JP5081375B2 - Negative electrode material for lithium secondary battery, production method thereof, and negative electrode for lithium secondary battery and lithium secondary battery using the same - Google Patents

Negative electrode material for lithium secondary battery, production method thereof, and negative electrode for lithium secondary battery and lithium secondary battery using the same Download PDF

Info

Publication number
JP5081375B2
JP5081375B2 JP2005036236A JP2005036236A JP5081375B2 JP 5081375 B2 JP5081375 B2 JP 5081375B2 JP 2005036236 A JP2005036236 A JP 2005036236A JP 2005036236 A JP2005036236 A JP 2005036236A JP 5081375 B2 JP5081375 B2 JP 5081375B2
Authority
JP
Japan
Prior art keywords
graphite
negative electrode
powder
lithium secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005036236A
Other languages
Japanese (ja)
Other versions
JP2005259689A (en
Inventor
宏之 宇尾野
慶太 山口
亨 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2005036236A priority Critical patent/JP5081375B2/en
Publication of JP2005259689A publication Critical patent/JP2005259689A/en
Application granted granted Critical
Publication of JP5081375B2 publication Critical patent/JP5081375B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、黒鉛複合体混合粉末からなるリチウム二次電池用負極材料及びその製造方法、並びにそれを用いたリチウム二次電池用負極及びリチウム二次電池に関する。具体的には、高い電極密度で使用した場合に、放電容量が大きく、充放電効率が高く、負荷特性に優れ、且つ、充電時の電極膨張が小さいリチウム二次電池を得ることができる、優れた負極材料及びそれを製造する方法、並びにそれを用いたリチウム二次電池用負極及びリチウム二次電池に関する。   The present invention relates to a negative electrode material for a lithium secondary battery comprising a graphite composite mixed powder, a method for producing the same, and a negative electrode for a lithium secondary battery and a lithium secondary battery using the same. Specifically, when used at a high electrode density, it is possible to obtain a lithium secondary battery having a large discharge capacity, high charge / discharge efficiency, excellent load characteristics, and small electrode expansion during charging. The present invention relates to a negative electrode material, a method for producing the same, and a negative electrode for a lithium secondary battery and a lithium secondary battery using the same.

近年、電子機器の小型化に伴い、高容量の二次電池が必要になってきている。特に、ニッケル・カドミウム、ニッケル・水素電池に比べ、よりエネルギー密度の高い非水溶媒系リチウム二次電池が注目されてきている。従来、電池の高容量は広く検討されていたが、電池に要求される性能も高度化してきており、更なる高容量化が必要とされている。   In recent years, with the miniaturization of electronic devices, high-capacity secondary batteries have become necessary. In particular, non-aqueous solvent lithium secondary batteries with higher energy density have attracted attention as compared with nickel-cadmium and nickel-hydrogen batteries. Conventionally, the high capacity of the battery has been widely studied, but the performance required for the battery has also been advanced, and a further increase in capacity is required.

リチウム二次電池の負極材料として、これまで金属や黒鉛などの粒子状材料が検討されている。特に、電池の更なる高容量化に伴い、より高い電極密度(例えば、1.6g/cm3以上)で使える負極材料が望まれている。 Particulate materials such as metals and graphite have been studied as negative electrode materials for lithium secondary batteries. In particular, as the capacity of batteries further increases, negative electrode materials that can be used at higher electrode densities (for example, 1.6 g / cm 3 or more) are desired.

高容量化に優れた負極材料として黒鉛負極粒子が知られている。しかし、黒鉛負極粒子は、完全な球状ではなく鱗片状などの扁平形状粒子であり、さらに、扁平な粒子内では黒鉛質の結晶面方向が、粒子の扁平形状と平行になっている場合が多い。このような場合に、より高い電極密度にするためにプレス圧を上げていくと、扁平な黒鉛負極粒子が集電体に対して平行に配向し易くなり、電極全体の配向が揃った状態となり、リチウムとの黒鉛層間化合物の生成により電極が膨張し易い。電極が膨張すると、電極活物質の単位体積当たりに充填できる活物質量が減少し、結果として電池容量が低下するという課題がある。   Graphite negative electrode particles are known as a negative electrode material excellent in capacity increase. However, the graphite negative electrode particle is not a perfect spherical shape but a flat shape particle such as a scaly shape. Further, in the flat particle, the graphite crystal plane direction is often parallel to the flat shape of the particle. . In such a case, if the press pressure is increased in order to obtain a higher electrode density, the flat graphite negative electrode particles are easily aligned in parallel to the current collector, and the entire electrode is aligned. The electrode tends to expand due to the formation of a graphite intercalation compound with lithium. When the electrode expands, there is a problem in that the amount of active material that can be filled per unit volume of the electrode active material decreases, and as a result, the battery capacity decreases.

こうした課題を解決するために、黒鉛とピッチ等とを混合し、焼成した複合化炭素材料を用いることが検討されている。
特許文献1には、高結晶な鱗片状天然黒鉛やキッシュグラファイトとピッチや樹脂とを混合、粉砕、炭化、黒鉛化し複合化することにより、天然黒鉛の欠点を改善し、初期の充放電効率が高く、サイクル特性に優れ、高容量で塗工性に優れた、黒鉛負極材料を得ることが記載されている。
In order to solve these problems, it has been studied to use a composite carbon material obtained by mixing graphite and pitch and firing.
In Patent Document 1, a high-crystalline scale-like natural graphite or quiche graphite and pitch or resin are mixed, pulverized, carbonized, graphitized and combined to improve the defects of natural graphite, and the initial charge / discharge efficiency is improved. It is described that a graphite negative electrode material that is high, excellent in cycle characteristics, high capacity, and excellent coatability is obtained.

また、特許文献2には、配向性の良い黒鉛粉末と軟化点が250〜400℃のメソフェーズピッチとを溶融混合した後、粉砕、分級、焼成、黒鉛化し複合化することにより、黒鉛の高容量特性と、メソフェーズピッチの良好なハンドリング性等の両方の特性を取り入れて、高い電池効率で且つ高嵩密度の負極材料を得ることが記載されている。黒鉛粉末としては、天然黒鉛、人造黒鉛などが用いられているが、アスペクト比などで表わされる黒鉛粒子の形状については特に着目していなかった。   Patent Document 2 discloses that high-capacitance of graphite is obtained by melting and mixing a graphite powder with good orientation and a mesophase pitch having a softening point of 250 to 400 ° C., and then comminuting and comminuting. It is described that a negative electrode material having high battery efficiency and high bulk density can be obtained by incorporating both characteristics such as good characteristics and good handleability of mesophase pitch. As the graphite powder, natural graphite, artificial graphite and the like are used, but no particular attention has been paid to the shape of the graphite particles represented by the aspect ratio.

また、より高い電極密度で使用する場合の別の課題として、黒鉛負極材料が壊れて、電解液との反応性の高い面がより多く露出するために、電解液との反応が大きくなり充放電効率が低下し易くなることが挙げられる。   Another problem when using higher electrode density is that the graphite negative electrode material is broken and more reactive surfaces with the electrolyte are exposed, resulting in greater reaction with the electrolyte and charge / discharge. It is mentioned that efficiency becomes easy to fall.

さらに、より高い電極密度で使用する場合には、粒子がつぶれ易いために、電極内でのリチウムイオンの通り道である空間が減少し、リチウムイオンの通過性も悪くなり、負荷特性が悪くなる。こうした課題は、粒子が扁平であるほど起こり易い。   Furthermore, when the electrode is used at a higher electrode density, the particles are liable to be crushed, so that the space for lithium ions in the electrode is reduced, the lithium ion permeability is deteriorated, and the load characteristics are deteriorated. Such a problem is more likely to occur as the particles are flatter.

したがって、リチウム二次電池の更なる高容量化においては、活物質の高容量化だけでなく、より高い電極密度で使える負極材料が望まれており、高い電極密度においても、電池充電時の膨張を抑制し、充放電効率を維持し、負荷特性を維持することが強く求められている。   Therefore, in order to further increase the capacity of the lithium secondary battery, not only the capacity of the active material but also a negative electrode material that can be used at a higher electrode density is desired. Even at a high electrode density, expansion during battery charging is desired. There is a strong demand to suppress the above, maintain charge / discharge efficiency, and maintain load characteristics.

これに対して、特許文献3には、ピッチと鱗片状天然黒鉛とを溶融混練し、複合化、メカノケミカル処理を施した後、黒鉛化することで、黒鉛質芯材(A)と黒鉛質被覆材(B)からなる複合粒子の外表面に黒鉛質層(C)が存在し、且つ、結晶性の順が(A)>(B)>(C)である球状または楕円体状の複合質黒鉛材料を得ることで、高密度でも不可逆容量の増大や、ハイレート特性、サイクル特性の低下を改善することが記載されている。また、メカノケミカル処理により黒鉛質層(C)を形成することで電解液との反応性を制御し、且つ、黒鉛質芯材(A)に黒鉛質被覆材(B)を緻密に含有することに依って、高密度でも複合粒子が破壊されず、前記の優れた特性が発現することが記載されている。   On the other hand, Patent Document 3 discloses that a graphite core material (A) and a graphite material are obtained by melt-kneading pitch and scale-like natural graphite, compounding and mechanochemical treatment, followed by graphitization. A spherical or ellipsoidal composite in which the graphite layer (C) is present on the outer surface of the composite particles made of the coating material (B) and the order of crystallinity is (A)> (B)> (C) It is described that, by obtaining a graphite material, an increase in irreversible capacity, a high rate characteristic, and a decrease in cycle characteristics can be improved even at a high density. Further, the reactivity with the electrolytic solution is controlled by forming a graphite layer (C) by mechanochemical treatment, and the graphite coating material (B) is densely contained in the graphite core material (A). Therefore, it is described that the composite particles are not broken even at a high density and the above-described excellent characteristics are exhibited.

特開2000−182617号公報JP 2000-182617 A 特開2002−373656号公報JP 2002-373656 A 特開2003−173778号公報JP 2003-173778 A

特許文献1に記載の複合化した黒鉛負極材料は、ピッチ等との複合化の原料として高結晶な鱗片状天然黒鉛等を用いている。鱗片状である為に、電極活物質粒子内で黒鉛が電極面と平行な方向に配向し易い上に、活物質粒子自体も扁平になり易いため、電極の活物質層が配向し易く、このため電池充電時の電極厚み方向の膨張を起こし易かった。また、リチウムイオンの通過性も悪く、電池容量、充放電効率、負荷特性が不十分であった。   The composite graphite negative electrode material described in Patent Document 1 uses highly crystalline scaly natural graphite or the like as a raw material for composite with pitch or the like. Because of the scaly shape, the graphite is easily oriented in the direction parallel to the electrode surface in the electrode active material particles, and the active material particles themselves are also easily flattened. Therefore, it was easy to cause expansion in the electrode thickness direction during battery charging. Moreover, the lithium ion permeability was poor, and the battery capacity, charge / discharge efficiency, and load characteristics were insufficient.

また、特許文献2に記載の黒鉛系負極材料は、通常は扁平である黒鉛をメソフェーズで複合化しているが、黒鉛の扁平度には着目しておらず、特許文献1と同様に、結果として複合化粉体及び電極における黒鉛配向が揃い易く、高い電極密度での電極の膨張抑制という点で不十分であった。   In addition, the graphite-based negative electrode material described in Patent Document 2 is a composite of mesophase, which is usually flat graphite, but does not focus on the flatness of graphite, and as in Patent Document 1, as a result The graphite orientation in the composite powder and the electrode was easy to align, which was insufficient in terms of suppressing the expansion of the electrode at a high electrode density.

一方、特許文献3に記載の技術によれば、前記の様な球状で緻密な硬い材料とすることで、特許文献1,2に記載の技術に比べより高い電極密度での特性が改善されると思われる。   On the other hand, according to the technique described in Patent Document 3, by using the spherical and dense hard material as described above, characteristics at a higher electrode density are improved as compared with the techniques described in Patent Documents 1 and 2. I think that the.

しかしながら、黒鉛質被覆材(B)と一体化しているが故に、外表面の黒鉛質層(C)の厚さをコントロールすることが困難であり、安定した電池特性を発揮し難いという課題があった。また、球状の緻密な硬い材料のみで構成されているが故に、電極中の負極材の充填率を上げ難く、更に高い電極密度にすることが困難であるという課題があった。加えて、工業的生産の観点からは、製造工程が煩雑でコストが高いという課題があった。   However, because it is integrated with the graphite coating material (B), it is difficult to control the thickness of the graphite layer (C) on the outer surface, and it is difficult to exhibit stable battery characteristics. It was. In addition, since it is composed only of a spherical dense hard material, there is a problem that it is difficult to increase the filling rate of the negative electrode material in the electrode, and it is difficult to achieve a higher electrode density. In addition, from the viewpoint of industrial production, there is a problem that the manufacturing process is complicated and the cost is high.

また、低結晶性の表層(C)が芯材から剥離することなく被覆しており、BET比表面積は1m2/g以下が好ましい旨が記載されているが、BET比表面積が小さくなることにより充電時のリチウムの受け入れが悪化し、充電容量が低下するという点で不十分であった。 Further, it is described that the low crystalline surface layer (C) is coated without peeling from the core material, and that the BET specific surface area is preferably 1 m 2 / g or less, but the BET specific surface area is reduced. Lithium acceptance at the time of charging deteriorated, and the charging capacity was insufficient.

本発明は、上記の課題に鑑みて創案されたものである。即ち、本発明は、リチウム二次電池用の黒鉛系負極材料であって、高い電極密度で使用した場合に、放電容量が大きく、充放電効率が高く、負荷特性に優れ、且つ、充電時の電極膨張が小さいリチウム二次電池を得ることができる、優れた負極材料及びそれを製造する方法、並びにそれを用いたリチウム二次電池用負極及びリチウム二次電池を提供することを目的とする。   The present invention has been made in view of the above problems. That is, the present invention is a graphite-based negative electrode material for a lithium secondary battery, and when used at a high electrode density, has a large discharge capacity, high charge / discharge efficiency, excellent load characteristics, and at the time of charging. An object of the present invention is to provide an excellent negative electrode material capable of obtaining a lithium secondary battery with small electrode expansion, a method for producing the same, and a negative electrode for a lithium secondary battery and a lithium secondary battery using the same.

本発明の発明者らは、リチウム二次電池用の黒鉛系負極材料について、鋭意検討を行なった。その結果、所定範囲内のアスペクト比を有する黒鉛質及びそれとは配向性の異なる黒鉛質が複合化した黒鉛複合体粉末と、人造黒鉛粉末とを含有する黒鉛混合粉末を負極材料として用いることで、高い電極密度において、放電容量が大きく、充放電効率が高く、負荷特性に優れ、且つ、充電時の電極膨張が小さい、高性能のリチウム二次電池を安定して効率的に製造できることを見出し、本発明を完成させた。   The inventors of the present invention have intensively studied a graphite-based negative electrode material for a lithium secondary battery. As a result, by using as a negative electrode material a graphite composite powder containing a graphite having an aspect ratio within a predetermined range and a graphite composite powder in which a graphite having a different orientation from the composite is combined, and an artificial graphite powder, It has been found that a high-performance lithium secondary battery can be stably and efficiently manufactured at a high electrode density, with a high discharge capacity, high charge / discharge efficiency, excellent load characteristics, and low electrode expansion during charging. The present invention has been completed.

即ち、本発明の要旨は、アスペクト比が1.2以上、4.0以下である黒鉛質(D)及び前記黒鉛質(D)とは配向性の異なる黒鉛質(E)が複合化した黒鉛複合体粉末(A)と、人造黒鉛粉末(B)とからなる黒鉛複合体混合粉末(C)を備え、前記人造黒鉛粉末(B)は、前記黒鉛質(D)を包含していない単独で作製された人造黒鉛粒子又は前記黒鉛質(D)を含まずに前記黒鉛質(E)のみが粒状化して得られた人造黒鉛粒子の何れかであることを特徴とする、リチウム二次電池用負極材料に存する。 That is, the gist of the present invention is that the graphite (D) having an aspect ratio of 1.2 or more and 4.0 or less and the graphite (E) having a different orientation from the graphite (D) are combined. composite powder and (a), provided with a graphite composite mixture powder consisting of a human granulated graphite powder (B) (C), the artificial graphite powder (B) is not encompass the graphite (D) is alone A lithium secondary battery, characterized in that it is any of the artificial graphite particles produced by the method described above or the artificial graphite particles obtained by granulating only the graphite (E) without containing the graphite (D). It exists in the negative electrode material.

また、本発明の別の要旨は、上述のリチウム二次電池用負極材料の製造方法であって、キノリン不溶分が3重量%以下であるピッチ原料を熱処理して得られた黒鉛結晶前駆体の粉砕物と、アスペクト比が1.2以上、4.0以下であり、タップ密度が0.7g/cm3以上、1.35g/cm3以下である黒鉛質(D)とを混合し、前記黒鉛質(D)と微細化した前記黒鉛結晶前駆体の粒子とを無配向状態で接触したまま固定化する熱処理Aをした後、粉砕し、焼成及び黒鉛化を施す熱処理Bをすることにより、黒鉛複合体混合粉末(C)を作成することを特徴とする、リチウム二次電池用負極材料の製造方法に存する。 Another gist of the present invention is a method for producing the above-described negative electrode material for a lithium secondary battery, comprising a graphite crystal precursor obtained by heat-treating a pitch raw material having a quinoline insoluble content of 3% by weight or less. and pulverized product, an aspect ratio of 1.2 or more and 4.0 or less, a tap density of 0.7 g / cm 3 or more, by mixing graphite and (D) is 1.35 g / cm 3 or less, wherein After heat treatment A for fixing the graphite (D) and the refined particles of the graphite crystal precursor in contact with each other in a non-oriented state, the heat treatment B for pulverizing, firing and graphitizing is performed . The present invention resides in a method for producing a negative electrode material for a lithium secondary battery, wherein the graphite composite mixed powder (C) is prepared .

また、本発明の別の要旨は、
上述のリチウム二次電池用負極材料の製造方法であって、キノリン不溶分が3重量%以下であるピッチ原料と、アスペクト比が1.2以上、4.0以下であり、タップ密度が0.7g/cm3以上、1.35g/cm3以下である黒鉛質(D)とから黒鉛複合体粉末(A)を作製する一方で、ピッチ原料から人造黒鉛粉末(B)を作製し、得られた黒鉛複合体粉末(A)と人造黒鉛粉末(B)とを混合することにより、黒鉛複合体混合粉末(C)を作成することを特徴とする、リチウム二次電池用負極材料の製造方法に存する。
Another gist of the present invention is as follows.
A method for producing a negative electrode material for a lithium secondary battery as described above, wherein a pitch raw material having a quinoline insoluble content of 3 wt% or less, an aspect ratio of 1.2 or more and 4.0 or less, and a tap density of 0.00. While producing a graphite composite powder (A) from a graphite (D) of 7 g / cm 3 or more and 1.35 g / cm 3 or less, an artificial graphite powder (B) is produced from a pitch raw material. A method for producing a negative electrode material for a lithium secondary battery, comprising: preparing a graphite composite mixed powder (C) by mixing the graphite composite powder (A) and the artificial graphite powder (B). Exist.

また、本発明の別の要旨は、集電体と、該集電体上に形成された活物質層とを備えると共に、該活物質層が、上述のリチウム二次電池用負極材料を含有することを特徴とする、リチウム二次電池用負極に存する。   Another gist of the present invention includes a current collector and an active material layer formed on the current collector, and the active material layer contains the above-described negative electrode material for a lithium secondary battery. It exists in the negative electrode for lithium secondary batteries characterized by the above-mentioned.

また、本発明の別の要旨は、集電体と、該集電体上に形成された活物質層とを備えると共に、該活物質層が、上述の製造方法によって製造されたリチウム二次電池用負極材料を含有することを特徴とする、リチウム二次電池用負極に存する。   Another gist of the present invention is a lithium secondary battery comprising a current collector and an active material layer formed on the current collector, wherein the active material layer is produced by the above-described production method. The negative electrode for lithium secondary batteries is characterized by containing a negative electrode material for a battery.

また、本発明の別の要旨は、リチウムイオンを吸蔵・放出可能な正極及び負極と、電解質とを備えると共に、該負極が、上述のリチウム二次電池用負極であることを特徴とする、リチウム二次電池に存する。   Another aspect of the present invention is a lithium battery comprising a positive electrode and a negative electrode capable of inserting and extracting lithium ions, and an electrolyte, wherein the negative electrode is the above-described negative electrode for a lithium secondary battery. It exists in a secondary battery.

本発明のリチウム二次電池用負極材料によれば、高い電極密度(例えば1.6g/cm3以上)で使用した場合に、放電容量が大きく、充放電効率が高く、負荷特性に優れ、且つ、充電時の電極膨張が小さい、優れたリチウム二次電池を実現することができる。
また、本発明のリチウム二次電池用負極材料の製造方法によれば、上記リチウム二次電池用負極材料を効率よく安定して製造することができるため、工業上非常に有用である。
According to the negative electrode material for a lithium secondary battery of the present invention, when used at a high electrode density (for example, 1.6 g / cm 3 or more), the discharge capacity is large, the charge / discharge efficiency is high, the load characteristics are excellent, and An excellent lithium secondary battery with small electrode expansion during charging can be realized.
In addition, according to the method for producing a negative electrode material for a lithium secondary battery of the present invention, the negative electrode material for a lithium secondary battery can be efficiently and stably produced, which is very useful industrially.

以下、本発明を詳細に説明するが、本発明は以下の説明に制限されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施することができる。
[1.リチウム二次電池用負極材料]
Hereinafter, the present invention will be described in detail, but the present invention is not limited to the following description, and can be arbitrarily modified and implemented without departing from the gist of the present invention.
[1. Negative electrode material for lithium secondary battery]

本発明のリチウム二次電池用負極材料は、アスペクト比が1.2以上、4.0以下である黒鉛質(D)及び前記黒鉛質(D)とは配向性の異なる黒鉛質(E)が複合化した黒鉛複合体粉末(A)と、人造黒鉛粉末(B)とからなる黒鉛複合体混合粉末(C)、又は、この黒鉛複合体混合粉末(C)と天然黒鉛粉末(G)からなる黒鉛複合体混合粉末(F)を備えることを特徴とする。   The negative electrode material for a lithium secondary battery of the present invention has a graphite (D) having an aspect ratio of 1.2 or more and 4.0 or less and a graphite (E) having a different orientation from the graphite (D). Graphite composite mixed powder (C) composed of composite graphite composite powder (A) and artificial graphite powder (B), or composed of this graphite composite mixed powder (C) and natural graphite powder (G) A graphite composite mixed powder (F) is provided.

電池の高容量は、高結晶性を有する黒鉛質(D)、(E)、人造黒鉛粉末(B)により達せられた。黒鉛質(E)と複合化した黒鉛質(D)、及び人造黒鉛粉末(B)が共に存在することで、電池効率の向上と充電時の電極膨張の抑制を同時に実現することが可能になった。さらに、規定のアスペクト比を有する黒鉛質(D)を複合化することで、規定した黒鉛複合体粉末(A)を作製することが可能となり、高い負荷特性を得られた。
以下、これら(A)〜(G)について説明する。
The high capacity of the battery was achieved by graphite (D), (E) and artificial graphite powder (B) having high crystallinity. The presence of both graphite (D) combined with graphite (E) and artificial graphite powder (B) makes it possible to simultaneously improve battery efficiency and suppress electrode expansion during charging. It was. Furthermore, by combining the graphite (D) having a specified aspect ratio, it was possible to produce a specified graphite composite powder (A), and high load characteristics were obtained.
Hereinafter, (A) to (G) will be described.

〔1−1.黒鉛質(D)〕
黒鉛質(D)は、後述の配向性の規定を満たすものであれば、その種類は特に制限されない。例としては、天然黒鉛、人造黒鉛が挙げられる。天然黒鉛としては、鱗状黒鉛、鱗片状黒鉛、土壌黒鉛等が挙げられる。人造黒鉛としては、ピッチ原料を高温熱処理して製造した、メソカーボンマイクロビーズ、炭素繊維、コークス、ニードルコークス、高密度炭素材料等の黒鉛質粒子が挙げられる。
[1-1. Graphite (D)]
The type of graphite (D) is not particularly limited as long as it satisfies the orientation requirements described later. Examples include natural graphite and artificial graphite. Examples of natural graphite include scaly graphite, scaly graphite, and soil graphite. Examples of the artificial graphite include graphite particles such as mesocarbon microbeads, carbon fibers, coke, needle coke, and high-density carbon material, which are produced by heat-treating a pitch raw material.

黒鉛質(D)の形状も特に制限されない。例としては、塊状、球状、楕円状が挙げられる。但し、粒子が球に近い形状であることが好ましい。具体的には、そのアスペクト比が以下の規定を満たすことを要する。   The shape of the graphite (D) is not particularly limited. Examples include lumps, spheres, and ellipses. However, it is preferable that the particles have a shape close to a sphere. Specifically, the aspect ratio needs to satisfy the following regulations.

<アスペクト比>
黒鉛質(D)のアスペクト比は、通常1.2以上、好ましくは1.5以上、また、通常4.0以下、好ましくは3.0以下の範囲である。アスペクト比がこの範囲を下回ると、異方性が小さいため球形や立方体に近い形状になり、プレス後の電極の充填密度を上げ難い。一方、前記範囲を上回ると、活物質が電極表面で配向し易くなり、高電極密度での負荷特性を高くし難い。又は、電池を作製したときの電池充電時の電極膨張が大きくなってしまい、電極の単位体積当たりの電池容量を大きくしにくい。
<Aspect ratio>
The aspect ratio of the graphite (D) is usually 1.2 or more, preferably 1.5 or more, and usually 4.0 or less, preferably 3.0 or less. If the aspect ratio is less than this range, the anisotropy is small, so that the shape is close to a sphere or a cube, and it is difficult to increase the packing density of the electrode after pressing. On the other hand, when the above range is exceeded, the active material is easily oriented on the electrode surface, and it is difficult to increase the load characteristics at a high electrode density. Alternatively, electrode expansion during battery charging when the battery is manufactured increases, and it is difficult to increase the battery capacity per unit volume of the electrode.

なお、黒鉛質(D)のアスペクト比の測定は、負極製造前の負極材料については、負極材料粉末を平板上に分散し、そのまま樹脂包埋したものを用いて、また、負極材料を用いて製造された負極については、その負極を用いて、以下の手順で行なうことができる。   In addition, the measurement of the aspect ratio of the graphite (D) is carried out using a negative electrode material before negative electrode production using a negative electrode material powder dispersed on a flat plate and directly embedded in a resin, or using a negative electrode material. About the manufactured negative electrode, it can carry out in the following procedures using the negative electrode.

負極材料の樹脂包埋物又は負極を、平板に対して平行に研磨して、その断面写真を撮影し、撮影された写真の画像解析により、黒鉛質(D)断面の長径を50点以上測定する。また、負極材料の樹脂包埋物又は負極を、平板に対して垂直に研磨に研磨して、その断面写真を撮影し、撮影された写真の画像解析により、黒鉛質(D)断面の短径(粒子の厚み)を50点以上測定する。測定された長径及び短径のそれぞれについて平均値を求め、これら平均長径と平均短径との比を、アスペクト比(長径/短径)とする。樹脂包埋又は極板化した粒子は、通常は平板に対して粒子の厚み方向が垂直になるように並ぶ傾向があることから、上記の方法により、粒子に特徴的な長径と短径を得ることが出来る。   The resin embedding of the negative electrode material or the negative electrode is polished parallel to the flat plate, a cross-sectional photograph thereof is taken, and the major axis of the graphite (D) cross section is measured by 50 or more points by image analysis of the photographed photograph. To do. In addition, the resin-embedded material of the negative electrode material or the negative electrode is polished and polished perpendicularly to the flat plate, a cross-sectional photograph thereof is taken, and the short diameter of the graphite (D) cross-section is analyzed by image analysis of the photographed photograph. 50 or more (particle thickness) is measured. An average value is obtained for each of the measured major axis and minor axis, and the ratio of the average major axis to the average minor axis is defined as an aspect ratio (major axis / minor axis). The particles embedded in the resin or made into an electrode plate usually tend to be aligned so that the thickness direction of the particle is perpendicular to the flat plate, and thus the major axis and minor axis characteristic of the particle are obtained by the above method. I can do it.

なお、粒子の断面写真は、一般的には、走査型電子顕微鏡(Scanning Electron Microscope:SEM)を用いて撮影する。但し、SEM写真では黒鉛質(D)の形状を特定できない場合には、偏光顕微鏡又は透過型電子顕微鏡(Transmission Electron Microscope:TEM)を用いて、上述と同様に断面写真を撮影する。黒鉛質(D)は黒鉛質(E)と配向性が異なるので、偏光顕微鏡写真又はTEM写真を用いて配向性を確認することにより、黒鉛質(D)の形状を特定することができる。よって、上述と同様の画像解析を行なうことにより、アスペクト比を求めることができる。   In addition, generally the cross-sectional photograph of particle | grains is image | photographed using a scanning electron microscope (Scanning Electron Microscope: SEM). However, when the shape of the graphite (D) cannot be specified by the SEM photograph, a sectional photograph is taken in the same manner as described above using a polarizing microscope or a transmission electron microscope (TEM). Since the graphite (D) is different in orientation from the graphite (E), the shape of the graphite (D) can be specified by confirming the orientation using a polarizing microscope photograph or a TEM photograph. Therefore, the aspect ratio can be obtained by performing the same image analysis as described above.

