JP3539755B2 - Method for producing mesocarbon microbeads - Google Patents

Method for producing mesocarbon microbeads Download PDF

Info

Publication number
JP3539755B2
JP3539755B2 JP07625194A JP7625194A JP3539755B2 JP 3539755 B2 JP3539755 B2 JP 3539755B2 JP 07625194 A JP07625194 A JP 07625194A JP 7625194 A JP7625194 A JP 7625194A JP 3539755 B2 JP3539755 B2 JP 3539755B2
Authority
JP
Japan
Prior art keywords
mcmb
pitch component
sphere
purified
pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07625194A
Other languages
Japanese (ja)
Other versions
JPH07278566A (en
Inventor
弘明 松好
喜照 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP07625194A priority Critical patent/JP3539755B2/en
Publication of JPH07278566A publication Critical patent/JPH07278566A/en
Application granted granted Critical
Publication of JP3539755B2 publication Critical patent/JP3539755B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Working-Up Tar And Pitch (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、高密度、高強度および耐薬品性、耐熱性等に優れた特殊炭素材やリチウム二次電池負極材料等の各用途に使用されるメソカーボンマイクロビーズの製造方法に関する。
【0002】
【従来の技術】
コールタールやコールタールピッチを300〜500μmで加熱し、反応生成物を150〜450μmで高温遠心分離等を行うと、固形分、すなわち粗MCMB(以下、メソカーボンマイクロビーズとあるのは、MCMBと略す。)が生成する。これらの製造方法を記載した文献として、例えば、特公平01−27968号公報、特開平01−242691号公報などがある。反応タールやピッチマトリックスから生成したMCMB生品を分離するに際しては、溶剤抽出法、希釈重力沈降法などの溶媒を用いる方法と高温遠心分離法などの溶媒を用いない方法の2つがある。後者の方法においても、得られた粗MCMBを洗浄、精製するために溶剤が用いられる。ここで、キノリン等のように溶解力が強過ぎる溶剤を用いれば、MCMBの球体の周囲にはタールやピッチマトリックスに由来するピッチ成分が付着していない単離MCMB(この単離MCMBは、キノリン不溶分リッチな成分から成る球体である。)となる。このような単離MCMBから特殊炭素材の各用途に使用する場合、単離MCMBとバインダーを混合した後、成型焼成していた。また、粗MCMBは、タールやピッチマトリックスに由来するピッチ成分(以下、単に、ピッチ成分という。)がMCMBの球体の周囲を取り囲み、ピッチ成分が癒着することにより、図13に示すように、ピッチ成分で覆われたMCMB同士が癒着、凝集した状態となっているが、トルエン等のように溶解力が弱過ぎる溶剤を用いられば、ピッチ成分の癒着部分を溶解し、MCMBの球体の周囲が、ピッチ成分で覆われたMCMBをピッチ成分から、独立に分離することが困難であった。
【0003】
【発明が解決しようとする課題】
従来用いられたキノリン等とトルエン等の溶剤の溶解力が強過ぎ又は弱過ぎたため、溶解力が中程度の安価な溶剤によりタールやピッチマトリックスに由来するピッチ成分の癒着部分のみを溶解し、MCMBの球体の周囲のピッチ成分はそのまま溶解させないで残し、ピッチ成分で覆われたMCMBを独立して分離精製することが大きな課題となっていた。さらに、このような単離MCMBから特殊炭素材の各用途に使用する場合、単離MCMBとバインダーを混合した後、成型焼成する必要があったが、このバインダーを混合する行程の省略化によるコストダウンを図ることも課題となっていた。そこで、本発明は、コールタールやコールタールピッチなどの石炭系重質油を原料として、独立分離精製された、MCMBの球体の周囲を均一な膜厚のピッチ成分で覆われたMCMBを製造することを目的とする。また、従来用いられたキノリン等により独立して分離精製されたMCMBを製造することができるが、キノリン等は高価であり、安価な溶剤により、独立して分離精製されたMCMBを製造することをも目的とする。
【0004】
【課題を解決するための手段】
課題を解決するための手段は、前述した各請求項記載の発明であり、具体的には、以下の発明である。
[請求項1] 石炭系重質油を熱処理し、生成した粗メソカーボンマイクロビーズを遠心分離後、沸点範囲100〜500℃のタール中油を粗メソカーボンマイクロビーズ重量の0.1〜20倍量加え、10〜300℃で0.1〜20時間洗浄処理することにより、得られる、メソカーボンマイクロビーズの球体の周囲が0.01〜10μmの厚さのピッチ成分で覆われており、しかも、球体同士が癒着または凝集していないメソカーボンマイクロビーズ生品の製造方法。
従来用いられたキノリン等とトルエン等の溶剤の溶解力が強過ぎ又は弱過ぎたため、溶解力が中程度の安価な溶剤としてタール中油を選定することにより、ピッチマトリックスに由来するピッチ成分の癒着部分のみを溶解し、MCMBの球体の周囲を覆っているピッチ成分の膜厚を制御する方法を発明した。すなわち、コールタールやコールタールピッチなどの石炭系重質油を熱処理し、生成した粗MCMBを分離し、洗浄精製するに際し、沸点範囲100〜500℃のタール中油を粗MCMB重量の0.1〜20倍量加え、10〜300℃で0.1〜20時間洗浄処理することにより、MCMBの球体の周囲を覆っているピッチ成分の膜厚を0〜10μmに調製することができる。(溶剤分析におけるTI〜QIの値を0〜20%に調製することができる。)
すなわち、タール中油の量と洗浄時間を洗浄温度を加減することにより、溶剤の洗浄力をコントロールすることによりピッチ成分に覆われたMCMB生品を独立して分離精製することができ、さらにMCMBを覆ったピッチ成分の膜厚を均一かつ所定の厚さにすることが可能となった。タール中油の量が少なすぎると均一に洗浄することができず、多すぎるとタール中油がコスト高となる。洗浄時間は短か過ぎると、ピッチ成分に覆われたMCMBを独立して分離することができず、長すぎると、ピッチ成分に覆われていないMCMBを独立して分離することができるが、必要以上の時間をかけ過ぎ不経済となる。洗浄温度は、高くなる程、タール中油の溶解力が大となり、MCMBを覆ったピッチ成分の膜厚を薄くまたはピッチ成分で覆われていないMCMBを製造することができる。ここに、洗浄は、機械攪拌等の攪拌下、MCMBを覆っているピッチ成分の癒着部分のみを溶解させた後、各ピッチ成分で覆われたMCMB同士を衝突させて、機械的な力によりピッチ成分の角部分が研磨されて球面状の均一な膜厚とすることができる。MCMBの球体の周囲を覆っているピッチ成分は、MCMB生品を成型及び焼成して炭素製品を製造するに際し、焼成時に軟化溶融して収縮率を高め、炭素製品の密度及び強度を向上させる効果を有するため、非常に有用なものである。特に、ピッチ成分の膜厚が均一であることは、MCMB生品を成型及び焼成してできた炭素製品の密度及び強度等の品質が均一であるという利点がある。また、上記の方法で得られたMCMBの球体の周囲が均一にピッチ成分で覆われているMCMB生品は、粉体のまま炭化さらには黒鉛化焼成を行ってもMCMBの球体の周囲のピッチ成分は異方性組織となって維持され、図14に示すように、球体同士が癒着、凝集することはない。さらに、生品の段階で酸化処理を行っておけば、焼成時に表面のピッチ成分は等方性組織となる。こうして得られたMCMBの球体の周囲がピッチ成分で覆われているMCMBの炭化品ならびに黒鉛化品はリチウム二次電池の負極材として用いた場合、電解液の有機溶媒と反応しにくいという利点を有している。この理由として、MCMBは、活性な結晶子の端面(edge plane)が、外側に配向しているため、電解液の有機溶媒と反応しやすい。これを炭素の縮合多環網目である基底面(basal plane)が外側に配向しているピッチ成分で覆うことにより、電解液の有機溶媒との反応を防止できるからであると考えられる。MCMBの球体の周囲がピッチ成分で覆われていないMCMBは、粉体のまま炭化さらには黒鉛化することにより、MCMB炭化品および黒鉛化品が得られる。こうして得られたMCMBの球体の周囲がピッチ成分で覆われていないMCMBの炭化品、黒鉛化品はリチウム二次電池の負極材として用いた場合、ピッチ成分で覆われていない効果として、リチウムイオンの吸蔵能力が向上するため、放電容量より充放電効率が高い値となる。この理由として、球体表面のピッチ成分は、炭素の縮合多環網目である基底面(basal plane)が球面方向に配向しているので、リチウムイオンの出入りを阻害する。しかし、この表面層が除去されれば、精製MCMB内の結晶子の端面(edge plane)が、球体表面に露出するため、この端面から出るためリチウムイオンが出入りしやすくなり精製MCMBが本来有するリチウムイオン吸蔵能力を十分に発揮するからであると予想される。また、これらのMCMBを炭化、さらには、黒鉛化しても、表面のピッチ成分は維持され、異方性組織のままであることが実験的に確認された。また、生品の段階で酸化しておけば、ピッチ成分は等方性組織となることも実験的に確認された。なお、上記において、等方性組織からなるピッチ成分に覆われたMCMBの炭化品または黒鉛化品は、リチウム二次電池負極材料等の各用途に使用されると、異方性組織からなるピッチ成分に覆われたMCMBの炭化品または黒鉛化品に比較して、溶媒と反応しにくいという利点がある。すなわち、MCMB生品を粉体のまま、炭化および黒鉛化する前に、酸化雰囲気中、20〜300℃の温度範囲で酸化する行程を設ければ、MCMB生品をそのままで、粉体のまま、炭化および黒鉛化した場合に比較して、炭化品または黒鉛化品は、より溶媒と反応しにくくなる。
【0005】
【発明の効果】
本発明は、精製MCMBの球体の周囲を覆っているピッチ成分の膜厚を0.01〜10μmに制御できるため、MCMBの球体の周囲がピッチ成分で均一に覆われたMCMB、及び、MCMBの球体の周囲がピッチ成分で覆われていないMCMBを製造することができる。タール中油による洗浄条件をコントロールすることにより、電解液の有機溶媒と反応しにくいという性質を有するMCMBの球体の周囲が厚いピッチ成分で均一に覆われたMCMB、あるいは、充放電効率が高いという性質を有するMCMBの球体の周囲が薄いピッチ成分で均一に覆われたMCMBの両方を適宜選択的に製造することができる。したがって、ピッチ成分の膜厚を制御することによりピッチ成分で均一に覆われたMCMBの性質を予測してピッチ成分で覆われたMCMBを製造することができる。さらに、MCMBの球体の周囲がピッチ成分で均一に覆われたMCMBは、成型する場合、従来であれば、単離MCMBを接着するために、用いるバインダーの役割をMCMBの球体の周囲を覆っているピッチ成分に負わせるためにバインダーとMCMBを混合する行程を省略できるという効果がある。そして、従来は、単離MCMBとバインダーを混合して成型されたものを炭化または黒鉛化する場合、バインダーの量が少な過ぎると、単離MCMBの隙間をピッチ成分が十分に埋めることができず局部的に強度が弱い部分を生じ、全体の製品としても強度が不十分となる。また、逆に、バインダーの量が多過ぎると、焼成時に膨張して、成型時に割れてしまうという不都合があり、単離MCMBとバインダーを混合割合に留意する必要があった。ここに、本発明では、バインダーの役割をするピッチ成分の膜厚を適当な厚さに制御することにより従来の上記の様な不都合を回避できるという効果を有する。
【0006】
【実施例】
以下に実施例および比較例を示し、本発明の特徴とするところをより一層明確にする。
【0007】
〔偏光顕微鏡観察〕MCMBを樹脂と混合して、成型、研磨を行ない、光源にハロゲン白熱灯を用いたZeiss社製オルソルックス反射偏光顕微鏡により、直交ニコル下で石こう検板を入れて組織を観察した。
【0008】
実施例1
