熱処理により粉末表面が除去される結果、黒鉛粉末の重量は2〜5%程度減少する。また、粉末の粒径はわずかに小さくなる (例、1〜2μm程度) 。必要であれば、この粒径の減少を見込んで粉砕条件を設定する。
【0052】
なお、閉塞構造の開放は、酸化熱処理に限られるものではない。黒鉛粉末の表面構造を削り取ることにより閉塞構造を開放して平坦なc面層の積層構造を得ることができれば、他の方法を採用することもできる。他の方法としては、例えば、フッ化熱処理あるいは水素化熱処理などがある。この場合の熱処理条件は、閉塞構造の開放が起こるように実験により適宜設定すればよい。
【0053】
その後、黒鉛粉末を不活性ガス雰囲気中で熱処理すると、開放されていたc面層の末端が、他のc面層の末端と連結して、黒鉛粉末の表面に再び閉塞構造が形成される。この時のc面層末端の連結は、粉末表面のc面層の末端が酸化熱処理で平坦化されているため、離れた2層が連結することは極めて稀である。その結果、積層数が小さく、間隙面密度の高い閉塞構造となる。
【0054】
不活性ガス雰囲気は、例えばAr、He、Ne等の1種もしくは2種以上でよい。熱処理温度は、c面層間が連結できるような比較的大きな格子振動を起こさせる温度であればよい。連結して閉塞構造を形成した方が、エネルギーが低く、安定化するため、不活性ガス雰囲気中に熱処理して十分な格子振動を生じさせると、c面層の開いた末端同士が連結する。この目的には、一般に800 ℃以上の温度が必要である。上限は特に制限されない。熱処理時間は、閉塞構造が形成されればよく、温度により異なるが、一般には1〜10時間である。例えば1000℃では約5時間が目安となる。
【0055】
本発明に係るBおよびTi含有黒鉛粉末は、特にリチウムイオン二次電池の負極材料として好適である。上述したように、結晶化度の高い (黒鉛層状構造の発達した) 黒鉛粉末を得ることができるので、放電容量が高い負極となる。また、容量ロスの増加が抑制されるため、充放電効率も高くなる。特に、上記のように閉塞構造の間隙面密度が、例えば500 個/μm以上と非常に高い黒鉛粉末は理論容量に近い、350 mAh/g を越えるような、非常に高い放電容量を与えることができる。
【0056】
本発明の黒鉛粉末をこの用途に使用する場合、これを用いたリチウムイオン二次電池の負極の作成は従来と同様の方法で行うことができる。一般に、黒鉛粉末は、適当な結着剤を用いて、電極基板となる集電体上に成型することにより電極にする。即ち、負極材料 (負極合剤ともいう) は、黒鉛粉末を主成分とし、通常は黒鉛粉末に少量の結着剤を混合したものからなる。集電体としては、黒鉛粉末の担持性が良く、負極として使用した時に分解による溶出が起こらない任意の金属の箔 (例、電解銅箔、圧延銅箔などの銅箔) を使用することができる。
【0057】
成型は、従来より粉末状の活物質から電極を作製する際に利用されてきた適当な方法で実施することができ、黒鉛粉末の負極性能を十分に引き出し、粉末に対する賦型性が高く、化学的、電気化学的に安定であれば、何ら制限されない。
【0058】
例えば、黒鉛粉末にポリテトラフルオロエチレン、ポリフッ化ビニリデン等のフッ素樹脂粉末からなる結着剤とイソプロピルアルコール等の有機溶媒を加えて混練してペースト化し、このペーストを集電体上にスクリーン印刷する方法;黒鉛粉末にポリエチレン、ポリビニルアルコール等の樹脂粉末を添加して乾式混合し、この混合物を金型を用いてホットプレスして成型すると同時に集電体に熱圧着させる方法;さらには黒鉛粉末を上記のフッ素樹脂粉末あるいはカルボキシメチルセルロース等の水溶性粘結剤を結着剤として、N−メチルピロリドン、ジメチルホルムアミドあるいは水、アルコール等の溶媒を用いてスラリー化し、このスラリーを集電体に塗布し、乾燥する方法などが挙げられる。
【0059】
本発明の黒鉛粉末は、リチウムイオン二次電池に使用できる適当な正極活物質およびリチウム化合物を有機溶媒に溶解させた非水系電解液と組み合わせて、リチウムイオン二次電池を作製することができる。
【0060】
正極活物質としては、例えば、リチウム含有遷移金属酸化物 LiM1 1-xM2 xO2または LiM1 2y M2 y O4 (式中、Xは0≦X≦4、Yは0≦Y≦1の範囲の数値であり、M1、M2は遷移金属を表し、Co、Ni、Mn、Cr、Ti、V、Fe、Zn、Al、In、Snの少なくとも1種類からなる) 、遷移金属カルコゲン化物、バナジウム酸化物 (V2O5、V6O13 、V2O4、V3O8等) およびそのリチウム化合物、一般式 MxMo6S8-y ( 式中、Xは0≦X≦4、Yは0≦Y≦1の範囲の数値であり、Mは遷移金属をはじめとする金属を表す) で表されるシェブレル相化合物、さらには活性炭、活性炭素繊維等を用いることができる。
【0061】
非水系電解液に用いる有機溶媒は、特に制限されるものではないが、例えば、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、1,1 −及び1,2 −ジメトキシエタン、1,2 −ジエトキシエタン、γ−ブチロラクタム、テトラヒドロフラン、1,3 −ジオキソラン、4−メチル−1,3 −ジオキソラン、アニソール、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、クロロニトリル、プロピオニトリル、ホウ酸トリメチル、ケイ酸テトラメチル、ニトロメタン、ジメチルホルムアミド、N−メチルピロリドン、酢酸エチル、トリメチルオルトホルメート、ニトロベンゼン等の1種もしくは2種以上が例示できる。
【0062】
電解質のリチウム化合物としては、使用する有機溶媒に可溶性の有機または無機リチウム化合物を使用すればよい。適当なリチウム化合物の具体例としては、LiClO4、LiBF4 、LiPF6 、LiAsF6、LiB(C6H5) 、LiCl、LiBr、LiCF3SO3、LiCH3 SO3 等の1種または2種以上を挙げることができる。
【0063】
【実施例】
(実施例1)
コールタールピッチから得られたバルクメソフェーズを、衝撃粉砕機のハンマーミル (不二パウダル製u−マイザー) を用いて、回転数7500 rpmで10 kg 当たり5分間粉砕した。得られたバルクメソフェーズ粉末を、窒素雰囲気下1000℃に1時間加熱して炭化して、炭素材粉末を得た。この炭素材粉末に、Bおよび/またはTi原料 (TiO2、TiB2、B2O3) の粉末を適宜組合わせて表1に示す量で添加し、混合した。この混合粉末を黒鉛るつぼに入れ、アチソン炉で大気中、表1に示す所定温度まで昇温することにより黒鉛化し、黒鉛粉末を得た。
【0064】
得られた黒鉛粉末のBおよびTi含有量の分析結果と、c軸面格子間隔 (d002) の測定結果を、この黒鉛粉末から作製した電極の放電容量および容量ロスと一緒に表1に示す。
【0065】
黒鉛粉末のB含有量は、粉末試料に炭酸カルシウムを加え、酸素気流中800 ℃で灰化した後、この灰に炭酸ナトリウムを加え、バーナーで加熱して溶融させ、溶融物を水に溶解し、水溶液をICP発光分光分析法により定量分析することにより測定した。 Ti 含有量は、炭酸カルシウムを加えなかった以外は、B含有量と同様にして測定した。
c軸面格子間隔 (d002) は、粉末試料のX線回折図から、ディフラクトメータの誤差を含めた最小二乗法による格子定数精密測定法 (内部標準は使用せず) により算出した。X線回折図の面指数(002), (100), (101), (004), (110), (112), (006) の全てのピーク位置を利用した。3回のX線回折測定を行い、得られた値の加重平均をとりd002 の値とした。
【0066】
放電容量および容量ロスは、得られた黒鉛粉末を平均粒径が約15μmになるように分級し、次のようにして電極を作製して測定した:
黒鉛粉末90重量部とポリフッ化ビニリデン粉末10重量部を、溶剤のN−メチル−ピロリドン中で混合し、乾燥させ、ペースト状にした。得られたペースト状負極材料を、集電体となる厚さ20μmの銅箔上にドクターブレードを用いて均一厚さに塗布した後、80℃で乾燥させた。ここから切り出した面積1cm2 の試験片を負極とした。
【0067】
負極特性の評価は、対極、参照極に金属リチウムを用いた3極式セルによる定電流充放電試験で行った。電解液には、エチレンカーボネートとジメチルカーボネートの体積比1:1の混合溶媒中に1mol/l の濃度でLiClO4を溶解させた溶液を使用した。
【0068】
放電容量は、0.3 mA/cm2の電流密度で対Li参照極(vs Li/Li+ ) 電位が0.0 V になるまで充電した後、同じ電流密度で対Li参照値(vs Li/Li+ ) 電位が+1.50V になるまで放電を行うことにより求めた。また、この時の (充電容量) − (放電容量) の差を容量ロス(mAh/g) とした。
【0069】
【表1】

Figure 0004547504
【0070】
表1に示すように、BおよびTiをそれぞれ 0.001〜5.0 wt%の範囲内で含有する本発明に係る黒鉛粉末は、放電容量が高く、容量ロスの少ない負極を作製することができた。また、黒鉛結晶構造のd002 は3.3650Å以下であり、結晶化度が高かった。さらに、2000℃を下回る温度で黒鉛化しても、放電容量が十分に高い黒鉛粉末を得ることができた。また、Ti原料やB原料を変えても、これらの効果が同様に得られた。