上記範囲のアスペクト比を有する黒鉛質(D)を得る方法は、特に限定されないが、例えば、衝撃力を主体に粒子の相互作用も含めた圧縮、摩擦、せん断力等の機械的作用を繰り返し粒子に与える装置を用いることが好ましい。具体的には、ケーシング内部に多数のブレードを設置したローターを有し、そのローターが高速回転することによって、内部に導入された炭素材料に対して衝撃圧縮、摩擦、せん断力等の機械的作用を与え、表面処理を行なう装置が好ましい。また、炭素材料を循環させることによって機械的作用を繰り返して与える機構を有するものであるのが好ましい。好ましい装置の一例として、(株)奈良機械製作所製のハイブリダイゼーションシステムを挙げることができる。   The method for obtaining the graphite (D) having an aspect ratio in the above range is not particularly limited. For example, particles having repeated mechanical actions such as compression, friction, shearing force, etc., including interaction of particles mainly with impact force. It is preferable to use an apparatus given in the above. Specifically, it has a rotor with a large number of blades installed inside the casing, and when the rotor rotates at high speed, mechanical action such as impact compression, friction, shearing force, etc. is applied to the carbon material introduced inside. An apparatus that provides a surface treatment is preferable. Moreover, it is preferable to have a mechanism that repeatedly gives mechanical action by circulating the carbon material. An example of a preferred apparatus is a hybridization system manufactured by Nara Machinery Co., Ltd.

<配向性>
黒鉛質(D)は、例えば、高結晶性の黒鉛で、もともと配向面が単一であったものを、力学的エネルギー処理などにより一部を異なる配向性を持つ状態にしたものを用いる。
黒鉛質(D)の配向性を確認する手法としては、偏光顕微鏡による観察があげられる。これは、1つの光源から出た光が結晶組織方向が異方な異方体に入ると、光は限られた振動方向に変化することを利用するものであり、この原理により同一粒子内において単色又は数色が観察され、その違いにより粒子の配向性を観察することができる。
<Orientation>
As the graphite (D), for example, highly crystalline graphite, which originally has a single orientation plane, is partially made into a state having different orientations by mechanical energy treatment or the like.
As a method for confirming the orientation of the graphite (D), observation with a polarizing microscope can be given. This utilizes the fact that when light emitted from one light source enters an anisotropic body with an anisotropic crystal structure direction, the light changes in a limited vibration direction. A single color or several colors are observed, and the orientation of the particles can be observed due to the difference.

<タップ密度>
黒鉛質(D)のタップ密度は、特に制限されないが、通常0.70g/cm3以上、好ましくは0.80g/cm3以上、更に好ましくは0.90g/cm3以上、また、通常1.35g/cm3以下、好ましくは1.20g/cm3以下の範囲である。タップ密度がこの範囲を下回ると、活物質の充填密度を上げ難く、高容量の電池を得難い。一方、この範囲を上回ると、電極中の気孔量が少なくなり、好ましい電池特性を得難い。
<Tap density>
The tap density of the graphite (D) is not particularly limited, but is usually 0.70 g / cm 3 or more, preferably 0.80 g / cm 3 or more, more preferably 0.90 g / cm 3 or more, and usually 1. 35 g / cm 3 or less, preferably 1.20 g / cm 3 or less. When the tap density is below this range, it is difficult to increase the packing density of the active material and it is difficult to obtain a high-capacity battery. On the other hand, if it exceeds this range, the amount of pores in the electrode decreases, and it is difficult to obtain favorable battery characteristics.

タップ密度としては、例えば、目開き300μmの篩を使用し、20cm3のタッピングセルに測定対象(ここでは黒鉛質(D))を落下させてセルを満杯に充填した後、粉体密度測定器(例えば、セイシン企業社製タップデンサー)を用いてストローク長10mmのタッピングを1000回行ない、その時のタッピング密度を測定した値を用いることができる。 As the tap density, for example, a sieve having an opening of 300 μm is used, and after a measurement object (here, graphite (D)) is dropped into a 20 cm 3 tapping cell and the cell is fully filled, a powder density measuring device A value obtained by performing tapping with a stroke length of 10 mm 1000 times (for example, a tap denser manufactured by Seishin Enterprise Co., Ltd.) and measuring the tapping density at that time can be used.

<BET比表面積>
黒鉛質(D)のBET比表面積は、特に制限されないが、通常は3.0m2/g以上、好ましくは4.0m2/g以上、また、通常は10.0m2/g以下、好ましくは8.0m2/g以下の範囲である。BET比表面積の値がこの範囲の下限を下回ると、負極材料に用いた場合、電池の充電時にリチウムの受け入れ性が悪くなり易く、リチウムが電極表面で析出し易くなるため、安全上好ましくない。一方、BET比表面積の値がこの範囲の上限を上回ると、負極材料とした時に電解液との反応性が増加し、ガス発生が多くなり易く、好ましい電池が得られ難い。
<BET specific surface area>
The BET specific surface area of the graphite (D) is not particularly limited, but is usually 3.0 m 2 / g or more, preferably 4.0 m 2 / g or more, and usually 10.0 m 2 / g or less, preferably The range is 8.0 m 2 / g or less. When the value of the BET specific surface area is less than the lower limit of this range, when used as a negative electrode material, the acceptability of lithium tends to deteriorate during battery charging, and lithium tends to precipitate on the electrode surface, which is not preferable for safety. On the other hand, if the value of the BET specific surface area exceeds the upper limit of this range, the reactivity with the electrolytic solution increases when the negative electrode material is formed, gas generation tends to increase, and a preferable battery is difficult to obtain.

BET比表面積としては、表面積計(例えば、大倉理研製全自動表面積測定装置)を用い、測定対象(ここでは黒鉛質(D))に対して窒素流通下350℃で15分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用い、ガス流動法による窒素吸着BET1点法によって測定した値を用いることができる。   As a BET specific surface area, a surface area meter (for example, a fully automatic surface area measuring device manufactured by Ritsu Okura) is used, and preliminary drying is performed at 350 ° C. for 15 minutes under a nitrogen flow with respect to a measurement target (here, graphite (D)). Thereafter, a value measured by a nitrogen adsorption BET one-point method using a gas flow method can be used using a nitrogen helium mixed gas that is accurately adjusted so that the relative pressure value of nitrogen with respect to atmospheric pressure is 0.3.

<体積基準平均粒径>
黒鉛質(D)の体積基準平均粒径は、特に制限されないが、通常1.0μm以上、好ましくは6.0μm以上、また、通常60μm以下、好ましくは30μm以下の範囲である。体積基準平均粒径がこの範囲を下回ると、黒鉛質(D)が凝集し易く、後述する製造過程において黒鉛結晶性前駆体との混合が困難となってしまい、得られる黒鉛複合体粉末(A)が不均質なものになり易い。一方、体積基準平均粒径がこの範囲を上回ると、負極材料として塗布により電極を製造する時に塗工むらが生じ易い。
<Volume standard average particle size>
The volume-based average particle diameter of the graphite (D) is not particularly limited, but is usually 1.0 μm or more, preferably 6.0 μm or more, and usually 60 μm or less, preferably 30 μm or less. If the volume-based average particle size is below this range, the graphite (D) is likely to aggregate, and it becomes difficult to mix with the graphite crystalline precursor in the production process described later, and the resulting graphite composite powder (A ) Tends to be inhomogeneous. On the other hand, if the volume-based average particle diameter exceeds this range, uneven coating tends to occur when an electrode is produced by coating as a negative electrode material.

体積基準平均粒径としては、測定対象(ここでは黒鉛質(D))に界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの2体積%水溶液(約1ml)を混合し、イオン交換水を分散媒としてレーザー回折式粒度分布計(例えば、堀場製作所社製LA−700)にて体積基準の平均粒径(メジアン径)を測定した値を用いることができる。   As the volume-based average particle size, a 2% by volume aqueous solution (about 1 ml) of polyoxyethylene (20) sorbitan monolaurate as a surfactant is mixed with a measurement target (here, graphite (D)), and ion exchange is performed. A value obtained by measuring a volume-based average particle diameter (median diameter) with a laser diffraction particle size distribution meter (for example, LA-700 manufactured by Horiba, Ltd.) using water as a dispersion medium can be used.

<面間隔等>
X線回折により測定される黒鉛質(D)の(002)面の面間隔d002は、特に制限されないが、通常0.3360nm以下、好ましくは0.3358nm以下の範囲である。面間隔d002の値がこの範囲を上回る場合、即ち、結晶性が劣る場合には、電極を製造したときに活物質の単位重量当たりの放電容量が小さくなり易い。一方、前記の面間隔d002の下限は、理論的限界として通常0.3354nm以上である。
<Surface spacing, etc.>
Plane spacing d 002 of (002) plane graphite measured by X-ray diffraction (D) is not particularly limited, normally less than 0.3360 nm, preferably in the range of less 0.3358Nm. When the value of the interplanar distance d 002 exceeds this range, that is, when the crystallinity is inferior, the discharge capacity per unit weight of the active material tends to be small when the electrode is manufactured. On the other hand, the lower limit of the interplanar spacing d002 is usually 0.3354 nm or more as a theoretical limit.

また、X線回折により測定される黒鉛質(D)のc軸方向の結晶子の大きさLc004は、特に制限されないが、通常90nm以上、好ましくは100nm以上の範囲である。結晶子の大きさLc004がこの範囲を下回ると、電極を製造したときに活物質重量当たりの放電容量が小さくなり易い。 Further, the crystallite size Lc 004 in the c-axis direction of the graphite (D) measured by X-ray diffraction is not particularly limited, but is usually in the range of 90 nm or more, preferably 100 nm or more. If the crystallite size Lc 004 is below this range, the discharge capacity per active material weight tends to be small when the electrode is manufactured.

上記のX線回折により測定される面間隔d002及び結晶子の大きさLc004としては、炭素材料学会の学振法に従って測定される値を用いることができる。なお、学振法においては、100nm(1000Å)を超える値は区別されず、全て「>1000(Å)」と記述される。 As the interplanar spacing d 002 and the crystallite size Lc 004 measured by the above X-ray diffraction, values measured in accordance with the Gakushin method of the Carbon Materials Society of Japan can be used. In the Gakushin method, values exceeding 100 nm (1000 Å) are not distinguished and are all described as “> 1000 (Å)”.

〔1−2.黒鉛質(E)〕
黒鉛質(E)は、黒鉛質(D)と配向性が異なるものであれば、その種類は特に制限されない。例としては、ピッチ原料を高温熱処理して製造した人造黒鉛などが挙げられる。
[1-2. Graphite (E)]
The type of graphite (E) is not particularly limited as long as the orientation is different from that of graphite (D). As an example, artificial graphite produced by high-temperature heat treatment of pitch raw material can be cited.

<配向性>
黒鉛質(E)は、黒鉛質(D)と配向性が異なる。「配向性が異なる」とは、偏光顕微鏡で粉末を観察した際に、光学的異方性組織の異方性単位のパターン、即ち、異方性単位の大きさ、方向、数等を目視し、対比した場合に、それらの大きさ、方向、数等のうち少なくとも何れかが異なることをいう。例えば、黒鉛質(D)及び黒鉛質(E)のうち、一方の黒鉛質が一方向への結晶方向性を有し、他方の黒鉛質がランダムな結晶方向性を有する場合や、黒鉛質(D)及び黒鉛質(E)がともに一方向への結晶方向性を有し、その方向性が異なっている場合などが挙げられる。
なお、黒鉛質(D)及び黒鉛質(E)の一方又は双方が、単一の結晶ではなく、複数の結晶の集合体である場合には、集合体の単位を1領域として、その光学的異方性組織の異方性単位の集合パターンを対比すればよい。
<Orientation>
Graphite (E) is different in orientation from graphite (D). “Different orientation” means that when the powder is observed with a polarizing microscope, the pattern of the anisotropic unit of the optically anisotropic structure, that is, the size, direction, number, etc. of the anisotropic unit is visually observed. When compared, it means that at least one of the size, direction, number, and the like is different. For example, among graphite (D) and graphite (E), when one graphite has crystal orientation in one direction and the other graphite has random crystal orientation, For example, D) and graphite (E) both have crystal orientation in one direction, and the directions are different.
When one or both of the graphite (D) and the graphite (E) is not a single crystal but an aggregate of a plurality of crystals, the unit of the aggregate is defined as one region, and the optical What is necessary is just to contrast the aggregate patterns of anisotropic units of anisotropic texture.

具体的に、黒鉛質(E)の配向性を確認する手法としては、上記の黒鉛質(D)の場合と同様の手法を用いることができる。   Specifically, as a method for confirming the orientation of the graphite (E), the same method as in the case of the graphite (D) can be used.

<面間隔>
X線回折により測定される黒鉛質(E)の(002)面の面間隔d002は、特に制限されないが、通常0.3360nm以下、好ましくは0.3358nm以下の範囲である。面間隔d002の値がこの範囲を上回る場合、即ち、結晶性が劣る場合には、電極を製造したときに活物質の単位重量当たりの放電容量が小さくなり易い。一方、前記の面間隔d002の下限は、理論的限界として通常0.3354nm以上である。面間隔d002の測定は、上記の黒鉛質(D)の場合と同様の手法で行なう。
<Surface spacing>
Plane spacing d 002 of (002) plane graphite measured by X-ray diffraction (E) is not particularly limited, normally less than 0.3360 nm, preferably in the range of less 0.3358Nm. When the value of the interplanar distance d 002 exceeds this range, that is, when the crystallinity is inferior, the discharge capacity per unit weight of the active material tends to be small when the electrode is manufactured. Meanwhile, the lower limit of the surface spacing d 002 of, as a theoretical limit is usually 0.3354nm or more. The interplanar spacing d002 is measured by the same method as in the case of the graphite (D).

また、X線回折により測定される黒鉛質(E)のc軸方向の結晶子の大きさLc004は、特に制限されないが、通常90nm以上、好ましくは100nm以上である。結晶子の大きさLc004がこの範囲を下回ると、電極を製造したときに活物質重量当たりの放電容量が小さくなり易い。結晶子の大きさLc004の測定は、上記の黒鉛質(D)の場合と同様の手法で行なう。 Further, the crystallite size Lc 004 in the c-axis direction of the graphite (E) measured by X-ray diffraction is not particularly limited, but is usually 90 nm or more, preferably 100 nm or more. If the crystallite size Lc004 is below this range, the discharge capacity per active material weight tends to be small when an electrode is manufactured. The crystallite size Lc 004 is measured by the same method as in the case of the graphite (D).

〔1−3.黒鉛複合体粉末(A)〕
黒鉛複合体粉末(A)は、上述の黒鉛質(D)と黒鉛質(E)が複合化したものである。複合化とは、黒鉛質(E)が黒鉛質(D)を被覆及び/又は結合している状態であることをさす。
[1-3. Graphite composite powder (A)]
The graphite composite powder (A) is a composite of the above-mentioned graphite (D) and graphite (E). Composite means that graphite (E) covers and / or bonds graphite (D).

<複合の形態>
黒鉛複合体粉末(A)における黒鉛質(D)と黒鉛質(E)の複合化の形態は、特に制限されないが、具体的には以下の形態が挙げられる。
I)黒鉛質(D)の表面全体又は一部が黒鉛質(E)で被覆された形態。
II)黒鉛質(D)の表面全体又は一部に黒鉛質(E)が結着し、2個以上の黒鉛質(D)と黒鉛質(E)とが複合化した形態。
III)上記I)及びII)が任意の割合で混合した形態。
<Composite form>
The form of the composite of the graphite (D) and the graphite (E) in the graphite composite powder (A) is not particularly limited, but specific examples include the following forms.
I) A form in which the entire surface or a part of the graphite (D) is coated with the graphite (E).
II) A form in which graphite (E) is bound to the whole or part of the surface of graphite (D), and two or more graphites (D) and graphite (E) are combined.
III) A form in which the above I) and II) are mixed in an arbitrary ratio.

<形状>
黒鉛複合体粉末(A)の形状は特に制限されない。例としては、球状、楕円状、塊状等が挙げられる。但し、粒子が球に近い形状であることが好ましい。具体的には、そのアスペクト比が以下の規定を満たすことが好ましい。
<Shape>
The shape of the graphite composite powder (A) is not particularly limited. Examples include a spherical shape, an elliptical shape, a massive shape, and the like. However, it is preferable that the particles have a shape close to a sphere. Specifically, it is preferable that the aspect ratio satisfies the following regulations.

<アスペクト比>
黒鉛複合体粉末(A)のアスペクト比は、特に制限されないが、通常1.1以上、好ましくは1.3以上、また、通常4.0以下、好ましくは3.0以下の範囲である。アスペクト比がこの範囲を下回ると、異方性が小さいため球形や立方体に近い形状になり、プレス後の電極の充填密度を上げ難い。一方、前記範囲を上回ると、活物質が電極表面で配向し易くなり、高電極密度での負荷特性を高くし難い。又は、電池を作製したときの電池充電時の電極膨張が大きくなり、電極の単位体積当たりの電池容量を大きくしにくい。
<Aspect ratio>
The aspect ratio of the graphite composite powder (A) is not particularly limited, but is usually 1.1 or more, preferably 1.3 or more, and usually 4.0 or less, preferably 3.0 or less. If the aspect ratio is less than this range, the anisotropy is small, so that the shape is close to a sphere or a cube, and it is difficult to increase the packing density of the electrode after pressing. On the other hand, when the above range is exceeded, the active material is easily oriented on the electrode surface, and it is difficult to increase the load characteristics at a high electrode density. Alternatively, electrode expansion during battery charging when the battery is manufactured increases, and it is difficult to increase the battery capacity per unit volume of the electrode.

黒鉛複合体粉末(A)のアスペクト比の測定は、黒鉛質(D)の場合と同様に、以下の手順で行なうことができる。
負極材料の樹脂包埋物又は負極を、平板に対して平行に研磨して、その断面写真を撮影し、撮影された写真の画像解析により、黒鉛複合体粉末(A)断面の長径を50点以上測定する。また、負極材料の樹脂包埋物又は負極を、平板に対して垂直に研磨に研磨して、その断面写真を撮影し、撮影された写真の画像解析により、黒鉛複合体粉末(A)断面の短径(粒子の厚み)を50点以上測定する。測定された長径及び短径のそれぞれについて平均値を求め、これら平均長径と平均短径との比をアスペクト比(長径/短径)とする。
なお、粒子の断面写真はSEM,偏光顕微鏡,TEMの何れにより撮影してもよいが、黒鉛複合体粉末(A)の場合、通常はSEMを用いて撮影する。
The aspect ratio of the graphite composite powder (A) can be measured by the following procedure as in the case of the graphite (D).
The resin embedding of the negative electrode material or the negative electrode is polished in parallel to the flat plate, a cross-sectional photograph thereof is taken, and the major axis of the cross section of the graphite composite powder (A) is determined by image analysis of the photographed photograph. Measure above. Also, the resin-embedded material of the negative electrode material or the negative electrode is polished and polished perpendicularly to the flat plate, a cross-sectional photograph thereof is taken, and an analysis of the photographed photograph shows that the cross section of the graphite composite powder (A) Measure 50 or more of the minor diameter (particle thickness). An average value is obtained for each of the measured major axis and minor axis, and the ratio of the average major axis to the average minor axis is defined as an aspect ratio (major axis / minor axis).
In addition, although the cross-sectional photograph of particle | grains may be image | photographed with any of SEM, a polarizing microscope, and TEM, in the case of graphite composite powder (A), it image | photographs normally using SEM.

<タップ密度>
黒鉛複合体粉末(A)のタップ密度は、特に制限されないが、通常0.80g/cm3以上、中でも0.90g/cm3以上、また、通常1.35g/cm3以下、中でも1.30g/cm3以下の範囲が好ましい。タップ密度がこの範囲を下回ると、活物質の充填密度が上がり難く、高容量の電池が得られ難い。一方、この範囲を上回ると、電極中の気孔量が少なくなり、好ましい電池特性が得られ難い。タップ密度の測定は、上記の黒鉛質(D)の場合と同様の手法で行なう。
<Tap density>
The tap density of the graphite composite powder (A) is not particularly limited, but is usually 0.80 g / cm 3 or more, especially 0.90 g / cm 3 or more, and usually 1.35 g / cm 3 or less, especially 1.30 g. A range of not more than / cm 3 is preferable. When the tap density is below this range, the packing density of the active material is difficult to increase, and it is difficult to obtain a high-capacity battery. On the other hand, if it exceeds this range, the amount of pores in the electrode decreases, and it is difficult to obtain favorable battery characteristics. The tap density is measured by the same method as in the case of the graphite (D).

<BET比表面積>
黒鉛複合体粉末(A)のBET比表面積は、特に制限されないが、通常0.8m2/g以上、中でも2.0m2/g以上、また、通常5.5m2/g以下、中でも4.0m2/g以下の範囲が好ましい。BET比表面積がこの範囲の下限を下回ると、充電時にリチウムの受け入れ性が悪くなり易く、リチウムが電極表面で析出し易くなるため、安全上好ましくない。一方、この範囲の上限を上回ると、負極と電解液との反応性が増加し、ガス発生が多くなり易く、好ましい電池が得られ難い。BET比表面積の測定は、上記の黒鉛質(D)の場合と同様の手法で行なう。
<BET specific surface area>
The BET specific surface area of the graphite composite powder (A) is not particularly limited, but is usually 0.8 m 2 / g or more, especially 2.0 m 2 / g or more, and usually 5.5 m 2 / g or less, especially 4. A range of 0 m 2 / g or less is preferred. If the BET specific surface area is less than the lower limit of this range, the lithium acceptability tends to deteriorate during charging, and lithium tends to precipitate on the electrode surface, which is not preferable for safety. On the other hand, if the upper limit of this range is exceeded, the reactivity between the negative electrode and the electrolyte increases, gas generation tends to increase, and a preferable battery is difficult to obtain. The BET specific surface area is measured by the same method as in the case of the above-mentioned graphite (D).

<体積基準平均粒径>
黒鉛複合体粉末(A)の体積基準平均粒径は、特に制限されないが、通常6.0μm以上、中でも10.0μm以上、また、通常80.0μm以下、中でも40.0μm以下の範囲が好ましい。この範囲を下回ると、黒鉛複合体混合粉末(C)としてのタップ密度が小さくなってしまうため、電極を製造したときに活物質の充填密度が上がり難く、高容量の電池を得られ難い。一方、この範囲を上回ると、黒鉛複合体混合粉末(C)として塗布により電極を製造する時に塗工むらが生じ易い。体積基準平均粒径の測定は、上記の黒鉛質(D)の場合と同様の手法で行なう。
<Volume standard average particle size>
The volume-based average particle diameter of the graphite composite powder (A) is not particularly limited, but is usually in the range of 6.0 μm or more, particularly 10.0 μm or more, and usually 80.0 μm or less, especially 40.0 μm or less. Below this range, the tap density as the graphite composite mixed powder (C) becomes small, so that when the electrode is manufactured, the packing density of the active material is difficult to increase, and it is difficult to obtain a high-capacity battery. On the other hand, if it exceeds this range, uneven coating tends to occur when an electrode is produced by coating as a graphite composite mixed powder (C). The volume-based average particle diameter is measured by the same method as in the case of the graphite (D).

<黒鉛複合体粉末(A)に含まれる黒鉛質(D)の割合>
黒鉛複合体粉末(A)に含まれる黒鉛質(D)の割合は、黒鉛複合体粉末(A)に対する黒鉛質(D)の重量比の値で、通常30重量%以上、好ましくは40重量%以上、更に好ましくは50重量%以上、また、通常97重量%以下、好ましくは90重量%以下、更に好ましくは83重量%以下の範囲である。黒鉛質(D)の割合がこの範囲を下回ると、黒鉛質(E)の割合が相対的に増える為、電極にした時に充填密度が上がり難く、過大なプレス荷重を必要とし黒鉛質(D)を複合化した利点が得られ難い。一方、黒鉛質(D)の割合がこの範囲を上回ると、電極にした時に電解液との反応性が増加し、ガス発生が多くなり易く、黒鉛質(E)で複合化した利点が得られ難い。
<Ratio of graphite (D) contained in graphite composite powder (A)>
The ratio of the graphite (D) contained in the graphite composite powder (A) is a value of the weight ratio of the graphite (D) to the graphite composite powder (A) and is usually 30% by weight or more, preferably 40% by weight. Above, more preferably 50% by weight or more, and usually 97% by weight or less, preferably 90% by weight or less, more preferably 83% by weight or less. If the ratio of the graphite (D) is below this range, the ratio of the graphite (E) is relatively increased, so that it is difficult to increase the packing density when the electrode is used, and an excessive press load is required and the graphite (D). It is difficult to obtain the advantage of compounding. On the other hand, if the ratio of the graphite (D) exceeds this range, the reactivity with the electrolyte increases when the electrode is used, and gas generation tends to increase, and the advantage of being combined with the graphite (E) can be obtained. hard.

〔1−4.人造黒鉛粉末(B)〕
人造黒鉛粉末(B)の種類は特に制限されない。例としては、ピッチ原料を高温熱処理して製造した人造黒鉛等が挙げられる。
[1-4. Artificial graphite powder (B)]
The kind of artificial graphite powder (B) is not particularly limited. Examples include artificial graphite produced by heat-treating a pitch material at high temperature.

具体的に、人造黒鉛粉末(B)は、(i)単独で作製された人造黒鉛粒子、(ii)黒鉛質(D)を黒鉛質(D)とは配向性の異なる黒鉛質(E)と複合化する際に、黒鉛質(D)を含まずに黒鉛質(E)のみが粒状化して得られた人造黒鉛粒子、の何れであってもよい。(ii)の場合、黒鉛質(E)と人造黒鉛粉末(B)とが同一の原料から一度に製造されるので、製造の容易性の観点からは有利である。   Specifically, the artificial graphite powder (B) includes (i) artificial graphite particles produced alone, and (ii) the graphite (D) and the graphite (E) having different orientation from the graphite (D). Any of the artificial graphite particles obtained by granulating only the graphite (E) without containing the graphite (D) may be used. In the case of (ii), the graphite (E) and the artificial graphite powder (B) are produced from the same raw material at a time, which is advantageous from the viewpoint of ease of production.

人造黒鉛粉末(B)は、高い結晶性を有し、内部に黒鉛質粒子など配向性が異なる部分を包含していないという特徴がある。よって、偏光顕微鏡又はTEMを用いて、黒鉛質(D)の場合と同様の手順により、負極製造前の負極材料については負極材料粉末の断面写真を、負極材料を用いて製造された負極については負極断面に存在する負極材料粉末の断面写真を撮影し、その配向性を確認することで、人造黒鉛粉末(B)を黒鉛複合体粉末(A)と区別することができる。   The artificial graphite powder (B) has a high crystallinity and is characterized in that it does not include a portion with different orientation such as graphite particles. Therefore, using a polarizing microscope or a TEM, according to the same procedure as in the case of graphite (D), the negative electrode material before the negative electrode production, the cross-sectional photograph of the negative electrode material powder, for the negative electrode manufactured using the negative electrode material The artificial graphite powder (B) can be distinguished from the graphite composite powder (A) by taking a cross-sectional photograph of the negative electrode material powder present in the negative electrode cross section and confirming its orientation.

人造黒鉛粉末(B)の形状も特に制限されない。例としては塊状、球状、楕円状、薄片状、繊維状等が挙げられる。中でも塊状、球状、楕円状が好ましい。   The shape of the artificial graphite powder (B) is not particularly limited. Examples include lumps, spheres, ellipses, flakes, fibers, and the like. Of these, a block shape, a spherical shape, and an elliptical shape are preferable.

<BET比表面積>
人造黒鉛粉末(B)のBET比表面積は、特に制限されないが、通常0.3m2/g以上、中でも0.5m2/g以上、更には0.6m2/g以上、また、通常3.0m2/g以下、中でも2.8m2/g以下、更には2.0m2/g以下の範囲が好ましい。BET比表面積がこの範囲の下限を下回ると、充電時にリチウムの受け入れ性が悪くなり、リチウムが電極表面で析出し易く、安全上好ましくない。一方、上限を上回ると、電解液との反応性が増加し、ガス発生が多くなり易く、好ましい電池が得られ難い。BET比表面積の測定は、上記の黒鉛質(D)の場合と同様の手法で行なう。
<BET specific surface area>
The BET specific surface area of the artificial graphite powder (B) is not particularly limited, but is usually 0.3 m 2 / g or more, particularly 0.5 m 2 / g or more, more preferably 0.6 m 2 / g or more, and usually 3. A range of 0 m 2 / g or less, particularly 2.8 m 2 / g or less, and further 2.0 m 2 / g or less is preferable. When the BET specific surface area is below the lower limit of this range, the lithium acceptability is deteriorated during charging, and lithium is liable to precipitate on the electrode surface, which is not preferable for safety. On the other hand, when the upper limit is exceeded, the reactivity with the electrolyte increases, gas generation tends to increase, and a preferable battery is difficult to obtain. The BET specific surface area is measured by the same method as in the case of the above-mentioned graphite (D).