100℃以下の沸点留分を除去したコールタール(一次QI含有率2.0%)を高温遠心分離し、清澄液(一次QI含有率トレース)を得た。遠心分離機としては、保有容積40リットル遠心力分離機を使用し、回転数3000rpm、遠心力2280G、温度200℃、処理量1ton/hrの条件下に操作した。次いで、清澄液を温度395℃、圧力0.4MPaに16時間熱処理することにより、反応生成物(二次QI分4.4重量%)を得た後、上記と同様の第二の遠心分離機を使用して、回転数6000rpm、遠心力3000G、温度270℃、処理量1ton/hrの条件下に再度遠心分離に供し、粗MCMBを収得した。次いで、上記のようにして得た粗MCMB1部に対し、1部のタール中油(沸点範囲230〜330℃)を加え、攪拌下に150℃で1時間洗浄処理した後、遠心分離して一次洗浄したMCMBを得た。次いで、上記で得た一次洗浄後のMCMB1部に対し、トルエン1部を加え、攪拌下に20℃で1時間洗浄処理をした後、遠心分離して二次洗浄を行い、精製MCMBを得た。図7に一次洗浄MCMBと生成MCMBの性状を示す。この精製MCMBの偏光顕微鏡での観察結果を図1(a)に示す。図1(a)においてMCMB球体の粒径は10μm、MCMBの球体の周囲を覆っているピッチ成分の膜厚は0.1μmである。しかも球体同士が癒着または凝集していないことがわかる。以下、この精製MCMBをMCMB生品と呼ぶことにする。このMCMB生品を粉体のまま、窒素雰囲気中、1000℃で1時間焼成し、炭化した。この炭化MCMBの偏光顕微鏡での観察結果を図1(b)に示す。図1(b)において炭化MCMBの球体の周囲が異方性組織からなるピッチ成分で均一に覆われており、しかも球体同士が癒着または凝集していないことがわかる。以下、この炭化MCMBをMCMB炭化品と呼ぶことにする。このMCMB炭化品を粉体のまま、窒素雰囲気中、2800℃で1時間焼成し、黒鉛化した。この黒鉛化MCMBの偏光顕微鏡での観察結果を図1(c)に示す。図1(c)において黒鉛化MCMBの球体の周囲が異方性組織からなるピッチ成分で均一に覆われていることがわかる。
【0009】
実施例2
実施例1と同様にして得られた粗MCMB1部に対し、1部のタール中油(沸点範囲230〜330℃)を加え、攪拌下に100℃で1時間洗浄処理した後、遠心分離して一次洗浄したMCMBを得た。次いで、上記で得た一次洗浄後のMCMB1部に対し、トルエン1部を加え、攪拌下に20℃で1時間洗浄処理した後、遠心分離して二次洗浄を行い、精製MCMBを得た。図8に一次洗浄MCMBと精製MCMBの性状を示す。この精製MCMBの偏光顕微鏡での観察結果を図2(a)に示す。図2(a)においてMCMB球体の粒径は10μm、MCMBの球体の周囲を覆っているピッチ成分の膜厚は0.2μmである。しかも球体同士が癒着または凝集していないことがわかる。このMCMB生品を空気雰囲気中、120℃で3時間酸化処理した後、粉体のまま、窒素雰囲気中、1000℃で1時間焼成し、炭化した。この炭化MCMBの偏光顕微鏡での観察結果を図2(b)に示す。図2(b)において球体の周りが、等方性組織からなるピッチ成分で均一に覆われており、しかも球体同士が癒着または凝集していないことがわかる。このMCMB炭化品を粉体のまま、窒素雰囲気中、2800℃で1時間焼成し、黒鉛化した。黒鉛化MCMBの偏光顕微鏡での観察結果を図2(c)に示す。図2(c)において球体の周りが等方性組織からなるピッチ成分で均一に覆われており、しかも球体同士が癒着または凝集していないことがわかる。
【0010】
実施例3
実施例1と同様にして得られて粗MCMB1部に対し、1部のタール中油(沸点範囲230〜330℃)を加え、攪拌下に20℃で1時間洗浄処理した後、遠心分離して一次洗浄したMCMBを得た。次いで、上記で得た一次洗浄後のMCMB1部に対し、トルエン1部を加え、攪拌下に20℃で1時間洗浄処理をした後、遠心分離して二次洗浄を行い、図9に一次洗浄MCMBと精製MCMBの性状を示す。この精製MCMB生品の偏光顕微鏡での観察結果を図3に示す。図3においてMCMB球体の粒径は10μm、MCMBの球体の周囲を覆っているピッチ成分の膜厚は0.3μmである。しかも球体同士が癒着または凝集していないことがわかる。
【0011】
実施例4
実施例1と同様にして得られた粗MCMB1部に対し、1部のタール中油(沸点範囲230〜330℃)を加え、攪拌下に200℃で1時間洗浄処理した後、遠心分離して一次洗浄したMCMBを得た。次いで、上記で得た一次洗浄後のMCMB1部に対し、トルエン1部を加え、攪拌下に20℃で1時間洗浄処理をした後、遠心分離して二次洗浄を行い、精製MCMBを得た。図10に一次洗浄MCMBと精製MCMBの性状を示す。このMCMB生品の偏光顕微鏡での観察結果を図4(a)に示す。図4(a)において球体の周りのピッチ成分が完全に取り除かれていることがわかる。この精製MCMB生品を粉体もまま、窒素雰囲気中、1000℃で1時間焼成し、炭化した。この炭化MCMBの偏光顕微鏡での観察結果を図4(b)に示す。このMCMB炭化品を粉体のまま、窒素雰囲気中、2800℃で1時間焼成し、黒鉛化した。この黒鉛化MCMBの偏光顕微鏡での観察結果を図4(c)に示す。
【0012】
実施例5
100℃以下の沸点留分を除去したコールタール(一次QI含有率2.0%)を高温遠心分離し、清澄液(一次QI含有率トレース)を得た。遠心分離機としては、保有容積40リットルの横型遠心分離機を使用し、回転数3000rpm、遠心力2280G、温度200 、処理量1ton/hrの条件下に操作した。次いで、清澄液を温度410℃、圧力0.4MPaに16時間熱処理することにより、反応生成物(二次QI分20重量%)を得た後、上記と同様の第二の遠心分離機を使用して、回転数6000rpm、遠心力3000G、温度270℃、処理量1ton/hrの条件下に再度遠心分離に供し、粗MCMBを収得した。次いで、上記のようにして得た粗MCMB1部に対し、1部のタール中油(沸点範囲230〜330℃)を加え、攪拌下に150℃で1時間洗浄処理した後、遠心分離して一次洗浄したMCMBを得た。次いで、上記で得た一次洗浄後のMCMB1部に対し、トルエン1部を加え、攪拌下に20℃で1時間洗浄処理をした後、遠心分離して二次洗浄を行い、精製MCMBを得た。図11に一次洗浄MCMBと精製MCMBの性状を示す。この精製MCMBの偏光顕微鏡での観察結果を図5に示す。図5においてMCMB球体の粒径は100μm、MCMBの球体の周囲を覆っているピッチ成分の膜厚は1μmである。しかも球体同士が癒着または凝集していないことがわかる。
【0013】
実施例6
実施例5と同様にして得られた粗MCMB1部に対し、1部のタール中油(沸点範囲230〜330℃)を加え、攪拌下に20℃で1時間洗浄処理した後、遠心分離して一次洗浄したMCMBを得た。次いで、上記で得た一次洗浄後のMCMB1部に対し、トルエン1部を加え、攪拌下に20℃で1時間洗浄処理した後、遠心分離して二次洗浄を行い、精製MCMBを得た。図12に一次洗浄MCMBと精製MCMBの性状を示す。この精製MCMB生品の偏光顕微鏡での観察結果を図6に示す。図6においてMCMB球体の粒径は100μm、MCMBの球体の周囲を覆っているピッチ成分の膜厚は5μmである。しかも球体同士が癒着または凝集していないことがわかる。
【0014】
尚、特許請求の範囲の項に図面との対照を便利にするために符号を記すが、該記入により本発明は添付図面の構成に限定されるものではない。
【図面の簡単な説明】
【図1】(a)は、実施例1の精製MCMBの偏光顕微鏡での観察結果を示す図。
(b)は、実施例1の炭化MCMBの偏光顕微鏡での観察結果を示す図
(c)は、実施例1の黒鉛化MCMBの偏光顕微鏡での観察結果を示す図
【図2】(a)は、実施例2の精製MCMBの偏光顕微鏡での観察結果を示す図
(b)は、実施例2の炭化MCMBの偏光顕微鏡での観察結果を示す図
(c)は、実施例2の黒鉛化MCMBの偏光顕微鏡での観察結果を示す図
【図3】実施例3の精製MCMBの偏光顕微鏡での観察結果を示す図
【図4】(a)は、実施例4の精製MCMBの偏光顕微鏡での観察結果を示す図
(b)は、実施例4の炭化MCMBの偏光顕微鏡での観察結果を示す図
(c)は、実施例4の黒鉛化MCMBの偏光顕微鏡での観察結果を示す図
【図5】実施例5の精製MCMBの偏光顕微鏡での観察結果を示す図
【図6】実施例6の精製MCMBの偏光顕微鏡での観察結果を示す図
【図7】実施例1の一次洗浄MCMBと精製MCMBの性状を示す図表
【図8】実施例2の一次洗浄MCMBと精製MCMBの性状を示す図表
【図9】実施例3の一次洗浄MCMBと精製MCMBの性状を示す図表
【図10】実施例4の一次洗浄MCMBと精製MCMBの性状を示す図表
【図11】実施例5の一次洗浄MCMBと精製MCMBの性状を示す図表
【図12】実施例6の一次洗浄MCMBと精製MCMBの性状を示す図表
【図13】相互に癒着した粗MCMBを示す図
【図14】独立分離したMCMBの球体の周囲がピッチ成分で均一に覆われたMCMBを示す図
【符号の説明】
1 MCMB
2 ピッチ成分
3 ピッチ成分同士の癒着部分
[0001]
[Industrial applications]
The present invention relates to a method for producing mesocarbon microbeads used for various applications such as a special carbon material excellent in high density, high strength, chemical resistance, heat resistance and the like, and a negative electrode material for a lithium secondary battery.
[0002]
[Prior art]
When coal tar or coal tar pitch is heated at 300 to 500 μm and the reaction product is subjected to high-temperature centrifugation at 150 to 450 μm, solid content, that is, crude MCMB (hereinafter referred to as mesocarbon microbeads, Abbreviated). Documents describing these production methods include, for example, Japanese Patent Publication No. 01-27968 and Japanese Patent Application Laid-Open No. 01-242691. There are two methods for separating raw MCMB produced from a reaction tar or a pitch matrix: a method using a solvent such as a solvent extraction method and a dilute gravity sedimentation method; and a method using no solvent such as a high-temperature centrifugal separation method. Also in the latter method, a solvent is used for washing and purifying the obtained crude MCMB. Here, if a solvent having an excessively high dissolving power such as quinoline is used, isolated MCMB in which no pitch component derived from tar or pitch matrix adheres around the sphere of MCMB (this isolated MCMB is quinoline This is a sphere composed of components rich in insolubles.) When the isolated MCMB is used for each application of a special carbon material, the isolated MCMB and a binder are mixed and then molded and fired. Further, the coarse MCMB has a pitch component derived from tar and a pitch matrix (hereinafter, simply referred to as a pitch component) surrounding the sphere of the MCMB, and the pitch components coalesce, as shown in FIG. The MCMB covered with the components are in a state of adhesion and agglomeration, but if a solvent such as toluene or the like having a too low dissolving power is used, the adhesion portion of the pitch component is dissolved, and the periphery of the sphere of the MCMB is dissolved. It was difficult to separate MCMB covered with pitch components from pitch components independently.