【0071】
Bのみを添加した比較例と比べると、本発明に従ってTiを併用添加することにより、Bの黒鉛化触媒としての機能が増強され、d002 が小さく結晶性が高く、従って放電容量が十分に高く、かつ容量ロスの少ない黒鉛粉末を得ることができた。表1から、B含有量が高めになると容量ロスが増加し、Ti含有量が高めになると放電容量が低下する傾向があることがわかる。また、2000〜2500℃という、従来より低い温度で、十分な電極性能を持つ黒鉛粉末を得ることができた。
【0072】
比較例を見ると、BとTiのどちらも添加しない無添加材では、同じ黒鉛化温度の本発明例と比べて、d002 が大きく、放電容量が低下した。Bのみを添加し、Tiを添加しないと、B含有量を多くしても放電容量が増大せず、逆に容量ロスが増大した。Tiのみを添加しても放電容量の向上は見られるが、Bも一緒に添加することにより放電容量が格段に向上した。B含有量が5wt%を越えると容量ロスが非常に大きくなり、Ti含有量が5wt%を越えると容量低下が顕著となった。
【0073】
試験No. 27〜28は、黒鉛化熱処理中にチタンが実質的に完全に消失した場合を示す。これらは、本発明の黒鉛粉末の発明については範囲外であるが、本発明の黒鉛粉末の製造方法の発明については範囲内 (本発明例) となる実施例である。
これらの実施例の試験結果からわかるように、黒鉛化熱処理中にチタンが実質的に完全に消失して検出不可能となっても、放電容量が高く、かつ容量ロスの少ない黒鉛粉末を得ることができた。
【0074】
(実施例2)
コールタールピッチから得られたバルクメソフェーズを炭素質原料として使用し、次の3種類の方法で黒鉛粉末を調製した。
【0075】
▲1▼バルクメソフェーズを、実施例1で使用したのと同じ衝撃粉砕機 (ハンマーミル) 、または剪断粉砕機 (ディスクミル) 、または両者の併用 (最初にハンマーミルを使用) により表2に示す条件で粉砕した。得られたバルクメソフェーズ粉末を、窒素雰囲気下1000℃に1時間加熱して炭化して、炭素材粉末を得た。この炭素材粉末に、2wt%のTiO2と4wt%のB2O3の粉末を混合し、混合粉末を黒鉛るつぼに入れ、アチソン炉で大気中2900℃になるまで熱処理して、BおよびTiを含有する黒鉛粉末を得た。
【0076】
▲2▼黒鉛化まで上の▲1▼と同様にして黒鉛粉末を得た。この黒鉛粉末を、酸素雰囲気中700 ℃で3時間の酸化熱処理を行った後、さらにアルゴン雰囲気中で1000℃の熱処理を5時間行った。
【0077】
▲3▼黒鉛化まで上の▲1▼と同様にして黒鉛粉末を得た。この黒鉛粉末を、酸素雰囲気中700 ℃で3時間の酸化熱処理を行った。
【0078】
得られた黒鉛粉末のBおよびTi含有量の分析結果と、放電容量および容量ロス (以上は実施例1と同様に測定) を、閉塞構造の間隙面密度と一緒に、表2に示す。間隙面密度は、粉末試料の高分解能電子顕微鏡写真を用いた実測により求めた。
【0079】
【表2】
Figure 0004547504
【0080】
表2からわかるように、方法▲1▼の場合、ハンマーミル (衝撃粉砕機) だけで粉砕した時には、高速粉砕により間隙面密度が100 個/μm以上の黒鉛粉末を得ることができた。また、ディスクミル (剪断粉砕機) を使用しても、間隙面密度が100 個/μm以上の黒鉛粉末を得ることができた。この間隙面密度に応じて、電極の放電容量が増大し、粉砕条件を変えるだけで、350 mAh/g を越えるような大容量の電極を作製することができた。
【0081】
方法▲2▼でも間隙面密度が大きく、放電容量の高い黒鉛粉末を得ることができた。一方、黒鉛化熱処理後に酸化熱処理だけを施した方法▲3▼により得た黒鉛粉末は、閉塞構造を持たず、容量ロスが大きくなった。
【0082】
(実施例3)
本実施例では、実施例1および2で得た黒鉛粉末を用いて、図3に示す構造を持つ円筒型のリチウムイオン二次電池を作製し、電池性能を調べた。
【0083】
負極1は、黒鉛粉末90重量部と結着剤のポリフッ化ビニリデン(PVDF)10重量部とを混合した負極材料から作製した。この負極材料をN−メチルピロリドンに分散させることにより調製したペースト状のスラリーを、負極集電体9となる厚さ10μmの帯状の銅箔の両面に塗布し、乾燥させた後、圧縮成型して帯状の負極1を作製した。
【0084】
正極2は、炭酸リチウム0.5 モルと炭酸コバルト1モルとの混合物を空気中、900 ℃で5時間焼成することにより得たLiCoO2から作製した。得られたLiCoO2は、X線回折測定の結果、JCPDS ファイルに登録されたLiCoO2のピークと良く一致していた。このLiCoO2を粉砕および分級して、50%累積粒径が15μmのLiCoO2粉末とし、このLiCoO2粉末95重量部と炭酸リチウム粉末5重量部を混合した混合粉末を91重量部、導電材の黒鉛6重量部、結着材のPVDF3重量部を混合して正極材料を調製した。この正極材料をN−メチルピロリドンに分散させたペースト状スラリーを、正極集電体10となる厚さ20μmの帯状のアルミニウム箔の両面に均一に塗布し、乾燥させた後、圧縮成形して帯状の正極2を作製した。
【0085】
次いで、図3に示すように、帯状負極1、帯状正極2および厚さ25μmの微多孔性ポリプロピレンフィルムよりなるセパレータ3を、負極1、セパレータ3、正極2、セパレータ3の順に積層してから多数回巻回して、外径18mmの渦巻型電極体を作製した。この渦巻型電極体を、ニッケルめっきを施した鉄製電池缶5に収納した。渦巻型電極体の上下には絶縁板4を配設し、アルミニウム製正極リード12を正極集電体10から導出して電池蓋7に、ニッケル製負極リード11を負極集電体9から導出して電池缶5に溶接した。
【0086】
この渦巻式電極体が収納された電池缶5の中に、電解質として、エチレンカーボネートとジエチルカーボネートの容量比1:1の混合溶媒にLiPF6 を溶解させた1M濃度の溶液を注入した。次いで、電池缶5に、電流遮断機構を有する安全弁装置8ならびに電池蓋7を、表面にアスファルトを塗布した絶縁封口ガスケット6を介して、かしめにより装着することにより、直径18mm、高さ65mmの円筒型の非水電解液二次電池を作製した。
【0087】
各黒鉛粉末について、上記のようにして電池を50個試作し、これらの電池の性能を次のようにして評価した。結果は表1および2に併記されている。これらの表からわかるように、本発明の黒鉛粉末を含有する負極から高容量のリチウムイオン二次電池を作製することができる。
【0088】
電池の評価方法
1) 充電条件:最大充電電圧4.2 V 、電流量1Aで2.5 時間充電を行った。
【0089】
2) 放電条件:700 mAの定電流で電池電圧が2.75Vまで放電した。
【0090】
3) 電池容量:700 mAの定電流で電池電圧が2.75Vに達するまでの放電時間を測定することにより放電容量を求めた。例えば、この時間が2.2 時間である場合には、700 mA×2.2 h =1540 mAhが放電容量となる。上記条件で充放電を繰り返し、初期の2〜5サイクルで得られた最大の放電容量を電池容量とした。本実施例では50個の電池の平均値を記す。
【0091】
【発明の効果】
本発明によれば、ホウ素とチタンを含有させた炭素材を熱処理して黒鉛粉末を製造することにより、結晶化度が高く、放電容量に優れていると同時に、容量ロスが少なく、充放電効率の高い、高性能のリチウムイオン二次電池の負極材料となる黒鉛粉末が得られる。黒鉛化は1500〜3000℃の温度での熱処理により実施できるので、工業用熱処理炉で十分に実施でき、また原料の炭素質材料はタール、ピッチ (好ましくはこれをメソフェーズ化して使用する) などの安価な原料を使用できる。
【図面の簡単な説明】
【図1】黒鉛粉末の表面に現れるc面層端部の積層型の閉塞構造と間隙面を示す説明図である。
【図2】黒鉛粉末の表面に現れるc面層端部の閉塞構造と間隙面を示す高分解能電子顕微鏡写真の1例を示す。矢印が間隙面である。
【図3】実施例で作製したリチウムイオン二次電池の略式断面図である。
【符号の説明】
1:負極、2:正極、3:セパレータ、4:絶縁板、5:電池缶、7:電池蓋、8:安全弁装置、9:負極集電体、10:正極集電体、11:負極リード、12:正極リード[0001]
BACKGROUND OF THE INVENTION
The present invention can produce a negative electrode of a lithium ion secondary battery that can be manufactured from an inexpensive carbonaceous raw material by a method that can be mass-produced, has a large discharge capacity, and has a small capacity loss. A graphite (graphite) powder that can be produced and a method for producing the same, and a lithium ion secondary battery using the graphite powder and a negative electrode material thereof.