<体積基準平均粒径>
人造黒鉛粉末(B)の体積基準平均粒径は、特に制限されないが、通常3μm以上、中でも5μm以上、更には6μm以上、また、通常30μm以下、中でも20μm以下の範囲が好ましい。体積基準平均粒径がこの範囲を下回ると、黒鉛複合体混合粉末(C)としてのタップ密度が小さくなってしまうため、電極を製造したときに活物質の充填密度が上がり難く、高容量の電池を得難い。一方、この範囲を上回ると、負極材料として塗布により電極を製造する時に塗工むらが生じ易い。体積基準平均粒径の測定は、上記の黒鉛質(D)の場合と同様の手法で行なう。
<Volume standard average particle size>
The volume-based average particle diameter of the artificial graphite powder (B) is not particularly limited, but is usually 3 μm or more, preferably 5 μm or more, more preferably 6 μm or more, and usually 30 μm or less, particularly preferably 20 μm or less. If the volume-based average particle size is less than this range, the tap density as the graphite composite mixed powder (C) becomes small. Therefore, it is difficult to increase the packing density of the active material when the electrode is manufactured, and the high-capacity battery Hard to get. On the other hand, if it exceeds this range, uneven coating tends to occur when an electrode is produced by coating as a negative electrode material. The volume-based average particle diameter is measured by the same method as in the case of the graphite (D).

<タップ密度>
人造黒鉛粉末(B)のタップ密度は、特に制限されないが、通常0.90g/cm3以上、中でも1.10g/cm3以上、また、通常1.35g/cm3以下、中でも1.30g/cm3以下の範囲が好ましい。タップ密度がこの範囲を下回ると、活物質の充填密度が上がり難く、高容量の電池が得られ難い。一方、この範囲を上回ると、電極中の気孔量が少なくなり、好ましい電池特性が得られ難い。タップ密度の測定は、上記の黒鉛質(D)の場合と同様の手法で行なう。
<Tap density>
The tap density of artificial graphite powder (B) is not particularly limited, usually 0.90 g / cm 3 or more and preferably 1.10 g / cm 3 or more and usually 1.35 g / cm 3 or less, preferably 1.30 g / A range of cm 3 or less is preferred. When the tap density is below this range, the packing density of the active material is difficult to increase, and it is difficult to obtain a high-capacity battery. On the other hand, if it exceeds this range, the amount of pores in the electrode decreases, and it is difficult to obtain favorable battery characteristics. The tap density is measured by the same method as in the case of the graphite (D).

<面間隔>
X線回折により測定される人造黒鉛粉末(B)の(002)面の面間隔d002は、特に制限されないが、通常0.3360nm以下、中でも0.3358nm以下の範囲が好ましい。この範囲を上回る場合、即ち、結晶性が劣る場合には、電極を製造したときに活物質の単位重量当たりの放電容量が小さくなり易い。一方、前記の面間隔d002の下限は、理論的限界として通常0.3354nm以上である。面間隔d002の測定は、上記の黒鉛質(D)の場合と同様の手法で行なう。
<Surface spacing>
Plane spacing d 002 of (002) plane of the artificial graphite powder (B) measured by X-ray diffraction is not particularly limited, normally less than 0.3360 nm, among others 0.3358nm preferably in the following range. When exceeding this range, that is, when the crystallinity is inferior, the discharge capacity per unit weight of the active material tends to be small when the electrode is manufactured. Meanwhile, the lower limit of the surface spacing d 002 of, as a theoretical limit is usually 0.3354nm or more. The interplanar spacing d002 is measured by the same method as in the case of the graphite (D).

X線回折により測定される人造黒鉛粉末(B)のc軸方向の結晶子の大きさLc004は、特に制限されないが、通常90nm以上、中でも100nm以上の範囲が好ましい。この範囲を下回ると、電極を製造したときの活物質重量当たりの放電容量が小さくなり易い。結晶子の大きさLc004の測定は、上記の黒鉛質(D)の場合と同様の手法で行なう。 The crystallite size Lc 004 in the c-axis direction of the artificial graphite powder (B) measured by X-ray diffraction is not particularly limited, but is usually 90 nm or more, preferably 100 nm or more. Below this range, the discharge capacity per active material weight when the electrode is manufactured tends to be small. The crystallite size Lc 004 is measured by the same method as in the case of the graphite (D).

〔1−5.黒鉛複合体混合粉末(C)〕
黒鉛複合体混合粉末(C)は、黒鉛複合体粉末(A)と人造黒鉛粉末(B)が混合された状態にあるものである。
[1-5. Graphite composite mixed powder (C)]
The graphite composite mixed powder (C) is in a state where the graphite composite powder (A) and the artificial graphite powder (B) are mixed.

<タップ密度>
黒鉛複合体混合粉末(C)のタップ密度は、特に制限されないが、通常0.8g/cm3以上、中でも0.9g/cm3以上、更には1.0g/cm3以上、また、通常1.4g/cm3以下、中でも1.35g/cm3以下、更には1.3g/cm3以下の範囲が好ましい。タップ密度がこの範囲を下回ると、活物質の充填密度が上がり難く、高容量の電池が得られ難い。一方、この範囲を上回ると、電極中の気孔量が少なくなり、好ましい電池特性が得られ難い。タップ密度の測定は、上記の黒鉛質(D)の場合と同様の手法で行なう。
<Tap density>
The tap density of the graphite composite mixed powder (C) is not particularly limited, but is usually 0.8 g / cm 3 or more, particularly 0.9 g / cm 3 or more, more preferably 1.0 g / cm 3 or more, and usually 1 .4g / cm 3 or less, preferably 1.35 g / cm 3 or less, more 1.3 g / cm 3 is preferably in a range of about. When the tap density is below this range, the packing density of the active material is difficult to increase, and it is difficult to obtain a high-capacity battery. On the other hand, if it exceeds this range, the amount of pores in the electrode decreases, and it is difficult to obtain favorable battery characteristics. The tap density is measured by the same method as in the case of the graphite (D).

<BET比表面積>
黒鉛複合体混合粉末(C)のBET比表面積は、特に制限されないが、通常1m2/g以上、中でも1.5m2/g以上、更には1.8m2/g以上、また、通常5m2/g以下、中でも3.5m2/g以下、更には3m2/g以下の範囲が好ましい。下限を下回ると、充電時にリチウムの受け入れ性が悪くなり易く、リチウムが電極表面で析出し易く、安全上好ましくない。上限を上回ると、電解液との反応性が増加し、ガス発生が多くなり易く、好ましい電池が得られ難い。BET比表面積の測定は、上記の黒鉛質(D)の場合と同様の手法で行なう。
<BET specific surface area>
The BET specific surface area of the graphite composite mixed powder (C) is not particularly limited, but is usually 1 m 2 / g or more, particularly 1.5 m 2 / g or more, more preferably 1.8 m 2 / g or more, and usually 5 m 2. / G or less, in particular, a range of 3.5 m 2 / g or less, more preferably 3 m 2 / g or less. Below the lower limit, the acceptability of lithium is likely to deteriorate during charging, and lithium is likely to precipitate on the electrode surface, which is not preferable for safety. If the upper limit is exceeded, the reactivity with the electrolyte increases, gas generation tends to increase, and a preferable battery is difficult to obtain. The BET specific surface area is measured by the same method as in the case of the above-mentioned graphite (D).

<面間隔等>
X線回折により測定される黒鉛複合体混合粉末(C)の(002)面の面間隔d002は、特に制限されないが、通常0.3360nm以下、中でも0.3358nm以下の範囲が好ましい。この範囲を上回る場合、即ち、結晶性が劣る場合には、電極を製造したときに活物質の単位重量当たりの放電容量が小さくなり易い。一方、前記の面間隔d002の下限は、理論的限界として通常0.3354nm以上である。面間隔d002の測定は、上記の黒鉛質(D)の場合と同様の手法で行なう。
<Surface spacing, etc.>
Plane spacing d 002 of (002) plane of graphite composite mixture powder is measured by X-ray diffraction (C) is not particularly limited, normally less than 0.3360 nm, among others 0.3358nm preferably in the following range. When exceeding this range, that is, when the crystallinity is inferior, the discharge capacity per unit weight of the active material tends to be small when the electrode is manufactured. Meanwhile, the lower limit of the surface spacing d 002 of, as a theoretical limit is usually 0.3354nm or more. The interplanar spacing d002 is measured by the same method as in the case of the graphite (D).

X線回折により測定される黒鉛複合体混合粉末(C)のc軸方向の結晶子の大きさLc004は、特に制限されないが、通常90nm以上、中でも100nm以上の範囲が好ましい。この範囲を下回ると、本発明の黒鉛複合体混合粉末(C)を用いて電極を製造したときの活物質重量当たりの放電容量が小さくなり易い。結晶子の大きさLc004の測定は、上記の黒鉛質(D)の場合と同様の手法で行なう。 The size Lc 004 of the crystallites in the c-axis direction of the graphite complex mixed powder (C) measured by X-ray diffraction is not particularly limited, but is usually 90 nm or more, preferably 100 nm or more. Below this range, the discharge capacity per weight of active material tends to be small when an electrode is produced using the graphite composite mixed powder (C) of the present invention. The crystallite size Lc 004 is measured by the same method as in the case of the graphite (D).

<黒鉛複合体混合粉末(C)に含まれる黒鉛複合体粉末(A)の割合>
黒鉛複合体混合粉末(C)に含まれる黒鉛複合体粉末(A)の割合は、黒鉛複合体混合粉末(C)に対する黒鉛複合体粉末(A)の重量比で、通常35重量%以上、好ましくは50重量%以上、更に好ましくは55重量%以上、また、通常98重量%以下、好ましくは90重量%以下、更に好ましくは86重量%以下の範囲である。黒鉛複合体粉末(A)の重量比がこの範囲を下回ると、人造黒鉛粉末(B)の割合が相対的に増える為、電極にした時に充填密度が上がり難く、過大なプレス荷重を必要とし、人造黒鉛粉末(B)を混合した利点が得られ難い。一方、この範囲を上回ると、黒鉛複合体粉末(A)の割合が多過ぎる為、電極塗布性を損なう可能性がある。
<Ratio of graphite composite powder (A) contained in graphite composite mixed powder (C)>
The ratio of the graphite composite powder (A) contained in the graphite composite mixed powder (C) is usually 35% by weight or more, preferably the weight ratio of the graphite composite powder (A) to the graphite composite mixed powder (C). Is 50% by weight or more, more preferably 55% by weight or more, and usually 98% by weight or less, preferably 90% by weight or less, more preferably 86% by weight or less. If the weight ratio of the graphite composite powder (A) is less than this range, the proportion of the artificial graphite powder (B) is relatively increased, so that it is difficult to increase the packing density when an electrode is used, and an excessive press load is required. It is difficult to obtain the advantage of mixing artificial graphite powder (B). On the other hand, if it exceeds this range, the ratio of the graphite composite powder (A) is too large, and the electrode coatability may be impaired.

<体積基準平均粒径>
黒鉛複合体混合粉末(C)の体積基準平均粒径は、特に制限されないが、通常5μm以上、好ましくは8μm以上、また、通常60μm以下、好ましくは30μm以下の範囲である。この範囲を下回ると、タップ密度が小さくなってしまうため、電極を製造したときに活物質の充填密度が上がり難く、高容量の電池を得難い。一方、この範囲を上回ると、塗布により電極を製造する時に塗工むらが生じ易い。体積基準平均粒径の測定は、上記の黒鉛質(D)の場合と同様の手法で行なう。
<Volume standard average particle size>
The volume-based average particle diameter of the graphite composite mixed powder (C) is not particularly limited, but is usually 5 μm or more, preferably 8 μm or more, and usually 60 μm or less, preferably 30 μm or less. If it falls below this range, the tap density becomes small. Therefore, when the electrode is manufactured, it is difficult to increase the packing density of the active material, and it is difficult to obtain a high-capacity battery. On the other hand, if it exceeds this range, uneven coating tends to occur when an electrode is produced by coating. The volume-based average particle diameter is measured by the same method as in the case of the graphite (D).

なお、黒鉛複合体混合粉末(C)から、それに含まれる黒鉛複合体粉末(A)単体及び人造黒鉛粉末(B)単体のタップ密度、比表面積、粒径などのデータを得る場合には、以下の手法に従う。   In addition, when obtaining data such as tap density, specific surface area, and particle size of the graphite composite powder (A) and artificial graphite powder (B) contained in the graphite composite mixed powder (C), Follow the method.

同一原料で、同一製法により黒鉛複合体混合粉末(C)を得る場合に、黒鉛複合体粉末(A)及び人造黒鉛粉末(B)の配合比のみを変えた複数種の黒鉛複合体混合粉末(C)を作製し、それぞれの配合比の黒鉛複合体混合粉末(C)についてタップ密度、比表面積、粒径などのデータを測定することにより、その配合比依存性から、黒鉛複合体粉末(A)単体及び人造黒鉛粉末(B)単体のタップ密度、比表面積、粒径などのデータを得ることができる。   When obtaining a graphite composite mixed powder (C) by the same manufacturing method using the same raw material, a plurality of types of graphite composite mixed powders in which only the mixing ratio of the graphite composite powder (A) and the artificial graphite powder (B) is changed ( C), and by measuring data such as tap density, specific surface area, and particle size of the graphite composite mixed powder (C) of each blending ratio, the graphite composite powder (A ) Data such as the tap density, specific surface area, and particle size of the simple substance and artificial graphite powder (B) can be obtained.

〔1−6.黒鉛複合体混合粉末(F)及び天然黒鉛粉末(G)〕
次に、黒鉛複合体混合粉末(F)について説明する。黒鉛複合体混合粉末(F)は、上記の黒鉛複合体混合粉末(C)の各成分に加えて、更に天然黒鉛粉末(G)を備えたものである。天然黒鉛粉末(G)は、負極材料のBET比表面積の制御、電極プレス性の向上、放電容量の向上、安価化等の目的で使用される。
[1-6. Graphite composite mixed powder (F) and natural graphite powder (G)]
Next, the graphite composite mixed powder (F) will be described. In addition to each component of said graphite composite mixed powder (C), graphite composite mixed powder (F) is further provided with natural graphite powder (G). The natural graphite powder (G) is used for the purpose of controlling the BET specific surface area of the negative electrode material, improving the electrode pressability, improving the discharge capacity, and reducing the cost.

天然黒鉛粉末(G)の種類は特に制限されない。天然黒鉛の種類としては、鱗状黒鉛、鱗片状黒鉛、土状黒鉛等が挙げられる。
また、天然黒鉛粉末(G)の形状も特に制限されない。具体例としては、塊状、球状、楕円状、薄片状、繊維状等が挙げられる。
The kind of natural graphite powder (G) is not particularly limited. Examples of natural graphite include scaly graphite, scaly graphite, and earthy graphite.
Further, the shape of the natural graphite powder (G) is not particularly limited. Specific examples include a lump shape, a spherical shape, an ellipse shape, a flake shape, and a fiber shape.

<BET比表面積>
天然黒鉛粉末(G)のBET比表面積は、特に制限されないが、通常3.0m2/g以上、好ましくは3.5m2/g以上、更に好ましくは4.0m2/g以上、また、通常10m2/g以下、好ましくは8.0m2/g以下、更に好ましくは7.0m2/g以下の範囲である。BET比表面積の値がこの範囲の下限を下回ると、黒鉛複合体混合粉末(F)のBET比表面積の制御の効果が少なくなってしまい好ましくない。一方、BET比表面積の値がこの範囲の上限を上回ると、安全性が低下してしまいやはり好ましくない。BET比表面積の測定は、上記の黒鉛質(D)の場合と同様の手法で行なう。
<BET specific surface area>
The BET specific surface area of the natural graphite powder (G) is not particularly limited, but is usually 3.0 m 2 / g or more, preferably 3.5 m 2 / g or more, more preferably 4.0 m 2 / g or more, and usually The range is 10 m 2 / g or less, preferably 8.0 m 2 / g or less, more preferably 7.0 m 2 / g or less. When the value of the BET specific surface area is below the lower limit of this range, the effect of controlling the BET specific surface area of the graphite composite mixed powder (F) decreases, which is not preferable. On the other hand, if the value of the BET specific surface area exceeds the upper limit of this range, the safety is lowered, which is not preferable. The BET specific surface area is measured by the same method as in the case of the above-mentioned graphite (D).

<体積基準平均粒径>
天然黒鉛粉末(G)の体積基準平均粒径は、特に制限されないが、通常5μm以上、好ましくは10μm以上、また、通常40μm以下、好ましくは30μm以下の範囲である。この範囲を下回ると、黒鉛複合体混合粉末(F)とした場合にタップ密度が小さくなってしまうため、電極の製造時に活物質の充填密度が上がり難く、高容量の電池を得難い。一方、この範囲を上回ると、負極材料として塗布により電極を製造する時に塗工むらが生じ易い。体積基準平均粒径の測定は、上記の黒鉛質(D)の場合と同様の手法で行なう。
<Volume standard average particle size>
The volume-based average particle diameter of the natural graphite powder (G) is not particularly limited, but is usually 5 μm or more, preferably 10 μm or more, and usually 40 μm or less, preferably 30 μm or less. Below this range, when the graphite composite powder (F) is used, the tap density becomes small. Therefore, it is difficult to increase the packing density of the active material during the production of the electrode, and it is difficult to obtain a high-capacity battery. On the other hand, if it exceeds this range, uneven coating tends to occur when an electrode is produced by coating as a negative electrode material. The volume-based average particle diameter is measured by the same method as in the case of the graphite (D).

<黒鉛複合体混合粉末(F)中における黒鉛複合体混合粉末(C)の割合>
黒鉛複合体混合粉末(F)中における黒鉛複合体混合粉末(C)の割合は、合計重量に対して、通常20重量%以上、好ましくは30重量%以上、更に好ましく40重量%以上、また、通常90重量%以下、好ましくは80重量%以下、更に好ましくは70重量%以下の範囲である。黒鉛複合体混合粉末(C)の割合がこの範囲の下限を下回ると、黒鉛複合体混合粉末(C)がもたらす優れた電池特性が発揮できず好ましくない。一方、この範囲の上限を上回ると、電極プレス性が向上しにくくなりやはり好ましくない。
<Ratio of graphite composite mixed powder (C) in graphite composite mixed powder (F)>
The ratio of the graphite composite mixed powder (C) in the graphite composite mixed powder (F) is usually 20% by weight or more, preferably 30% by weight or more, more preferably 40% by weight or more, based on the total weight. Usually, it is 90 weight% or less, Preferably it is 80 weight% or less, More preferably, it is the range of 70 weight% or less. If the ratio of the graphite composite mixed powder (C) is below the lower limit of this range, the excellent battery characteristics brought about by the graphite composite mixed powder (C) cannot be exhibited, which is not preferable. On the other hand, if it exceeds the upper limit of this range, the electrode pressability is hardly improved, which is not preferable.

〔1−7.その他〕
以下、必要に応じて適宜、黒鉛複合体混合粉末(C)を「本発明の負極材料(I)」、黒鉛複合体混合粉末(F)を「本発明の負極材料(II)」と呼び換えるものとする。また、黒鉛複合体混合粉末(C)と黒鉛複合体混合粉末(F)を特に区別しない場合には、「本発明の負極材料」と呼び換えるものとする。
[1-7. Others]
Hereinafter, the graphite composite mixed powder (C) is referred to as “the negative electrode material (I) of the present invention” and the graphite composite mixed powder (F) is referred to as “the negative electrode material (II) of the present invention” as appropriate. Shall. Further, when the graphite composite mixed powder (C) and the graphite composite mixed powder (F) are not particularly distinguished, they are referred to as “the negative electrode material of the present invention”.

<電極を形成したときの活物質配向比>
本発明の負極材料は、これを活物質としてリチウム二次電池用負極を作製した場合に、以下の特徴を有することが好ましい。
<Active material orientation ratio when electrode is formed>
The negative electrode material of the present invention preferably has the following characteristics when a negative electrode for a lithium secondary battery is produced using this as an active material.

即ち、本発明の負極材料を活物質として、電極密度が1.63±0.05g/cm3、即ち、1.58g/cm3以上1.68g/cm3以下の範囲内となるように電極を形成した場合、その電極の活物質配向比は、通常0.07以上、中でも0.09以上、更には0.10以上、また、通常0.20以下、中でも0.18以下、更には0.16以下の範囲にあることが好ましい。前記範囲を下回ると、電池を作製したときの電池充電時の電極膨張が大きくなり、電極の単位体積当たりの電池容量を大きくし難い。一方、前記範囲を上回ると、電池を作製したときの活物質の結晶性が低くなってしまい、電池の放電容量を大きくし難く、又は、プレス後の電極の充填密度を上げ難くなる。 That is, a negative electrode material of the present invention as an active material, the electrode density 1.63 ± 0.05g / cm 3, i.e., the electrodes so that the 1.58 g / cm 3 or more 1.68 g / cm 3 within the following ranges The active material orientation ratio of the electrode is usually 0.07 or more, especially 0.09 or more, more preferably 0.10 or more, and usually 0.20 or less, especially 0.18 or less, and further 0. It is preferable that it is in the range of .16 or less. Below the above range, electrode expansion during battery charging when a battery is produced increases, making it difficult to increase the battery capacity per unit volume of the electrode. On the other hand, if it exceeds the above range, the crystallinity of the active material when the battery is produced becomes low, and it becomes difficult to increase the discharge capacity of the battery or increase the packing density of the electrode after pressing.

ここで、電極の活物質配向比とは、電極の厚み方向に対する、黒鉛結晶六角網面の配向の程度を表す指標である。配向比が大きいほど、粒子の黒鉛結晶六角網面の方向が揃っていない状態を表わす。
電極の活物質配向比を測定する具体的な手順は、以下の通りである。
Here, the active material orientation ratio of the electrode is an index representing the degree of orientation of the hexagonal network surface of the graphite crystal with respect to the thickness direction of the electrode. A larger orientation ratio represents a state in which the directions of the graphite crystal hexagonal planes of the particles are not aligned.
A specific procedure for measuring the active material orientation ratio of the electrode is as follows.

(1)電極の形成:
負極材料と、増粘剤としてCMC(カルボキシメチルセルロース)水溶液と、バインダ樹脂としてSBR(スチレンブタジエンゴム)水溶液とを、負極材料とCMCとSBRとの混合物の乾燥後の総重量に対して、CMC及びSBRがそれぞれ1重量%になるように混合撹拌し、スラリーとする。次いで、ドクターブレードを用いて18μm厚さの銅箔上にスラリーを塗布する。塗布厚さは、乾燥後の電極目付(銅箔を除く)が10mg/cm2になるようにギャップを選択する。この電極を80℃で乾燥した後、電極密度(銅箔を除く)が1.63±0.05g/cm3になるようにプレスを行なう。
(1) Formation of electrodes:
A negative electrode material, a CMC (carboxymethylcellulose) aqueous solution as a thickener, and an SBR (styrene butadiene rubber) aqueous solution as a binder resin, with respect to the total weight after drying of the mixture of the negative electrode material, CMC and SBR, Mix and stir so that each SBR is 1% by weight to form a slurry. Next, the slurry is applied onto a copper foil having a thickness of 18 μm using a doctor blade. For the coating thickness, the gap is selected so that the electrode basis weight (excluding the copper foil) after drying is 10 mg / cm 2 . After drying this electrode at 80 ° C., pressing is performed so that the electrode density (excluding the copper foil) is 1.63 ± 0.05 g / cm 3 .

(2)活物質配向比の測定
プレス後の電極について、X線回折により電極の活物質配向比を測定する。具体的手法は特に制限されないが、標準的な方法としては、X線回折により黒鉛の(110)面と(004)面とのチャートを測定し、測定したチャートについて、プロファイル関数として非対称ピアソンVIIを用いてフィッティングすることによりピーク分離を行ない、(110)面と(004)面のピークの積分強度を算出する。得られた積分強度から、(110)面積分強度/(004)面積分強度で表わされる比率を算出し、電極の活物質配向比と定義する。
(2) Measurement of active material orientation ratio About the electrode after a press, the active material orientation ratio of an electrode is measured by X-ray diffraction. Although a specific method is not particularly limited, as a standard method, a chart of (110) plane and (004) plane of graphite is measured by X-ray diffraction, and an asymmetric Pearson VII is used as a profile function for the measured chart. The peak separation is performed by using the fitting, and the integrated intensity of the peaks on the (110) plane and the (004) plane is calculated. From the obtained integrated intensity, a ratio represented by (110) area intensity / (004) area intensity is calculated and defined as the active material orientation ratio of the electrode.

ここでのX線回折測定条件は次の通りである。なお、「2θ」は回折角を示す。
・ターゲット: Cu(Kα線)グラファイトモノクロメーター
・スリット : 発散スリット=1度、受光スリット=0.1mm、散乱スリット=1度・測定範囲、及び、ステップ角度/計測時間:
(110)面 : 76.5度≦2θ≦78.5度 0.01度/3秒
(004)面 : 53.5度≦2θ≦56.0度 0.01度/3秒
・試料調整 : 硝子板に0.1mm厚さの両面テープで電極を固定
上記の方法により、電極密度1.63±0.05g/cm3となるように形成した電極について、X線回折による活物質配向比を求めることができる。
The X-ray diffraction measurement conditions here are as follows. “2θ” indicates a diffraction angle.
-Target: Cu (Kα ray) graphite monochromator-Slit: Divergence slit = 1 degree, Receiving slit = 0.1 mm, Scattering slit = 1 degree-Measurement range and step angle / measurement time:
(110) plane: 76.5 degrees ≦ 2θ ≦ 78.5 degrees 0.01 degrees / 3 seconds (004) plane: 53.5 degrees ≦ 2θ ≦ 56.0 degrees 0.01 degrees / 3 seconds Sample preparation: Fix the electrode to the glass plate with double-sided tape with a thickness of 0.1 mm For the electrode formed to have an electrode density of 1.63 ± 0.05 g / cm 3 by the above method, the active material orientation ratio by X-ray diffraction is Can be sought.

<リチウム二次電池としたときの放電容量>
本発明の負極材料は、これを負極の活物質として用いてリチウム二次電池を作製した場合に、以下の特徴を有することが好ましい。
即ち、本発明の負極材料を活物質として集電体上に活物質層を形成し、リチウム二次電池の負極として使用した場合に、そのリチウム二次電池の放電容量は、通常345mAh/g以上、中でも350mAh/g以上の範囲にあることが好ましい。放電容量がこの範囲を下回ると、電池容量の低下が生じ易い。また、放電容量は高ければ高い方が好ましいが、その上限は通常365mAh/g程度である。
<Discharge capacity when using a lithium secondary battery>
The negative electrode material of the present invention preferably has the following characteristics when a lithium secondary battery is produced using this as an active material for the negative electrode.
That is, when a negative electrode material of the present invention is used as an active material to form an active material layer on a current collector and used as a negative electrode of a lithium secondary battery, the discharge capacity of the lithium secondary battery is usually 345 mAh / g or more. Especially, it is preferable that it exists in the range of 350 mAh / g or more. When the discharge capacity falls below this range, the battery capacity tends to decrease. The higher the discharge capacity, the better. However, the upper limit is usually about 365 mAh / g.

具体的な放電容量の測定方法について特に制限はないが、標準的な測定方法を示すと、次の通りである。
まず、負極材料を用いた電極を作製する。電極は、集電体として銅箔を用い、この集電体に活物質層を形成することにより作製する。活物質層は、負極材料と、バインダ樹脂としてスチレンブタジエンゴム(SBR)とを混合したものを用いる。バインダ樹脂の量は、電極の重量に対して1重量%とする。また、電極密度は1.45g/cm3以上、1.95g/cm3以下とする。
Although there is no restriction | limiting in particular about the measuring method of a specific discharge capacity, It is as follows when a standard measuring method is shown.
First, an electrode using a negative electrode material is prepared. The electrode is produced by using a copper foil as a current collector and forming an active material layer on the current collector. The active material layer uses a mixture of a negative electrode material and styrene butadiene rubber (SBR) as a binder resin. The amount of the binder resin is 1% by weight with respect to the weight of the electrode. The electrode density is 1.45 g / cm 3 or more and 1.95 g / cm 3 or less.

放電容量の評価は、この作製した電極について、対極に金属リチウムを用いた2極式コインセルを作製し、その充放電試験をすることにより行なう。
2極式コインセルの電解液は任意であるが、例えば、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを、体積比でDEC/EC=1/1〜7/3となるように混合した混合液、又は、エチレンカーボネートとエチルメチルカーボネート(EMC)とを、体積比でEMC/EC=1/1〜7/3となるように混合した混合液を用いることができる。
また、2極式コインセルに用いるセパレータも任意であるが、例えば、厚さ15μm〜35μmのポリエチレンシートを用いることができる。
Evaluation of the discharge capacity is performed by preparing a bipolar coin cell using metallic lithium as a counter electrode and performing a charge / discharge test on the prepared electrode.
The electrolyte solution of the two-pole coin cell is arbitrary. For example, a mixture in which ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed so that the volume ratio is DEC / EC = 1/1 to 7/3. A liquid or a mixed liquid in which ethylene carbonate and ethyl methyl carbonate (EMC) are mixed so that EMC / EC = 1/1 to 7/3 by volume ratio can be used.
Moreover, although the separator used for a bipolar coin cell is also arbitrary, for example, a polyethylene sheet having a thickness of 15 μm to 35 μm can be used.

こうして作製した2極式コインセルを用いて充放電試験を行ない、放電容量を求める。具体的には、0.2mA/cm2の電流密度で、リチウム対極に対して5mVまで充電し、更に、5mVの一定電圧で電流値が0.02mAになるまで充電し、負極中にリチウムをドープした後、0.4mA/cm2の電流密度でリチウム対極に対して1.5Vまで放電を行なう、という充放電サイクルを3サイクル繰り返し、3サイクル目の放電値を放電容量とする。 A charge / discharge test is performed using the bipolar coin cell thus produced, and the discharge capacity is obtained. Specifically, the battery is charged to 5 mV with respect to the lithium counter electrode at a current density of 0.2 mA / cm 2 , and further charged to a current value of 0.02 mA at a constant voltage of 5 mV. After the doping, a charge / discharge cycle of discharging to 1.5 V with respect to the lithium counter electrode at a current density of 0.4 mA / cm 2 is repeated three times, and the discharge value at the third cycle is defined as the discharge capacity.