[0003]
[Problems to be solved by the invention]
Solvents such as conventionally used quinoline and toluene and the solvent such as toluene were too strong or too weak, so that only a coalescence portion of the pitch component derived from the tar or pitch matrix was dissolved by an inexpensive solvent having a medium solubility, and MCMB The pitch component around the sphere is left undissolved as it is, and the MCMB covered with the pitch component has to be separated and purified independently. Furthermore, when such an isolated MCMB is used for a special carbon material, it is necessary to mix and mold the isolated MCMB with a binder and then form and bake. However, the cost due to the omission of the step of mixing the binder is required. It was also an issue to go down. Therefore, the present invention uses a coal-based heavy oil such as coal tar or coal tar pitch as a raw material to produce an independently separated and purified MCMB in which the periphery of a sphere of the MCMB is covered with a pitch component having a uniform thickness. The purpose is to: In addition, although it is possible to produce MCMB independently separated and purified by quinoline and the like conventionally used, quinoline and the like are expensive, and it is necessary to produce MCMB independently separated and purified by an inexpensive solvent. Also aim.
[0004]
[Means for Solving the Problems]
Means for solving the problems are the inventions described in the respective claims described above, and specifically, the following inventions.
[Claim 1] Coal-based heavy oil is heat-treated, and the resulting crude mesocarbon microbeads are subjected to centrifugal separation. In addition, the periphery of the sphere of the obtained mesocarbon microbeads is covered with a pitch component having a thickness of 0.01 to 10 μm by performing a washing treatment at 10 to 300 ° C. for 0.1 to 20 hours. A method for producing raw mesocarbon microbeads in which spheres do not adhere or aggregate.
Solvents of conventionally used solvents such as quinoline etc. and toluene etc. were too strong or too weak, so by selecting tar medium oil as an inexpensive solvent with a medium solubility, the coalescence of pitch components derived from the pitch matrix Invented was a method of controlling the film thickness of the pitch component covering the periphery of the sphere of MCMB by dissolving only the MCMB sphere. That is, coal-based heavy oil such as coal tar or coal tar pitch is heat-treated, and the resulting crude MCMB is separated and washed and purified. By adding a 20-fold amount and performing a washing treatment at 10 to 300 ° C. for 0.1 to 20 hours, the film thickness of the pitch component covering the periphery of the sphere of MCMB can be adjusted to 0 to 10 μm. (The value of TI to QI in solvent analysis can be adjusted to 0 to 20%.)
That is, by controlling the washing power of the solvent by adjusting the amount of the oil in the tar and the washing time to the washing temperature, the MCMB raw product covered with the pitch component can be separated and purified independently by controlling the washing power of the solvent. The thickness of the covered pitch component can be made uniform and a predetermined thickness. If the amount of the oil in the tar is too small, it cannot be washed uniformly. If the amount is too large, the cost of the oil in the tar increases. If the cleaning time is too short, the MCMB covered with the pitch component cannot be separated independently, and if the cleaning time is too long, the MCMB not covered with the pitch component can be separated independently. It takes too much time and becomes uneconomical. The higher the washing temperature, the greater the dissolving power of the oil in the tar, and the smaller the thickness of the pitch component covering the MCMB, or the more the MCMB not covered with the pitch component can be produced. Here, the washing is performed by dissolving only the adhered portion of the pitch component covering the MCMB under stirring such as mechanical stirring, and then colliding the MCMB covered with each pitch component with each other, and the mechanical force is applied to the pitch. The corners of the components are polished to obtain a spherical uniform film thickness. The pitch component covering the periphery of the sphere of MCMB, when molding and firing a raw MCMB product to produce a carbon product, softens and melts during firing to increase the shrinkage, thereby improving the density and strength of the carbon product. Is very useful. In particular, the uniform film thickness of the pitch component has the advantage that the quality, such as the density and strength, of the carbon product obtained by molding and firing the MCMB raw product is uniform. Further, the MCMB raw product obtained by the above method, in which the periphery of the MCMB sphere is uniformly covered with the pitch component, can be carbonized as it is as a powder, and even if the graphitization firing is performed, the pitch around the MCMB sphere can be reduced. The components are maintained in an anisotropic structure, and the spheres do not adhere or aggregate as shown in FIG. Furthermore, if the oxidation treatment is performed at the stage of the raw product, the pitch component on the surface becomes an isotropic structure during firing. The MCMB carbonized and graphitized products obtained by covering the periphery of the spheres of the MCMB thus obtained with the pitch component have an advantage that when used as a negative electrode material of a lithium secondary battery, they hardly react with an organic solvent of an electrolytic solution. Have. For this reason, MCMB easily reacts with the organic solvent of the electrolytic solution because the edge planes (edge planes) of active crystallites are oriented outward. It is considered that the reaction with the organic solvent of the electrolytic solution can be prevented by covering this with a pitch component whose basal plane, which is a fused polycyclic network of carbon, is oriented outward. MCMB in which the periphery of the sphere of MCMB is not covered with the pitch component is carbonized and graphitized in powder form to obtain carbonized MCMB and graphitized products. The MCMB carbonized and graphitized products in which the periphery of the spheres of the MCMB thus obtained are not covered with the pitch component are used as the negative electrode material of the lithium secondary battery. Is increased, so that the charge / discharge efficiency is higher than the discharge capacity. For this reason, the pitch component on the surface of the sphere hinders the entrance and exit of lithium ions because the basal plane, which is a fused polycyclic network of carbon, is oriented in the spherical direction. However, if the surface layer is removed, the edge plane (edge plane) of the crystallite in the purified MCMB is exposed to the surface of the sphere. It is expected that this is because the ion storage capacity is sufficiently exhibited. Further, it was experimentally confirmed that even if these MCMB were carbonized and further graphitized, the pitch component on the surface was maintained and remained anisotropic structure. It was also experimentally confirmed that the pitch component had an isotropic structure if oxidized at the stage of the raw product. In the above, the carbonized or graphitized MCMB covered with the pitch component composed of an isotropic structure, when used for various applications such as a negative electrode material for a lithium secondary battery, has a pitch composed of an anisotropic structure. There is an advantage that it is less likely to react with a solvent as compared with a carbonized or graphitized product of MCMB covered with components. That is, if a step of oxidizing the raw MCMB in a temperature range of 20 to 300 ° C. in an oxidizing atmosphere before carbonizing and graphitizing the raw MCMB as it is is provided, the raw MCMB is left in the powder as it is. The carbonized product or the graphitized product is less likely to react with the solvent as compared with the case of carbonization and graphitization.
[0005]
【The invention's effect】
Since the present invention can control the thickness of the pitch component covering the periphery of the purified MCMB sphere to 0.01 to 10 μm, the MCMB in which the periphery of the sphere of the MCMB is uniformly covered with the pitch component, and the MCMB An MCMB in which the periphery of a sphere is not covered with a pitch component can be manufactured. By controlling the washing conditions with oil in tar, it is difficult to react with the organic solvent of the electrolytic solution. MCMB in which the circumference of the sphere of MCMB is uniformly covered with a thick pitch component, or high charge / discharge efficiency Both MCMBs in which the periphery of a sphere of MCMB having a uniform pitch is uniformly covered with a thin pitch component can be appropriately and selectively manufactured. Therefore, by controlling the film thickness of the pitch component, the properties of the MCMB uniformly covered with the pitch component can be predicted, and the MCMB covered with the pitch component can be manufactured. Furthermore, when molding the MCMB in which the circumference of the sphere of the MCMB is uniformly covered with the pitch component, conventionally, in order to adhere the isolated MCMB, the role of the binder used is to cover the circumference of the sphere of the MCMB. There is an effect that the process of mixing the binder and the MCMB in order to impose a certain pitch component can be omitted. Conventionally, when carbonizing or graphitizing a molded product obtained by mixing an isolated MCMB and a binder, if the amount of the binder is too small, the pitch component cannot sufficiently fill the gaps of the isolated MCMB. A locally weak part is generated, and the strength is insufficient as a whole product. Conversely, if the amount of the binder is too large, there is a disadvantage that the binder expands during firing and breaks during molding, so that attention has to be paid to the mixing ratio of the isolated MCMB and the binder. Here, in the present invention, by controlling the thickness of the pitch component serving as a binder to an appropriate thickness, there is an effect that the above-described disadvantages of the related art can be avoided.
[0006]
【Example】
Examples and comparative examples are shown below to further clarify features of the present invention.
[0007]
[Polarization microscope observation] MCMB was mixed with resin, molded, polished, and a gypsum test plate was inserted under crossed Nicols using a Zeiss Ortholux reflection polarization microscope using a halogen incandescent lamp as a light source to observe the tissue. did.
[0008]
Example 1
Coal tar (primary QI content: 2.0%) from which a boiling point fraction of 100 ° C. or less was removed was centrifuged at high temperature to obtain a clear liquid (primary QI content trace). The centrifugal separator used was a 40-liter centrifugal force separator having a rotation speed of 3000 rpm, a centrifugal force of 2280 G, a temperature of 200 ° C., and a throughput of 1 ton / hr. Then, the clarified liquid is heat-treated at a temperature of 395 ° C. and a pressure of 0.4 MPa for 16 hours to obtain a reaction product (secondary QI content: 4.4% by weight). The mixture was centrifuged again under the conditions of a rotation speed of 6000 rpm, a centrifugal force of 3000 G, a temperature of 270 ° C., and a processing amount of 1 ton / hr to obtain crude MCMB. Next, 1 part of the crude MCMB obtained above was added with 1 part of a medium in tar (boiling point range of 230 to 330 ° C.), washed at 150 ° C. for 1 hour with stirring, and then centrifuged to perform primary washing. MCMB was obtained. Next, 1 part of toluene was added to 1 part of the MCMB after the primary washing obtained above, and the mixture was subjected to a washing treatment at 20 ° C. for 1 hour with stirring, followed by centrifugal separation and secondary washing to obtain purified MCMB. . FIG. 7 shows the properties of the primary washed MCMB and the generated MCMB. FIG. 1 (a) shows the results of observation of the purified MCMB with a polarizing microscope. In FIG. 1A, the particle size of the MCMB sphere is 10 μm, and the thickness of the pitch component covering the periphery of the MCMB sphere is 0.1 μm. Moreover, it can be seen that the spheres do not adhere or aggregate. Hereinafter, this purified MCMB is referred to as a raw MCMB product. The raw MCMB was calcined in a nitrogen atmosphere at 1000 ° C. for 1 hour in the form of a powder, and carbonized. The observation result of the carbonized MCMB by a polarizing microscope is shown in FIG. In FIG. 1 (b), it can be seen that the periphery of the carbonized MCMB spheres is uniformly covered with the pitch component composed of an anisotropic structure, and that the spheres do not adhere or aggregate. Hereinafter, this carbonized MCMB will be referred to as MCMB carbonized product. This MCMB carbonized product was calcined in a nitrogen atmosphere at 2800 ° C. for 1 hour in the form of a powder to be graphitized. FIG. 1 (c) shows the results of observation of the graphitized MCMB with a polarizing microscope. In FIG. 1C, it can be seen that the periphery of the sphere of the graphitized MCMB is uniformly covered with a pitch component composed of an anisotropic structure.
[0009]
Example 2
To 1 part of the crude MCMB obtained in the same manner as in Example 1, 1 part of a medium in tar (boiling range: 230 to 330 ° C.) was added, and the mixture was washed at 100 ° C. for 1 hour with stirring, and then centrifuged to separate the primary liquid. A washed MCMB was obtained. Next, 1 part of toluene was added to 1 part of the MCMB obtained above after the primary washing, and the mixture was subjected to a washing treatment at 20 ° C. for 1 hour with stirring, followed by centrifugal separation for secondary washing to obtain purified MCMB. FIG. 8 shows the properties of the primary washed MCMB and the purified MCMB. FIG. 2 (a) shows the result of observation of the purified MCMB with a polarizing microscope. In FIG. 2A, the particle size of the MCMB sphere is 10 μm, and the film thickness of the pitch component covering the periphery of the MCMB sphere is 0.2 μm. Moreover, it can be seen that the spheres do not adhere or aggregate. The MCMB raw product was oxidized in an air atmosphere at 120 ° C. for 3 hours, and then calcined in a nitrogen atmosphere at 1000 ° C. for 1 hour in a nitrogen atmosphere to carbonize. FIG. 2 (b) shows the results of observation of the carbonized MCMB with a polarizing microscope. In FIG. 2B, it can be seen that the periphery of the sphere is uniformly covered with the pitch component composed of an isotropic tissue, and that the spheres do not adhere or aggregate. This MCMB carbonized product was calcined in a nitrogen atmosphere at 2800 ° C. for 1 hour in the form of a powder to be graphitized. FIG. 2 (c) shows the results of observation of the graphitized MCMB with a polarizing microscope. In FIG. 2 (c), it can be seen that the periphery of the sphere is uniformly covered with the pitch component composed of an isotropic tissue, and that the spheres do not adhere or aggregate.
[0010]
Example 3
To 1 part of the crude MCMB obtained in the same manner as in Example 1, 1 part of a medium in tar (boiling point range of 230 to 330 ° C.) was added, washed with stirring at 20 ° C. for 1 hour, and then centrifuged to separate the primary A washed MCMB was obtained. Next, 1 part of toluene was added to 1 part of the MCMB after the primary washing obtained above, a washing treatment was performed at 20 ° C. for 1 hour with stirring, and then a secondary washing was performed by centrifugation. The properties of MCMB and purified MCMB are shown. FIG. 3 shows the results of observation of the purified MCMB raw product under a polarizing microscope. In FIG. 3, the particle size of the MCMB sphere is 10 μm, and the film thickness of the pitch component covering the periphery of the MCMB sphere is 0.3 μm. Moreover, it can be seen that the spheres do not adhere or aggregate.
[0011]
Example 4
1 part of crude MCMB obtained in the same manner as in Example 1 was added with 1 part of oil in tar (boiling point range of 230 to 330 ° C.), washed at 200 ° C. for 1 hour with stirring, and then centrifuged to separate primary oil. A washed MCMB was obtained. Next, 1 part of toluene was added to 1 part of the MCMB after the primary washing obtained above, and the mixture was subjected to a washing treatment at 20 ° C. for 1 hour with stirring, followed by centrifugal separation and secondary washing to obtain purified MCMB. . FIG. 10 shows the properties of the primary washed MCMB and the purified MCMB. FIG. 4 (a) shows the result of observation of the raw MCMB using a polarizing microscope. In FIG. 4A, it can be seen that the pitch component around the sphere has been completely removed. The purified MCMB raw material was calcined at 1000 ° C. for 1 hour in a nitrogen atmosphere while keeping the powder, and carbonized. FIG. 4 (b) shows the results of observation of the carbonized MCMB with a polarizing microscope. This MCMB carbonized product was calcined in a nitrogen atmosphere at 2800 ° C. for 1 hour in the form of a powder to be graphitized. FIG. 4 (c) shows the results of observation of the graphitized MCMB with a polarizing microscope.
[0012]
Example 5
Coal tar (primary QI content: 2.0%) from which a boiling point fraction of 100 ° C. or less was removed was centrifuged at high temperature to obtain a clear liquid (primary QI content trace). As the centrifugal separator, a horizontal centrifugal separator having a holding volume of 40 liters was used, and operated under the conditions of a rotation speed of 3000 rpm, a centrifugal force of 2280 G, a temperature of 200, and a throughput of 1 ton / hr. Next, the clarified liquid is heat-treated at a temperature of 410 ° C. and a pressure of 0.4 MPa for 16 hours to obtain a reaction product (secondary QI content: 20% by weight), and then a second centrifuge similar to the above is used. Then, the mixture was again subjected to centrifugal separation under the conditions of a rotation number of 6000 rpm, a centrifugal force of 3000 G, a temperature of 270 ° C., and a processing amount of 1 ton / hr, to obtain crude MCMB. Next, 1 part of the crude MCMB obtained above was added with 1 part of a medium in tar (boiling point range of 230 to 330 ° C.), washed at 150 ° C. for 1 hour with stirring, and then centrifuged to perform primary washing. MCMB was obtained. Next, 1 part of toluene was added to 1 part of the MCMB after the primary washing obtained above, and the mixture was subjected to a washing treatment at 20 ° C. for 1 hour with stirring, followed by centrifugal separation and secondary washing to obtain purified MCMB. . FIG. 11 shows the properties of the primary washed MCMB and the purified MCMB. FIG. 5 shows the results of observation of the purified MCMB with a polarizing microscope. In FIG. 5, the particle size of the MCMB sphere is 100 μm, and the film thickness of the pitch component covering the periphery of the MCMB sphere is 1 μm. Moreover, it can be seen that the spheres do not adhere or aggregate.
[0013]
Example 6
To 1 part of the crude MCMB obtained in the same manner as in Example 5, 1 part of a medium in tar (boiling point range of 230 to 330 ° C.) was added, washed with stirring at 20 ° C. for 1 hour, and then centrifuged to separate the primary A washed MCMB was obtained. Next, 1 part of toluene was added to 1 part of the MCMB obtained above after the primary washing, and the mixture was subjected to a washing treatment at 20 ° C. for 1 hour with stirring, followed by centrifugal separation for secondary washing to obtain purified MCMB. FIG. 12 shows the properties of the primary washed MCMB and the purified MCMB. FIG. 6 shows the results of observation of the purified MCMB raw product by a polarizing microscope. In FIG. 6, the particle size of the MCMB sphere is 100 μm, and the film thickness of the pitch component covering the periphery of the MCMB sphere is 5 μm. Moreover, it can be seen that the spheres do not adhere or aggregate.
[0014]
Incidentally, reference numerals are written in the claims for convenience of comparison with the drawings, but the present invention is not limited to the configuration of the attached drawings by the entry.
[Brief description of the drawings]
FIG. 1 (a) is a diagram showing the results of observation of purified MCMB of Example 1 with a polarizing microscope.
(B) shows the results of observation of the carbonized MCMB of Example 1 with a polarizing microscope, and (c) shows the results of observation of the graphitized MCMB of Example 1 with a polarizing microscope. [FIG. 2] (a) (B) shows the result of observation of the purified MCMB of Example 2 with a polarizing microscope, (b) shows the result of observation of the carbonized MCMB of Example 2 with a polarizing microscope, and (c) shows the graphitization of Example 2. FIG. 3 shows the results of observation of MCMB with a polarizing microscope. FIG. 3 shows the results of observation of purified MCMB of Example 3 with a polarizing microscope. FIG. (B) showing the results of observation of the carbonized MCMB of Example 4 with a polarizing microscope, and FIG. (C) showing the results of observation of the graphitized MCMB of Example 4 with a polarizing microscope. FIG. 5 is a view showing observation results of a purified MCMB of Example 5 with a polarizing microscope. FIG. 7 shows the results of observation of the purified MCMB of Example 6 with a polarizing microscope. FIG. 7 is a table showing the properties of the primary washed MCMB and purified MCMB in Example 1. FIG. 8 is a diagram showing the properties of the primary washed MCMB and purified MCMB in Example 2. FIG. 9 shows the properties of the primary washed MCMB and purified MCMB in Example 3. FIG. 10 shows the properties of the primary washed MCMB and purified MCMB in Example 4. FIG. 11 shows the properties of Example 5. Chart showing properties of primary washed MCMB and purified MCMB. [FIG. 12] Chart showing properties of primary washed MCMB and purified MCMB in Example 6. FIG. 13 shows crude MCMB adhered to each other. [FIG. 14] Separately separated. A diagram showing an MCMB in which the periphery of the sphere of the MCMB is uniformly covered with a pitch component.
1 MCMB
2 Pitch component 3 Adhesion part between pitch components

Claims (1)

石炭系重質油を熱処理し、生成した粗メソカーボンマイクロビーズを遠心分離後、沸点範囲100〜500℃のタール中油を粗メソカーボンマイクロビーズ重量の0.1〜20倍量加え、10〜300℃で0.1〜20時間洗浄処理することにより、得られる、メソカーボンマイクロビーズの球体の周囲が0.01〜10μmの厚さのピッチ成分で覆われており、しかも、球体同士が癒着または凝集していないメソカーボンマイクロビーズ生品の製造方法。The coal-based heavy oil is heat-treated, and the resulting crude mesocarbon microbeads are centrifuged, and then a tar oil having a boiling point range of 100 to 500 ° C. is added in an amount of 0.1 to 20 times the weight of the crude mesocarbon microbeads, and 10 to 300 By washing treatment at 0.1 ° C. for 0.1 to 20 hours, the periphery of the sphere of the mesocarbon microbeads obtained is covered with a pitch component having a thickness of 0.01 to 10 μm, and the spheres adhere or adhere to each other. A method for producing raw mesocarbon microbeads without aggregation.
JP07625194A 1994-04-15 1994-04-15 Method for producing mesocarbon microbeads Expired - Fee Related JP3539755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07625194A JP3539755B2 (en) 1994-04-15 1994-04-15 Method for producing mesocarbon microbeads

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07625194A JP3539755B2 (en) 1994-04-15 1994-04-15 Method for producing mesocarbon microbeads

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2002263976A Division JP3547427B2 (en) 2002-09-10 2002-09-10 Method for producing mesocarbon microbeads and mesocarbon microbeads
JP2003388690A Division JP3674623B2 (en) 2003-11-19 2003-11-19 Mesocarbon micro beads

Publications (2)

Publication Number Publication Date
JPH07278566A JPH07278566A (en) 1995-10-24
JP3539755B2 true JP3539755B2 (en) 2004-07-07

Family

ID=13599983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07625194A Expired - Fee Related JP3539755B2 (en) 1994-04-15 1994-04-15 Method for producing mesocarbon microbeads

Country Status (1)

Country Link
JP (1) JP3539755B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5081375B2 (en) * 2004-02-12 2012-11-28 三菱化学株式会社 Negative electrode material for lithium secondary battery, production method thereof, and negative electrode for lithium secondary battery and lithium secondary battery using the same
JPWO2006109497A1 (en) * 2005-03-30 2008-10-23 大阪瓦斯株式会社 Method for producing mesocarbon microbeads
CN103022452A (en) * 2013-01-08 2013-04-03 天津大学 Preparation method of graphitic microspheres for lithium ion battery negative electrode
CN103420358B (en) * 2013-08-02 2014-12-10 鲁南煤化工研究院 Method for preparing mesocarbon microbeads
JP2016222504A (en) * 2015-06-01 2016-12-28 Jfeケミカル株式会社 Carbon powder and method of producing the same
CN110386601B (en) * 2019-06-24 2022-09-16 鞍钢股份有限公司 Method for removing quinoline insoluble particles on surface of carbon microsphere

Also Published As

Publication number Publication date
JPH07278566A (en) 1995-10-24

Similar Documents

Publication Publication Date Title
KR101598236B1 (en) Anode powders for batteries
JP4303126B2 (en) Coated carbonaceous particles particularly useful as electrode materials for electrical storage cells and methods for their production
WO1997018160A1 (en) Cathode material for lithium secondary battery, process for manufacturing the same, and secondary battery using the same
WO2006109497A1 (en) Process for production of mesocarbon microbeads
KR20150103219A (en) Graphite powder for negative electrode active material of lithium-ion secondary battery
KR20190019430A (en) Method for manufacturing negative electrode active material for rechargeable lithium battery, and rechargeable lithium battery including the same
KR20190054045A (en) Method for manufacturing negative electrode active material for rechargeable lithium battery, and rechargeable lithium battery including the same
JP3539755B2 (en) Method for producing mesocarbon microbeads
JP3674623B2 (en) Mesocarbon micro beads
JP3547427B2 (en) Method for producing mesocarbon microbeads and mesocarbon microbeads
JP3000272B2 (en) Method for producing carbonaceous powder for negative electrode active material of lithium ion secondary battery
JP2005050819A (en) Meso carbon micro beads
JP3698181B2 (en) Negative electrode material for lithium ion secondary battery
JP3309701B2 (en) Method for producing carbon powder for negative electrode of lithium ion secondary battery
KR101428221B1 (en) Method for Coating Graphite for Anode Material by Using Pitch
JP2700798B2 (en) Manufacturing method of carbon and graphite materials
JP3646689B2 (en) Method for producing graphite powder for negative electrode of lithium ion secondary battery
JP2002362913A (en) Method for producing graphite powder
KR100345295B1 (en) Process for producing carbon material for anode material of lithium battery
KR102171793B1 (en) Method of preparing anode materials for secondary battery and the anode materials for secondary battery thereby
KR100440464B1 (en) Method of preparing negatvie active material for lithium secondary battery
KR20030053254A (en) A fabrication method of carbonaceous anodic materials
CN116344803A (en) Hard carbon negative electrode material for sodium ion battery and preparation method thereof
JP3849426B2 (en) Method for producing graphite powder
JP2004067494A (en) Method for manufacturing graphite powder

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20041210

LAPS Cancellation because of no payment of annual fees