[0002]
[Prior art]
A lithium ion secondary battery, which is a non-aqueous electrolyte secondary battery using a carbon material that functions as a host that reversibly occludes and releases lithium ions as the negative electrode and an organic solvent solution of lithium salt as the electrolyte, is a self-discharge. As a small secondary battery with low electromotive force and high energy density, its use is expanding rapidly, mainly for power supplies for portable devices. In the future, it will be used for large-scale applications such as electric vehicles and power storage. Is also expected.
[0003]
Compared to the theoretical capacity of the negative electrode made of metallic lithium, which is very high at about 3800 mAh / g, the negative electrode made of carbon material is LiC, an intercalation compound in which lithium ions are tightly stored between graphite layers.6The theoretical capacity of the composition, 372 mAh / g, is considered to be the limit capacity, which is much lower than lithium metal. However, since dendritic precipitation during charging (which causes a short circuit, resulting in deterioration of cycle life and increased risk), which is unavoidable with metallic lithium negative electrodes, does not occur, lithium ion secondary using a carbon material as the negative electrode material. Secondary batteries have been developed and spread rapidly.
[0004]
Carbon materials used for the negative electrode of lithium ion secondary batteries include crystalline graphite, graphitizable carbon (soft carbon), which is a precursor of graphite, and non-graphitizable carbon (hard carbon) that does not turn into graphite even after high-temperature heat treatment. Carbon). Soft carbon and hard carbon can be obtained by heat-treating organic matter such as pitch and resin in an inert atmosphere at about 1000 ° C. until the volatile matter disappears. Hard carbon is a carbon material having low crystallinity and an amorphous structure. On the other hand, when soft carbon is heat-treated at a high temperature of about 2500 ° C. or higher, graphite is obtained. In any carbon material, an electrode (negative electrode) is manufactured by molding a powdered material, usually using a focused binder (generally an organic resin), and pressing the material onto an electrode substrate serving as a current collector.
[0005]
When graphite is used for the negative electrode, the above-mentioned limit capacity is 372 mAh / g. However, since there are surface active sites that inhibit the penetration of lithium ions and a dead region for storing lithium ions, the actual capacity is limited. The discharge capacity is much lower than this, so the goal is to approach this limit capacity.
[0006]
Another problem of the negative electrode of the lithium ion secondary battery made of graphite is the charge / discharge efficiency. Since graphite has a high surface reactivity, a passive film tends to adhere to the electrolyte during decomposition. Since the amount of electricity used at this time is lost, the difference between the charge capacity and the discharge capacity increases, and the charge / discharge efficiency decreases.
[0007]
There have been many proposals for increasing the capacity of the carbon material negative electrode of a lithium ion secondary battery. For example, Japanese Patent Application Laid-Open Nos. 4-115458, 5-234584, and 5-307958 propose the use of carbides of mesophase microspheres generated during the carbonization process of pitches. Japanese Patent Application Laid-Open No. 7-282812 describes that in a graphitized carbon fiber, the capacity can be increased by increasing the regulation of the stacking arrangement of the graphite layers.
[0008]
Japanese Patent Application Laid-Open No. 6-187972 proposes a high-capacity carbonized material using a special resin as a raw material. Japanese Patent Laid-Open No. 3-245548 discloses a carbonaceous material obtained by carbonizing an organic resin (eg, phenol resin) containing 0.1 to 2.0 wt% of boron. Since all of these use expensive raw materials, the raw material costs increase. In addition, since it is non-graphitizable carbon (hard carbon) with low density, the capacity per volume is low even if the capacity per weight is high. For small batteries with a fixed volume, capacity per volume is important.
[0009]
In JP-A-8-31422, discharge capacity and charge / discharge efficiency are obtained by graphitizing carbon powder obtained from pitch by heat treatment in the presence of a boron compound (eg, boron, boron carbide, boron oxide, boric acid). An excellent carbon powder has been proposed. In JP-A-10-236808, a graphitizable aggregate (eg, coke) or a mixture of graphite and a graphitizable binder (eg, pitch, organic resin) is mixed with iron, nickel, titanium, silicon. In addition, it is described that graphite particles obtained by graphitization by adding a graphitization catalyst selected from boron, these carbides and nitrides have high capacity and excellent rapid charge / discharge characteristics.
[0010]
[Problems to be solved by the invention]
A graphitized carbon powder having a high degree of graphitization obtained by heat-treating a carbon material in the presence of boron becomes a negative electrode material for a lithium ion secondary battery having excellent discharge capacity and charge / discharge efficiency. It is described in the gazette. Further, it is known from JP-A-10-236808 that boron is a graphitization catalyst.
[0011]
The present inventors examined the performance of the graphitized powder obtained by graphitization in the presence of boron as a negative electrode material for lithium ion secondary batteries. As a result of the graphitization in the presence of boron, the discharge capacity is improved. However, it was found that the capacity loss increased (that is, the charge / discharge efficiency decreased).
[0012]
It is an object of the present invention to provide a graphite powder that can be used as a negative electrode material for a lithium ion secondary battery having a sufficiently high discharge capacity, good charge / discharge efficiency, and low capacity loss, and a method for producing the same. .
[0013]
[Means for Solving the Problems]
The inventors of the present invention heat treated and graphitized a carbon material to which boron and titanium are added, thereby improving the discharge capacity and increasing the charge / discharge efficiency as compared with the case of adding boron alone. It has been found that small graphite powder can be obtained.
[0014]
According to the present invention, there is provided a graphite powder characterized by containing 0.001 to 5.0 wt% boron and 0.001 to 5.0 wt% titanium.
[0015]
According to the present invention, there is also provided a method for producing graphite powder, comprising a step of heat treating a carbon material containing boron and titanium to graphitize.
[0016]
In a preferred embodiment, the graphite powder of the present invention has a closed structure in which the ends of the graphite c-plane layer on the surface of the powder are connected and closed by two layers, and between the closed structures in the graphite c-axis direction. The gap surface density is 100 / μm or more and 1500 / μm or less.
[0017]
Here, the “closed structure in which the ends of the graphite c-plane layer are connected and closed by two layers” means that the ends of two adjacent layers of the graphite c-plane layer are connected as shown schematically in FIG. Thus, the connecting end portion may have a laminated structure (three layers in the illustrated example) as illustrated.
[0018]
The “gap surface” means a surface between two adjacent blocking structures, which is open to the outside, as indicated by an arrow in FIG. As shown in the figure, when the adjacent connection blocking structures are all laminated structures, the outermost interlayer surface of the laminated structure becomes the gap surface.