[2.リチウム二次電池用負極材料の製造方法]
〔黒鉛複合体混合粉末(C)の製造方法〕
本発明の負極材料(I)、即ち黒鉛複合体混合粉末(C)は、黒鉛質(D)及び黒鉛質(D)とは配向性の異なる黒鉛質(E)が複合化された黒鉛複合体粉末(A)と、人造黒鉛粉末(B)とを含有するが、この黒鉛複合体混合粉末(C)は、従来の複合化黒鉛質粉末の製造とは異なり、次のような材料及び製造条件の選択により取得することができる。
[2. Method for producing negative electrode material for lithium secondary battery]
[Production Method of Graphite Composite Mixed Powder (C)]
The negative electrode material (I) of the present invention, that is, the graphite composite mixed powder (C), is a graphite composite in which the graphite (D) and the graphite (E) having a different orientation from the graphite (D) are combined. The powder (A) and the artificial graphite powder (B) are contained, but this graphite composite mixed powder (C) is different from the conventional composite graphite powder production, and the following materials and production conditions: Can be obtained by selection.

即ち、黒鉛質(D)として、上に規定したアスペクト比を有する材料を選択すること、これに、黒鉛質(E)の前駆体であるピッチ原料、又はピッチ原料を熱処理し粉砕したものを、混合し、熱処理することなどが挙げられる。   That is, as the graphite (D), selecting a material having the aspect ratio defined above, a pitch raw material that is a precursor of the graphite (E), or a heat-treated and pulverized pitch raw material, Mixing and heat treatment can be mentioned.

上記の材料及び製造条件の選択によって、黒鉛複合体混合粉末(C)が得られる理由としては、次のように考えられる。
即ち、アスペクト比が1.2以上、4.0以下の範囲内にある黒鉛質(D)を使用することで、得られる黒鉛複合体粉末(A)も規定のアスペクト比を有するものになる。また、黒鉛複合体粉末(A)粒子内において黒鉛質(D)は、配向性の異なる黒鉛質(E)に被覆又は結着され、ランダムな配向方向で結合されることになる。
The reason why the graphite composite mixed powder (C) is obtained by selecting the above materials and production conditions is considered as follows.
That is, by using the graphite (D) having an aspect ratio in the range of 1.2 or more and 4.0 or less, the obtained graphite composite powder (A) also has a specified aspect ratio. Further, in the graphite composite powder (A) particles, the graphite (D) is coated or bound to the graphite (E) having different orientation and is bonded in a random orientation direction.

具体的には、黒鉛複合体混合粉末(C)は、以下に挙げる二つの製造方法等によって得ることができる。   Specifically, the graphite composite mixed powder (C) can be obtained by the following two production methods and the like.

(製造方法1)
キノリン不溶分が3.0重量%以下であるピッチ原料をピッチ熱処理した黒鉛結晶前駆体の粉砕物と、アスペクト比が1.2以上、4.0以下であり、タップ密度が0.7g/cm3以上、1.35g/cm3以下である黒鉛質(D)とを混合し、熱処理Aを行なった後、粉砕し、熱処理Bを行なう。
(Manufacturing method 1)
A pulverized graphite crystal precursor obtained by pitch heat-treating a pitch raw material having a quinoline insoluble content of 3.0% by weight or less, an aspect ratio of 1.2 to 4.0, and a tap density of 0.7 g / cm. 3 and not less than 1.35 g / cm 3 of graphite (D) are mixed and subjected to heat treatment A, then pulverized and heat treatment B is performed.

すなわち、黒鉛質(E)及び人造黒鉛粉末(B)の原料である黒鉛結晶前駆体と、黒鉛質(D)とを所定の割合で混合し、熱処理Aを行なった後、粉砕し、更に熱処理B(焼成、黒鉛化)を行なうことにより、黒鉛複合体混合粉末(C)を作製する。   That is, a graphite crystal precursor, which is a raw material for graphite (E) and artificial graphite powder (B), and graphite (D) are mixed at a predetermined ratio, subjected to heat treatment A, pulverized, and further heat treated. By performing B (firing and graphitization), a graphite composite mixed powder (C) is produced.

なお、黒鉛結晶前駆体として、揮発分の含有率が通常5重量%以上、20重量%以下のものを用いることが好ましい。揮発分含有率がこの範囲にある黒鉛結晶前駆体を使用することで、熱処理Aにより黒鉛質(D)と黒鉛質(E)が複合化することから、上述に規定する物性を有する黒鉛複合体混合粉末(C)を得ることができる。また、この黒鉛複合体混合粉末(C)を活物質として形成した負極の活物質配向比も、上述の範囲を満たすことになるので好ましい。   In addition, it is preferable to use a graphite crystal precursor having a volatile content of usually 5% by weight or more and 20% by weight or less. By using a graphite crystal precursor having a volatile content within this range, the graphite (D) and the graphite (E) are composited by the heat treatment A, so that the graphite composite having the physical properties specified above. A mixed powder (C) can be obtained. Moreover, the active material orientation ratio of the negative electrode formed with the graphite composite mixed powder (C) as an active material also satisfies the above range, which is preferable.

(製造方法2)
キノリン不溶分が3重量%以下であるピッチ原料と、アスペクト比が1.2以上、4.0以下であり、タップ密度が0.7g/cm3以上、1.35g/cm3以下である黒鉛質(D)とから、黒鉛複合体粉末(A)を作製する。また、それとは別に、人造黒鉛粉末(B)を、製造方法1と同様に黒鉛結晶前駆体から作製する。こうして独立に得られた黒鉛複合体粉末(A)と人造黒鉛粉末(B)を混合することにより、黒鉛複合体混合粉末(C)を作製する。
(Manufacturing method 2)
A pitch raw material having a quinoline insoluble content of 3% by weight or less, and a graphite having an aspect ratio of 1.2 or more and 4.0 or less and a tap density of 0.7 g / cm 3 or more and 1.35 g / cm 3 or less. From the quality (D), a graphite composite powder (A) is produced. Separately, artificial graphite powder (B) is produced from a graphite crystal precursor in the same manner as in production method 1. A graphite composite mixed powder (C) is prepared by mixing the graphite composite powder (A) thus obtained and the artificial graphite powder (B) independently.

特に、熱処理又は溶媒により液状となるピッチ原料を用いて、黒鉛複合体粉末(A)に対する黒鉛質(E)の含有率が3重量%以上、70重量%以下の割合で得られた黒鉛複合体粉末(A)と、これとは別に黒鉛質前駆体から得られた人造黒鉛粉末(B)とを混合処理することにより、上述に規定する物性を有する黒鉛複合体混合粉末(C)を得ることができる。
以下、これらの製造方法1及び製造方法2について、詳しく説明する。
In particular, a graphite composite obtained by using a pitch raw material that is liquefied by heat treatment or a solvent and having a graphite (E) content of 3% by weight to 70% by weight with respect to the graphite composite powder (A). By mixing powder (A) and artificial graphite powder (B) obtained from a graphite precursor separately from this, graphite composite mixed powder (C) having the physical properties specified above is obtained. Can do.
Hereinafter, the production method 1 and the production method 2 will be described in detail.

〔2−1.製造方法1〕
まず、製造方法1について説明する。
始めに、ピッチ原料に事前に熱処理を施し、黒鉛結晶の前駆体であるバルクメソフェーズ(事前に熱処理した黒鉛結晶前駆体。以下適宜、「熱処理黒鉛結晶前駆体」という)の製造方法について説明する。
[2-1. Manufacturing method 1]
First, the manufacturing method 1 is demonstrated.
First, a method for producing a bulk mesophase (preliminarily heat-treated graphite crystal precursor, hereinafter referred to as “heat-treated graphite crystal precursor” as appropriate), which is a precursor of graphite crystal, is preliminarily treated with heat.

<出発物質>
本発明の黒鉛複合体混合粉末(C)中に含まれる黒鉛質(E)、及び人造黒鉛粉末(B)の出発物質としては、ピッチ原料を用いる。なお、本明細書において「ピッチ原料」とは、ピッチ及びそれに順ずるものであり、適当な処理を行なうことによって黒鉛化することができるものをいう。具体的なピッチ原料の例としては、タールや重質油やピッチなどを用いることができる。タールの具体例としては、コールタール、石油系タールなどが挙げられる。重質油の具体例としては、石油系重質油の接触分解油、熱分解油、常圧残油、減圧残油などが挙げられる。また、ピッチの具体例としては、コールタールピッチ、石油系ピッチ、合成ピッチなどが挙げられる。これらの中でもコールタールピッチが芳香族性に高く好ましい。これらのピッチ原料は、何れか1種を単独で用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。
<Starting material>
Pitch raw materials are used as starting materials for the graphite (E) and the artificial graphite powder (B) contained in the graphite composite mixed powder (C) of the present invention. In the present specification, the “pitch raw material” refers to a pitch and the same, and can be graphitized by performing an appropriate treatment. As a specific example of pitch raw material, tar, heavy oil, pitch, or the like can be used. Specific examples of tar include coal tar and petroleum tar. Specific examples of the heavy oil include catalytic cracked oil, pyrolysis oil, atmospheric residual oil, and vacuum residual oil of petroleum heavy oil. Specific examples of the pitch include coal tar pitch, petroleum pitch, and synthetic pitch. Among these, coal tar pitch is preferable because of its high aromaticity. Any one of these pitch raw materials may be used alone, or two or more thereof may be used in any combination and ratio.

また、上述のピッチ原料であって、キノリン不溶分の含有量は、特に制限されないが、通常3.0重量%以下、好ましくは1.0重量%以下、さらに好ましくは0.02重量%以下の範囲にあるものを用いる。キノリン不溶分とは、コールタール中に微量に含まれるサブミクロンの炭素粒子や極微小なスラッジ等であり、これが多過ぎると黒鉛化過程での結晶性向上を著しく阻害し、黒鉛化後の放電容量の著しい低下を招く。なお、キノリン不溶分の測定方法としては、例えばJIS K2425に規定された方法を用いることができる。
なお、本発明の効果を妨げない限り、原料として上述のピッチ原料に加え、各種の熱硬化性樹脂、熱可塑性樹脂等を併用してもよい。
Further, the content of the quinoline insoluble component in the pitch raw material is not particularly limited, but is usually 3.0% by weight or less, preferably 1.0% by weight or less, more preferably 0.02% by weight or less. Use one that is in range. Quinoline-insoluble matter is submicron carbon particles or ultrafine sludge contained in trace amounts in coal tar. If this amount is too large, crystallinity improvement during graphitization will be significantly inhibited, and discharge after graphitization will occur. It causes a significant decrease in capacity. In addition, as a measuring method of a quinoline insoluble matter, the method prescribed | regulated to JISK2425, for example can be used.
In addition to the above pitch raw materials, various thermosetting resins and thermoplastic resins may be used in combination as long as the effects of the present invention are not hindered.

<熱処理黒鉛結晶前駆体の製造>
上記から選択したピッチ原料に事前に熱処理を施し、熱処理黒鉛結晶前駆体を得る。この事前の熱処理をピッチ熱処理と呼ぶこととする。この熱処理黒鉛結晶前駆体を粉砕後、黒鉛質(D)と混合後、熱処理Aをする際に、その一部又は全部が溶融するが、ここで事前の熱処理によって揮発分の含量を調整しておくことにより、その溶融状態を適切に制御することができる。なお、熱処理黒鉛結晶前駆体に含まれる揮発分としては、通常、水素、ベンゼン、ナフタレン、アントラセン、ピレン等が挙げられる。
<Production of heat-treated graphite crystal precursor>
The pitch raw material selected from the above is preheated to obtain a heat treated graphite crystal precursor. This prior heat treatment is referred to as pitch heat treatment. After this heat treated graphite crystal precursor is pulverized, mixed with graphite (D), and then heat treated A, part or all of it melts, but here the volatile content is adjusted by prior heat treatment. By setting, the molten state can be appropriately controlled. The volatile component contained in the heat-treated graphite crystal precursor usually includes hydrogen, benzene, naphthalene, anthracene, pyrene and the like.

ピッチ熱処理の際の温度条件は、特に制限されないが、通常300℃以上、好ましくは450℃以上、また、通常550℃以下、好ましくは510℃以下の範囲である。熱処理の温度がこの範囲を下回ると揮発分が多くなるため、大気中で安全に粉砕を行ない難くなる一方で、上限を上回ると熱処理A時に熱処理黒鉛結晶前駆体の一部又は全部が溶融せず、黒鉛質(D)と熱処理黒鉛結晶前駆体の複合化した粒子(黒鉛複合体粉末(A))を得難い。   The temperature condition during the pitch heat treatment is not particularly limited, but is usually in the range of 300 ° C. or higher, preferably 450 ° C. or higher, and usually 550 ° C. or lower, preferably 510 ° C. or lower. If the temperature of the heat treatment is below this range, the amount of volatile components increases, making it difficult to pulverize safely in the air. On the other hand, if the temperature exceeds the upper limit, part or all of the heat treated graphite crystal precursor does not melt during heat treatment A. It is difficult to obtain composite particles of graphite (D) and heat-treated graphite crystal precursor (graphite composite powder (A)).

また、ピッチ熱処理を行なう時間は、特に制限されないが、通常1時間以上、好ましくは10時間以上、また、通常48時間以下、好ましくは24時間以下である。熱処理の時間がこの範囲を下回ると不均一な熱処理黒鉛結晶前駆体となり製造上好ましくない一方で、上限を上回ると生産性が悪く処理費用が高くなり、やはり好ましくない。
なお、熱処理の温度及び累積時間が前記の範囲内であれば、複数回に分けて熱処理を行なってもよい。
The time for performing the pitch heat treatment is not particularly limited, but is usually 1 hour or longer, preferably 10 hours or longer, and usually 48 hours or shorter, preferably 24 hours or shorter. If the heat treatment time is less than this range, it becomes a non-uniform heat treated graphite crystal precursor, which is not preferable for production. On the other hand, if it exceeds the upper limit, the productivity is poor and the processing cost is high, which is also not preferable.
Note that the heat treatment may be performed in a plurality of times as long as the temperature and cumulative time of the heat treatment are within the above ranges.

ピッチ熱処理を行なう際には、窒素ガス等の不活性ガス雰囲気下、又は、ピッチ原料から発生する揮発分雰囲気下で行なう。
ピッチ熱処理に用いる装置としては特に制限はないが、例えば、シャトル炉、トンネル炉、電気炉、オートクレーブ等の反応槽、コーカー(コークス製造の熱処理槽)などを用いることができる。
ピッチ熱処理時には、必要に応じて攪拌を行なってもよい。
When the pitch heat treatment is performed, it is performed in an inert gas atmosphere such as nitrogen gas or in a volatile matter atmosphere generated from the pitch raw material.
Although there is no restriction | limiting in particular as an apparatus used for pitch heat processing, For example, reaction tanks, such as a shuttle furnace, a tunnel furnace, an electric furnace, an autoclave, a coker (heat processing tank of coke manufacture), etc. can be used.
During the pitch heat treatment, stirring may be performed as necessary.

<熱処理黒鉛結晶前駆体の揮発分>
ピッチ熱処理によって得られる黒鉛結晶前駆体の揮発分は、特に制限されないが、通常5重量%以上、好ましくは6重量%以上、また、通常20重量%以下、好ましくは15重量%以下とする。揮発分が上記範囲を下回ると揮発分が多いため、大気中で安全に粉砕を行ない難くなる一方で、上限を上回ると熱処理A時に黒鉛結晶前駆体の一部又は全部が溶融せず、黒鉛質(D)と熱処理黒鉛結晶前駆体の複合化した粒子(黒鉛複合体粉末(A))を得難い。なお、揮発分の測定方法としては、例えばJIS M8812に規定された方法を用いることができる。
<Volatile content of heat treated graphite crystal precursor>
The volatile content of the graphite crystal precursor obtained by the pitch heat treatment is not particularly limited, but is usually 5% by weight or more, preferably 6% by weight or more, and usually 20% by weight or less, preferably 15% by weight or less. If the volatile content is below the above range, the volatile content is large, so that it is difficult to pulverize safely in the atmosphere. On the other hand, if the volatile content exceeds the upper limit, part or all of the graphite crystal precursor does not melt during heat treatment A, It is difficult to obtain composite particles (graphite composite powder (A)) of (D) and heat-treated graphite crystal precursor. In addition, as a measuring method of a volatile matter, the method prescribed | regulated to JISM8812 can be used, for example.

<熱処理黒鉛結晶前駆体の軟化点>
ピッチ熱処理によって得られる黒鉛結晶前駆体の軟化点は、特に制限されないが、通常250℃以上、好ましくは300℃以上、更に好ましくは370℃以上、また、通常470℃以下、好ましくは450℃以下、更に好ましくは430℃以下の範囲とする。下限を下回ると、熱処理後の黒鉛結晶前駆体の炭素化収率が低く、黒鉛質(D)との均一な混合物を得難く、上限を上回ると、熱処理A時に黒鉛結晶前駆体の一部又は全部が溶融せず、黒鉛質(D)と熱処理黒鉛結晶前駆体の複合化した粒子(黒鉛複合体粉末(A))を得難い。軟化点としては、錠剤成型器で1mm厚さに成型した試料について、熱機械分析装置(例えば、ブルカー・エイエックス株式会社製TMA4000)を用いて、窒素流通下、昇温速度10℃/分、針先形状1mmφ、加重20gfの条件で、ペネトレーション法により測定した値を用いることができる。
<Softening point of heat-treated graphite crystal precursor>
The softening point of the graphite crystal precursor obtained by pitch heat treatment is not particularly limited, but is usually 250 ° C. or higher, preferably 300 ° C. or higher, more preferably 370 ° C. or higher, and usually 470 ° C. or lower, preferably 450 ° C. or lower. More preferably, it is set as the range of 430 degrees C or less. Below the lower limit, the carbonization yield of the graphite crystal precursor after the heat treatment is low and it is difficult to obtain a uniform mixture with the graphite (D), and when above the upper limit, part of the graphite crystal precursor during heat treatment A or All of them are not melted, and it is difficult to obtain composite particles (graphite composite powder (A)) of graphite (D) and heat-treated graphite crystal precursor. As a softening point, a sample molded to a thickness of 1 mm by a tablet molding machine was used, using a thermomechanical analyzer (for example, TMA4000 manufactured by Bruker AEX Co., Ltd.), under a nitrogen flow, a heating rate of 10 ° C./min. A value measured by the penetration method can be used under the conditions of a needle tip shape of 1 mmφ and a load of 20 gf.

<熱処理黒鉛結晶前駆体の粉砕>
次に、ピッチ熱処理によって得られた黒鉛結晶前駆体を粉砕する。熱処理により大きな単位で同一方向に並びかけている黒鉛結晶前駆体の結晶を微細化するため、及び/又は、黒鉛質(D)と熱処理黒鉛結晶前駆体との混合、複合化を均一にするためである。
<Pulverization of heat treated graphite crystal precursor>
Next, the graphite crystal precursor obtained by the pitch heat treatment is pulverized. In order to refine the graphite crystal precursor crystals that are aligned in the same direction in large units by heat treatment and / or to make the mixing (mixing) of graphite (D) and heat treated graphite crystal precursor uniform. It is.

ピッチ熱処理によって得られる黒鉛結晶前駆体の粉砕は、特に制限されないが、粉砕後の黒鉛結晶前駆体の粒度が、通常1μm以上、好ましくは5μm以上、また、通常10mm以下、好ましくは5mm以下、中でも好ましくは500μm以下、更に好ましくは200μm以下、特に好ましくは50μm以下となるように行なう。前記粒度が1μm未満では、粉砕中若しくは粉砕後に熱処理した黒鉛結晶前駆体の表面が空気と触れることで酸化し、黒鉛化過程での結晶性の向上を阻害し、黒鉛化後の放電容量の低下を招く虞がある。一方、前記粒度が10mmを超えると、粉砕による微細化効果が薄れ結晶が配向し易くなり、黒鉛質(E)及び/又は人造黒鉛粉末(B)が配向し易くなり、黒鉛複合体混合粉末(C)を用いた電極の活物質配向比が低くなり、電池充電時の電極膨張を抑制し難くなる。及び/又は、黒鉛質(D)と熱処理黒鉛結晶前駆体の粒径差が大きくなる為に、均一な混合がし難く、複合化が不均一になり易い。   The pulverization of the graphite crystal precursor obtained by the pitch heat treatment is not particularly limited, but the particle size of the graphite crystal precursor after pulverization is usually 1 μm or more, preferably 5 μm or more, and usually 10 mm or less, preferably 5 mm or less. It is preferably performed so that the thickness is 500 μm or less, more preferably 200 μm or less, and particularly preferably 50 μm or less. If the particle size is less than 1 μm, the surface of the graphite crystal precursor that has been heat-treated during or after pulverization is oxidized by contact with air, inhibiting the improvement of crystallinity during the graphitization process, and reducing the discharge capacity after graphitization. There is a risk of inviting. On the other hand, when the particle size exceeds 10 mm, the effect of refining by pulverization is reduced and the crystals are easily oriented, and the graphite (E) and / or the artificial graphite powder (B) is easily oriented, and the graphite composite mixed powder ( The active material orientation ratio of the electrode using C) becomes low, and it becomes difficult to suppress electrode expansion during battery charging. And / or, since the particle size difference between the graphite (D) and the heat-treated graphite crystal precursor is large, uniform mixing is difficult, and the composite is likely to be non-uniform.

粉砕に用いる装置に特に制限はないが、例えば、粗粉砕機としてはせん断式ミル、ジョークラッシャー、衝撃式クラッシャー、コーンクラッシャー等が挙げられ、中間粉砕機としてはロールクラッシャー、ハンマーミル等が挙げられ、微粉砕機としてはボールミル、振動ミル、ピンミル、攪拌ミル、ジェットミル等が挙げられる。   There are no particular restrictions on the apparatus used for pulverization, but examples include a coarse pulverizer such as a shearing mill, jaw crusher, impact crusher, and cone crusher, and an intermediate pulverizer includes a roll crusher and a hammer mill. Examples of the fine pulverizer include a ball mill, a vibration mill, a pin mill, a stirring mill, and a jet mill.

<黒鉛複合体混合粉末(C)の製造方法>
黒鉛質(D)と熱処理黒鉛結晶前駆体(黒鉛質(E)と人造黒鉛粉末(B)の原料)を所定の割合で混合、熱処理A、粉砕、熱処理B(焼成、黒鉛化)することにより黒鉛複合体混合粉末(C)を作製する。
<Method for Producing Graphite Composite Mixed Powder (C)>
By mixing graphite (D) and heat treated graphite crystal precursor (raw material of graphite (E) and artificial graphite powder (B)) at a predetermined ratio, heat treatment A, pulverization, heat treatment B (firing, graphitization) A graphite composite mixed powder (C) is prepared.

<黒鉛質(D)と熱処理黒鉛結晶前駆体との混合割合>
熱処理A前に行なう黒鉛質(D)と熱処理黒鉛結晶前駆体との混合割合は、特に制限されないが、混合物に対する黒鉛質(D)の割合が、通常20重量%以上、好ましくは30重量%以上、更に好ましくは40重量%以上、また、通常80重量%以下、好ましくは70重量%以下となるように行なう。下限を下回ると、黒鉛複合体混合粉末(C)中の黒鉛質(E)及び/又は人造黒鉛粉末(B)の割合が増える為、電極にした時に充填密度が上がり難く、過大なプレス荷重を必要とし黒鉛質(D)を複合化した効果が得られ難い。上限を上回ると、黒鉛複合体粉末(A)中の黒鉛質(D)表面の露出が増し、黒鉛複合体混合粉末(C)の比表面積が大きくなる可能性があり、粉体物性上好ましくない。
<Mixing ratio of graphite (D) and heat-treated graphite crystal precursor>
The mixing ratio of the graphite (D) and the heat-treated graphite crystal precursor performed before the heat treatment A is not particularly limited, but the ratio of the graphite (D) to the mixture is usually 20% by weight or more, preferably 30% by weight or more. More preferably, it is 40% by weight or more, usually 80% by weight or less, preferably 70% by weight or less. Below the lower limit, the ratio of the graphite (E) and / or artificial graphite powder (B) in the graphite composite mixed powder (C) increases, so that it is difficult to increase the packing density when an electrode is used, and an excessive press load is applied. It is difficult to obtain the required effect of combining graphite (D). Exceeding the upper limit may increase the exposure of the graphite (D) surface in the graphite composite powder (A) and increase the specific surface area of the graphite composite mixed powder (C), which is not preferable in terms of powder properties. .

<混合>
黒鉛質(D)と、所定粒度に調整した熱処理黒鉛結晶前駆体を混合する際に、用いる装置に特に制限はないが、例えば、V型混合機、W型混合機、容器可変型混合機、混練機、ドラムミキサー、せん断ミキサー等が挙げられる。
<Mixed>
There are no particular restrictions on the apparatus used when mixing the graphite (D) and the heat-treated graphite crystal precursor adjusted to a predetermined particle size. For example, a V-type mixer, a W-type mixer, a container variable type mixer, A kneader, a drum mixer, a shear mixer, etc. are mentioned.

<熱処理A>
次に、黒鉛質(D)と熱処理黒鉛結晶前駆体の混合物に熱処理Aを施す。粉砕した熱処理黒鉛結晶前駆体を再溶融又は融着することにより、黒鉛質(D)と微細化した熱処理黒鉛結晶前駆体粒子が無配向状態で接触したまま固定化するためである。これにより、黒鉛質(D)と熱処理黒鉛結晶前駆体の混合物は、単なる粒子の混合物ではなく、より均一な複合化した混合物(以下適宜、「黒鉛複合混合物」という)とすることができる。
<Heat treatment A>
Next, heat treatment A is applied to the mixture of the graphite (D) and the heat treated graphite crystal precursor. This is because, by remelting or fusing the pulverized heat-treated graphite crystal precursor, the graphite (D) and the refined heat-treated graphite crystal precursor particles are fixed in contact in a non-oriented state. Thereby, the mixture of the graphite (D) and the heat-treated graphite crystal precursor is not a simple particle mixture but a more uniform composite mixture (hereinafter referred to as “graphite composite mixture” as appropriate).

熱処理Aの温度条件は、特に制限されないが、通常300℃以上、好ましくは400℃以上、更に好ましくは450℃以上、また、通常650℃以下、好ましくは600℃以下である。熱処理Aの温度が前記範囲を下回ると、熱処理Aの後の材料中に揮発分が多く残存する為、焼成、若しくは黒鉛化工程時に粉体同志の融着を起こす可能性があり、再粉砕が必要となり好ましくない。一方、前記範囲を上回ると、再溶融した成分が粉砕時に針状に割れ、タップ密度の低下を招く可能性があり好ましくない。   The temperature condition of the heat treatment A is not particularly limited, but is usually 300 ° C. or higher, preferably 400 ° C. or higher, more preferably 450 ° C. or higher, and usually 650 ° C. or lower, preferably 600 ° C. or lower. If the temperature of the heat treatment A is lower than the above range, a large amount of volatile components remain in the material after the heat treatment A, so that there is a possibility that the powders will be fused together during the firing or graphitization process, It is necessary and not preferable. On the other hand, if it exceeds the above range, the remelted component may be broken into needles at the time of pulverization, leading to a decrease in tap density, which is not preferable.

熱処理Aを行なう時間は、特に制限されないが、通常5分以上、好ましくは20分以上、また、通常3時間以下、好ましくは2時間である。熱処理Aを行なう時間が前記範囲を下回ると揮発分が不均一になり、焼成もしくは黒鉛化処理時に融着の原因となり好ましくなく、上回ると生産性が悪く、処理費用も高くなる為やはり好ましくない。   The time for performing the heat treatment A is not particularly limited, but is usually 5 minutes or more, preferably 20 minutes or more, and usually 3 hours or less, preferably 2 hours. If the time during which the heat treatment A is performed is less than the above range, the volatile matter becomes non-uniform, causing fusion during firing or graphitization, which is not preferable, and exceeding it is also not preferable because the productivity is low and the processing cost increases.

熱処理Aは、窒素ガス等の不活性ガス雰囲気下、又は、粉砕により微細化した熱処理黒鉛結晶前駆体から発生する揮発分雰囲気下で行なう。
熱処理Aに用いる装置に特に制限はないが、例えば、シャトル炉、トンネル炉、電気炉などを用いることができる。
The heat treatment A is performed in an inert gas atmosphere such as nitrogen gas or in a volatile matter atmosphere generated from a heat treated graphite crystal precursor refined by pulverization.
Although there is no restriction | limiting in particular in the apparatus used for the heat processing A, For example, a shuttle furnace, a tunnel furnace, an electric furnace etc. can be used.

<熱処理黒鉛結晶前駆体の粉砕及び熱処理Aの代替処理>
ところで、上記の粉砕及び熱処理Aの代替処理として、熱処理黒鉛結晶前駆体の組織を微細化、無配向化することが可能な処理、例えば、熱処理した黒鉛結晶前駆体が溶融若しくは軟化する様な温度領域で機械的エネルギーを付与する処理を行ないながら、黒鉛質(D)と混合、熱処理を行なうことも可能である。
<Pulverization of heat treated graphite crystal precursor and alternative treatment for heat treatment A>
By the way, as an alternative to the pulverization and heat treatment A described above, a heat treatment graphite crystal precursor can be refined and non-oriented, for example, a temperature at which the heat treated graphite crystal precursor is melted or softened. It is possible to mix with graphite (D) and perform heat treatment while performing a process of applying mechanical energy in the region.