A closed structure (whether multilayer or single layer) sandwiched between adjacent gap surfaces is defined as a unit closed structure.
[0019]
“Gap surface density” is defined as the number of gap surfaces per μm in the c-axis direction perpendicular to the graphite c-plane. The density of the gap surface is substantially the same as the density of the unit closing structure.
[0020]
The graphite powder having the above-mentioned gap surface density is graphitized by heat-treating a carbon material containing boron and titanium, which has been pulverized by at least one of high speed pulverization and shear pulverization before and / or after carbonization. Or (2) a step of heat treating a carbon material containing boron and titanium pulverized before and / or after carbonization and graphitizing the obtained graphite powder. Manufactured by any of the following methods: a surface treatment under conditions that allow the surface to be shaved, and a step of heat-treating the surface-treated graphite powder in an inert gas at a temperature of 800 ° C. or higher. be able to.
[0021]
According to the present invention, there is also provided a lithium ion secondary battery comprising a negative electrode material of a lithium ion secondary battery containing the graphite powder as a main component and a negative electrode made from the negative electrode material.
[0022]
As described above, JP-A-10-236808 describes that graphitization is performed in the presence of a graphitization catalyst selected from iron, nickel, titanium, silicon, boron, carbides and nitrides thereof. . However, this publication does not describe using boron and titanium in combination as a catalyst. Moreover, this catalyst is used for changing the particle morphology of the obtained graphite powder and improving rapid charge / discharge characteristics, and has a different purpose from the present invention.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
The graphite powder of the present invention is obtained by heat treating a carbon material containing boron and titanium and graphitizing it, and contains boron (B) 0.001 to 5.0 wt% and titanium (Ti) 0.001 to 5.0 wt%. .
[0024]
If the boron content of the graphite powder is less than 0.001 wt%, the function as a substantial graphitization catalyst will not be exhibited during the graphitization heat treatment, and the graphite structure will not be sufficiently developed, resulting in an improvement in discharge capacity. I can't. On the other hand, when the boron content exceeds 5 wt%, the portion that does not contribute to charging / discharging increases, and the apparent capacity decreases. A preferred boron content range is 0.01 to 1.5 wt%.
[0025]
If the titanium content of the graphite powder is less than 0.001 wt%, the effect of co-addition with boron cannot be substantially obtained, and the discharge capacity cannot be improved. It cannot be suppressed. If the titanium content is more than 5 wt%, the portion that does not contribute to charge / discharge increases, and the apparent capacity decreases. A preferred range for the titanium content is 0.01 to 1.5 wt%.
[0026]
Boron and titanium may be added at any time as long as they are before heat treatment for graphitization. Graphite powder is generally produced from a carbonaceous raw material through a two-step heat treatment process of carbonization and graphitization. In this case, boron and titanium may be added to either the carbonaceous raw material before carbonization or the carbon material before graphitization. In particular, when carbonaceous raw materials such as tar and pitch are used, this raw material is heat-treated at a temperature lower than the carbonization temperature, and a mesophase (mesophase spherule or bulk) that exhibits a certain layer structure and becomes optically anisotropic. It is known that when this mesophase material is carbonized, a layered graphite structure is easily developed. In this case, boron or titanium may be added to either the carbonaceous raw material before mesophase formation or the mesophase material after mesophase formation. Of course, it can also be added during the heat treatment of mesophasing or carbonization. Boron and titanium may be added at different times or simultaneously.
[0027]
Boron and titanium can be added as a simple substance of these elements or as a compound thereof. Examples of materials that can be used are shown below, but are not limited thereto.
[0028]
Boron raw materials: Boron, Boron carbide (BFourC), boron oxide (B2OThreeEtc.), boric acid (HThreeBOThreeEtc.), metal borides (TiB2, CrB, FeB, NiB, CoB, ZrB2, AlB2etc;
Titanium raw materials: Titanium, titanium oxide (TiO, Ti2OThree, TiO2, TinO2n-1Series), titanium carbide (TiC), titanium nitride (TiN), titanium boride (TiB)2), Titanium chloride (TiCl2, TiClThree, TiClFour), Titanium alloy (Ti-Al), etc.
[0029]
Preferred raw materials are those which do not contain metals other than B and Ti and are relatively easily available. Specifically, for boron raw materials, BFourC, B2OThreeTiO for titanium raw materials2TiB as both raw materials for boron and titanium2It is.
[0030]
Since the amount of evaporation of the boron raw material and titanium raw material varies depending on the type of raw material, the timing of addition, and heat treatment conditions (temperature, atmosphere, time, etc.), a predetermined amount of B and Ti in the final graphite material. In consideration of the manufacturing conditions, if necessary, an experiment is performed to set as appropriate. However, as will be described later, in particular, even if titanium is substantially completely evaporated during the high-temperature graphitization heat treatment, the effects of increasing the discharge capacity and reducing the capacity loss of the present invention can be obtained.
[0031]
The graphite powder of the present invention preferably has a c-axis (002) plane lattice spacing (d002) of 3.3650 mm or less, more preferably 3.3600 mm or less, as determined by a lattice constant precision measurement method by X-ray diffraction. The c-axis (002) plane lattice spacing (d002) is the distance between adjacent c-plane layers, indicated as d002 in FIG. The interlayer distance d002 is an index of crystallinity. The value of d002 decreases, and the closer to the ideal graphite value (= 3.354 Å), the higher the crystallinity of the graphite powder (the layered structure develops). Discharge capacity increases. The crystallinity of the graphite powder depends on the graphitization heat treatment conditions, and the higher the heat treatment temperature and the longer the time, the higher the crystallinity of the graphite powder tends to be obtained.
[0032]
As described above, the graphite powder of the present invention can be manufactured in the same manner as before except that boron and titanium are added before the graphitization heat treatment, and the carbon material containing boron and titanium is graphitized heat treatment. it can.
[0033]
The carbonaceous material used for carbonization is not particularly limited, and may be the same as that conventionally used for producing graphite. Specific examples of carbonaceous raw materials include coal tar pitch or petroleum pitch, and mesophase spherules produced by heat treatment thereof, bulk mesophase which is a matrix of the spheroids, and organic resins or organic substances (eg, polyacrylonitrile, rayon). Or a resin obtained by heating and carbonizing a resin described in JP-A-2-282812. Particularly preferred carbonaceous raw materials are mesophase microspheres and bulk mesophase.
[0034]
A carbonaceous material is pulverized and carbonized to obtain a carbon material. The pulverization may be performed at any time before or after carbonization, and may be performed both before and after carbonization. The pulverization can be performed using a conventional pulverizer such as a hammer mill, a fine mill, an attrition mill, or a ball mill. Preferred pulverizers are those that perform impact pulverization, typically hammer mills and some ball mills.
[0035]
The carbonization condition of the pulverized carbonaceous raw material is other than the carbon contained in the raw material after decomposition of the raw material (in the case of a raw material to which boron and / or titanium has already been added, other than carbon and boron and / or titanium) ) Should be selected so that the element is removed almost completely. In order to prevent carbon combustion, this carbonization heat treatment is carried out in an inert atmosphere or vacuum. The carbonization heat treatment temperature is usually in the range of 800-1500 ° C, and around 1000 ° C is particularly preferable. The heat treatment time required for carbonization is about 30 minutes to 3 hours when the temperature is 1000 ° C., although it depends on the type of raw material, heat treatment, and temperature.
[0036]
The powdery carbon material obtained by pulverization and carbonization is heat-treated and graphitized.
When the necessary amount of boron and / or titanium is not added before carbonization, the graphitization heat treatment is performed after adding boron and / or titanium to the carbon material. Since the temperature at which graphitization (crystallization) occurs due to the presence of boron is lowered, graphitization can be performed at a temperature lower than that of a carbon material not containing boron. The heat treatment temperature is preferably in the range of 1500 to 3000 ° C, more preferably 2000 to 3000 ° C. When boron is not included, a heat treatment temperature of 2500 ° C. or higher is usually required, but graphitization is possible even at a temperature lower than 2500 ° C. Further, when graphitized at the same heat treatment temperature, it is possible to obtain a graphite powder in which the boron additive has higher crystallinity (smaller d002) than the additive-free material.
[0037]
During the above two types of heat treatment, particularly high temperature graphitization heat treatment, added boron and titanium are often removed from the powder by evaporation or thermal decomposition.
In particular, titanium may be substantially completely removed from the powder depending on the graphitization heat treatment conditions. That is, the obtained graphite powder may contain boron but may not contain titanium in a detectable amount. Thus, even if titanium disappears substantially completely during graphitization heat treatment, the reason is unknown, but the obtained graphite powder has improved discharge capacity and reduced capacity loss (improved charge / discharge efficiency). The effect of the present invention can be sufficiently achieved.
[0038]
That is, in order to obtain the effects of the present invention, it is sufficient that the carbon material before graphitization heat treatment contains titanium and boron in the method for producing graphite powder, and the inclusion of titanium in the graphite powder obtained after the heat treatment is essential. is not. In order to obtain a graphite powder with higher discharge capacity and lower capacity loss, considering the loss of boron and titanium during heat treatment, and more uniformly diffusing them into the carbon powder, The addition amount of titanium and titanium is preferably 0.01 wt% or more.
[0039]
The B and Ti-containing graphite powder of the present invention has a closed structure in which the ends of the graphite c-plane layers are connected and closed by two layers, and the gap surface density between the closed structures in the graphite c-axis direction is 100 / It is preferable that it is not less than μm and not more than 1500 pieces / μm. Such graphite powder can exhibit a very high discharge capacity.
[0040]
1 can be observed by a high-resolution electron micrograph of a cross section near the surface of the graphite powder, and the density of the gap surface is obtained from this electron micrograph. be able to. An example of such an electron micrograph is shown in FIG. Graphite powder is generally composed of many regions having different c-axis directions, and each region (that is, a group of regions having the same c-axis direction) is called a crystallite.
The graphite powder of the present invention has the above closed structure, and the value of the gap surface density on the powder surface may be in the above range.
[0041]
When the c-plane layer has a closed structure, it is chemically more stable than the structure where the end is cut, and the electrolyte does not easily penetrate, so that cycle characteristics are improved and charge / discharge efficiency is improved. Get better. On the other hand, the gap surface between adjacent plugged structures serves as an intrusion site for Li ions. If the density of the gap surface in the c-axis direction is less than 100 / μm, the number of Li ion penetration sites is small, and the discharge capacity cannot be made very high. The upper limit of 1500 / μm for the gap surface density is the gap surface density when all c-plane layers have a single-layer closed structure between two adjacent layers, that is, the maximum theoretically predicted gap surface density. It is.
[0042]
The graphite powder having the above-mentioned closed structure and gap surface density can be produced by subjecting a carbon material (containing B and Ti) subjected to high speed grinding or shear grinding before and / or after carbonization to graphitization heat treatment. Hereinafter, this method is referred to as a first method.
Usually, the gap surface density of the graphite powder produced by the first method is slightly over 100 / μm (eg, 100 to 120 / μm).
[0043]
According to another production method (second method), the B and Ti-containing graphite powder obtained by the graphitization heat treatment is subjected to a heat treatment under a condition that the surface can be shaved (eg, a temperature of 600 to 800 ° C). Heat treatment at a temperature of 800 ° C. or higher in an inert gas. This method can also produce graphite powder having a very high gap density.
[0044]
In the first method, the above-mentioned closed structure is formed during the graphitization heat treatment due to the irregularities (layer defects) at the atomic level on the powder surface introduced by pulverization. Therefore, it is indispensable to obtain a graphite powder having a high-density closed structure by performing pulverization before graphitization. When the pulverization is performed after the graphitization heat treatment, a layer defect is generated in the c-plane layer of the graphite generated by the heat treatment, and the introduced closed structure may be destroyed by the pulverization. It is not desirable to grind after heat treatment. Therefore, it is preferable to perform pulverization so as to obtain a final particle size before graphitization. However, mild pulverization for the purpose of crushing may be performed after graphitization.
[0045]
In the first method, the influence of the grinding conditions on the crystal structure of the graphite powder is large. In order to obtain a graphite powder having a closed structure with a gap surface density of 100 / μm or more, it is necessary to adopt high speed pulverization in the case of a normal impact pulverizer. In addition, in order to create unevenness (layer defects) at the atomic level evenly on the surface of each powder, a grinding time of a certain time or more is required. Specific pulverization conditions (eg, rotation speed, pulverization time) vary depending on the type of pulverizer used and the type of carbonaceous raw material. What is necessary is just to determine by experiment so that it may produce | generate and the powder of a desired particle size may be obtained. According to the first method, the pulverization condition in which a graphite powder having a gap surface density of 100 / μm or more after graphitizing heat treatment by pulverization other than shear pulverization is defined as high-speed pulverization in the present invention.
[0046]
For example, in impact pulverization such as hammer mill and attrition mill, if pulverization is performed for more than a certain time at a rotational speed of 5000 rpm or more, graphite powder having a closed structure with a gap area density of 100 / μm or more after graphitization heat treatment is obtained. Obtainable. If the rotational speed is lower than this, the density of the gap surfaces often does not reach 100 / μm even if the pulverization time is increased. The grinding time is adjusted according to the number of rotations. The example of the preferable grinding | pulverization conditions with a hammer mill is about 15-30 minutes at 5000-7500 rpm. However, this is merely an example, and if the type of the pulverizer or the raw material changes, the appropriate rotation speed and pulverization time also vary.
[0047]
When shear pulverization (e.g., pulverization with a disk mill) capable of efficiently introducing layer defects because crushing is mainly performed by cleaving, it is not necessary to increase the pulverization conditions. The pulverization by the disc mill can be carried out for about 2 to 10 minutes at a rotational speed of about 150 to 300 rpm, for example. Shear pulverization and other pulverization may be used in combination. In that case, the other pulverization may be the high-speed pulverization described above.
[0048]
In the second method, the pulverization conditions are not particularly limited. Moreover, you may grind | pulverize after graphitization.
In the second method, graphite powder obtained by graphitization heat treatment of a carbon material containing B and Ti is subjected to oxidation heat treatment (or heat treatment for scraping other surfaces) and heat treatment in an inert gas atmosphere. Heat treatment is performed once.
[0049]
The first oxidation heat treatment is performed to scrape the surface of the powder c-plane layer by oxidation and to once open the closed structure generated by the graphitization heat treatment. As a result, the c-plane layer ends are cut off on the powder surface, the c-plane layer ends are hardly connected to each other, and the c-plane layer ends on the powder surface are relatively flat and Become.
[0050]
The conditions for the oxidation heat treatment are not particularly limited as long as the closure structure is substantially opened by oxidation, but the heat treatment temperature is preferably about 600 to 800 ° C. This is because graphite powder having a closed structure has high oxidation resistance, so that it is difficult to oxidize at temperatures lower than 600 ° C., and oxidation proceeds rapidly at temperatures above 800 ° C., leading to deterioration of the entire graphite powder. The oxidation heat treatment time varies depending on the temperature and the amount of treatment, but is generally 1 to 10 hours. The heat treatment atmosphere is an oxygen-containing atmosphere, and may be a pure oxygen atmosphere or a mixed gas atmosphere of oxygen and an inert gas (eg, air).
[0051]
As a result of removing the powder surface by this oxidation heat treatment, the weight of the graphite powder is reduced by about 2 to 5%. Further, the particle size of the powder is slightly reduced (eg, about 1 to 2 μm). If necessary, the pulverization conditions are set in anticipation of this particle size reduction.
[0052]
The opening of the closing structure is not limited to the oxidation heat treatment. Other methods can also be employed as long as the clogging layer structure can be obtained by scraping off the surface structure of the graphite powder to open the blocking structure. Other methods include, for example, fluorination heat treatment or hydrogenation heat treatment. The heat treatment conditions in this case may be appropriately set by experiment so that the closed structure is opened.
[0053]
Thereafter, when the graphite powder is heat-treated in an inert gas atmosphere, the opened c-plane layer ends are connected to the other c-plane layer ends, and a closed structure is formed again on the surface of the graphite powder. At this time, the end of the c-plane layer is very rarely connected because the end of the c-plane layer on the surface of the powder is flattened by an oxidation heat treatment. As a result, a closed structure having a small number of stacked layers and a high gap surface density is obtained.
[0054]
The inert gas atmosphere may be one or more of Ar, He, Ne, and the like, for example. The heat treatment temperature may be any temperature that causes a relatively large lattice vibration that can connect the c-plane layers. When the closed structure is connected to form a closed structure, the energy is low and the structure is stabilized. Therefore, when sufficient lattice vibration is generated by heat treatment in an inert gas atmosphere, the open ends of the c-plane layers are connected to each other. For this purpose, temperatures above 800 ° C. are generally required. The upper limit is not particularly limited. The heat treatment time only needs to form a closed structure and varies depending on the temperature, but is generally 1 to 10 hours. For example, at 1000 ° C., about 5 hours is a guide.