この代替処理としての熱処理は、特に制限されないが、通常200℃以上、好ましくは250℃以上、また、通常450℃以下、好ましくは400℃以下で行なう。温度条件が前記範囲を下回ると代替処理中の黒鉛結晶前駆体の溶融、軟化が不十分であり、黒鉛質(D)との複合化がし難くなる。また、上回ると熱処理が急速に進み易く、粉砕時に人造黒鉛粉末(B)等の粒子が針状に割れ、タップ密度の低下を招き易い。   The heat treatment as this alternative treatment is not particularly limited, but is usually performed at 200 ° C. or higher, preferably 250 ° C. or higher, and usually 450 ° C. or lower, preferably 400 ° C. or lower. If the temperature condition falls below the above range, the graphite crystal precursor during the alternative treatment is not sufficiently melted and softened, and it becomes difficult to make a composite with the graphite (D). Moreover, when it exceeds, heat processing will advance rapidly, and particles, such as artificial graphite powder (B), will break into a needle shape at the time of a grinding | pulverization, and it will be easy to cause the fall of a tap density.

また、その処理時間は、特に制限されないが、通常30分以上、好ましくは1時間以上、また、通常24時間以下、好ましくは10時間以下で行なう。処理時間が前記範囲を下回ると代替処理をした黒鉛結晶前駆体が不均一となり、製造上好ましくない。また、上回ると生産性が悪く、処理費用が高くなり好ましくない。   The treatment time is not particularly limited, but is usually 30 minutes or longer, preferably 1 hour or longer, and usually 24 hours or shorter, preferably 10 hours or shorter. If the treatment time is less than the above range, the graphite crystal precursor subjected to the substitution treatment becomes non-uniform, which is not preferable in production. Moreover, when it exceeds, productivity will worsen and processing cost will become high and is unpreferable.

この代替処理は、通常、窒素ガス等の不活性雰囲気下、又は空気等の酸化性雰囲気下で行なう。但し、酸化性雰囲気で処理する場合は、黒鉛化後に高結晶性を得ることが難しくなる虞があるので、酸素による不融化が進み過ぎない様にする必要がある。具体的には、代替処理後の黒鉛結晶前駆体中の酸素量が、通常8重量%以下、好ましくは5重量%以下となるようにする。
また、代替処理に用いる装置としては特に制限はないが、例えば、ミキサー、ニーダー等を用いることができる。
This alternative treatment is usually performed in an inert atmosphere such as nitrogen gas or an oxidizing atmosphere such as air. However, when the treatment is performed in an oxidizing atmosphere, it may be difficult to obtain high crystallinity after graphitization. Therefore, it is necessary to prevent the infusibilization with oxygen from proceeding excessively. Specifically, the oxygen amount in the graphite crystal precursor after the alternative treatment is usually 8% by weight or less, preferably 5% by weight or less.
Moreover, there is no restriction | limiting in particular as an apparatus used for an alternative process, For example, a mixer, a kneader, etc. can be used.

<粉砕>
次に、熱処理Aを行なった黒鉛複合混合物を粉砕する。熱処理Aにより黒鉛質(D)と複合化され組織が微細化、無配向化した状態で溶融又は融着した黒鉛複合混合物の塊を、粉砕により目的の粒子径にするためである。
<Crushing>
Next, the graphite composite mixture subjected to the heat treatment A is pulverized. This is because the mass of the graphite composite mixture that has been composited with the graphite (D) by the heat treatment A and melted or fused in a state in which the structure has been refined and non-oriented is pulverized to the target particle size.

粉砕後の黒鉛複合混合物の粒度は、特に制限されないが、通常6μm以上、好ましくは9μm以上、また、通常65μm以下、好ましくは35μm以下とする。粒度が前記範囲を下回ると、黒鉛複合体負極材料Cとしてタップ密度が小さくなってしまうため、電極とした場合に活物質の充填密度が上がり難く、高容量の電池を得難い。一方、前記範囲を上回ると、黒鉛複合体負極材料Cとして塗布により電極を作製するときに塗工むらが生じ易く好ましくない。   The particle size of the graphite composite mixture after pulverization is not particularly limited, but is usually 6 μm or more, preferably 9 μm or more, and usually 65 μm or less, preferably 35 μm or less. If the particle size is less than the above range, the tap density of the graphite composite negative electrode material C becomes small. Therefore, when the electrode is used, it is difficult to increase the packing density of the active material and it is difficult to obtain a high-capacity battery. On the other hand, when the above range is exceeded, uneven coating tends to occur when an electrode is produced by coating as the graphite composite negative electrode material C, which is not preferable.

粉砕に用いる装置について特に制限はないが、例えば、粗粉砕機としてはジョークラッシャー、衝撃式クラッシャー、コーンクラッシャー等が挙げられ、中間粉砕機としてはロールクラッシャー、ハンマーミル等が挙げられ、微粉砕機としてはボールミル、振動ミル、ピンミル、攪拌ミル、ジェットミル等が挙げられる。   There are no particular restrictions on the apparatus used for pulverization. Examples of the coarse pulverizer include a jaw crusher, an impact crusher, and a cone crusher. Examples of the intermediate pulverizer include a roll crusher and a hammer mill. Examples thereof include a ball mill, a vibration mill, a pin mill, a stirring mill, and a jet mill.

<熱処理B:焼成>
熱処理Bは、焼成及び黒鉛化のことを言う。以下、焼成から説明する。但し、焼成は、省略することも可能である。
粉砕により粉砕された黒鉛複合混合物を焼成する。黒鉛化時の黒鉛複合混合物の融着を抑制するべく、焼成により黒鉛複合混合物の揮発分を除去するためである。
<Heat treatment B: Firing>
Heat treatment B refers to firing and graphitization. Hereinafter, the firing will be described. However, the firing can be omitted.
The graphite composite mixture pulverized by pulverization is fired. This is because the volatile matter of the graphite composite mixture is removed by firing in order to suppress the fusion of the graphite composite mixture during graphitization.

焼成を行なう際の温度条件は、特に制限されないが、通常600℃以上、好ましくは1000℃以上、また、通常2400℃以下、好ましくは1300℃以下である。温度条件が前記範囲を下回ると、黒鉛化時に黒鉛複合混合物が粉体の融着を起こし易く好ましくない。一方、前記範囲を上回ると、焼成設備に費用が掛かるため好ましくない。
焼成を行なう時に、温度条件を上記範囲に保持する保持時間は特に制限されないが、通常30分以上、72時間以下である。
The temperature condition for performing the baking is not particularly limited, but is usually 600 ° C. or higher, preferably 1000 ° C. or higher, and usually 2400 ° C. or lower, preferably 1300 ° C. or lower. If the temperature condition is below the above range, the graphite composite mixture is liable to cause powder fusion during graphitization, which is not preferable. On the other hand, if it exceeds the above range, the firing equipment is expensive, which is not preferable.
The holding time for keeping the temperature condition in the above range when firing is not particularly limited, but is usually 30 minutes or longer and 72 hours or shorter.

焼成は、窒素ガス等の不活性ガス雰囲気下、又は、再粉砕した黒鉛複合混合物から発生するガスによる非酸化性雰囲気下で行なう。また、製造工程の簡略化のため、焼成工程を組み込まずに、直接黒鉛化を行なうことも可能である。
焼成に用いる装置としては特に制限はないが、例えば、シャトル炉、トンネル炉、電気炉、リードハンマー炉、ロータリーキルン等を用いることができる。
Firing is performed in an inert gas atmosphere such as nitrogen gas or in a non-oxidizing atmosphere with a gas generated from the re-pulverized graphite composite mixture. In addition, for simplification of the manufacturing process, it is possible to directly graphitize without incorporating a firing process.
Although there is no restriction | limiting in particular as an apparatus used for baking, For example, a shuttle furnace, a tunnel furnace, an electric furnace, a lead hammer furnace, a rotary kiln etc. can be used.

<熱処理B:黒鉛化>
次に、焼成を行なった黒鉛複合混合物に黒鉛化を施す。電池評価での放電容量を大きくするために、結晶性を向上させるためである。黒鉛化により、黒鉛複合体混合粉末(C)(本発明の負極材料(I))を得ることができる。
<Heat treatment B: Graphitization>
Next, graphitization is performed on the fired graphite composite mixture. This is to improve the crystallinity in order to increase the discharge capacity in battery evaluation. Graphitized composite powder (C) (the negative electrode material (I) of the present invention) can be obtained.

黒鉛化を行なう際の温度条件は、特に制限されないが、通常2800℃以上、好ましくは3000℃以上、また、通常3200℃以下、好ましくは3100℃以下である。前記範囲を上回ると、電池の可逆容量が小さくなる虞があり、高容量な電池を作り難い。また、前記範囲を上回ると、黒鉛の昇華量が多くなり易く好ましくない。   The temperature condition for graphitization is not particularly limited, but is usually 2800 ° C. or higher, preferably 3000 ° C. or higher, and usually 3200 ° C. or lower, preferably 3100 ° C. or lower. If it exceeds the above range, the reversible capacity of the battery may be reduced, and it is difficult to make a high capacity battery. Moreover, if it exceeds the above range, the amount of graphite sublimation tends to increase, which is not preferable.

黒鉛化を行なう際の保持時間は特に制限されないが、通常0分より長時間であり、24時間以下である。
黒鉛化は、アルゴンガス等の不活性ガス雰囲気下、又は、焼成した黒鉛複合混合物から発生するガスによる非酸化性雰囲気下で行なう。
The holding time during graphitization is not particularly limited, but is usually longer than 0 minutes and not longer than 24 hours.
The graphitization is performed in an inert gas atmosphere such as argon gas, or in a non-oxidizing atmosphere with a gas generated from the calcined graphite composite mixture.

黒鉛化に使用する装置としては特に制限はないが、例えば、直接通電炉、アチソン炉、間接通電式として抵抗加熱炉、誘導加熱炉等が挙げられる。
なお、黒鉛化処理時、若しくはそれ以前の工程、即ち、熱処理から焼成までの工程で、材料(黒鉛質(D)、ピッチ原料又は黒鉛結晶前駆体)の中若しくは表面にSi、B等の黒鉛化触媒を添加しても構わない。
Although there is no restriction | limiting in particular as an apparatus used for graphitization, For example, a resistance heating furnace, an induction heating furnace etc. are mentioned as a direct current furnace, an Atchison furnace, and an indirect electricity supply type.
Note that graphite such as Si or B is formed in or on the surface of the material (graphite (D), pitch raw material or graphite crystal precursor) during the graphitization treatment or in the previous steps, that is, the steps from heat treatment to firing. A crystallization catalyst may be added.

〔製造方法2〕
次に製造方法2について説明する。
[Production Method 2]
Next, manufacturing method 2 will be described.

<黒鉛複合体粉末(A)の製造方法>
上述のピッチ原料と黒鉛質(D)を、任意の割合で混合し、熱処理Bを実施して黒鉛複合体粉末(A)を作製する。
<Method for Producing Graphite Composite Powder (A)>
The above-mentioned pitch raw material and graphite (D) are mixed at an arbitrary ratio, and heat treatment B is performed to produce a graphite composite powder (A).

<人造黒鉛粉末(B)の製造方法>
ピッチ原料を、製造方法1と同様にピッチ熱処理して黒鉛結晶前駆体を得る。この黒鉛結晶前駆体は、上述の中粉砕機、微粉砕工程を施して粉末としても良い。
さらに、この黒鉛結晶前駆体を粉砕、熱処理A、Bを施すことにより、人造黒鉛粉末(B)を作製する。但し、粉砕及び、熱処理は、任意の順番で行なうことができ、熱処理Aは省略しても良い。
<Method for producing artificial graphite powder (B)>
The pitch raw material is subjected to pitch heat treatment in the same manner as in production method 1 to obtain a graphite crystal precursor. The graphite crystal precursor may be powdered by performing the above-described medium pulverizer and fine pulverization step.
Further, the graphite crystal precursor is pulverized and subjected to heat treatments A and B to produce artificial graphite powder (B). However, pulverization and heat treatment can be performed in any order, and heat treatment A may be omitted.

<混合>
この黒鉛複合体粉末(A)と人造黒鉛粉末(B)を製造方法1の「混合」で用いた任意の装置を使用して混合する。
黒鉛複合体粉末(A)と人造黒鉛粉末(B)の比率は、黒鉛複合体粉末(A)と人造黒鉛粉末(B)の合計量に対する人造黒鉛粉末(B)の重量比の値で、通常2重量%以上、好ましくは10重量%以上、より好ましくは14重量%以上、また、通常65重量%以下、好ましくは50重量%以下、より好ましくは45重量%以下の範囲である。この範囲を下回ると、人造黒鉛粉末(B)の割合が増える為、電極にした時に充填密度が上がり難く、過大なプレス荷重を必要とし人造黒鉛粉末(B)を混合した利点が得られ難い。一方、この範囲を上回ると、黒鉛複合体粉末(A)の割合が多過ぎる為、電極塗布性を損なう可能性がある。
<Mixed>
The graphite composite powder (A) and the artificial graphite powder (B) are mixed using any apparatus used in the “mixing” of the production method 1.
The ratio of the graphite composite powder (A) to the artificial graphite powder (B) is usually a value of the weight ratio of the artificial graphite powder (B) to the total amount of the graphite composite powder (A) and the artificial graphite powder (B). It is 2% by weight or more, preferably 10% by weight or more, more preferably 14% by weight or more, and usually 65% by weight or less, preferably 50% by weight or less, more preferably 45% by weight or less. If it falls below this range, the proportion of the artificial graphite powder (B) increases, so that it is difficult to increase the packing density when it is used as an electrode, and an excessive press load is required and it is difficult to obtain the advantage of mixing the artificial graphite powder (B). On the other hand, if it exceeds this range, the ratio of the graphite composite powder (A) is too large, and the electrode coatability may be impaired.

<その他の処理>
その他、発明の効果が妨げられない限りにおいて、上記の各処理に加え、分級処理等の各種の処理を行なうことができる。分級処理は、黒鉛化処理後の粒度を目的の粒径にするべく、粗粉や微粉を除去するためのものである。
<Other processing>
In addition, various processes such as a classification process can be performed in addition to the above processes as long as the effects of the invention are not hindered. The classification treatment is for removing coarse powder and fine powder so that the particle size after graphitization treatment becomes a target particle size.

分級処理に用いる装置としては特に制限はないが、例えば、乾式篩い分けの場合:回転式篩い、動揺式篩い、旋動式篩い、振動式篩い、乾式気流式分級の場合:重力式分級機、慣性力式分級機、遠心力式分級機(クラシファイア、サイクロン等)、湿式篩い分け、機械的湿式分級機、水力分級機、沈降分級機、遠心式湿式分級機等を用いることができる。
分級処理は、熱処理A後の粉砕のすぐ後に続けて行なうこともできるし、その他のタイミング、例えば、粉砕後の焼成の後、あるいは黒鉛化の後に行なってもよい。更には、分級処理自体を省略することも可能である。但し、黒鉛複合体混合粉末(C)のBET比表面積を低下させる点、及び、生産性の点からは、熱処理A後の粉砕のすぐ後に続けて分級処理を行なうことが好ましい。
There are no particular restrictions on the equipment used for the classification process. For example, in the case of dry sieving: rotary sieving, oscillating sieving, rotating sieving, vibrating sieving, dry airflow classifying: gravity classifier, Inertial force classifiers, centrifugal classifiers (classifiers, cyclones, etc.), wet sieving, mechanical wet classifiers, hydraulic classifiers, sedimentation classifiers, centrifugal wet classifiers and the like can be used.
The classification treatment may be performed immediately after the pulverization after the heat treatment A, or may be performed at other timing, for example, after the calcination after the pulverization, or after the graphitization. Furthermore, the classification process itself can be omitted. However, from the viewpoint of reducing the BET specific surface area of the graphite composite mixed powder (C) and the productivity, it is preferable to perform the classification treatment immediately after the pulverization after the heat treatment A.

〔黒鉛複合体混合粉末(C)の製造後の処理〕
上述の手順で製造した黒鉛複合体混合粉末(C)に対して、更に、負極材料のBET比表面積の制御、電極プレス性の向上、放電容量の向上、安価化等の目的で、別に製造した人造黒鉛粉末又は天然黒鉛粉末を加えて混合しても良い。人造黒鉛粉末を加える場合、これは黒鉛複合体混合粉末(C)の成分である人造黒鉛粉末(B)の一部と捉えることができる。一方、天然黒鉛粉末を加える場合、これは上述の天然黒鉛粉末(G)として機能し、混合粉末全体では、上述の黒鉛複合体混合粉末(F)として機能することになる。
[Processing after production of graphite composite mixed powder (C)]
For the graphite composite mixed powder (C) produced by the above procedure, it was produced separately for the purpose of controlling the BET specific surface area of the negative electrode material, improving the electrode pressability, improving the discharge capacity, and reducing the cost. Artificial graphite powder or natural graphite powder may be added and mixed. When the artificial graphite powder is added, this can be regarded as a part of the artificial graphite powder (B) which is a component of the graphite composite mixed powder (C). On the other hand, when natural graphite powder is added, this functions as the above-mentioned natural graphite powder (G), and the mixed powder as a whole functions as the above-mentioned graphite composite mixed powder (F).

[3.リチウム二次電池用負極]
本発明の負極材料を活物質として含有する活物質層を集電体上に形成することにより、リチウム二次電池用負極を作製することができる。
[3. Negative electrode for lithium secondary battery]
By forming an active material layer containing the negative electrode material of the present invention as an active material on a current collector, a negative electrode for a lithium secondary battery can be produced.

負極の製造は、常法にしたがって製造すればよい。例えば、負極活物質に、結着剤、増粘剤、導電材、溶媒等を加えてスラリー状とし、集電体に塗布し、乾燥した後にプレスして高密度化する方法が挙げられる。また、本発明の負極材料に加えて、他の活物質を併用して用いることもできる。   What is necessary is just to manufacture a negative electrode in accordance with a conventional method. For example, a method in which a binder, a thickener, a conductive material, a solvent, and the like are added to a negative electrode active material to form a slurry, which is applied to a current collector, dried, pressed and densified. In addition to the negative electrode material of the present invention, other active materials can be used in combination.

負極層の密度は、通常1.45g/cm3以上、好ましくは1.55g/cm3以上、より好ましくは1.6g/cm3以上とすると、電池の容量が増加するので好ましい。なお、負極層とは集電体上の活物質、結着剤、導電剤などよりなる層をいい、その密度とは電池に組立てる時点での密度をいう。 The density of the negative electrode layer is usually 1.45 g / cm 3 or more, preferably 1.55 g / cm 3 or more, and more preferably 1.6 g / cm 3 or more, because the battery capacity increases. Note that the negative electrode layer refers to a layer made of an active material, a binder, a conductive agent, and the like on the current collector, and the density refers to the density at the time of assembling the battery.

結着剤としては、電極製造時に使用する溶媒や電解液に対して安定な材料であれば、任意のものを使用することができる。例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、スチレンブタジエンゴム、イソプレンゴム、ブタジエンゴム、エチレン−アクリル酸共重合体及びエチレン−メタクリル酸共重合体等が挙げられる。なお、これらは1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。   As the binder, any material can be used as long as it is a material that is stable with respect to the solvent and the electrolyte used in manufacturing the electrode. Examples thereof include polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, styrene butadiene rubber, isoprene rubber, butadiene rubber, ethylene-acrylic acid copolymer, and ethylene-methacrylic acid copolymer. In addition, these may be used individually by 1 type and may use 2 or more types together by arbitrary combinations and ratios.

増粘剤としては公知のものを任意に選択して用いることができるが、例えば、カルボキシルメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコ−ル、酸化スターチ、リン酸化スターチ及びガゼイン等が挙げられる。なお、これらは1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。   As the thickener, known ones can be arbitrarily selected and used, and examples thereof include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, and casein. In addition, these may be used individually by 1 type and may use 2 or more types together by arbitrary combinations and ratios.

導電材としては、銅又はニッケル等の金属材料;グラファイト又はカーボンブラック等の炭素材料などが挙げられる。なお、これらは1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。   Examples of the conductive material include a metal material such as copper or nickel; a carbon material such as graphite or carbon black. In addition, these may be used individually by 1 type and may use 2 or more types together by arbitrary combinations and ratios.

負極用集電体の材質としては、銅、ニッケル又はステンレス等が挙げられる。これらのうち、薄膜に加工し易いという点及びコストの点から銅箔が好ましい。なお、これらは1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。   Examples of the material of the negative electrode current collector include copper, nickel, and stainless steel. Of these, copper foil is preferred from the viewpoint of easy processing into a thin film and cost. In addition, these may be used individually by 1 type and may use 2 or more types together by arbitrary combinations and ratios.

[4.リチウム二次電池]
本発明の負極材料は、電池の電極の材料として有用である。特に、リチウムイオンを吸蔵・放出可能な正極及び負極、並びに電解液を備えたリチウム二次電池などの非水系二次電池において、上述した本発明の負極材料を負極に用いることは、極めて有用である。例えば、本発明の負極材料を使用して負極を作製し、通常使用されるリチウム二次電池用の金属カルコゲナイド系正極及びカーボネート系溶媒を主体とする有機電解液を組み合わせて構成した非水系二次電池は、容量が大きく、初期サイクルに認められる不可逆容量が小さく、急速充放電容量が高く、またサイクル特性が優れ、高温下での放置における電池の保存性及び信頼性も高く、高効率放電特性及び低温における放電特性に極めて優れたものである。
[4. Lithium secondary battery]
The negative electrode material of the present invention is useful as a material for battery electrodes. In particular, it is extremely useful to use the negative electrode material of the present invention described above for a negative electrode in a non-aqueous secondary battery such as a positive and negative electrodes capable of inserting and extracting lithium ions, and a lithium secondary battery including an electrolyte. is there. For example, a negative electrode is produced using the negative electrode material of the present invention, and a non-aqueous secondary material constituted by combining a metal chalcogenide-based positive electrode for a lithium secondary battery that is normally used and an organic electrolyte mainly composed of a carbonate-based solvent. The battery has a large capacity, a small irreversible capacity observed in the initial cycle, a high rapid charge / discharge capacity, excellent cycle characteristics, high battery storage and reliability when left at high temperatures, and high efficiency discharge characteristics. In addition, it has excellent discharge characteristics at low temperatures.

このようなリチウム二次電池を構成する正極、電解液等の電池構成上必要な部材の選択については特に制限されない。以下において、本発明の負極材料を用いたリチウム二次電池を構成する部材の材料等を例示するが、使用し得る材料はこれらの具体例に限定されるものではない。   There is no particular limitation on the selection of members necessary for the battery configuration, such as the positive electrode and the electrolytic solution constituting such a lithium secondary battery. Below, the material of the member which comprises the lithium secondary battery using the negative electrode material of this invention is illustrated, However, The material which can be used is not limited to these specific examples.

正極には、例えば、リチウムコバルト酸化物、リチウムニッケル酸化物、リチウムマンガン酸化物等のリチウム遷移金属複合酸化物材料;二酸化マンガン等の遷移金属酸化物材料;フッ化黒鉛等の炭素質材料などのリチウムを吸蔵・放出可能な材料を使用することができる。具体的には、LiFeO2、LiCoO2、LiNiO2、LiMn24及びこれらの非定比化合物、MnO2、TiS2、FeS2、Nb34、Mo34、CoS2、V25、P25、CrO3、V33、TeO2、GeO2等を用いることができる。正極の製造方法は特に制限されず、上記の電極の製造方法と同様の方法により製造することができる。 Examples of the positive electrode include lithium transition metal composite oxide materials such as lithium cobalt oxide, lithium nickel oxide, and lithium manganese oxide; transition metal oxide materials such as manganese dioxide; and carbonaceous materials such as graphite fluoride. A material capable of inserting and extracting lithium can be used. Specifically, LiFeO 2 , LiCoO 2 , LiNiO 2 , LiMn 2 O 4 and their non-stoichiometric compounds, MnO 2 , TiS 2 , FeS 2 , Nb 3 S 4 , Mo 3 S 4 , CoS 2 , V 2 O 5 , P 2 O 5 , CrO 3 , V 3 O 3 , TeO 2 , GeO 2 and the like can be used. The manufacturing method in particular of a positive electrode is not restrict | limited, It can manufacture by the method similar to the manufacturing method of said electrode.

正極集電体には、例えば、電解液中での陽極酸化によって表面に不動態皮膜を形成する弁金属又はその合金を用いるのが好ましい。弁金属としては、短周期型周期表における第IIIb族、第IVa族、第Va族に属する金属及びこれらの合金を例示することができる。具体的には、Al、Ti、Zr、Hf、Nb、Ta及びこれらの金属を含む合金などを例示することができ、Al、Ti、Ta及びこれらの金属を含む合金を好ましく使用することができる。特にAl及びその合金は軽量であるためエネルギー密度が高くて望ましい。   For the positive electrode current collector, for example, it is preferable to use a valve metal or an alloy thereof that forms a passive film on the surface by anodic oxidation in an electrolytic solution. Examples of the valve metal include metals belonging to Group IIIb, Group IVa, and Group Va in the short-period periodic table, and alloys thereof. Specifically, Al, Ti, Zr, Hf, Nb, Ta and alloys containing these metals can be exemplified, and Al, Ti, Ta and alloys containing these metals can be preferably used. . In particular, Al and its alloys are desirable because of their light weight and high energy density.

電解質としては、電解液や固体電解質など、任意の電解質を用いることができる。なおここで電解質とはイオン導電体全てのことをいい、電解液及び固体電解質は共に電解質に含まれるものとする。   Any electrolyte such as an electrolytic solution or a solid electrolyte can be used as the electrolyte. Here, the electrolyte refers to all ionic conductors, and both the electrolytic solution and the solid electrolyte are included in the electrolyte.

電解液としては、例えば、非水系溶媒に溶質を溶解したものを用いることができる。溶質としては、アルカリ金属塩や4級アンモニウム塩などを用いることができる。具体的には、LiClO4、LiPF6、LiBF4、LiCF3SO3、LiN(CF3SO22、LiN(CF3CF2SO22、LiN(CF3SO2)(C49SO2)、LiC(CF3SO23からなる群から選択される1以上の化合物を用いるのが好ましい。 As the electrolytic solution, for example, a solution obtained by dissolving a solute in a non-aqueous solvent can be used. As the solute, an alkali metal salt, a quaternary ammonium salt, or the like can be used. Specifically, LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (CF 3 CF 2 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F It is preferable to use one or more compounds selected from the group consisting of 9 SO 2 ) and LiC (CF 3 SO 2 ) 3 .

非水系溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等の環状カーボネート、γ−ブチロラクトンなどの環状エステル化合物;1,2−ジメトキシエタン等の鎖状エーテル;クラウンエーテル、2−メチルテトラヒドロフラン、1,2−ジメチルテトラヒドロフラン、1,3−ジオキソラン、テトラヒドロフラン等の環状エーテル;ジエチルカーボネート、エチルメチルカーボネート、ジメチルカーボネート等の鎖状カーボネートなどを用いることができる。溶質及び溶媒はそれぞれ1種類を選択して使用してもよいし、2種以上を混合して使用してもよい。これらの中でも非水系溶媒が、環状カーボネートと鎖状カーボネートを含有するものが好ましい。   Examples of the non-aqueous solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate; cyclic ester compounds such as γ-butyrolactone; chain ethers such as 1,2-dimethoxyethane; crown ethers, 2- Cyclic ethers such as methyltetrahydrofuran, 1,2-dimethyltetrahydrofuran, 1,3-dioxolane, and tetrahydrofuran; chain carbonates such as diethyl carbonate, ethyl methyl carbonate, and dimethyl carbonate can be used. One kind of solute and solvent may be selected and used, or two or more kinds may be mixed and used. Among these, the non-aqueous solvent preferably contains a cyclic carbonate and a chain carbonate.

また、非水系電解液は、電解液中に有機高分子化合物を含ませ、ゲル状又は、ゴム状、或いは固体シート状の固体電解質としてもよい。有機高分子化合物の具体例としては、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル系高分子化合物;ポリエーテル系高分子化合物の架橋体高分子;ポリビニルアルコール、ポリビニルブチラールなどのビニルアルコール系高分子化合物;ビニルアルコール系高分子化合物の不溶化物;ポリエピクロルヒドリン;ポリフォスファゼン;ポリシロキサン;ポリビニルピロリドン、ポリビニリデンカーボネート、ポリアクリロニトリルなどのビニル系高分子化合物;ポリ(ω−メトキシオリゴオキシエチレンメタクリレート)、ポリ(ω−メトキシオリゴオキシエチレンメタクリレート−co−メチルメタクリレート)等のポリマー共重合体などが挙げられる。   Further, the non-aqueous electrolyte solution may include an organic polymer compound in the electrolyte solution, and may be a gel-like, rubber-like, or solid sheet-like solid electrolyte. Specific examples of organic polymer compounds include polyether polymer compounds such as polyethylene oxide and polypropylene oxide; crosslinked polymers of polyether polymer compounds; vinyl alcohol polymer compounds such as polyvinyl alcohol and polyvinyl butyral; vinyl Insoluble matter of alcohol polymer compound; polyepichlorohydrin; polyphosphazene; polysiloxane; vinyl polymer compound such as polyvinylpyrrolidone, polyvinylidene carbonate, polyacrylonitrile; poly (ω-methoxyoligooxyethylene methacrylate), poly (ω -Methoxyoligooxyethylene methacrylate-co-methyl methacrylate) and the like.