[0055]
The B and Ti-containing graphite powder according to the present invention is particularly suitable as a negative electrode material for a lithium ion secondary battery. As described above, a graphite powder having a high degree of crystallinity (developed with a graphite layered structure) can be obtained, so that a negative electrode having a high discharge capacity is obtained. Moreover, since the increase in capacity loss is suppressed, the charge / discharge efficiency is also increased. In particular, a graphite powder having a very high gap surface density of, for example, 500 / μm or more as described above can give a very high discharge capacity close to the theoretical capacity, exceeding 350 mAh / g. it can.
[0056]
When the graphite powder of the present invention is used for this purpose, the negative electrode of a lithium ion secondary battery using the graphite powder can be produced by a method similar to the conventional method. In general, graphite powder is formed into an electrode by molding on a current collector as an electrode substrate using an appropriate binder. That is, the negative electrode material (also referred to as negative electrode mixture) is composed of graphite powder as a main component and usually a mixture of graphite powder with a small amount of binder. As the current collector, it is possible to use any metal foil (eg, copper foil such as electrolytic copper foil, rolled copper foil) that has good supportability of graphite powder and does not dissolve when decomposed when used as a negative electrode. it can.
[0057]
Molding can be carried out by an appropriate method that has been used in the past to produce electrodes from powdered active materials, and it fully draws out the negative electrode performance of graphite powder. As long as it is stable and electrochemically stable, there is no limitation.
[0058]
For example, a binder made of a fluororesin powder such as polytetrafluoroethylene or polyvinylidene fluoride and an organic solvent such as isopropyl alcohol are added to graphite powder and kneaded to form a paste, and this paste is screen printed on a current collector. Method: A method of adding resin powders such as polyethylene and polyvinyl alcohol to graphite powder and dry-mixing, and hot-pressing the mixture using a mold, and simultaneously thermocompression bonding to the current collector; Using the above-mentioned fluororesin powder or water-soluble binder such as carboxymethylcellulose as a binder, slurry is formed using a solvent such as N-methylpyrrolidone, dimethylformamide, water or alcohol, and this slurry is applied to a current collector. And a method of drying.
[0059]
The graphite powder of the present invention can be used in combination with a suitable positive electrode active material that can be used in a lithium ion secondary battery and a non-aqueous electrolyte solution in which a lithium compound is dissolved in an organic solvent to produce a lithium ion secondary battery.
[0060]
Examples of positive electrode active materials include lithium-containing transition metal oxides LiM1 1-xM2 xO2Or LiM1 2yM2 yOFour (In the formula, X is a numerical value in a range of 0 ≦ X ≦ 4, Y is a range of 0 ≦ Y ≦ 1, M1, M2Represents a transition metal, consisting of at least one of Co, Ni, Mn, Cr, Ti, V, Fe, Zn, Al, In, Sn), transition metal chalcogenides, vanadium oxide (V2OFive, V6O13, V2OFour, VThreeO8And its lithium compounds, general formula MxMo6S8-y(Wherein X is a numerical value in the range of 0 ≦ X ≦ 4, Y is a range of 0 ≦ Y ≦ 1, and M represents a metal including a transition metal) Activated carbon fiber or the like can be used.
[0061]
The organic solvent used for the non-aqueous electrolyte is not particularly limited, and examples thereof include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, 1,1- and 1,2-dimethoxyethane, and 1,2-diethyl. Ethoxyethane, γ-butyrolactam, tetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, anisole, diethyl ether, sulfolane, methylsulfolane, acetonitrile, chloronitrile, propionitrile, trimethyl borate, silicic acid Examples thereof include one or more of tetramethyl, nitromethane, dimethylformamide, N-methylpyrrolidone, ethyl acetate, trimethyl orthoformate, nitrobenzene and the like.
[0062]
As the electrolyte lithium compound, an organic or inorganic lithium compound soluble in the organic solvent to be used may be used. Specific examples of suitable lithium compounds include LiClOFour, LiBFFour, LiPF6, LiAsF6, LiB (C6HFive), LiCl, LiBr, LiCFThreeSOThree, LiCHThreeSOThree1 type, or 2 or more types can be mentioned.
[0063]
【Example】
Example 1
The bulk mesophase obtained from coal tar pitch was pulverized for 5 minutes per 10 kg at a rotational speed of 7500 rpm using an impact pulverizer hammer mill (u-mizer manufactured by Fuji Paudal). The obtained bulk mesophase powder was heated and carbonized at 1000 ° C. for 1 hour in a nitrogen atmosphere to obtain a carbon material powder. B and / or Ti raw materials (TiO2, TiB2, B2OThree) Were appropriately combined and added in the amounts shown in Table 1 and mixed. This mixed powder was put into a graphite crucible and graphitized by raising the temperature in the atmosphere in the Atchison furnace to a predetermined temperature shown in Table 1 to obtain a graphite powder.
[0064]
Table 1 shows the analysis results of the B and Ti contents of the obtained graphite powder and the measurement results of the c-axis lattice spacing (d002) together with the discharge capacity and capacity loss of the electrodes prepared from this graphite powder.
[0065]
The B content of the graphite powder is that calcium carbonate is added to the powder sample and incinerated at 800 ° C. in an oxygen stream, then sodium carbonate is added to the ash, heated by a burner and melted, and the melt is dissolved in water. The aqueous solution was measured by quantitative analysis by ICP emission spectrometry. The Ti content was measured in the same manner as the B content except that calcium carbonate was not added.
The c-axis lattice spacing (d002) was calculated from the X-ray diffraction pattern of the powder sample by a lattice constant precision measurement method (without using an internal standard) by the least square method including diffractometer errors. All peak positions of plane indices (002), (100), (101), (004), (110), (112), and (006) in the X-ray diffraction diagram were used. X-ray diffraction measurement was performed three times, and a weighted average of the obtained values was taken as the value of d002.
[0066]
The discharge capacity and capacity loss were measured by classifying the obtained graphite powder so that the average particle diameter was about 15 μm, and preparing electrodes as follows:
90 parts by weight of graphite powder and 10 parts by weight of polyvinylidene fluoride powder were mixed in a solvent N-methyl-pyrrolidone, dried, and made into a paste. The obtained paste-like negative electrode material was applied on a copper foil having a thickness of 20 μm serving as a current collector to a uniform thickness using a doctor blade, and then dried at 80 ° C. 1cm area cut out from here2The test piece was used as a negative electrode.
[0067]
The negative electrode characteristics were evaluated by a constant current charge / discharge test using a tripolar cell using metallic lithium as a counter electrode and a reference electrode. The electrolyte contained LiClO at a concentration of 1 mol / l in a mixed solvent of ethylene carbonate and dimethyl carbonate in a volume ratio of 1: 1.FourA solution in which was dissolved was used.
[0068]
Discharge capacity is 0.3 mA / cm2Vs. Li reference electrode (vs Li / Li+) After charging until the potential reaches 0.0 V, at the same current density vs. Li reference value (vs Li / Li+) Obtained by discharging until the potential reached + 1.50V. The difference between (charge capacity) and (discharge capacity) at this time was defined as a capacity loss (mAh / g).
[0069]
[Table 1]
Figure 0004547504
[0070]
As shown in Table 1, the graphite powder according to the present invention containing B and Ti in the range of 0.001 to 5.0 wt%, respectively, was able to produce a negative electrode having a high discharge capacity and a small capacity loss. Further, d002 of the graphite crystal structure was 3.3650 mm or less, and the crystallinity was high. Furthermore, even when graphitizing at a temperature lower than 2000 ° C., a graphite powder having a sufficiently high discharge capacity could be obtained. Moreover, even when the Ti raw material and the B raw material were changed, these effects were similarly obtained.
[0071]
Compared with the comparative example in which only B is added, the combined use of Ti according to the present invention enhances the function of B as a graphitization catalyst, d002 is small and the crystallinity is high, and thus the discharge capacity is sufficiently high. Moreover, a graphite powder with little capacity loss could be obtained. From Table 1, it can be seen that the capacity loss increases as the B content increases, and the discharge capacity tends to decrease as the Ti content increases. Moreover, the graphite powder which has sufficient electrode performance was able to be obtained at the temperature lower than before, 2000-2500 degreeC.