セパレータの材質や形状は特に制限されない。セパレータは正極と負極が物理的に接触しないように分離するものであり、イオン透過性が高く、電気抵抗が低いものであるのが好ましい。セパレータは電解液に対して安定で保液性が優れた材料の中から選択するのが好ましい。具体例としては、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シート又は不織布を用いて、上記電解液を含浸させることができる。   The material and shape of the separator are not particularly limited. The separator is separated so that the positive electrode and the negative electrode do not come into physical contact with each other, and preferably has high ion permeability and low electrical resistance. The separator is preferably selected from materials that are stable with respect to the electrolyte and excellent in liquid retention. As a specific example, the said electrolyte solution can be impregnated using the porous sheet or nonwoven fabric which uses polyolefin, such as polyethylene and a polypropylene, as a raw material.

電解液、負極及び正極を少なくとも有するリチウム二次電池を製造する方法は、特に限定されず通常採用されている方法の中から適宜選択することができる。
リチウム二次電池には、電解液、負極、正極の他に、必要に応じて、外缶、セパレータ、ガスケット、封口板、セルケースなどを用いることもできる。
The method for producing a lithium secondary battery having at least an electrolytic solution, a negative electrode, and a positive electrode is not particularly limited and can be appropriately selected from commonly employed methods.
In addition to the electrolyte solution, the negative electrode, and the positive electrode, an outer can, a separator, a gasket, a sealing plate, a cell case, and the like can also be used for the lithium secondary battery as necessary.

リチウム二次電池の製造方法の例を挙げると、外缶上に負極を乗せ、その上に電解液とセパレータを設け、さらに負極と対向するように正極を乗せて、ガスケット、封口板と共にかしめて電池にすることができる。   An example of a method for manufacturing a lithium secondary battery is to place a negative electrode on an outer can, provide an electrolyte and a separator on the can, and further place a positive electrode so as to face the negative electrode, and caulk it together with a gasket and a sealing plate. Can be a battery.

電池の形状は特に制限されず、例えば、シート電極及びセパレータをスパイラル状にしたシリンダータイプ、ペレット電極及びセパレータを組み合わせたインサイドアウト構造のシリンダータイプ、ペレット電極及びセパレータを積層したコインタイプ等にすることができる。   The shape of the battery is not particularly limited. For example, a cylinder type in which a sheet electrode and a separator are spiral, a cylinder type having an inside-out structure in which a pellet electrode and a separator are combined, a coin type in which a pellet electrode and a separator are stacked, etc. Can do.

[本発明の負極材料が優れた電池性能を示す活物質となる推定理由]
本発明の負極材料を負極活物質として、高い電極密度で使用した場合に、放電容量が高く、充放電効率が高く、負荷特性に優れ、且つ、充電時の電極膨張が小さい電池が得られる理由は、必ずしも明らかではないが、次のように推定される。
[Estimated reason why the negative electrode material of the present invention becomes an active material exhibiting excellent battery performance]
Reasons for obtaining a battery having a high discharge capacity, high charge / discharge efficiency, excellent load characteristics, and low electrode expansion during charging when the negative electrode material of the present invention is used as a negative electrode active material at a high electrode density Is not necessarily clear, but is estimated as follows.

本発明の負極材料(I)、即ち黒鉛複合体混合粉末(C)は、結晶性が高く、上記の規定範囲のアスペクト比を有する黒鉛質(D)を有することで、放電容量が高く、負荷特性に優れる。また、この黒鉛質(D)と配向性の異なる黒鉛質(E)を有することで、比表面積の増加が抑制され、充放電効率が高い。更に、これらの黒鉛質(D)と黒鉛質(E)とが複合化していることで、活物質配向比が高く膨張が小さくなる。   The negative electrode material (I) of the present invention, that is, the graphite composite mixed powder (C) has high crystallinity, and has a graphite (D) having an aspect ratio in the above specified range. Excellent characteristics. Moreover, the increase in a specific surface area is suppressed by having graphite (E) from which this graphite (D) and orientation differ, and charge / discharge efficiency is high. Furthermore, since these graphite (D) and graphite (E) are compounded, the active material orientation ratio is high and the expansion is small.

また、本発明の負極材料(II)、即ち黒鉛複合体混合粉末(F)は、上述の黒鉛複合体混合粉末(C)に加えて、更に天然黒鉛粉末(G)が共存していることで、粉体物性のより精密な制御が可能となり、負荷特性やサイクル寿命に優れるため好ましい。   In addition, the negative electrode material (II) of the present invention, that is, the graphite composite mixed powder (F), in addition to the above-mentioned graphite composite mixed powder (C), further includes a natural graphite powder (G). It is preferable because it enables more precise control of powder physical properties and is excellent in load characteristics and cycle life.

ここで、特に特許文献3に記載の技術との比較で、本発明の利点を考察する。
特許文献3に記載の複合質黒鉛材料では、外表面の黒鉛質層(C)が黒鉛質被覆材(B)と一体化しているが故に、外表面の黒鉛質層(C)の厚さをコントロールすることが困難であり、安定した電池特性を発揮し難いという課題があった。また、球状の緻密な硬い材料のみで構成されているが故に、電極中の負極材の充填率を上げ難く、更に高い電極密度にすることが困難であるという課題があった。加えて、工業的生産の観点からは、製造工程が煩雑でコストが高いという課題があった。また、低結晶性の表層(C)が芯材から剥離することなく被覆しており、BET比表面積は1m2/g以下が好ましい旨が記載されているが、BET比表面積が小さくなることにより充電時のリチウムの受け入れが悪化し、充電容量が低下するという点で不十分であった。
Here, in particular, the advantages of the present invention will be considered in comparison with the technique described in Patent Document 3.
In the composite graphite material described in Patent Document 3, since the outer surface graphite layer (C) is integrated with the graphite coating material (B), the thickness of the outer surface graphite layer (C) is reduced. There is a problem that it is difficult to control and it is difficult to exert stable battery characteristics. In addition, since it is composed only of a spherical dense hard material, there is a problem that it is difficult to increase the filling rate of the negative electrode material in the electrode, and it is difficult to achieve a higher electrode density. In addition, from the viewpoint of industrial production, there is a problem that the manufacturing process is complicated and the cost is high. Further, it is described that the low crystalline surface layer (C) is coated without peeling from the core material, and that the BET specific surface area is preferably 1 m 2 / g or less, but the BET specific surface area is reduced. Lithium acceptance at the time of charging deteriorated, and the charging capacity was insufficient.

それに対して、本発明は球状、楕円状、塊状の黒鉛複合体粉末(A)に、人造黒鉛粉末(B)が存在することで、電極中の負極材の充填率を上げ易く更に高い電極密度にすることが可能であり、且つ、BET比表面積の高い黒鉛複合体粉末(A)と、BET比表面積の低い人造黒鉛粉末(B)の組み合わせを変えることで、BET比表面積の制御が可能となる。   On the other hand, in the present invention, since the artificial graphite powder (B) is present in the spherical, ellipsoidal, and massive graphite composite powder (A), it is easy to increase the filling rate of the negative electrode material in the electrode, and the electrode density is higher. It is possible to control the BET specific surface area by changing the combination of the graphite composite powder (A) having a high BET specific surface area and the artificial graphite powder (B) having a low BET specific surface area. Become.

以下に本発明の実施例について説明するが、本発明は以下の実施例によってなんら限定されるものではなく、その要旨を逸脱しない範囲において、任意に変更を加えて実施することが可能である。   EXAMPLES Examples of the present invention will be described below. However, the present invention is not limited to the following examples, and can be implemented with arbitrary modifications without departing from the gist thereof.

[実施例1]
キノリン不溶分が0.05重量%以下のコールタールピッチを、反応炉にて460℃で10時間熱処理し、軟化点385℃の、溶融性のある塊状の熱処理黒鉛結晶前駆体を得た。なお、軟化点の値は、前記記載の手法にて測定した値を用いた。
得られた塊状の熱処理黒鉛結晶前駆体を、中間粉砕機(セイシン企業社製オリエントミル)を用いて粉砕し、更に微粉砕機(マツボー社製ターボミル)を用いて微粉砕して、メジアン径17μmの微細化した黒鉛結晶前駆体粉末を得た。なお、メジアン径の値は、前記記載の手法にて測定した値を用いた。
[Example 1]
A coal tar pitch having a quinoline insoluble content of 0.05% by weight or less was heat-treated in a reaction furnace at 460 ° C. for 10 hours to obtain a meltable massive heat-treated graphite crystal precursor having a softening point of 385 ° C. In addition, the value measured by the above-mentioned method was used for the value of the softening point.
The obtained bulk heat-treated graphite crystal precursor was pulverized using an intermediate pulverizer (Orient Mill manufactured by Seishin Enterprise Co., Ltd.), and further pulverized using a fine pulverizer (Tsubo Mill manufactured by Matsubo Co., Ltd.) to give a median diameter of 17 μm. A refined graphite crystal precursor powder was obtained. In addition, the value measured by the method described above was used as the median diameter value.

上記の微細化黒鉛結晶前駆体粉末に、メジアン径17μm、アスペクト比1.9、タップ密度1.0g/cm3の天然黒鉛を、微細化黒鉛結晶前駆体粉末及び天然黒鉛の全重量に対して50重量%混合し、黒鉛質(D)と熱処理黒鉛結晶前駆体との混合粉末を得た。なお、アスペクト比の値は、前記記載の手法にて測定した値を用いた。 Natural graphite having a median diameter of 17 μm, an aspect ratio of 1.9, and a tap density of 1.0 g / cm 3 is added to the above-mentioned fine graphite crystal precursor powder with respect to the total weight of the fine graphite crystal precursor powder and natural graphite. 50% by weight was mixed to obtain a mixed powder of graphite (D) and heat-treated graphite crystal precursor. In addition, the value measured by the method described above was used as the value of the aspect ratio.

この熱処理黒鉛結晶前駆体の混合粉末を金属製の容器に詰め、箱形の電気炉で窒素ガス流通下、540℃で2時間、熱処理Aを行なった。熱処理A中に、微細化した黒鉛結晶前駆体粉末は溶融し、天然黒鉛と均一に複合化した熱処理黒鉛結晶前駆体の混合物の塊となった。
この固化した熱処理黒鉛結晶前駆体混合物の塊を粗砕機(吉田製作所製ロールジョークラッシャー)で粉砕、更に微粉砕機(マツボー社製ターボミル)を用いて微粉砕し、メジアン径18.5μmの粉末を得た。
The mixed powder of the heat treated graphite crystal precursor was packed in a metal container, and heat treatment A was performed in a box-shaped electric furnace at 540 ° C. for 2 hours under a nitrogen gas flow. During the heat treatment A, the refined graphite crystal precursor powder melted and became a lump of a mixture of the heat treated graphite crystal precursor uniformly compounded with natural graphite.
The mass of the solidified graphite crystal precursor mixture thus solidified is pulverized with a crusher (Roll jaw crusher manufactured by Yoshida Seisakusho), and further pulverized with a fine pulverizer (Turbo Mill manufactured by Matsubo) to obtain a powder having a median diameter of 18.5 μm. Obtained.

得られた粉末を容器に入れ、電気炉にて窒素雰囲気下、1000℃で1時間焼成した。焼成後は粉末のままの形態であり、溶融、融着は殆ど見られなかった。
更に、焼成した粉末を黒鉛坩堝に移し替え、直接通電炉を用いて不活性雰囲気下で3000℃で5時間かけて黒鉛化し、黒鉛複合体混合粉末(C)(実施例1の負極材料)を得た。
The obtained powder was put into a container and baked in an electric furnace at 1000 ° C. for 1 hour in a nitrogen atmosphere. After firing, it was in the form of a powder, and almost no melting or fusion was observed.
Further, the calcined powder was transferred to a graphite crucible and graphitized at 3000 ° C. for 5 hours under an inert atmosphere using a direct electric furnace to obtain a graphite composite mixed powder (C) (negative electrode material of Example 1). Obtained.

得られた実施例1の負極材料の物性を測定したところ、メジアン径17.5μm、タップ密度1.2g/cm3、BET比表面積2.3m2/gであった。 When the physical properties of the obtained negative electrode material of Example 1 were measured, the median diameter was 17.5 μm, the tap density was 1.2 g / cm 3 , and the BET specific surface area was 2.3 m 2 / g.

また、前記記載の手順に従い、偏光顕微鏡を用いて黒鉛複合体混合粉末(C)の断面写真を撮影し、配向性の異なる黒鉛複合体粉末(A)を選別することにより、実施例1の負極材料中の黒鉛複合体粉末(A)を特定した。その結果、実施例1の負極材料(黒鉛複合体混合粉末(C))に含まれる黒鉛複合体粉末(A)の割合は55重量%、人造黒鉛粉末(B)の割合は45重量%であった。   Further, according to the procedure described above, the negative electrode of Example 1 was obtained by taking a cross-sectional photograph of the graphite composite mixed powder (C) using a polarizing microscope and selecting the graphite composite powder (A) having different orientation. The graphite composite powder (A) in the material was specified. As a result, the proportion of the graphite composite powder (A) contained in the negative electrode material (graphite composite mixed powder (C)) of Example 1 was 55% by weight, and the proportion of the artificial graphite powder (B) was 45% by weight. It was.

更に、黒鉛複合体粉末(A)及び人造黒鉛粉末(B)の各々の物性を測定したところ、黒鉛複合体粉末(A)は、メジアン径19.5μm、アスペクト比1.2であった。また、人造黒鉛粉末(B)は、メジアン径8.5μmであった。   Furthermore, when the physical properties of the graphite composite powder (A) and the artificial graphite powder (B) were measured, the graphite composite powder (A) had a median diameter of 19.5 μm and an aspect ratio of 1.2. The artificial graphite powder (B) had a median diameter of 8.5 μm.

また、実施例1の負極材料の結晶性をX線回折法にて測定したところ、d002=0.3357nm、Lc004>1000Å(100nm)であった。 The measured crystallinity of the negative electrode material of Example 1 by X-ray diffraction method, it was d 002 = 0.3357nm, Lc 004> 1000Å (100nm).

更に、実施例1の負極材料を用いて、下記の方法に従って電極密度1.63±0.05g/cm3の電極を作製し、電極の活物質配向比を求めたところ、0.17であった。 Furthermore, using the negative electrode material of Example 1, an electrode having an electrode density of 1.63 ± 0.05 g / cm 3 was prepared according to the following method, and the active material orientation ratio of the electrode was determined to be 0.17. It was.

また、実施例1の負極材料を用いて、下記の方法に従ってリチウム二次電池を作製し、放電容量、充放電効率、負荷特性の測定を行なった。また、同様にリチウム二次電池を作製し、充電状態で解体して電極の厚みを測定することにより、充電膨張率の測定を行なった。
実施例1の負極材料の各物性の評価結果を表1〜3に示す。
Moreover, using the negative electrode material of Example 1, a lithium secondary battery was produced according to the following method, and the discharge capacity, charge / discharge efficiency, and load characteristics were measured. Similarly, a lithium secondary battery was prepared, disassembled in a charged state, and the thickness of the electrode was measured to measure the charge expansion coefficient.
The evaluation results of the physical properties of the negative electrode material of Example 1 are shown in Tables 1 to 3.

<電極作製方法>
負極材料と、増粘剤としてCMC水溶液と、バインダ樹脂としてSBR水溶液とを、乾燥後の負極材料に対してCMC及びSBRがそれぞれ1重量%になるように混合撹拌してスラリーとし、ドクターブレードを用いて銅箔上にこのスラリーを塗布した。塗布厚さは、乾燥後の電極目付(銅箔除く)が10mg/cm2になるようにギャップを選択した。
<Electrode production method>
A negative electrode material, a CMC aqueous solution as a thickener, and an SBR aqueous solution as a binder resin were mixed and stirred so that CMC and SBR were 1% by weight with respect to the dried negative electrode material, respectively. This slurry was applied onto a copper foil. For the coating thickness, the gap was selected so that the electrode basis weight (excluding the copper foil) after drying was 10 mg / cm 2 .

この電極を80℃で乾燥した後、電極密度(銅箔除く)が1.73±0.05g/cm3になるようにプレスを行なった。プレス後の電極から12mmφの電極を打ち抜き、重量より負極活物質重量(電極重量−銅箔重量−バインダ樹脂重量)を求めた。 The electrode was dried at 80 ° C. and then pressed so that the electrode density (excluding copper foil) was 1.73 ± 0.05 g / cm 3 . A 12 mmφ electrode was punched from the pressed electrode, and the weight of the negative electrode active material (electrode weight−copper foil weight−binder resin weight) was determined from the weight.

<リチウム二次電池作成方法>
上記の電極作製方法で作製した電極を110℃で真空乾燥した後、グローブボックスへ移し、アルゴン雰囲気下で、電解液としてエチレンカーボネート(EC)/ジエチルカーボネート(DEC)=1/1の混合液を溶媒とした1M−LiPF6電解液と、セパレータとしてポリエチレンセパレータと、対極としてリチウム金属対極とを用い、コイン電池(リチウム二次電池)を作製した。
<Method for making lithium secondary battery>
After the electrode produced by the above electrode production method is vacuum dried at 110 ° C., it is transferred to a glove box, and in an argon atmosphere, a mixed solution of ethylene carbonate (EC) / diethyl carbonate (DEC) = 1/1 is used as an electrolyte. A coin battery (lithium secondary battery) was prepared using a 1M-LiPF 6 electrolyte solution as a solvent, a polyethylene separator as a separator, and a lithium metal counter electrode as a counter electrode.

<放電容量の測定方法>
0.2mA/cm2の電流密度でリチウム対極に対して5mVまで充電し、更に、5mVの一定電圧で電流値が0.02mAになるまで充電し、負極中にリチウムをドープした後、0.4mA/cm2の電流密度でリチウム対極に対して1.5Vまで放電を行なう充放電サイクルを3サイクル繰り返し、3サイクル目の放電値を放電容量として測定した。
<Measurement method of discharge capacity>
The lithium counter electrode is charged to 5 mV at a current density of 0.2 mA / cm 2 , further charged to a current value of 0.02 mA at a constant voltage of 5 mV, and the negative electrode is doped with lithium. A charge / discharge cycle of discharging to 1.5 V with respect to the lithium counter electrode at a current density of 4 mA / cm 2 was repeated three times, and the discharge value at the third cycle was measured as the discharge capacity.

<充放電効率の計算方法>
以下に従って計算した。
・電極密度1.73±0.05g/cm3
・充放電効率(%)={初回放電容量(mAh/g)/初回充電容量(mAh/g)}×100
<Calculation method of charge / discharge efficiency>
Calculated according to:
-Electrode density 1.73 ± 0.05 g / cm 3
Charge / discharge efficiency (%) = {initial discharge capacity (mAh / g) / initial charge capacity (mAh / g)} × 100

<充電膨張率の測定方法>
放電容量の測定において3サイクル充放電後、4サイクル目の充電終止条件を300mAh/gの定容量充電で行なった。充電状態のコイン電池をアルゴングローブボックス中で短絡させないように解体し、電極を取り出して、充電時の電極の厚み(銅箔除く)を測定した。電池作製前のプレス電極の厚み(銅箔除く)を基準として、次式に基づいて充電膨張率を求めた。
{(充電電極厚み−プレス電極厚み)/プレス電極厚み}×100=充電膨張率(%)
<Measurement method of charge expansion coefficient>
In the measurement of the discharge capacity, after 3 cycles of charge and discharge, the charge termination condition of the 4th cycle was performed with a constant capacity charge of 300 mAh / g. The charged coin battery was disassembled so as not to be short-circuited in the argon glove box, the electrode was taken out, and the thickness of the electrode during charging (excluding the copper foil) was measured. Based on the following formula, the charge expansion coefficient was determined based on the thickness of the press electrode (excluding the copper foil) before battery preparation.
{(Charge electrode thickness−Press electrode thickness) / Press electrode thickness} × 100 = Charge expansion coefficient (%)

<負荷特性の計算方法>
・電極密度1.73±0.05g/cm3
・2C放電容量(mAh/g):7.0mA/cm2の電流密度で放電した時の放電容量
・0.2C放電容量(mAh/g):0.7mA/cm2の電流密度で放電した時の放電容量
・負荷特性(%)={2C放電容量(mAh/g)/0.2C放電容量(mAh/g)}×100
<Calculation method of load characteristics>
-Electrode density 1.73 ± 0.05 g / cm 3
· 2C discharge capacity (mAh / g): 7.0mA / cm 2 current density at discharge discharge capacity · 0.2 C discharge capacity when the (mAh / g): was discharged at a current density of 0.7 mA / cm 2 Discharge capacity / load characteristics (%) = {2C discharge capacity (mAh / g) /0.2C discharge capacity (mAh / g)} × 100

[実施例2]
実施例1と同様の手順で得られた塊状の黒鉛結晶前駆体混合物を、粗砕機(吉田製作所製ロールジョークラッシャー)で粉砕後、粉砕機(ダルトン社製ハンマーミル)を用いて粉砕し、目開き45μmの篩を使用して篩った、篩い下のメジアン径21.0μmの微細化した黒鉛結晶前駆体粉末を得た。その後は実施例1と同様の手順で焼成処理以降の処理を行ない、黒鉛複合体混合粉末(C)(実施例2の負極材料)を得た。
[Example 2]
The massive graphite crystal precursor mixture obtained in the same procedure as in Example 1 was pulverized with a coarse crusher (roll jaw crusher manufactured by Yoshida Seisakusho), and then pulverized using a pulverizer (Dalton hammer mill). A refined graphite crystal precursor powder having a median diameter of 21.0 μm, which was sieved using a sieve having an opening of 45 μm, was obtained. Thereafter, the treatment after the baking treatment was performed in the same procedure as in Example 1 to obtain a graphite composite mixed powder (C) (negative electrode material of Example 2).

得られた実施例2の負極材料の物性を、実施例1と同様にして測定したところ、メジアン径20.0μm、タップ密度1.20g/cm3、BET比表面積1.8m2/gであった。また、実施例1と同様にしてX線回折法にてその結晶性を測定したところ、d002=0.3357nm、Lc004>1000Å(100nm)であった。 The physical properties of the negative electrode material obtained in Example 2 were measured in the same manner as in Example 1. The median diameter was 20.0 μm, the tap density was 1.20 g / cm 3 , and the BET specific surface area was 1.8 m 2 / g. It was. Further, when the crystallinity was measured by the X-ray diffraction method in the same manner as in Example 1, d 002 = 0.3357 nm and Lc 004 > 1000 Å (100 nm).

また、実施例2の負極材料(黒鉛複合体混合粉末(C))中における黒鉛複合体粉末(A)及び人造黒鉛粉末(B)の割合を、実施例1と同様にして測定したところ、黒鉛複合体粉末(A)が60重量%、人造黒鉛粉末(B)が40重量%であった。更に、黒鉛複合体粉末(A)及び人造黒鉛粉末(B)の各々の物性を測定したところ、黒鉛複合体粉末(A)は、メジアン径22.3μm、アスペクト比1.8であった。また、人造黒鉛粉末(B)は、メジアン径7.1μmであった。   Further, when the ratio of the graphite composite powder (A) and the artificial graphite powder (B) in the negative electrode material (graphite composite mixed powder (C)) of Example 2 was measured in the same manner as in Example 1, graphite was measured. The composite powder (A) was 60% by weight, and the artificial graphite powder (B) was 40% by weight. Furthermore, the physical properties of the graphite composite powder (A) and the artificial graphite powder (B) were measured. The graphite composite powder (A) had a median diameter of 22.3 μm and an aspect ratio of 1.8. The artificial graphite powder (B) had a median diameter of 7.1 μm.

実施例2の負極材料について、黒鉛化工程の後における黒鉛複合体混合粉末(C)の粒子断面のうち、黒鉛複合体粉末(A)部分の偏光顕微鏡写真(倍率1500倍)を図1(a)に示す。また、図1(a)の粒子断面における黒鉛質(D)及び黒鉛質(E)の形状を表わす模式図を図1(b)に示す。但し、この写真は「異なる配向」について説明するものであり、実施例2の黒鉛複合体混合粉末(C)の粒子をこれに限定するものではない。粒子の中心側にある黒鉛質(D)に当たる部分は、同系統の色が広い領域に広がっている。一方、その外側の黒鉛質(E)に当たる部分は、様々な色の異方性単位が複数の小さな領域となっており、黒鉛質(D)とは光学的異方性組織の異方性単位のパターンが異なる。   About the negative electrode material of Example 2, the polarization microscope photograph (magnification 1500 times) of the graphite composite powder (A) portion in the particle cross section of the graphite composite mixed powder (C) after the graphitization step is shown in FIG. ). Moreover, the schematic diagram showing the shape of the graphite (D) and the graphite (E) in the particle | grain cross section of Fig.1 (a) is shown in FIG.1 (b). However, this photograph is for explaining “different orientation”, and the particles of the graphite composite mixed powder (C) of Example 2 are not limited thereto. The portion corresponding to the graphite (D) on the center side of the particles spreads over a wide area of the same color. On the other hand, the portion corresponding to the outer graphite (E) has a plurality of small regions of anisotropic units of various colors, and the graphite (D) is an anisotropic unit of an optically anisotropic structure. The pattern is different.

また、実施例2の負極材料を用いて、実施例1と同様の手順で電極を作製し、電極の活物質配向比を求めたところ、0.15であった。
更に、実施例2の負極材料を用いて、実施例1と同様の手順でリチウム二次電池を作製し、放電容量、充放電効率、負荷特性及び充電膨張率の測定を行なった。
実施例2の負極材料の各物性の評価結果を表1〜3に示す。
Moreover, when the negative electrode material of Example 2 was used and the electrode was produced in the procedure similar to Example 1, and the active material orientation ratio of the electrode was calculated | required, it was 0.15.
Furthermore, using the negative electrode material of Example 2, a lithium secondary battery was produced in the same procedure as in Example 1, and the discharge capacity, charge / discharge efficiency, load characteristics, and charge expansion coefficient were measured.
The evaluation results of the physical properties of the negative electrode material of Example 2 are shown in Tables 1 to 3.

[実施例3]
実施例2の負極材料の製造方法において、微細化黒鉛結晶前駆体粉末に混合する天然黒鉛(メジアン径17.0μm、アスペクト比1.9、タップ密度1.0g/cm3)の量を、微細化黒鉛結晶前駆体粉末及び天然黒鉛の全重量に対して30重量%とした以外は、実施例2と同様の手順で処理を行ない、黒鉛複合体混合粉末(C)(実施例3の負極材料)を得た。
[Example 3]
In the method for producing the negative electrode material of Example 2, the amount of natural graphite (median diameter 17.0 μm, aspect ratio 1.9, tap density 1.0 g / cm 3 ) mixed with the refined graphite crystal precursor powder was reduced. The graphite composite mixed powder (C) (the negative electrode material of Example 3) was processed in the same procedure as in Example 2 except that the total weight of the graphite oxide crystal precursor powder and natural graphite was 30% by weight. )

得られた実施例3の負極材料の物性を、実施例1と同様にして測定したところ、メジアン径17.5μm、タップ密度1.16g/cm3、BET比表面積2.5m2/gであった。また、実施例1と同様にしてX線回折法にてその結晶性を測定したところ、d002=0.3356nm、Lc004>1000Å(100nm)であった。 The physical properties of the negative electrode material obtained in Example 3 were measured in the same manner as in Example 1. The median diameter was 17.5 μm, the tap density was 1.16 g / cm 3 , and the BET specific surface area was 2.5 m 2 / g. It was. Further, when the crystallinity was measured by X-ray diffractometry in the same manner as in Example 1, d 002 = 0.3356 nm and Lc 004 > 1000 Å (100 nm).

また、実施例3の負極材料(黒鉛複合体混合粉末(C))中における黒鉛複合体粉末(A)及び人造黒鉛粉末(B)の割合を、実施例1と同様にして測定したところ、黒鉛複合体粉末(A)が73重量%、人造黒鉛粉末(B)が27重量%であった。更に、黒鉛複合体粉末(A)及び人造黒鉛粉末(B)の各々の物性を測定したところ、黒鉛複合体粉末(A)は、メジアン径19.5μm、アスペクト比1.8であった。また、人造黒鉛粉末(B)は、メジアン径5.2μmであった。   Further, when the ratio of the graphite composite powder (A) and the artificial graphite powder (B) in the negative electrode material (graphite composite mixed powder (C)) of Example 3 was measured in the same manner as in Example 1, graphite was measured. The composite powder (A) was 73% by weight, and the artificial graphite powder (B) was 27% by weight. Furthermore, when the physical properties of the graphite composite powder (A) and the artificial graphite powder (B) were measured, the graphite composite powder (A) had a median diameter of 19.5 μm and an aspect ratio of 1.8. The artificial graphite powder (B) had a median diameter of 5.2 μm.