[0072]
When the comparative example is seen, in the additive-free material to which neither B nor Ti is added, d002 is large and the discharge capacity is reduced as compared with the inventive example having the same graphitization temperature. If only B was added and Ti was not added, the discharge capacity did not increase even if the B content was increased, and conversely the capacity loss increased. Although the discharge capacity is improved even when only Ti is added, the discharge capacity is remarkably improved by adding B together. When the B content exceeds 5 wt%, the capacity loss becomes very large, and when the Ti content exceeds 5 wt%, the capacity reduction becomes remarkable.
[0073]
Test Nos. 27 to 28 show the case where titanium is substantially completely lost during the graphitization heat treatment. These are examples that fall outside the scope of the invention of the graphite powder of the present invention, but fall within the scope of the invention of the method for producing the graphite powder of the present invention (invention example).
As can be seen from the test results of these examples, a graphite powder having a high discharge capacity and a small capacity loss can be obtained even when titanium is substantially completely lost during graphitization heat treatment and cannot be detected. I was able to.
[0074]
(Example 2)
Bulk powder mesophase obtained from coal tar pitch was used as a carbonaceous raw material, and graphite powder was prepared by the following three methods.
[0075]
(1) The bulk mesophase is shown in Table 2 by the same impact pulverizer (hammer mill) or shear pulverizer (disc mill) used in Example 1 or a combination of both (first using a hammer mill). It grind | pulverized on conditions. The obtained bulk mesophase powder was heated and carbonized at 1000 ° C. for 1 hour in a nitrogen atmosphere to obtain a carbon material powder. To this carbon powder, 2wt% TiO2And 4 wt% B2OThreeWere mixed, and the mixed powder was put into a graphite crucible and heat-treated in the Atchison furnace until it reached 2900 ° C. in the atmosphere to obtain a graphite powder containing B and Ti.
[0076]
(2) Graphite powder was obtained in the same manner as in (1) above until graphitization. The graphite powder was subjected to an oxidation heat treatment at 700 ° C. for 3 hours in an oxygen atmosphere, and then further subjected to a heat treatment at 1000 ° C. for 5 hours in an argon atmosphere.
[0077]
(3) Graphite powder was obtained in the same manner as in (1) above until graphitization. This graphite powder was subjected to an oxidation heat treatment in an oxygen atmosphere at 700 ° C. for 3 hours.
[0078]
Table 2 shows the analysis results of the B and Ti contents of the obtained graphite powder, and the discharge capacity and capacity loss (measured in the same manner as in Example 1) together with the gap surface density of the closed structure. The gap surface density was determined by actual measurement using a high-resolution electron micrograph of the powder sample.
[0079]
[Table 2]
Figure 0004547504
[0080]
As can be seen from Table 2, in the case of method (1), when pulverized only with a hammer mill (impact pulverizer), graphite powder having a gap surface density of 100 / μm or more could be obtained by high-speed pulverization. Further, even when a disk mill (shear pulverizer) was used, a graphite powder having a gap surface density of 100 / μm or more could be obtained. Depending on the gap surface density, the discharge capacity of the electrode increased, and it was possible to produce a large capacity electrode exceeding 350 mAh / g simply by changing the grinding conditions.
[0081]
In Method (2), graphite powder having a large gap surface density and high discharge capacity could be obtained. On the other hand, the graphite powder obtained by the method (3) in which only the oxidation heat treatment was performed after the graphitization heat treatment did not have a closed structure, and the capacity loss increased.
[0082]
Example 3
In this example, a cylindrical lithium ion secondary battery having the structure shown in FIG. 3 was produced using the graphite powder obtained in Examples 1 and 2, and the battery performance was examined.
[0083]
The negative electrode 1 was prepared from a negative electrode material obtained by mixing 90 parts by weight of graphite powder and 10 parts by weight of polyvinylidene fluoride (PVDF) as a binder. A paste slurry prepared by dispersing this negative electrode material in N-methylpyrrolidone was applied to both sides of a 10 μm-thick strip-shaped copper foil serving as the negative electrode current collector 9, dried, and then compression molded. Thus, a strip-shaped negative electrode 1 was produced.
[0084]
The positive electrode 2 was obtained by calcining a mixture of 0.5 mol of lithium carbonate and 1 mol of cobalt carbonate in air at 900 ° C. for 5 hours.2Made from. Obtained LiCoO2LiCoO registered in the JCPDS file as a result of X-ray diffraction measurement2It was in good agreement with the peak. This LiCoO2Pulverized and classified, LiCoO with 50% cumulative particle size of 15μm2This LiCoO with powder2A positive electrode material was prepared by mixing 91 parts by weight of mixed powder obtained by mixing 95 parts by weight of powder and 5 parts by weight of lithium carbonate powder, 6 parts by weight of graphite as a conductive material, and 3 parts by weight of PVDF as a binder. This positive electrode material dispersed in N-methylpyrrolidone was uniformly applied to both sides of a 20 μm-thick strip-shaped aluminum foil to be the positive electrode current collector 10, dried, and then compression-molded to form a strip-shaped slurry. A positive electrode 2 was prepared.
[0085]
Next, as shown in FIG. 3, a separator 3 made of a strip-shaped negative electrode 1, a strip-shaped positive electrode 2 and a microporous polypropylene film having a thickness of 25 μm is laminated in the order of the negative electrode 1, the separator 3, the positive electrode 2, and the separator 3. A spiral electrode body having an outer diameter of 18 mm was produced by winding. This spiral electrode body was housed in an iron battery can 5 plated with nickel. Insulating plates 4 are arranged above and below the spiral electrode body, and the positive electrode lead 12 made of aluminum is led out from the positive electrode current collector 10 and led out to the battery lid 7, and the negative electrode lead 11 made of nickel is led out from the negative electrode current collector 9. And welded to the battery can 5.
[0086]
In the battery can 5 in which the spiral electrode body is housed, LiPF is used as a mixed solvent of ethylene carbonate and diethyl carbonate in a volume ratio of 1: 1 as an electrolyte.61M concentration solution in which was dissolved was injected. Next, a safety valve device 8 having a current interruption mechanism and a battery lid 7 are attached to the battery can 5 by caulking through an insulating sealing gasket 6 having asphalt coated on the surface thereof, thereby providing a cylinder having a diameter of 18 mm and a height of 65 mm. Type non-aqueous electrolyte secondary battery was produced.
[0087]
For each graphite powder, 50 batteries were prototyped as described above, and the performance of these batteries was evaluated as follows. The results are shown in Tables 1 and 2. As can be seen from these tables, a high-capacity lithium ion secondary battery can be produced from the negative electrode containing the graphite powder of the present invention.
[0088]
Battery evaluation method
1) Charging conditions: Charging was performed for 2.5 hours at a maximum charging voltage of 4.2 V and a current amount of 1A.
[0089]
2) Discharge conditions: The battery voltage was discharged to 2.75 V at a constant current of 700 mA.
[0090]
3) Battery capacity: The discharge capacity was determined by measuring the discharge time until the battery voltage reached 2.75 V at a constant current of 700 mA. For example, when this time is 2.2 hours, 700 mA × 2.2 h = 1540 mAh is the discharge capacity. Charging / discharging was repeated under the above conditions, and the maximum discharge capacity obtained in the initial 2 to 5 cycles was defined as the battery capacity. In this example, the average value of 50 batteries is shown.
[0091]
【The invention's effect】
According to the present invention, by producing a graphite powder by heat treating a carbon material containing boron and titanium, the crystallinity is high and the discharge capacity is excellent. A high-performance, high-performance lithium ion secondary battery negative electrode material is obtained. Since graphitization can be carried out by heat treatment at a temperature of 1500 to 3000 ° C, it can be carried out sufficiently in an industrial heat treatment furnace, and the carbonaceous material used as a raw material is tar, pitch (preferably used in mesophase), etc. Inexpensive raw materials can be used.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory view showing a stacked type closed structure and a gap surface at the end of a c-plane layer appearing on the surface of graphite powder.
FIG. 2 shows an example of a high-resolution electron micrograph showing a clogging layer end blockage structure and a gap surface appearing on the surface of graphite powder. The arrow is the gap surface.
FIG. 3 is a schematic cross-sectional view of a lithium ion secondary battery manufactured in an example.