また、実施例3の負極材料を用いて、実施例1と同様の手順で電極を作製し、電極の活物質配向比を求めたところ、0.10であった。
更に、実施例3の負極材料を用いて、実施例1と同様の手順でリチウム二次電池を作製し、放電容量、充放電効率、負荷特性及び充電膨張率の測定を行なった。
実施例3の負極材料の各物性の評価結果を表1〜3に示す。
Moreover, when the negative electrode material of Example 3 was used and the electrode was produced in the procedure similar to Example 1, and the active material orientation ratio of the electrode was calculated | required, it was 0.10.
Furthermore, using the negative electrode material of Example 3, a lithium secondary battery was produced in the same procedure as in Example 1, and the discharge capacity, charge / discharge efficiency, load characteristics, and charge expansion coefficient were measured.
The evaluation results of the physical properties of the negative electrode material of Example 3 are shown in Tables 1 to 3.

[実施例4]
実施例2の負極材料の製造方法において、微細化黒鉛結晶前駆体粉末に混合する天然黒鉛としてメジアン径21.0μm、アスペクト比2.4、タップ密度0.9g/cm3のものを用い、これを微細化黒鉛結晶前駆体粉末及び天然黒鉛の全重量に対して50重量%混合した以外は、実施例2と同様の手順で処理を行ない、黒鉛複合体混合粉末(C)(実施例4の負極材料)を得た。
[Example 4]
In the method for producing the negative electrode material of Example 2, natural graphite having a median diameter of 21.0 μm, an aspect ratio of 2.4, and a tap density of 0.9 g / cm 3 was used as the natural graphite mixed with the refined graphite crystal precursor powder. Was mixed in the same procedure as in Example 2 except that 50% by weight was mixed with respect to the total weight of the refined graphite crystal precursor powder and natural graphite, and the graphite composite mixed powder (C) (of Example 4) Negative electrode material) was obtained.

得られた実施例4の負極材料の物性を、実施例1と同様にして測定したところ、メジアン径22.0μm、タップ密度1.10g/cm3、BET比表面積1.7m2/gであった。また、実施例1と同様にしてX線回折法にてその結晶性を測定したところ、d002=0.3356nm、Lc004>1000Å(100nm)であった。 The physical properties of the negative electrode material obtained in Example 4 were measured in the same manner as in Example 1. The median diameter was 22.0 μm, the tap density was 1.10 g / cm 3 , and the BET specific surface area was 1.7 m 2 / g. It was. Further, when the crystallinity was measured by X-ray diffractometry in the same manner as in Example 1, d 002 = 0.3356 nm and Lc 004 > 1000 Å (100 nm).

また、実施例4の負極材料(黒鉛複合体混合粉末(C))中における黒鉛複合体粉末(A)及び人造黒鉛粉末(B)の割合を、実施例1と同様にして測定したところ、黒鉛複合体粉末(A)が58重量%、人造黒鉛粉末(B)が42重量%であった。更に、黒鉛複合体粉末(A)及び人造黒鉛粉末(B)の各々の物性を測定したところ、黒鉛複合体粉末(A)は、メジアン径23.0μm、アスペクト比2.9であった。また、人造黒鉛粉末(B)は、メジアン径10.2μmであった。   Further, when the ratio of the graphite composite powder (A) and the artificial graphite powder (B) in the negative electrode material (graphite composite mixed powder (C)) of Example 4 was measured in the same manner as in Example 1, graphite was measured. The composite powder (A) was 58% by weight, and the artificial graphite powder (B) was 42% by weight. Furthermore, the physical properties of the graphite composite powder (A) and the artificial graphite powder (B) were measured. The graphite composite powder (A) had a median diameter of 23.0 μm and an aspect ratio of 2.9. The artificial graphite powder (B) had a median diameter of 10.2 μm.

また、実施例4の負極材料を用いて、実施例1と同様の手順で電極を作製し、電極の活物質配向比を求めたところ、0.08であった。
更に、実施例4の負極材料を用いて、実施例1と同様の手順でリチウム二次電池を作製し、放電容量、充放電効率、負荷特性及び充電膨張率の測定を行なった。
実施例4の負極材料の各物性の評価結果を表1〜3に示す。
Moreover, when the negative electrode material of Example 4 was used and the electrode was produced in the procedure similar to Example 1, and the active material orientation ratio of the electrode was calculated | required, it was 0.08.
Furthermore, using the negative electrode material of Example 4, a lithium secondary battery was produced in the same procedure as in Example 1, and the discharge capacity, charge / discharge efficiency, load characteristics, and charge expansion coefficient were measured.
The evaluation results of the physical properties of the negative electrode material of Example 4 are shown in Tables 1 to 3.

[実施例5]
原料ピッチとして軟化点430℃のものを使用した以外は、実施例2と同様の手順で処理を行ない、黒鉛複合体混合粉末(C)(実施例5の負極材料)を得た。
[Example 5]
Except that a material pitch having a softening point of 430 ° C. was used, the same procedure as in Example 2 was used to obtain a graphite composite mixed powder (C) (negative electrode material of Example 5).

得られた実施例5の負極材料の物性を、実施例1と同様にして測定したところ、メジアン径18.0μm、タップ密度1.16g/cm3、BET比表面積2.4m2/gであった。また、実施例1と同様にしてX線回折法にてその結晶性を測定したところ、d002=0.3357nm、Lc004>1000Å(100nm)であった。 The physical properties of the negative electrode material obtained in Example 5 were measured in the same manner as in Example 1. The median diameter was 18.0 μm, the tap density was 1.16 g / cm 3 , and the BET specific surface area was 2.4 m 2 / g. It was. Further, when the crystallinity was measured by the X-ray diffraction method in the same manner as in Example 1, d 002 = 0.3357 nm and Lc 004 > 1000 Å (100 nm).

また、実施例5の負極材料(黒鉛複合体混合粉末(C))中における黒鉛複合体粉末(A)及び人造黒鉛粉末(B)の割合を、実施例1と同様にして測定したところ、黒鉛複合体粉末(A)が53重量%、人造黒鉛粉末(B)が47重量%であった。更に、黒鉛複合体粉末(A)及び人造黒鉛粉末(B)の各々の物性を測定したところ、黒鉛複合体粉末(A)は、メジアン径19.8μm、アスペクト比1.4であった。また、人造黒鉛粉末(B)は、メジアン径7.9μmであった。   Further, when the ratio of the graphite composite powder (A) and the artificial graphite powder (B) in the negative electrode material (graphite composite mixed powder (C)) of Example 5 was measured in the same manner as in Example 1, graphite was measured. The composite powder (A) was 53% by weight, and the artificial graphite powder (B) was 47% by weight. Furthermore, when the physical properties of the graphite composite powder (A) and the artificial graphite powder (B) were measured, the graphite composite powder (A) had a median diameter of 19.8 μm and an aspect ratio of 1.4. The artificial graphite powder (B) had a median diameter of 7.9 μm.

また、実施例5の負極材料を用いて、実施例1と同様の手順で電極を作製し、電極の活物質配向比を求めたところ、0.10であった。
更に、実施例5の負極材料を用いて、実施例1と同様の手順でリチウム二次電池を作製し、放電容量、充放電効率、負荷特性及び充電膨張率の測定を行なった。
実施例5の負極材料の各物性の評価結果を表1〜3に示す。
Moreover, when the negative electrode material of Example 5 was used and the electrode was produced in the procedure similar to Example 1, and the active material orientation ratio of the electrode was calculated | required, it was 0.10.
Furthermore, using the negative electrode material of Example 5, a lithium secondary battery was produced in the same procedure as in Example 1, and the discharge capacity, charge / discharge efficiency, load characteristics, and charge expansion coefficient were measured.
The evaluation results of the physical properties of the negative electrode material of Example 5 are shown in Tables 1 to 3.

[実施例6]
実施例2の負極材料の製造方法において、塊状の熱処理黒鉛結晶前駆体の微粉砕処理を行なわず、メジアン径が60μmの黒鉛結晶前駆体に対して天然黒鉛を混合した以外は、実施例2と同様の手順で処理を行ない、黒鉛複合体混合粉末(C)(実施例6の負極材料)を得た。
[Example 6]
In the method for producing the negative electrode material of Example 2, Example 2 was performed except that the ground heat-treated graphite crystal precursor was not pulverized and natural graphite was mixed with the graphite crystal precursor having a median diameter of 60 μm. The same procedure was followed to obtain a graphite composite mixed powder (C) (negative electrode material of Example 6).

得られた実施例6の負極材料の物性を、実施例1と同様にして測定したところ、メジアン径18.0μm、タップ密度1.22g/cm3、BET比表面積1.9m2/gであった。また、実施例1と同様にしてX線回折法にてその結晶性を測定したところ、d002=0.3357nm、Lc004>1000Å(100nm)であった。 The physical properties of the negative electrode material obtained in Example 6 were measured in the same manner as in Example 1. The median diameter was 18.0 μm, the tap density was 1.22 g / cm 3 , and the BET specific surface area was 1.9 m 2 / g. It was. Further, when the crystallinity was measured by the X-ray diffraction method in the same manner as in Example 1, d 002 = 0.3357 nm and Lc 004 > 1000 Å (100 nm).

また、実施例6の負極材料(黒鉛複合体混合粉末(C))中における黒鉛複合体粉末(A)及び人造黒鉛粉末(B)の割合を、実施例1と同様にして測定したところ、黒鉛複合体粉末(A)が52重量%、人造黒鉛粉末(B)が48重量%であった。更に、黒鉛複合体粉末(A)及び人造黒鉛粉末(B)の各々の物性を測定したところ、黒鉛複合体粉末(A)は、メジアン径19.3μm、アスペクト比2.1であった。また、人造黒鉛粉末(B)は、メジアン径7.0μmであった。   Further, when the ratio of the graphite composite powder (A) and the artificial graphite powder (B) in the negative electrode material (graphite composite mixed powder (C)) of Example 6 was measured in the same manner as in Example 1, graphite was measured. The composite powder (A) was 52% by weight, and the artificial graphite powder (B) was 48% by weight. Furthermore, the physical properties of the graphite composite powder (A) and the artificial graphite powder (B) were measured. The graphite composite powder (A) had a median diameter of 19.3 μm and an aspect ratio of 2.1. The artificial graphite powder (B) had a median diameter of 7.0 μm.

また、実施例6の負極材料を用いて、実施例1と同様の手順で電極を作製し、電極の活物質配向比を求めたところ、0.09であった。
更に、実施例6の負極材料を用いて、実施例1と同様の手順でリチウム二次電池を作製し、放電容量、充放電効率、負荷特性及び充電膨張率の測定を行なった。
実施例6の負極材料の各物性の評価結果を表1〜3に示す。
Moreover, when the negative electrode material of Example 6 was used and the electrode was produced in the procedure similar to Example 1, and the active material orientation ratio of the electrode was calculated | required, it was 0.09.
Furthermore, using the negative electrode material of Example 6, a lithium secondary battery was produced in the same procedure as in Example 1, and the discharge capacity, charge / discharge efficiency, load characteristics, and charge expansion coefficient were measured.
The evaluation results of the physical properties of the negative electrode material of Example 6 are shown in Tables 1 to 3.

[実施例7]
実施例7は、製造方法2により、製造を行なった。
実施例1で用いた天然黒鉛(メジアン径17.0μm、アスペクト比1.9、タップ密度1.0g/cm3)粉末23重量%と石油系重質油77重量%とを混合し、1000℃で焼成した粉末を黒鉛坩堝に入れ、直接通電炉を用いて3000℃で5時間かけて黒鉛化し、黒鉛複合体粉末(A)を得た。得られた黒鉛複合体粉末(A)の物性を測定したところ、メジアン径18.5μm、アスペクト比2.3、タップ密度1.1g/cm3であった。
[Example 7]
Example 7 was manufactured by manufacturing method 2.
Natural graphite (median diameter 17.0 μm, aspect ratio 1.9, tap density 1.0 g / cm 3 ) powder 23% by weight used in Example 1 and 77% by weight petroleum heavy oil were mixed, and 1000 ° C. The powder fired in step 1 was placed in a graphite crucible and graphitized at 3000 ° C. for 5 hours using a direct electric furnace to obtain a graphite composite powder (A). When the physical properties of the obtained graphite composite powder (A) were measured, the median diameter was 18.5 μm, the aspect ratio was 2.3, and the tap density was 1.1 g / cm 3 .

さらに、実施例1と同様のキノリン不溶分が0.05重量%以下のコールタールピッチを、反応炉にて460℃で10時間熱処理し、溶融性のある塊状の熱処理黒鉛結晶前駆体(バルクメソフェーズ)を得た。得られた塊状の熱処理黒鉛結晶前駆体を、中間粉砕機(セイシン企業社製オリエントミル)を用いて粉砕し、更に微粉砕機(マツボー社製ターボミル)を用いて微粉砕した。メジアン径17.0μmの微細化した黒鉛結晶前駆体粉末を得た。   Further, a coal tar pitch having a quinoline insoluble content of 0.05% by weight or less similar to that in Example 1 was heat-treated at 460 ° C. for 10 hours in a reaction furnace, and a meltable bulk heat-treated graphite crystal precursor (bulk mesophase ) The obtained massive heat-treated graphite crystal precursor was pulverized using an intermediate pulverizer (Orient Mill manufactured by Seishin Enterprise Co., Ltd.) and further pulverized using a fine pulverizer (Tsubo Mill manufactured by Matsubo). A refined graphite crystal precursor powder having a median diameter of 17.0 μm was obtained.

この黒鉛結晶前駆体粉末を金属製の容器に詰め、箱形の電気炉で窒素ガス流通下、更に540℃で2時間再熱処理した。再熱処理中に、微細化した黒鉛結晶前駆体粉末は溶融し固化した黒鉛結晶前駆体(バルクメソフェーズ)の塊となった。
この固化した黒鉛結晶前駆体の塊を粗砕機(吉田製作所製ロールジョークラッシャー)で再粉砕、更に微粉砕機(マツボー社製ターボミル)を用いて微粉砕した後、風力式分級機(セイシン企業社製OMC−100)を用いて分級し、メジアン径15.3μmの粉末を得た。
This graphite crystal precursor powder was packed in a metal container and reheated at 540 ° C. for 2 hours in a box-shaped electric furnace under nitrogen gas flow. During reheating, the refined graphite crystal precursor powder became a mass of melted and solidified graphite crystal precursor (bulk mesophase).
The solidified graphite crystal precursor lump is re-pulverized with a crusher (Roll jaw crusher manufactured by Yoshida Seisakusho) and further pulverized with a fine pulverizer (Matsubo turbo mill), and then a wind classifier (Seishin Enterprise Co., Ltd.). Classification using OMC-100) was performed to obtain a powder having a median diameter of 15.3 μm.

得られた粉末を容器に入れ、電気炉にて窒素雰囲気下、1000℃で1時間焼成した。
更に、焼成した粉末を黒鉛坩堝に移し替え、直接通電炉を用いて3000℃で5時間かけて黒鉛化し、人造黒鉛粉末(B)を得た。得られた人造黒鉛粉末(B)の物性を測定したところ、メジアン径15.5μmであった。
The obtained powder was put into a container and baked in an electric furnace at 1000 ° C. for 1 hour in a nitrogen atmosphere.
Further, the fired powder was transferred to a graphite crucible and graphitized at 3000 ° C. for 5 hours using a direct electric furnace to obtain artificial graphite powder (B). When the physical properties of the obtained artificial graphite powder (B) were measured, the median diameter was 15.5 μm.

以上の手順で得られた黒鉛複合体粉末(A)50重量%と人造黒鉛粉末(B)50重量%とを混合して、黒鉛複合体混合粉末(C)(実施例7の負極材料)を得た。   50% by weight of the graphite composite powder (A) obtained by the above procedure and 50% by weight of the artificial graphite powder (B) were mixed to obtain a graphite composite mixed powder (C) (negative electrode material of Example 7). Obtained.

得られた実施例7の負極材料の物性を、実施例1と同様にして測定したところ、メジアン径15.0μm、タップ密度1.15g/cm3、BET比表面積1.4m2/gであった。また、実施例1と同様にしてX線回折法にてその結晶性を測定したところ、d002=0.3356nm、Lc004>1000Å(100nm)であった。 The physical properties of the negative electrode material obtained in Example 7 were measured in the same manner as in Example 1. The median diameter was 15.0 μm, the tap density was 1.15 g / cm 3 , and the BET specific surface area was 1.4 m 2 / g. It was. Further, when the crystallinity was measured by X-ray diffractometry in the same manner as in Example 1, d 002 = 0.3356 nm and Lc 004 > 1000 Å (100 nm).

また、実施例7の負極材料を用いて、実施例1と同様の手順で電極を作製し、電極の活物質配向比を求めたところ、0.07であった。
更に、実施例7の負極材料を用いて、実施例1と同様の手順でリチウム二次電池を作製し、放電容量、充放電効率、負荷特性及び充電膨張率の測定を行なった。
実施例7の負極材料の各物性の評価結果を表1〜3に示す。
Moreover, when the negative electrode material of Example 7 was used and the electrode was produced in the procedure similar to Example 1, and the active material orientation ratio of the electrode was calculated | required, it was 0.07.
Furthermore, using the negative electrode material of Example 7, a lithium secondary battery was produced in the same procedure as in Example 1, and the discharge capacity, charge / discharge efficiency, load characteristics, and charge expansion coefficient were measured.
The evaluation results of the physical properties of the negative electrode material of Example 7 are shown in Tables 1 to 3.

[実施例8]
実施例1と同様に作製した黒鉛複合体混合粉末(C)に、天然黒鉛粉末(G)(メジアン径18.2μm、アスペクト比10.1、タップ密度0.41g/cm3)を50重量%混合した黒鉛複合体混合粉末(F)を、実施例8の負極材料として用いた。
[Example 8]
50 wt% of natural graphite powder (G) (median diameter 18.2 μm, aspect ratio 10.1 and tap density 0.41 g / cm 3 ) was added to the graphite composite mixed powder (C) produced in the same manner as in Example 1. The mixed graphite composite mixed powder (F) was used as the negative electrode material of Example 8.

[実施例9]
実施例1と同様に作製した黒鉛複合体混合粉末(C)に、天然黒鉛粉末(G)(メジアン径18.2μm、アスペクト比10.1、タップ密度0.41g/cm3)を30重量%混合した黒鉛複合体混合粉末(F)を、実施例9の負極材料として用いた。
[Example 9]
30% by weight of natural graphite powder (G) (median diameter 18.2 μm, aspect ratio 10.1, tap density 0.41 g / cm 3 ) was added to the graphite composite mixed powder (C) produced in the same manner as in Example 1. The mixed graphite composite mixed powder (F) was used as the negative electrode material of Example 9.

[実施例10]
実施例1と同様に作製した黒鉛複合体混合粉末(C)に、天然黒鉛粉末(G)(メジアン径23.0μm、アスペクト比2.3、タップ密度0.98g/cm3)を50重量%混合した黒鉛複合体混合粉末(F)を、実施例10の負極材料とした。
[Example 10]
50 wt% of natural graphite powder (G) (median diameter 23.0 μm, aspect ratio 2.3, tap density 0.98 g / cm 3 ) was added to the graphite composite mixed powder (C) produced in the same manner as in Example 1. The mixed graphite composite mixed powder (F) was used as the negative electrode material of Example 10.

実施例8、9、10の負極材料の物性を実施例1と同様にして測定した。実施例8、9、10の負極材料の評価結果を表1〜3に示す。なお、これらの実施例の負極材料の黒鉛質(D)、黒鉛複合体粉末(A)、人造黒鉛粉末(B)、黒鉛複合体混合粉末(C)は、いずれも実施例1と同一物性である。   The physical properties of the negative electrode materials of Examples 8, 9, and 10 were measured in the same manner as in Example 1. The evaluation results of the negative electrode materials of Examples 8, 9, and 10 are shown in Tables 1 to 3. Note that the negative electrode material graphite (D), graphite composite powder (A), artificial graphite powder (B), and graphite composite mixed powder (C) of these examples all have the same physical properties as in Example 1. is there.

[比較例1]
比較例1は、実施例7と同様の方法であるが、黒鉛質(D)を黒鉛質(E)で被覆せずに用いた。
実施例1で用いた天然黒鉛(メジアン径17.0μm、アスペクト比1.9、タップ密度1.0g/cm3)粉末を黒鉛坩堝に入れ、直接通電炉を用いて3000℃で5時間かけて黒鉛化し、天然黒鉛由来の黒鉛粉末(A’)を得た。これは、黒鉛質(E)に被覆されていない黒鉛質(D)の粉末に相当する。得られた黒鉛粉末(A’)のメジアン径は16.8μmであった。
[Comparative Example 1]
Comparative Example 1 was the same method as Example 7, but used graphite (D) without covering it with graphite (E).
The natural graphite (median diameter 17.0 μm, aspect ratio 1.9, tap density 1.0 g / cm 3 ) powder used in Example 1 was placed in a graphite crucible and directly at 3000 ° C. for 5 hours using a current furnace. Graphitized to obtain graphite powder (A ′) derived from natural graphite. This corresponds to a powder of graphite (D) not coated with graphite (E). The obtained graphite powder (A ′) had a median diameter of 16.8 μm.

さらに、以下の手順で人造黒鉛粉末(B)を得た。
実施例1と同様のキノリン不溶分が0.05重量%以下のコールタールピッチを、反応炉にて460℃で10時間熱処理し、溶融性のある塊状の熱処理黒鉛結晶前駆体(バルクメソフェーズ)を得た。得られた塊状の熱処理黒鉛結晶前駆体を、中間粉砕機(セイシン企業社製オリエントミル)を用いて粉砕し、更に微粉砕機(マツボー社製ターボミル)を用いて微粉砕した。メジアン径17μmの微細化した黒鉛結晶前駆体粉末を得た。この黒鉛結晶前駆体粉末を金属製の容器に詰め、箱形の電気炉で窒素ガス流通下、更に540℃で2時間再熱処理した。再熱処理中に、微細化した黒鉛結晶前駆体粉末は溶融し固化した黒鉛結晶前駆体(バルクメソフェーズ)の塊となった。この固化した黒鉛結晶前駆体の塊を粗砕機(吉田製作所製ロールジョークラッシャー)で再粉砕、更に微粉砕機(マツボー社製ターボミル)を用いて微粉砕した後、風力式分級機(セイシン企業社製OMC−100)を用いて分級し、メジアン径13.5μmの粉末を得た。得られた粉末を容器に入れ、電気炉にて窒素雰囲気下、1000℃で1時間焼成した。焼成後は粉末のままの形態であり、溶融、融着は殆ど見られなかった。更に、焼成した粉末を黒鉛坩堝に移し替え、直接通電炉を用いて3000℃で5時間かけて黒鉛化し、人造黒鉛粉末(B)を得た。この粉末のメジアン径は12.0μmであった。
Furthermore, artificial graphite powder (B) was obtained by the following procedure.
A coal tar pitch having a quinoline insoluble content of 0.05% by weight or less as in Example 1 was heat-treated in a reaction furnace at 460 ° C. for 10 hours to obtain a melted bulk heat-treated graphite crystal precursor (bulk mesophase). Obtained. The obtained massive heat-treated graphite crystal precursor was pulverized using an intermediate pulverizer (Orient Mill manufactured by Seishin Enterprise Co., Ltd.) and further pulverized using a fine pulverizer (Tsubo Mill manufactured by Matsubo). A refined graphite crystal precursor powder having a median diameter of 17 μm was obtained. This graphite crystal precursor powder was packed in a metal container and reheated at 540 ° C. for 2 hours in a box-shaped electric furnace under nitrogen gas flow. During reheating, the refined graphite crystal precursor powder became a mass of melted and solidified graphite crystal precursor (bulk mesophase). The solidified graphite crystal precursor lump is re-pulverized with a crusher (Roll jaw crusher manufactured by Yoshida Seisakusho) and further pulverized with a fine pulverizer (Matsubo turbo mill), and then a wind classifier (Seishin Enterprise Co., Ltd.). Classification using OMC-100) was performed to obtain a powder having a median diameter of 13.5 μm. The obtained powder was put into a container and baked in an electric furnace at 1000 ° C. for 1 hour in a nitrogen atmosphere. After firing, it was in the form of a powder, and almost no melting or fusion was observed. Further, the fired powder was transferred to a graphite crucible and graphitized at 3000 ° C. for 5 hours using a direct electric furnace to obtain artificial graphite powder (B). The median diameter of this powder was 12.0 μm.

以上の手順で得られた黒鉛粉末(A’)50重量%と人造黒鉛粉末(B)50重量%とを混合して、黒鉛複合体混合粉末(C)(比較例1の負極材料)を得た。   50% by weight of graphite powder (A ′) obtained by the above procedure and 50% by weight of artificial graphite powder (B) are mixed to obtain a graphite composite mixed powder (C) (negative electrode material of Comparative Example 1). It was.

得られた比較例1の負極材料の物性を実施例1と同様にして測定したところ、メジアン径16.0μm、タップ密度1.20g/cm3、BET比表面積2.1m2/gであった。また、実施例1と同様にしてX線回折法にてその結晶性を測定したところ、d002=0.3357nm、Lc004>1000Å(100nm)であった。 The physical properties of the obtained negative electrode material of Comparative Example 1 were measured in the same manner as in Example 1. The median diameter was 16.0 μm, the tap density was 1.20 g / cm 3 , and the BET specific surface area was 2.1 m 2 / g. . Further, when the crystallinity was measured by the X-ray diffraction method in the same manner as in Example 1, d 002 = 0.3357 nm and Lc 004 > 1000 Å (100 nm).

また、比較例1の負極材料を用いて、実施例1と同様の手順で電極を作製し、電極の活物質配向比を求めたところ、0.06であった。
更に、比較例1の負極材料を用いて、実施例1と同様の手順でリチウム二次電池を作製し、放電容量、充放電効率、負荷特性及び充電膨張の測定を行なった。
比較例1の負極材料の各物性の評価結果を表1〜3に示す。
Moreover, it was 0.06 when the electrode was produced in the same procedure as Example 1 using the negative electrode material of the comparative example 1, and the active material orientation ratio of the electrode was calculated | required.
Further, using the negative electrode material of Comparative Example 1, a lithium secondary battery was produced in the same procedure as in Example 1, and the discharge capacity, charge / discharge efficiency, load characteristics, and charge expansion were measured.
The evaluation results of the physical properties of the negative electrode material of Comparative Example 1 are shown in Tables 1 to 3.

[比較例2]
実施例2の負極材料の製造手順において、黒鉛結晶前駆体に混合する天然黒鉛として、メジアン20.0μm、アスペクト比10.5、タップ密度0.4g/cm3のものを用いた以外は、実施例2と同様の手順により、黒鉛複合体混合粉末(C)(比較例2の負極材料)を得た。
[Comparative Example 2]
In the production procedure of the negative electrode material of Example 2, the natural graphite mixed with the graphite crystal precursor was used except that one having a median of 20.0 μm, an aspect ratio of 10.5, and a tap density of 0.4 g / cm 3 was used. A graphite composite mixed powder (C) (negative electrode material of Comparative Example 2) was obtained by the same procedure as in Example 2.

得られた比較例2の負極材料の物性を実施例1と同様にして測定したところ、メジアン径20.3μm、タップ密度0.62g/cm3、BET比表面積2.1m2/gであった。また、実施例1と同様にしてX線回折法にて結晶性を測定したところ、d002=0.3356nm、Lc004>1000Å(100nm)であった。 The physical properties of the obtained negative electrode material of Comparative Example 2 were measured in the same manner as in Example 1. The median diameter was 20.3 μm, the tap density was 0.62 g / cm 3 , and the BET specific surface area was 2.1 m 2 / g. . Further, when the crystallinity was measured by the X-ray diffraction method in the same manner as in Example 1, it was d 002 = 0.3356 nm and Lc 004 > 1000 Å (100 nm).

また、比較例2の負極材料(黒鉛複合体混合粉末(C))中における黒鉛複合体粉末(A)及び人造黒鉛粉末(B)の割合を、実施例1と同様にして測定したところ、黒鉛複合体粉末(A)が54重量%、人造黒鉛粉末(B)が46重量%であった。更に、黒鉛複合体粉末(A)及び人造黒鉛粉末(B)の各々の物性を測定したところ、黒鉛複合体粉末(A)は、メジアン径19.0μm、アスペクト比13.2であった。また、人造黒鉛粉末(B)は、メジアン径7.5μmであった。   Further, when the ratio of the graphite composite powder (A) and the artificial graphite powder (B) in the negative electrode material (graphite composite mixed powder (C)) of Comparative Example 2 was measured in the same manner as in Example 1, graphite was measured. The composite powder (A) was 54% by weight, and the artificial graphite powder (B) was 46% by weight. Furthermore, when the physical properties of each of the graphite composite powder (A) and the artificial graphite powder (B) were measured, the graphite composite powder (A) had a median diameter of 19.0 μm and an aspect ratio of 13.2. The artificial graphite powder (B) had a median diameter of 7.5 μm.

また、比較例2の負極材料を用いて、実施例1と同様の手順で電極を作製し、活物質配向比を求めたところ、0.04であった。
更に、比較例2の負極材料を用いて、実施例1と同様の手順でリチウム二次電池を作製し、放電容量、充放電効率、負荷特性及び充電膨張の測定を行なった。
比較例2の負極材料の各物性の評価結果を表1〜3に示す。
Moreover, when the negative electrode material of the comparative example 2 was used and the electrode was produced in the procedure similar to Example 1, and the active material orientation ratio was calculated | required, it was 0.04.
Further, using the negative electrode material of Comparative Example 2, a lithium secondary battery was produced in the same procedure as in Example 1, and the discharge capacity, charge / discharge efficiency, load characteristics, and charge expansion were measured.
The evaluation results of the physical properties of the negative electrode material of Comparative Example 2 are shown in Tables 1 to 3.

[比較例3]
実施例2の負極材料の製造手順において、黒鉛結晶前駆体に混合する天然黒鉛として、メジアン24.0μm、アスペクト比25.1、タップ密度0.3g/cm3のものを用いた以外は、実施例2と同様の手順により、黒鉛複合体混合粉末(C)(比較例2の負極材料)を得た。
[Comparative Example 3]
In the production procedure of the negative electrode material in Example 2, the natural graphite mixed with the graphite crystal precursor was used except that one having a median of 24.0 μm, an aspect ratio of 25.1, and a tap density of 0.3 g / cm 3 was used. A graphite composite mixed powder (C) (negative electrode material of Comparative Example 2) was obtained by the same procedure as in Example 2.

得られた比較例3の負極材料の物性を実施例1と同様にして測定したところ、メジアン径23.1μm、タップ密度0.51g/cm3、BET比表面積1.7m2/gであった。また、実施例1と同様にしてX線回折法にて結晶性を測定したところ、d002=0.3356nm、Lc004>1000Å(100nm)であった。 The physical properties of the obtained negative electrode material of Comparative Example 3 were measured in the same manner as in Example 1. The median diameter was 23.1 μm, the tap density was 0.51 g / cm 3 , and the BET specific surface area was 1.7 m 2 / g. . Further, when the crystallinity was measured by the X-ray diffraction method in the same manner as in Example 1, it was d 002 = 0.3356 nm and Lc 004 > 1000 Å (100 nm).

また、比較例3の負極材料(黒鉛複合体混合粉末(C))中における黒鉛複合体粉末(A)及び人造黒鉛粉末(B)の割合を、実施例1と同様にして測定したところ、黒鉛複合体粉末(A)が57重量%、人造黒鉛粉末(B)が43重量%であった。更に、黒鉛複合体粉末(A)及び人造黒鉛粉末(B)の各々の物性を測定したところ、黒鉛複合体粉末(A)は、メジアン径25.2μm、アスペクト比22.3であった。また、人造黒鉛粉末(B)は、メジアン径7.8μmであった。   Further, when the ratio of the graphite composite powder (A) and the artificial graphite powder (B) in the negative electrode material (graphite composite mixed powder (C)) of Comparative Example 3 was measured in the same manner as in Example 1, graphite was measured. The composite powder (A) was 57% by weight, and the artificial graphite powder (B) was 43% by weight. Furthermore, when the physical properties of the graphite composite powder (A) and the artificial graphite powder (B) were measured, the graphite composite powder (A) had a median diameter of 25.2 μm and an aspect ratio of 22.3. The artificial graphite powder (B) had a median diameter of 7.8 μm.

また、比較例3の負極材料を用いて、実施例1と同様の手順にて電極を作製し、活物質配向比を求めたところ、0.03であった。
更に、比較例3の負極材料を用いて、実施例1と同様の手順でリチウム二次電池を作製し、放電容量、充放電効率、負荷特性及び充電膨張の測定を行なった。
比較例3の負極材料の各物性の評価結果を表1〜3に示す。
Moreover, when the electrode was produced in the same procedure as Example 1 using the negative electrode material of the comparative example 3, and the active material orientation ratio was calculated | required, it was 0.03.
Furthermore, using the negative electrode material of Comparative Example 3, a lithium secondary battery was produced in the same procedure as in Example 1, and the discharge capacity, charge / discharge efficiency, load characteristics, and charge expansion were measured.
The evaluation results of the physical properties of the negative electrode material of Comparative Example 3 are shown in Tables 1 to 3.

[比較例4]
実施例1で用いた天然黒鉛(メジアン径17.0μm、アスペクト比1.9、タップ密度1.0g/cm3)粉末に、実施例1で用いたものと同様の黒鉛結晶前駆体粉末を、微細化黒鉛結晶前駆体粉末及び天然黒鉛の全重量に対して50重量%混合し、黒鉛質(D)と黒鉛結晶前駆体との混合粉末を得た。なお、アスペクト比の値は前記記載の手法にて測定した値を得た。実施例1と同様の方法で、この粉末に熱処理A、粉砕、焼成、黒鉛化を行ない、比較例4の負極材料を得た。
[Comparative Example 4]
To the natural graphite (median diameter 17.0 μm, aspect ratio 1.9, tap density 1.0 g / cm 3 ) powder used in Example 1, the same graphite crystal precursor powder as that used in Example 1 was used. 50% by weight was mixed with respect to the total weight of the refined graphite crystal precursor powder and natural graphite to obtain a mixed powder of graphite (D) and graphite crystal precursor. In addition, the value of the aspect ratio obtained by the method described above was obtained. In the same manner as in Example 1, this powder was subjected to heat treatment A, pulverization, firing and graphitization to obtain a negative electrode material of Comparative Example 4.

[比較例5]
比較例4で得られた黒鉛質(D)と黒鉛結晶前駆体との混合粉末に、更に、市販のメタノール溶媒で50重量%に希釈されたフェノール樹脂溶液を、前記混合粉末の全重量に対して5重量%混合した。実施例1と同様の方法で、この粉末に熱処理A、粉砕、焼成、黒鉛化を行ない、比較例5の負極材料を得た。
[Comparative Example 5]
To the mixed powder of the graphite (D) obtained in Comparative Example 4 and the graphite crystal precursor, a phenol resin solution diluted to 50% by weight with a commercially available methanol solvent was further added to the total weight of the mixed powder. 5% by weight. In the same manner as in Example 1, the powder was subjected to heat treatment A, pulverization, firing, and graphitization to obtain a negative electrode material of Comparative Example 5.

得られた比較例4,5の負極材料の物性を実施例1と同様にして測定した。
比較例4,5の負極材料の各物性の評価結果を表1〜3に示す。なお、比較例4,5では人造黒鉛粉末(B)に相当する成分を使用しておらず、黒鉛複合体粉末(A)をそのまま負極材料として扱っている。よって、比較例4,5の黒鉛複合体粉末(A)のタップ密度、粒径、比表面積の値は、負極材料のタップ密度、粒径、比表面積の値と同じとなる(表1では(※)で記し、値は省略した。)。
The physical properties of the obtained negative electrode materials of Comparative Examples 4 and 5 were measured in the same manner as in Example 1.
The evaluation results of the physical properties of the negative electrode materials of Comparative Examples 4 and 5 are shown in Tables 1 to 3. In Comparative Examples 4 and 5, the component corresponding to the artificial graphite powder (B) is not used, and the graphite composite powder (A) is used as a negative electrode material as it is. Therefore, the tap density, particle size, and specific surface area values of the graphite composite powders (A) of Comparative Examples 4 and 5 are the same as the tap density, particle size, and specific surface area values of the negative electrode material (in Table 1, ( (*) And values are omitted.)

なお、上記表1〜3の「複合化の有無」の欄では、黒鉛複合体粉末(A)と人造黒鉛粉末(B)を同時に製造しているものを○、別個に製造して混合したものを「混合」という表記で示している。   In addition, in the column of “Presence / absence of compounding” in Tables 1 to 3 above, “○” indicates that the graphite composite powder (A) and the artificial graphite powder (B) are simultaneously manufactured, and these are separately manufactured and mixed. Is indicated by the notation “mixed”.

表1〜3の結果をみると、比較例1の負極材料は、黒鉛質(E)によって被覆又は結着されていない黒鉛質(D)と人造黒鉛粉末(B)から構成されているが、複合化されていないため電極配向比が低い。その結果、電極の充電膨張率が極めて高くなってしまっている。   Looking at the results in Tables 1 to 3, the negative electrode material of Comparative Example 1 is composed of graphite (D) and artificial graphite powder (B) not coated or bound with graphite (E). Since it is not compounded, the electrode orientation ratio is low. As a result, the charge expansion coefficient of the electrode has become extremely high.

比較例2、3の負極材料では、黒鉛質(D)のアスペクト比が本発明の規定値を上回っているため、得られる負極材料は、電極配向比が本発明の規定範囲を大きく下回っており、その結果、いずれの電極の充電膨張率も極めて高くなってしまっている。また、充放電効率が低く、負荷特性も低い。   In the negative electrode materials of Comparative Examples 2 and 3, since the aspect ratio of the graphite (D) exceeds the specified value of the present invention, the obtained negative electrode material has an electrode orientation ratio significantly lower than the specified range of the present invention. As a result, the charge expansion coefficient of any electrode has become extremely high. Moreover, charging / discharging efficiency is low and load characteristics are also low.

比較例4、5の負極材料では、本発明の人造黒鉛粉末(B)に相当する粒子が存在しない。その結果、充分な電池容量が得られておらず、また、電極の充電膨張率も高くなってしまっている。   In the negative electrode materials of Comparative Examples 4 and 5, there are no particles corresponding to the artificial graphite powder (B) of the present invention. As a result, sufficient battery capacity is not obtained, and the charge expansion coefficient of the electrode is also increased.

これらに対して、実施例1〜7の負極材料では、タップ密度、結晶性、及び電極配向性の全てが本発明の規定範囲を満たしている。そして、これらの負極材料を用いて作製した電池は高い放電容量を示しており、且つ、電極の充電膨張率も低く抑えられている。   On the other hand, in the negative electrode materials of Examples 1 to 7, all of the tap density, crystallinity, and electrode orientation satisfy the specified range of the present invention. And the battery produced using these negative electrode materials has high discharge capacity, and the charge expansion coefficient of the electrode is also suppressed low.

以上、本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
なお、本出願は、2004年2月12日付で出願された日本特許出願(特願2004−035207号明細書)に基づいており、その全体が引用により援用される。
Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
In addition, this application is based on the Japanese patent application (Japanese Patent Application No. 2004-035207) for which it applied on February 12, 2004, The whole is used by reference.

本発明のリチウム二次電池用負極材料によれば、高い電極密度(例えば1.6g/cm3以上)で使用した場合に、放電容量が大きく、充放電効率が高く、負荷特性に優れ、且つ、充電時の電極膨張が小さい、優れたリチウム二次電池を実現することができるため、リチウム二次電池が用いられる電子機器等の各種の分野において好適に利用できる。 According to the negative electrode material for a lithium secondary battery of the present invention, when used at a high electrode density (for example, 1.6 g / cm 3 or more), the discharge capacity is large, the charge / discharge efficiency is high, the load characteristics are excellent, and Since an excellent lithium secondary battery with small electrode expansion at the time of charging can be realized, it can be suitably used in various fields such as an electronic device in which the lithium secondary battery is used.

また、本発明のリチウム二次電池用負極材料の製造方法によれば、上記リチウム二次電池用負極材料を効率よく安定して製造することができるため、リチウム二次電池の工業生産分野においてその価値は大きい。   Further, according to the method for producing a negative electrode material for a lithium secondary battery of the present invention, the negative electrode material for a lithium secondary battery can be produced efficiently and stably. The value is great.

(a)は、実施例2の負極材料の黒鉛化工程の後における黒鉛複合体混合粉末(C)の粒子断面のうち、黒鉛複合体粉末(A)部分の偏光顕微鏡写真(倍率1500倍)であり、(b)は、(a)の粒子断面における黒鉛質(D)及び黒鉛質(E)の形状を表わす模式図である。(A) is a polarizing microscope photograph (1500 times magnification) of the graphite composite powder (A) portion in the particle cross section of the graphite composite mixed powder (C) after the graphitization step of the negative electrode material of Example 2. (B) is a schematic diagram showing the shapes of graphite (D) and graphite (E) in the particle cross section of (a).

Claims (17)

アスペクト比が1.2以上4.0以下である黒鉛質(D)及び前記黒鉛質(D)とは配向性の異なる黒鉛質(E)が複合化した黒鉛複合体粉末(A)と、人造黒鉛粉末(B)とからなる黒鉛複合体混合粉末(C)を備え
前記人造黒鉛粉末(B)は、前記黒鉛質(D)を包含していない単独で作製された人造黒鉛粒子又は前記黒鉛質(D)を含まずに前記黒鉛質(E)のみが粒状化して得られた人造黒鉛粒子の何れかである
ことを特徴とする、リチウム二次電池用負極材料。
Graphite aspect ratio of 1.2 to 4.0 and (D) and the graphite orientation different graphite and (D) (E) graphite composite powder complexed (A), human Comprising graphite composite powder (C) composed of graphite powder (B) ,
In the artificial graphite powder (B), only the graphite (E) is granulated without containing the artificial graphite particles or the graphite (D) produced alone, which does not include the graphite (D). A negative electrode material for a lithium secondary battery, which is any one of the obtained artificial graphite particles .
黒鉛質(D)が天然黒鉛である
ことを特徴とする、請求項1記載のリチウム二次電池用負極材料。
The negative electrode material for a lithium secondary battery according to claim 1, wherein the graphite (D) is natural graphite.
黒鉛複合体混合粉末(C)のタップ密度が0.8g/cm3以上であり、BET比表面
積が1m2/g以上、5m2/g以下であり、X線回折による(002)面の面間隔d002
が0.3360nm以下である
ことを特徴とする、請求項1又は請求項2に記載のリチウム二次電池用負極材料。
The graphite composite mixed powder (C) has a tap density of 0.8 g / cm 3 or more, a BET specific surface area of 1 m 2 / g or more and 5 m 2 / g or less, and a (002) plane by X-ray diffraction. Interval d 002
3. The negative electrode material for a lithium secondary battery according to claim 1, wherein is 0.3360 nm or less.
黒鉛複合体粉末(A)のアスペクト比が1.1以上、4.0以下である
ことを特徴とする、請求項1〜3の何れか一項に記載のリチウム二次電池用負極材料。
The negative electrode material for a lithium secondary battery according to any one of claims 1 to 3, wherein the aspect ratio of the graphite composite powder (A) is 1.1 or more and 4.0 or less.
黒鉛複合体粉末(A)のタップ密度が0.80g/cm3以上、1.35g/cm3以下であり、BET比表面積が0.8m2/g以上、5.5m2/g以下であり、体積基準平均粒径が6μm以上、80μm以下である
ことを特徴とする、請求項1〜4の何れか一項に記載のリチウム二次電池用負極材料。
The tap density of the graphite composite powder (A) is 0.80 g / cm 3 or more and 1.35 g / cm 3 or less, and the BET specific surface area is 0.8 m 2 / g or more and 5.5 m 2 / g or less. 5. The negative electrode material for a lithium secondary battery according to claim 1, wherein the volume-based average particle size is 6 μm or more and 80 μm or less.
人造黒鉛粉末(B)のBET比表面積が0.3m2/g以上、3m2/g以下であり、体積基準平均粒径が3μm以上、30μm以下である
ことを特徴とする、請求項1〜5の何れか一項に記載のリチウム二次電池用負極材料。
The artificial graphite powder (B) has a BET specific surface area of 0.3 m 2 / g or more and 3 m 2 / g or less, and a volume-based average particle size of 3 μm or more and 30 μm or less. The negative electrode material for a lithium secondary battery according to any one of 5.
黒鉛複合体粉末(A)に対する黒鉛質(D)の割合が30重量%以上、97重量%以下である
ことを特徴とする、請求項1〜6の何れか一項に記載のリチウム二次電池用負極材料。
The lithium secondary battery according to any one of claims 1 to 6, wherein the ratio of the graphite (D) to the graphite composite powder (A) is 30 wt% or more and 97 wt% or less. Negative electrode material.
黒鉛複合体混合粉末(C)に対する黒鉛複合体粉末(A)の割合が35重量%以上、98重量%以下である
ことを特徴とする、請求項1〜7の何れか一項に記載のリチウム二次電池用負極材料。
8. The lithium according to claim 1, wherein the ratio of the graphite composite powder (A) to the graphite composite mixed powder (C) is 35% by weight or more and 98% by weight or less. Negative electrode material for secondary batteries.
黒鉛質(E)と人造黒鉛粉末(B)とが同一の原料から製造される
ことを特徴とする、請求項1〜8の何れか一項に記載のリチウム二次電池用負極材料。
The negative electrode for a lithium secondary battery according to any one of claims 1 to 8, wherein the graphite (E) and the artificial graphite powder (B) are produced from the same raw material. material.
天然黒鉛粉末(G)を更に備えると共に、黒鉛複合体混合粉末(C)及び天然黒鉛粉末(G)の総量に対する黒鉛複合体混合粉末(C)の割合が20重量%以上、90重量%以下である
ことを特徴とする、請求項1〜9の何れか一項に記載のリチウム二次電池用負極材料。
A natural graphite powder (G) is further provided, and the ratio of the graphite composite mixed powder (C) to the total amount of the graphite composite mixed powder (C) and the natural graphite powder (G) is 20 wt% or more and 90 wt% or less. It exists, The negative electrode material for lithium secondary batteries as described in any one of Claims 1-9 characterized by the above-mentioned.
該負極材料を活物質として電極密度1.63±0.05g/cm3で形成した電極の活
物質配向比が0.07以上である
ことを特徴とする、請求項1〜10の何れか一項に記載のリチウム二次電池用負極材料。
11. The active material orientation ratio of an electrode formed using the negative electrode material as an active material at an electrode density of 1.63 ± 0.05 g / cm 3 is 0.07 or more. 11. The negative electrode material for lithium secondary batteries as described in the paragraph.
該負極材料を用いて作製したリチウム二次電池の放電容量が345mAh/g以上である
ことを特徴とする、請求項1〜11の何れか一項に記載のリチウム二次電池用負極材料。
The negative electrode material for a lithium secondary battery according to any one of claims 1 to 11, wherein a discharge capacity of the lithium secondary battery produced using the negative electrode material is 345 mAh / g or more.
請求項1〜9、11、12の何れか一項に記載のリチウム二次電池用負極材料の製造方法であって、
キノリン不溶分が3重量%以下であるピッチ原料を熱処理して得られた黒鉛結晶前駆体の粉砕物と、アスペクト比が1.2以上、4.0以下であり、タップ密度が0.7g/cm3以上、1.35g/cm3以下である黒鉛質(D)とを混合し、前記黒鉛質(D)と微細化した前記黒鉛結晶前駆体の粒子とを無配向状態で接触したまま固定化する熱処理Aをした後、粉砕し、焼成及び黒鉛化を施す熱処理Bをする
ことにより、黒鉛複合体混合粉末(C)を作成する
ことを特徴とする、リチウム二次電池用負極材料の製造方法。
A method for producing a negative electrode material for a lithium secondary battery according to any one of claims 1 to 9, 11, and 12,
A pulverized graphite crystal precursor obtained by heat-treating a pitch raw material having a quinoline insoluble content of 3 wt% or less, an aspect ratio of 1.2 to 4.0, and a tap density of 0.7 g / The graphite (D) which is not less than cm 3 and not more than 1.35 g / cm 3 is mixed, and the graphite (D) and the refined particles of the graphite crystal precursor are fixed in contact in a non-oriented state. after the heat treatment a to reduction, milled and heat-treated B subjected to firing and graphitization
A method for producing a negative electrode material for a lithium secondary battery, characterized in that a graphite composite mixed powder (C) is prepared .
請求項1〜9、11、12の何れか一項に記載のリチウム二次電池用負極材料の製造方法であって、
キノリン不溶分が3重量%以下であるピッチ原料と、アスペクト比が1.2以上、4.0以下であり、タップ密度が0.7g/cm3以上、1.35g/cm3以下である黒鉛質(D)とから黒鉛複合体粉末(A)を作製する一方で、ピッチ原料から人造黒鉛粉末(B)を作製し、得られた黒鉛複合体粉末(A)と人造黒鉛粉末(B)とを混合することにより、黒鉛複合体混合粉末(C)を作成する
ことを特徴とする、リチウム二次電池用負極材料の製造方法。
A method for producing a negative electrode material for a lithium secondary battery according to any one of claims 1 to 9, 11, and 12,
A pitch raw material having a quinoline insoluble content of 3% by weight or less, and a graphite having an aspect ratio of 1.2 or more and 4.0 or less and a tap density of 0.7 g / cm 3 or more and 1.35 g / cm 3 or less. While producing graphite composite powder (A) from quality (D), artificial graphite powder (B) is produced from pitch raw material, and obtained graphite composite powder (A) and artificial graphite powder (B) A method for producing a negative electrode material for a lithium secondary battery, wherein the mixed powder of graphite composite (C) is prepared by mixing .
集電体と、該集電体上に形成された活物質層とを備えると共に、
該活物質層が、請求項1〜12の何れか一項に記載のリチウム二次電池用負極材料を含有する
ことを特徴とする、リチウム二次電池用負極。
A current collector and an active material layer formed on the current collector;
A negative electrode for a lithium secondary battery, wherein the active material layer contains the negative electrode material for a lithium secondary battery according to any one of claims 1 to 12.
集電体と、該集電体上に形成された活物質層とを備えると共に、
該活物質層が、請求項13又は請求項14に記載の製造方法によって製造されたリチウム二次電池用負極材料を含有する
ことを特徴とする、リチウム二次電池用負極。
A current collector and an active material layer formed on the current collector;
A negative electrode for a lithium secondary battery, wherein the active material layer contains a negative electrode material for a lithium secondary battery produced by the production method according to claim 13 or 14.
リチウムイオンを吸蔵・放出可能な正極及び負極と、電解質とを備えると共に、
該負極が、請求項15又は請求項16に記載のリチウム二次電池用負極である
ことを特徴とする、リチウム二次電池。
A positive and negative electrode capable of inserting and extracting lithium ions, and an electrolyte,
A lithium secondary battery, wherein the negative electrode is a negative electrode for a lithium secondary battery according to claim 15 or 16.
JP2005036236A 2004-02-12 2005-02-14 Negative electrode material for lithium secondary battery, production method thereof, and negative electrode for lithium secondary battery and lithium secondary battery using the same Active JP5081375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005036236A JP5081375B2 (en) 2004-02-12 2005-02-14 Negative electrode material for lithium secondary battery, production method thereof, and negative electrode for lithium secondary battery and lithium secondary battery using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004035207 2004-02-12
JP2004035207 2004-02-12
JP2005036236A JP5081375B2 (en) 2004-02-12 2005-02-14 Negative electrode material for lithium secondary battery, production method thereof, and negative electrode for lithium secondary battery and lithium secondary battery using the same

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2011201219A Division JP5447467B2 (en) 2004-02-12 2011-09-14 Negative electrode material for lithium secondary battery, negative electrode for lithium secondary battery and lithium secondary battery using the same
JP2011201220A Division JP5823790B2 (en) 2004-02-12 2011-09-14 Negative electrode material for lithium secondary battery, negative electrode for lithium secondary battery and lithium secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2005259689A JP2005259689A (en) 2005-09-22
JP5081375B2 true JP5081375B2 (en) 2012-11-28

Family

ID=35085178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005036236A Active JP5081375B2 (en) 2004-02-12 2005-02-14 Negative electrode material for lithium secondary battery, production method thereof, and negative electrode for lithium secondary battery and lithium secondary battery using the same

Country Status (1)

Country Link
JP (1) JP5081375B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100912849B1 (en) * 2004-02-12 2009-08-18 미쓰비시 가가꾸 가부시키가이샤 Negative electrode material for lithium secondary battery, method for producing same, negative electrode for lithium secondary battery using same, and lithium secondary battery
JP4604599B2 (en) * 2004-08-02 2011-01-05 中央電気工業株式会社 Carbon powder and manufacturing method thereof
JP2007095402A (en) * 2005-09-28 2007-04-12 Hitachi Maxell Ltd Lithium secondary battery
JP2007200871A (en) * 2005-12-28 2007-08-09 Mitsubishi Chemicals Corp Lithium ion secondary battery
JP4989114B2 (en) 2006-06-02 2012-08-01 日本カーボン株式会社 Negative electrode and negative electrode active material for lithium secondary battery
US9490499B2 (en) 2006-07-19 2016-11-08 Nippon Carbon Co., Ltd. Negative electrode active material for lithium ion rechargeable battery and negative electrode using the same
JP5021979B2 (en) * 2006-08-17 2012-09-12 Jfeケミカル株式会社 Mesocarbon microsphere graphitized material for lithium ion secondary battery negative electrode material and method for producing the same, lithium ion secondary battery negative electrode material, lithium ion secondary battery negative electrode and lithium ion secondary battery
FR2921204B1 (en) * 2007-09-14 2009-12-04 Saint Gobain Ct Recherches LONG GRAIN POWDER
JP4968183B2 (en) * 2007-11-14 2012-07-04 ソニー株式会社 Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
JP5064195B2 (en) * 2007-12-07 2012-10-31 株式会社ミツバ How to identify brush carbon
JP5551883B2 (en) * 2008-04-22 2014-07-16 Jfeケミカル株式会社 Method for producing mesophase microspheres and carbon material, and lithium ion secondary battery
JP5322804B2 (en) * 2009-06-25 2013-10-23 Jfeケミカル株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR101549321B1 (en) * 2011-05-10 2015-09-01 도요타지도샤가부시키가이샤 Secondary battery and method for producing secondary battery
CN103548188B (en) 2011-05-23 2016-03-30 株式会社Lg化学 There is the high-energy density lithium secondary cell of the energy density characteristics of enhancing
EP2688127B1 (en) * 2011-05-23 2016-06-15 LG Chem, Ltd. High output lithium secondary battery having enhanced output density characteristic
JP2014517459A (en) 2011-05-23 2014-07-17 エルジー ケム. エルティーディ. High energy density lithium secondary battery with improved energy density characteristics
WO2013009078A2 (en) 2011-07-13 2013-01-17 주식회사 엘지화학 High-energy lithium secondary battery having improved energy density characteristics
US10122018B2 (en) * 2014-03-25 2018-11-06 Hitachi Chemical Company, Ltd. Negative electrode material for lithium-ion secondary battery,method for manufacturing negative electrode material for lithium-ion secondary battery, negative electrode material slurry for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
KR101685832B1 (en) * 2014-07-29 2016-12-12 주식회사 엘지화학 Graphite secondary particles and lithium secondary battery comprising thereof
JP6240586B2 (en) 2014-10-28 2017-11-29 Jfeケミカル株式会社 Graphite particles for negative electrode material of lithium ion secondary battery, negative electrode of lithium ion secondary battery and lithium ion secondary battery
HUE061848T2 (en) * 2020-03-27 2023-08-28 Contemporary Amperex Technology Co Ltd Secondary battery and device containing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3539755B2 (en) * 1994-04-15 2004-07-07 大阪瓦斯株式会社 Method for producing mesocarbon microbeads
JP4666876B2 (en) * 2001-09-26 2011-04-06 Jfeケミカル株式会社 Composite graphite material and method for producing the same, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery

Also Published As

Publication number Publication date
JP2005259689A (en) 2005-09-22

Similar Documents

Publication Publication Date Title
JP5447467B2 (en) Negative electrode material for lithium secondary battery, negative electrode for lithium secondary battery and lithium secondary battery using the same
JP5081375B2 (en) Negative electrode material for lithium secondary battery, production method thereof, and negative electrode for lithium secondary battery and lithium secondary battery using the same
US11031587B2 (en) Negative electrode material for lithium-ion batteries including non-flaky artificial graphite including silicon-containing particles, artificial graphite particles and carbonaceous material
JP5476411B2 (en) Graphite composite particles for non-aqueous secondary battery, negative electrode active material containing the same, negative electrode and non-aqueous secondary battery
US10693135B2 (en) Method for producing composite, and negative electrode material for lithium ion battery
JP5678414B2 (en) Graphite negative electrode material, method for producing the same, and negative electrode for lithium secondary battery and lithium secondary battery using the same
JP5407196B2 (en) Non-aqueous secondary battery composite graphite particles, negative electrode material containing the same, negative electrode and non-aqueous secondary battery
JP6535467B2 (en) Graphite powder for lithium ion secondary battery negative electrode active material
US20190363348A1 (en) Negative electrode material for lithium ion secondary cell
JP5064728B2 (en) Graphite composite particles for non-aqueous secondary battery, negative electrode active material containing the same, negative electrode and non-aqueous secondary battery
JP3803866B2 (en) Double-layer carbon material for secondary battery and lithium secondary battery using the same
JP2015164127A (en) Carbon material for nonaqueous secondary battery negative electrode, negative electrode for nonaqueous secondary battery and nonaqueous secondary battery
JP2012033375A (en) Carbon material for nonaqueous secondary battery
JP5821932B2 (en) Graphite negative electrode material, method for producing the same, and negative electrode for lithium secondary battery and lithium secondary battery using the same
JP2018006270A (en) Graphite carbon material for lithium ion secondary battery negative electrode, method for manufacturing the same, and negative electrode or battery arranged by use thereof
JP4933092B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2017027771A (en) Carbon material for nonaqueous secondary batteries, and lithium ion secondary battery
JP4470467B2 (en) Particulate artificial graphite negative electrode material, method for producing the same, negative electrode for lithium secondary battery and lithium secondary battery using the same
JP6625336B2 (en) Carbon material for negative electrode of non-aqueous secondary battery and non-aqueous secondary battery
JP2013229343A (en) Composite graphite particle for nonaqueous secondary battery, negative electrode material containing the same, negative electrode and nonaqueous secondary battery
JP2003176115A (en) Method of manufacturing graphite powder, graphite powder and lithium ion secondary battery
JP2013179101A (en) Composite graphite particle for nonaqueous secondary battery, negative electrode material containing the same, negative electrode and nonaqueous secondary battery
JP2018006271A (en) Carbon material for lithium ion secondary battery negative electrode, intermediate thereof, method for manufacturing the same, and negative electrode or battery arranged by use thereof
JP2010010082A (en) Negative electrode for nonaqueous secondary battery, negative electrode material for nonaqueous secondary battery, and nonaqueous secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110914

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110927

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20111209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5081375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350