[Explanation of symbols]
1: negative electrode, 2: positive electrode, 3: separator, 4: insulating plate, 5: battery can, 7: battery lid, 8: safety valve device, 9: negative electrode current collector, 10: positive electrode current collector, 11: negative electrode lead , 12: Positive electrode lead

Claims (7)

ホウ素 0.001〜5.0 wt%およびチタン 0.001〜5.0 wt%を含有することを特徴とする黒鉛粉末。A graphite powder comprising 0.001 to 5.0 wt% boron and 0.001 to 5.0 wt% titanium. 粉末表面の黒鉛c面層の端部が2層ずつ連結して閉じた閉塞構造を有し、黒鉛c軸方向における該閉塞構造間の間隙面密度が100 個/μm以上、1500個/μm以下である、請求項1記載の黒鉛粉末。The end of the graphite c-plane layer on the powder surface has a closed structure in which two layers are connected and closed, and the gap surface density between the closed structures in the graphite c-axis direction is 100 / μm or more and 1500 / μm or less The graphite powder according to claim 1, wherein ホウ素およびチタンを含有する炭素材を熱処理して黒鉛化する工程を含むことを特徴とする請求項1に記載の黒鉛粉末の製造方法。The method for producing graphite powder according to claim 1, comprising a step of graphitizing the carbon material containing boron and titanium by heat treatment. 炭化の前および/または後に高速粉砕と剪断粉砕の少なくとも一方の方法で粉砕された、ホウ素およびチタンを含有する炭素材を熱処理して黒鉛化する工程を含むことを特徴とする請求項2に記載の黒鉛粉末の製造方法。Was ground in at least one of the method of high-speed milling and shear pulverization before carbonization and / or after, according to claim 2, characterized in that it comprises a step of graphitization by heat-treating the carbon material containing boron and titanium Of producing graphite powder. 炭化の前および/または後に粉砕された、ホウ素およびチタンを含有する炭素材を熱処理して黒鉛化する工程、得られた黒鉛粉末をその表面を削ることができる条件下で表面処理する工程、および表面処理した黒鉛粉末を不活性ガス中、800 ℃以上の温度で熱処理する工程、を含むことを特徴とする請求項2に記載の黒鉛粉末の製造方法。Heat treating a carbon material containing boron and titanium, which has been pulverized before and / or after carbonization, and graphitizing the resulting graphite powder under conditions that allow the surface of the graphite powder to be scraped; and The method for producing a graphite powder according to claim 2, further comprising a step of heat-treating the surface-treated graphite powder in an inert gas at a temperature of 800 ° C or higher. 請求項1または2記載の黒鉛粉末を主成分とする、リチウムイオン二次電池の負極材料。A negative electrode material for a lithium ion secondary battery comprising the graphite powder according to claim 1 or 2 as a main component. 請求項6記載の負極材料から作成された負極を備えた、リチウムイオン二次電池。A lithium ion secondary battery comprising a negative electrode made from the negative electrode material according to claim 6.
JP28340599A 1999-10-04 1999-10-04 Graphite material suitable for negative electrode of lithium ion secondary battery and method for producing the same Expired - Fee Related JP4547504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28340599A JP4547504B2 (en) 1999-10-04 1999-10-04 Graphite material suitable for negative electrode of lithium ion secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28340599A JP4547504B2 (en) 1999-10-04 1999-10-04 Graphite material suitable for negative electrode of lithium ion secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001106519A JP2001106519A (en) 2001-04-17
JP4547504B2 true JP4547504B2 (en) 2010-09-22

Family

ID=17665111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28340599A Expired - Fee Related JP4547504B2 (en) 1999-10-04 1999-10-04 Graphite material suitable for negative electrode of lithium ion secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP4547504B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1403944A4 (en) * 2001-05-15 2008-08-13 Fdk Corp Nonaqueous electrolytic secondary battery and method of producing anode material thereof
CN1984841B (en) * 2004-08-27 2011-06-15 杰富意化学株式会社 Graphite material, method for producing same, negative electrode for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP5142515B2 (en) * 2006-12-19 2013-02-13 三洋電機株式会社 Nonaqueous electrolyte secondary battery
KR101934402B1 (en) 2017-01-12 2019-01-02 한국해양대학교 산학협력단 Method for manufacturing artificial graphite from waste containing carbonaceous material
CN112390252B (en) * 2019-08-13 2024-04-12 贝特瑞新材料集团股份有限公司 Carbon impurity-based negative electrode material, preparation method thereof and lithium ion battery
CN110668820A (en) * 2019-11-18 2020-01-10 青岛瀚博电子科技有限公司 Preparation method of high-performance carbon graphite product with superfine structure
CN115244737A (en) * 2020-03-27 2022-10-25 宁德新能源科技有限公司 Negative electrode active material, and electrochemical device and electronic device using same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1097871A (en) * 1996-09-20 1998-04-14 Fuji Elelctrochem Co Ltd Lithium secondary battery
JPH10226505A (en) * 1997-02-13 1998-08-25 Sumitomo Metal Ind Ltd Graphite powder for lithium secondary battery and its production
JPH10236808A (en) * 1996-12-26 1998-09-08 Hitachi Chem Co Ltd Graphite grain, its production, graphite paste using graphite grain, negative electrode for lithium secondary battery, its production and lithium secondary battery
JPH11199213A (en) * 1998-01-20 1999-07-27 Hitachi Chem Co Ltd Graphite particle, its production, lithium secondary battery and negative pole thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1097871A (en) * 1996-09-20 1998-04-14 Fuji Elelctrochem Co Ltd Lithium secondary battery
JPH10236808A (en) * 1996-12-26 1998-09-08 Hitachi Chem Co Ltd Graphite grain, its production, graphite paste using graphite grain, negative electrode for lithium secondary battery, its production and lithium secondary battery
JPH10226505A (en) * 1997-02-13 1998-08-25 Sumitomo Metal Ind Ltd Graphite powder for lithium secondary battery and its production
JPH11199213A (en) * 1998-01-20 1999-07-27 Hitachi Chem Co Ltd Graphite particle, its production, lithium secondary battery and negative pole thereof

Also Published As

Publication number Publication date
JP2001106519A (en) 2001-04-17

Similar Documents

Publication Publication Date Title
JP4379925B2 (en) Graphite powder suitable for anode material of lithium ion secondary battery
JP4207230B2 (en) Graphite powder suitable for anode material of lithium ion secondary battery
JP5447467B2 (en) Negative electrode material for lithium secondary battery, negative electrode for lithium secondary battery and lithium secondary battery using the same
KR101942599B1 (en) Negative electrode carbon material for non-aqueous secondary battery, negative electrode, and non-aqueous secondary battery
JP4281099B2 (en) Metal-carbon composite particles
JP5081375B2 (en) Negative electrode material for lithium secondary battery, production method thereof, and negative electrode for lithium secondary battery and lithium secondary battery using the same
JP4308446B2 (en) Carbonaceous material and lithium secondary battery
JP5678414B2 (en) Graphite negative electrode material, method for producing the same, and negative electrode for lithium secondary battery and lithium secondary battery using the same
JP3803866B2 (en) Double-layer carbon material for secondary battery and lithium secondary battery using the same
KR20130094853A (en) Anode material for lithium ion rechargeable battery, anode for lithium ion rechargeable battery, and lithium ion rechargeable battery
WO2007086603A1 (en) Negative electrode material for lithium ion secondary battery and process for producing the same
EP1906472A1 (en) Non-aqueous secondary battery-use graphite composite particle, cathode active substance material containing it, cathode and non-aqueous secondary battery
JP2012033375A (en) Carbon material for nonaqueous secondary battery
JP2005019399A (en) Negative pole material for lithium ion secondary battery and its producing method, negative pole for lithium ion secondary battery and lithium ion secondary battery
JP3311104B2 (en) Lithium secondary battery
JP7334735B2 (en) Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JPH0831422A (en) Carbon material for negative electrode of lithium secondary battery and manufacture thereof
JP2014060168A (en) Graphite negative electrode material and manufacturing method thereof, and negative electrode for lithium secondary battery use and lithium secondary battery that are arranged by use of graphite negative electrode material
JP2000348727A (en) Nonaqueous electrolyte secondary battery
JP4547504B2 (en) Graphite material suitable for negative electrode of lithium ion secondary battery and method for producing the same
JP2003017051A (en) Negative electrode active material, manufacturing method of the same, and non-aqueous electrolyte secondary battery
JP4470467B2 (en) Particulate artificial graphite negative electrode material, method for producing the same, negative electrode for lithium secondary battery and lithium secondary battery using the same
JP4701484B2 (en) Graphite powder suitable for negative electrode of secondary battery, its production method and use
JP2003176115A (en) Method of manufacturing graphite powder, graphite powder and lithium ion secondary battery
JPH0589879A (en) Lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100528

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100611

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees