JPH11199213A - Graphite particle, its production, lithium secondary battery and negative pole thereof - Google Patents

Graphite particle, its production, lithium secondary battery and negative pole thereof

Info

Publication number
JPH11199213A
JPH11199213A JP10008535A JP853598A JPH11199213A JP H11199213 A JPH11199213 A JP H11199213A JP 10008535 A JP10008535 A JP 10008535A JP 853598 A JP853598 A JP 853598A JP H11199213 A JPH11199213 A JP H11199213A
Authority
JP
Japan
Prior art keywords
graphite
mixture
secondary battery
graphite particles
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10008535A
Other languages
Japanese (ja)
Other versions
JP4224731B2 (en
Inventor
Koichi Takei
康一 武井
Yoshito Ishii
義人 石井
Tatsuya Nishida
達也 西田
Atsushi Fujita
藤田  淳
Kazuo Yamada
和夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP00853598A priority Critical patent/JP4224731B2/en
Publication of JPH11199213A publication Critical patent/JPH11199213A/en
Application granted granted Critical
Publication of JP4224731B2 publication Critical patent/JP4224731B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a producing method of graphite particle capable of stably forming a graphite particle excellent in rapid charge and discharge property, cycle property, irreversible capacity at a 1st cycle or the like, having low specific surface area and excellent safety and suitable for a lithium secondary battery, and the graphite particles, a negative pole for the lithium secondary battery and the lithium secondary battery. SOLUTION: The producing method of the graphite particle comprises producing a mixture particle treated so as not to fuse to each other in a process for firing and a graphitizing a powder of a mixture containing a graphitizable aggregate or a graphite and a graphitizable binder, firing and graphitizing. The graphite particle is produced by this method. The negative pole for lithium secondary battery contains the graphite particle and the lithium secondary battery is formed by using the graphite as a negative pole material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ポータブル機器、
電気自動車、電力貯蔵用等に用いるのに好適な、サイク
ル特性、急速充放電特性、安全性等に優れ、かつ高容量
のリチウム二次電池を実現する負極用材料として好適な
黒鉛粒子、その製造法、前記黒鉛粒子を用いたリチウム
二次電池及びその負極に関する。
The present invention relates to a portable device,
Graphite particles suitable for use in electric vehicles, power storage, etc., excellent in cycle characteristics, rapid charge / discharge characteristics, safety, etc., and suitable as a negative electrode material for realizing a high capacity lithium secondary battery, production of the same A lithium secondary battery using the graphite particles and a negative electrode thereof.

【0002】[0002]

【従来の技術】従来黒鉛粒子は、例えば天然黒鉛粒子、
コークスを黒鉛化した人造黒鉛粒子、有機系高分子材
料、ピッチ等を黒鉛化した人造黒鉛粒子、これらを粉砕
した黒鉛粒子などがある。これらの粒子は、有機系結着
剤及び有機溶剤と混合して黒鉛ペーストとし、この黒鉛
ペーストを銅箔の表面に塗布し、溶剤を乾燥させてリチ
ウムイオン二次電池用負極として使用されている。例え
ば、特公昭62−23433号公報に示されるように、
負極に黒鉛を使用することでリチウムのデンドライトに
よる内部短絡の問題を解消し、サイクル特性の改良を図
っている。
2. Description of the Related Art Conventional graphite particles include, for example, natural graphite particles,
Examples include artificial graphite particles obtained by graphitizing coke, organic polymer materials, artificial graphite particles obtained by graphitizing pitch and the like, and graphite particles obtained by pulverizing these. These particles are mixed with an organic binder and an organic solvent to form a graphite paste, the graphite paste is applied to the surface of a copper foil, and the solvent is dried to be used as a negative electrode for a lithium ion secondary battery. . For example, as shown in JP-B-62-23433,
By using graphite for the negative electrode, the problem of internal short circuit due to lithium dendrite is eliminated, and the cycle characteristics are improved.

【0003】しかしながら、黒鉛結晶が発達している天
然黒鉛粒子及びコークスを黒鉛化した人造黒鉛粒子は、
c軸方向の結晶の層間の結合力が、結晶の面方向の結合
に比べて弱いため、粉砕により黒鉛層間の結合が切れ、
アスペクト比の大きい、いわゆる鱗状の黒鉛粒子とな
る。この鱗状の黒鉛粒子は、アスペクト比が大きいた
め、バインダと混練して集電体に塗布して電極を作製し
た時に、鱗状の黒鉛粒子が集電体の面方向に配向し、そ
の結果、黒鉛粒子へのリチウムの吸蔵・放出の繰り返し
によって発生するc軸方向の歪みにより電極内部の破壊
が生じ、サイクル特性が低下する問題があるばかりでな
く、急速充放電特性が悪くなる傾向がある。さらに、ア
スペクト比の大きな鱗状の黒鉛粒子は、比表面積が大き
いため、集電体との密着性が悪く、多くのバインダが必
要となる問題点がある。集電体との密着性が悪いと、集
電効果が低下し、放電容量、急速充放電特性、サイクル
特性等が低下する問題がある。また、比表面積が大きな
鱗状黒鉛粒子は、これを用いたリチウム二次電池の第1
回サイクル目の不可逆容量が大きいという問題がある。
さらに、比表面積の大きな鱗状黒鉛粒子は、リチウムを
吸蔵した状態での熱安定性が低く、リチウム二次電池用
負極材料として用いた場合、安全性に問題がある。そこ
で、急速充放電特性、サイクル特性、第1回サイクル目
の不可逆容量に優れ、低比表面積にすることにより安全
性を改善できる黒鉛粒子が要求されている。
[0003] However, natural graphite particles in which graphite crystals are developed and artificial graphite particles obtained by graphitizing coke are:
Since the bonding force between the layers of the crystal in the c-axis direction is weaker than the bonding in the plane direction of the crystal, the bonding between the graphite layers is broken by pulverization,
So-called graphite particles having a large aspect ratio are obtained. Since the scale-like graphite particles have a large aspect ratio, the scale-like graphite particles are oriented in the surface direction of the current collector when kneaded with a binder and applied to a current collector to produce an electrode. Distortion in the c-axis direction caused by the repeated insertion and extraction of lithium into and from the particles causes the destruction of the inside of the electrode, which causes not only the problem of reduced cycle characteristics but also the tendency of rapid charge / discharge characteristics to deteriorate. Further, the scale-like graphite particles having a large aspect ratio have a large specific surface area, so that they have poor adhesion to a current collector and require a large amount of binder. If the adhesion to the current collector is poor, there is a problem that the current collecting effect is reduced and the discharge capacity, rapid charge / discharge characteristics, cycle characteristics, and the like are reduced. In addition, the scale-like graphite particles having a large specific surface area are the first particles of lithium secondary batteries using the same.
There is a problem that the irreversible capacity in the first cycle is large.
Furthermore, scale-like graphite particles having a large specific surface area have low thermal stability in a state where lithium is stored, and have a problem in safety when used as a negative electrode material for a lithium secondary battery. Therefore, there is a demand for graphite particles which are excellent in rapid charge / discharge characteristics, cycle characteristics, irreversible capacity in the first cycle, and can improve safety by reducing the specific surface area.

【0004】[0004]

【発明が解決しようとする課題】請求項1〜4記載の発
明は、急速充放電特性、サイクル特性、第1回サイクル
目の不可逆容量等に優れ、かつ低比表面積であって安全
性に優れたリチウム二次電池に好適な黒鉛粒子を安定し
て作製可能な黒鉛粒子の製造法を提供するものである。
請求項5及び6記載の発明は、急速充放電特性、サイク
ル特性、第1回サイクル目の不可逆容量等に優れ、かつ
低比表面積であって安全性に優れたリチウム二次電池に
好適な黒鉛粒子を提供するものである。請求項7及び8
記載の発明は、急速充放電特性、サイクル特性、第1回
サイクル目の不可逆容量等に優れ、かつ安全性に優れた
リチウム二次電池用負極を提供するものである。請求項
9記載の発明は、急速充放電特性、サイクル特性、第1
回サイクル目の不可逆容量等に優れ、かつ安全性に優れ
たリチウム二次電池を提供するものである。
The invention according to claims 1 to 4 is excellent in rapid charge / discharge characteristics, cycle characteristics, irreversible capacity in the first cycle, etc., and has a low specific surface area and excellent safety. And a method for producing graphite particles that can stably produce graphite particles suitable for a lithium secondary battery.
The invention according to claims 5 and 6 is excellent in rapid charge / discharge characteristics, cycle characteristics, irreversible capacity in the first cycle, etc., and has a low specific surface area and is suitable for a lithium secondary battery excellent in safety. Provide particles. Claims 7 and 8
The described invention is to provide a negative electrode for a lithium secondary battery that is excellent in rapid charge / discharge characteristics, cycle characteristics, irreversible capacity in the first cycle, and the like, and is excellent in safety. According to the ninth aspect of the present invention, there is provided a rapid charge / discharge characteristic, cycle characteristic,
An object of the present invention is to provide a lithium secondary battery having excellent irreversible capacity in the first cycle and excellent safety.

【0005】[0005]

【課題を解決するための手段】本発明者等は、上記の要
求に答えるため検討を行い、焼成、黒鉛化した黒鉛化物
を粉砕する過程で比表面積が増加することを見出し、本
発明を完成させた。即ち本発明は、黒鉛化可能な骨材又
は黒鉛、及び黒鉛化可能なバインダを含む混合物の粉末
であって、焼成・黒鉛化工程で互いに融着しない処理が
施された混合物粒子を製造し、これを焼成・黒鉛化する
ことを特徴とする黒鉛粒子の製造法に関する。また本発
明は、前記、互いに融着しない処理が施された混合物粒
子が、黒鉛化可能な骨材又は黒鉛、黒鉛化可能なバイン
ダ及び黒鉛化触媒を混合して混合物を作製し、これを粉
砕し、ついでバインダを不融化して得られるものである
黒鉛粒子の製造法に関する。
Means for Solving the Problems The present inventors have conducted studies to meet the above requirements, and found that the specific surface area increases in the process of sintering and pulverizing the graphitized material, thereby completing the present invention. I let it. That is, the present invention is a powder of a mixture containing a graphitizable aggregate or graphite, and a binder that can be graphitized, and producing a mixture particle that has been subjected to a treatment that does not fuse with each other in a firing and graphitization step, The present invention relates to a method for producing graphite particles, which comprises calcining and graphitizing this. Further, the present invention provides a mixture prepared by mixing the above-mentioned mixture particles which have been subjected to a treatment not to fuse with each other, with a graphitizable aggregate or graphite, a graphitizable binder and a graphitization catalyst, and pulverizing the mixture. Then, the present invention relates to a method for producing graphite particles obtained by making a binder infusible.

【0006】また本発明は、前記、互いに融着しない処
理が施された混合物粒子が、黒鉛化可能な骨材又は黒
鉛、熱硬化性樹脂を含む黒鉛化可能なバインダ及び黒鉛
化触媒を混合して混合物を作製し、これを粉砕して得ら
れるものである黒鉛粒子の製造法に関する。また本発明
は、前記、互いに融着しない処理が施された混合物粒子
が、黒鉛化可能な骨材又は黒鉛、黒鉛化可能なバインダ
及び黒鉛化触媒を混合して混合物を作製し、これを粉砕
し、ついで熱硬化性樹脂で被覆して得られるものである
黒鉛粒子の製造法に関する。
Further, the present invention provides a method wherein the above-mentioned mixture particles which have been subjected to a treatment not to fuse with each other are mixed with a graphitizable aggregate or graphite, a graphitizable binder containing a thermosetting resin, and a graphitization catalyst. And a method for producing graphite particles obtained by pulverizing the mixture. Further, the present invention provides a mixture prepared by mixing the above-mentioned mixture particles which have been subjected to a treatment not to fuse with each other, with a graphitizable aggregate or graphite, a graphitizable binder and a graphitization catalyst, and pulverizing the mixture. And a method for producing graphite particles obtained by coating with a thermosetting resin.

【0007】また本発明は、前記の製造法で製造された
黒鉛粒子に関する。また本発明は、前記黒鉛粒子が比表
面積が1.0〜3.0m2/gの粒子である黒鉛粒子に関す
る。また本発明は、前記の黒鉛粒子を含有してなるリチ
ウム二次電池用負極に関する。また本発明は、黒鉛粒子
と有機系結着剤の混合物を、集電体と一体化してなる前
記リチウム二次電池用負極に関する。さらに本発明は、
前記の黒鉛粒子を負極材として用いてなるリチウム二次
電池に関する。
[0007] The present invention also relates to graphite particles produced by the above production method. The present invention also relates to the graphite particles, wherein the graphite particles have a specific surface area of 1.0 to 3.0 m 2 / g. The present invention also relates to a negative electrode for a lithium secondary battery containing the above graphite particles. The present invention also relates to the negative electrode for a lithium secondary battery, wherein a mixture of graphite particles and an organic binder is integrated with a current collector. Furthermore, the present invention
The present invention relates to a lithium secondary battery using the above graphite particles as a negative electrode material.

【0008】[0008]

【発明の実施の形態】本発明の製造法は、黒鉛化可能な
骨材又は黒鉛、及び黒鉛化可能なバインダを含む混合物
の粉末であって、焼成・黒鉛化工程で互いに融着しない
処理が施された混合物粒子を製造し、これを焼成・黒鉛
化することを特徴とする。上記黒鉛化可能な骨材として
は、フルードコークス、ニードルコークス等の各種コー
クス類が好ましい。また、上記黒鉛としては、天然黒
鉛、人造黒鉛などが挙げられる。黒鉛化可能なバインダ
としては、例えば、石炭系、石油系、人造等の各種ピッ
チ、タール、熱硬化性樹脂、熱可塑性樹脂等の有機系材
料が挙げられる。バインダの配合量は、黒鉛化可能な骨
材又は黒鉛に対し、5〜80重量%添加することが好ま
しく、10〜80重量%添加することがより好ましく、
15〜80重量%添加することがさらに好ましい。バイ
ンダの量が多すぎたり少なすぎると、作製する黒鉛粒子
の比表面積が大きくなり易いという傾向がある。
BEST MODE FOR CARRYING OUT THE INVENTION The production method of the present invention is a powder of a mixture containing graphitizable aggregate or graphite and a graphitizable binder. The method is characterized in that the applied mixture particles are produced, and the resulting mixture particles are calcined and graphitized. As the graphitizable aggregate, various cokes such as fluid coke and needle coke are preferable. Examples of the graphite include natural graphite and artificial graphite. Examples of the binder which can be graphitized include various pitches such as coal-based, petroleum-based, and artificial, tar, thermosetting resin, and organic materials such as thermoplastic resins. The amount of the binder is preferably 5 to 80% by weight, more preferably 10 to 80% by weight, based on the graphitizable aggregate or graphite.
It is more preferable to add 15 to 80% by weight. If the amount of the binder is too large or too small, the specific surface area of the graphite particles to be produced tends to increase.

【0009】黒鉛化可能な骨材又は黒鉛とバインダの混
合方法は、特に制限はなく、ニーダー等を用いて行われ
るが、バインダの軟化点以上の温度で混合することが好
ましい。具体的にはバインダがピッチ、タール等の際に
は、50〜300℃が好ましく、熱硬化性樹脂の場合に
は、20〜100℃が好ましい。本発明において、前記
混合物はさらに黒鉛化触媒を含むことが好ましく、黒鉛
化触媒としては、例えば鉄、ニッケル、チタン、ケイ
素、硼素等の金属、これらの炭化物、酸化物などの黒鉛
化触媒が使用できる。これらの中で、ケイ素または硼素
の、炭化物または酸化物が好ましい。黒鉛化触媒は、黒
鉛化可能な骨材又は黒鉛と黒鉛化可能なバインダとの混
合物に対して1〜50重量%添加することが好ましい。
1重量%未満であると黒鉛粒子の結晶の発達が悪くな
り、充放電容量が低下する傾向にある。一方、50重量
%を超えると、均一に混合することが困難となり、作業
性が低下する傾向にある。
[0009] The method of mixing the graphitizable aggregate or graphite and the binder is not particularly limited, and is performed using a kneader or the like, but it is preferable to mix at a temperature equal to or higher than the softening point of the binder. Specifically, when the binder is pitch, tar or the like, the temperature is preferably 50 to 300 ° C, and when the binder is a thermosetting resin, the temperature is preferably 20 to 100 ° C. In the present invention, the mixture preferably further contains a graphitization catalyst, and examples of the graphitization catalyst include metals such as iron, nickel, titanium, silicon, and boron, and graphitization catalysts such as carbides and oxides thereof. it can. Of these, carbides or oxides of silicon or boron are preferred. The graphitization catalyst is preferably added in an amount of 1 to 50% by weight based on the graphitizable aggregate or the mixture of graphite and the graphitizable binder.
If it is less than 1% by weight, the development of graphite particles becomes poor, and the charge / discharge capacity tends to decrease. On the other hand, if it exceeds 50% by weight, it becomes difficult to mix uniformly, and the workability tends to decrease.

【0010】上記混合物の粉末は、得られた混合物を粉
砕することにより得られる。粉砕に際しては、最終的に
得られる黒鉛粒子の大きさが100μm以下、好ましく
は50μm以下となるように混合物粒子の粒子径を選択
する。粉砕方法としては特に限定しないが、ハンマーミ
ル、ピンミル、振動ミル、ボールミル、ジェットミル等
の粉砕装置が使用できる。また必要であれば粉砕して得
られた粒子を分級することができる。分級の方法として
は特に限定しないが、機械式分級機、風力式分級機等か
ら適宜、最適な機種が選択される。
The powder of the above mixture is obtained by pulverizing the obtained mixture. At the time of pulverization, the particle size of the mixture particles is selected so that the size of the graphite particles finally obtained is 100 μm or less, preferably 50 μm or less. The pulverizing method is not particularly limited, but a pulverizing device such as a hammer mill, a pin mill, a vibration mill, a ball mill, and a jet mill can be used. If necessary, the particles obtained by pulverization can be classified. The classification method is not particularly limited, but an optimal model is appropriately selected from a mechanical classifier, a wind classifier and the like.

【0011】また本発明ではこうして得られる混合物粒
子は、焼成・黒鉛化工程において、互いに融着しない処
理が施された混合物粒子とされる。互いに融着しない処
理の方法は、特に制限されないが、好ましい方法として
下記(1)、(2)及び(3)の方法が挙げられる。 (1)黒鉛化可能な骨材又は黒鉛、黒鉛化可能なバイン
ダ及び黒鉛化触媒を混合して混合物を作製し、これを粉
砕し、ついでバインダを不融化する方法。 (2)黒鉛化可能な骨材又は黒鉛、熱硬化性樹脂を含む
黒鉛化可能なバインダ及び黒鉛化触媒を混合して混合物
を作製し、これを粉砕して得る方法。 (3)黒鉛化可能な骨材又は黒鉛、黒鉛化可能なバイン
ダ及び黒鉛化触媒を混合して混合物を作製し、これを粉
砕し、ついで熱硬化性樹脂で被覆して得る方法。
In the present invention, the thus-obtained mixture particles are treated as a mixture particle that has been subjected to a treatment that does not fuse with each other in the firing / graphitization step. The method of treatment that does not fuse with each other is not particularly limited, but preferred methods include the following methods (1), (2), and (3). (1) A method of mixing a graphitizable aggregate or graphite, a graphitizable binder and a graphitization catalyst to prepare a mixture, pulverizing the mixture, and then infusing the binder. (2) A method of preparing a mixture by mixing a graphitizable aggregate or graphite, a graphitizable binder containing a thermosetting resin, and a graphitization catalyst, and pulverizing the mixture. (3) A method of preparing a mixture by mixing a graphitizable aggregate or graphite, a graphitizable binder and a graphitization catalyst, pulverizing the mixture, and then coating the mixture with a thermosetting resin.

【0012】(1)の方法において、粉砕後にバインダ
を不融化処理する方法としては、混合物粒子が焼成工程
で互いに融着することを防止できるようにバインダを不
融化する方法であれば特に限定されず、用いる各種バイ
ンダの種類にもよるが、ピッチ類の不融化に一般的に用
いられている酸化剤(空気、酸素、NO2、塩素、臭素
等)と接触させる乾式法、硝酸水溶液、塩素水溶液、硫
酸水溶液、過酸化水素水溶液等を用いた湿式法、これら
を組み合わせた方法などが挙げられる。酸化剤と接触さ
せる乾式法は、200〜300℃で0.1〜10時間、
酸化剤ガスと接触させることが好ましい。湿式法では1
0〜90℃の温度で0.1〜10時間、各種水溶液と接
触させることが好ましい。不融化処理の後、さらに必要
に応じて粉砕、分級処理を行ってもよい。
In the method (1), the method of infusibilizing the binder after pulverization is not particularly limited as long as the method is to infusibilize the binder so that the mixture particles can be prevented from fusing together in the firing step. Although it depends on the type of various binders used, a dry method of contacting with an oxidizing agent (air, oxygen, NO 2 , chlorine, bromine, etc.) generally used for infusibilizing pitches, nitric acid aqueous solution, chlorine A wet method using an aqueous solution, a sulfuric acid aqueous solution, a hydrogen peroxide aqueous solution, or the like, a method combining these methods, and the like can be given. The dry method of contacting with an oxidizing agent is performed at 200 to 300 ° C. for 0.1 to 10 hours,
Preferably, it is brought into contact with an oxidizing gas. 1 for wet method
It is preferable to contact with various aqueous solutions at a temperature of 0 to 90 ° C. for 0.1 to 10 hours. After the infusibilization treatment, pulverization and classification treatment may be further performed as necessary.

【0013】(2)の方法では、不融化のために、熱硬
化性樹脂を含む黒鉛化可能なバインダを用いる。熱硬化
性樹脂としては、フェノール樹脂、フルフリルアルコー
ル樹脂、ポリイミド樹脂、セルロース樹脂、ポリ塩化ビ
ニル樹脂などが使用でき、これらの中ではフェノール樹
脂が好ましい。ピッチ、タール等の、その他の黒鉛化可
能なバインダを併用することもできる。この場合、これ
らの熱硬化性樹脂との配合比については特に制限はない
が、前者(熱硬化性樹脂)/後者(その他)の重量比で
0.25〜49が好ましい。熱硬化性樹脂の割合が少な
すぎると、焼成・黒鉛化過程で粒子の融着が起こること
があり、一方、熱硬化性樹脂の割合が多すぎると、得ら
れる黒鉛粉末の黒鉛化度が低下し、リチウム二次電池用
負極材料として用いた場合、充放電容量が低下する傾向
にある。
In the method (2), a graphitizable binder containing a thermosetting resin is used for infusibility. As the thermosetting resin, a phenol resin, a furfuryl alcohol resin, a polyimide resin, a cellulose resin, a polyvinyl chloride resin, and the like can be used, and among these, the phenol resin is preferable. Other graphitizable binders such as pitch and tar can also be used in combination. In this case, there is no particular limitation on the mixing ratio with these thermosetting resins, but the weight ratio of the former (thermosetting resin) / the latter (others) is preferably 0.25 to 49. If the proportion of the thermosetting resin is too small, fusion of particles may occur during the firing / graphitization process, while if the proportion of the thermosetting resin is too large, the degree of graphitization of the obtained graphite powder decreases. However, when used as a negative electrode material for a lithium secondary battery, the charge / discharge capacity tends to decrease.

【0014】(3)の方法では、熱硬化性樹脂を、粉砕
後の混合物粒子の表面に被覆することを特徴とする。被
覆する熱硬化性樹脂については特に制限しないが、用い
るバインダの融解温度以下で硬化する樹脂であることが
好ましく、フェノール樹脂、フルフリルアルコール樹
脂、ポリイミド樹脂、セルロース樹脂などが使用でき
る。これらの中でフェノール樹脂が好ましい。被覆処理
の後、必要に応じて粉砕、分級処理を行ってもよい。被
覆方法としては、特に限定されないが、黒鉛化可能な骨
材又は黒鉛、黒鉛化可能なバインダ及び黒鉛化触媒を混
合して混合物を作製し、粉砕して得られる粉末を、熱硬
化性樹脂溶液に浸漬後、溶媒を除去又は濾過乾燥する方
法が挙げられる。被覆量としては、黒鉛化可能な骨材又
は黒鉛、黒鉛化可能なバインダ及び黒鉛化触媒を混合し
て混合物を作製、粉砕して得られた粉末の重量100重
量部に対する被覆した樹脂の重量が、0.1〜30重量
部とすることが好ましい。この量が少なすぎると粉末の
融着を抑制する効果が低く、焼成過程で粉末の融着が発
生する傾向にあり、一方、多すぎると、リチウム二次電
池用負極材料として用いた場合、充放電容量が低下する
傾向にある。
The method (3) is characterized in that a thermosetting resin is coated on the surface of the pulverized mixture particles. The thermosetting resin to be coated is not particularly limited, but is preferably a resin that cures at or below the melting temperature of the binder used, and phenol resins, furfuryl alcohol resins, polyimide resins, cellulose resins, and the like can be used. Of these, phenolic resins are preferred. After the coating treatment, pulverization and classification may be performed as necessary. The coating method is not particularly limited, and a mixture obtained by mixing a graphitizable aggregate or graphite, a graphitizable binder and a graphitization catalyst, and pulverizing the obtained powder into a thermosetting resin solution And then removing the solvent or drying by filtration. As the coating amount, a graphitizable aggregate or graphite, a graphitizable binder and a graphitizing catalyst are mixed to prepare a mixture, and the weight of the coated resin with respect to 100 parts by weight of the powder obtained by grinding is as follows. , 0.1 to 30 parts by weight. When the amount is too small, the effect of suppressing the fusion of the powder is low, and the fusion of the powder tends to occur in the firing process. On the other hand, when the amount is too large, the powder is not sufficiently charged when used as a negative electrode material for a lithium secondary battery. The discharge capacity tends to decrease.

【0015】以上の(1)、(2)、(3)等の方法に
より、焼成・黒鉛化処理後の粉砕工程が不要となり、比
表面積の小さな黒鉛粒子を製造できる。互いに融着しな
い処理が施された混合物粒子は、次いで焼成・黒鉛化さ
れる。焼成は前記混合物が酸化し難い雰囲気で行うこと
が好ましく、例えば、窒素雰囲気中、アルゴンガス中、
真空中等で焼成する方法が挙げられる。黒鉛化の温度は
2000℃以上が好ましく、2500℃以上であること
がより好ましく、2800〜3200℃であることがさ
らに好ましい。黒鉛化温度が低いと、黒鉛の結晶の発達
が悪くなると共に、黒鉛化触媒が作製した黒鉛粒子に残
存し易くなり、いずれの場合も充放電容量が低下する傾
向がある。一方、黒鉛化の温度が高すぎると、黒鉛が昇
華することがある。
According to the above methods (1), (2), (3), etc., the pulverizing step after the calcination / graphitization treatment becomes unnecessary, and graphite particles having a small specific surface area can be produced. The mixture particles that have been subjected to a treatment that does not fuse with each other are then fired and graphitized. The firing is preferably performed in an atmosphere in which the mixture is hardly oxidized, for example, in a nitrogen atmosphere, in an argon gas,
A method of firing in a vacuum or the like may be used. The graphitization temperature is preferably 2000 ° C. or higher, more preferably 2500 ° C. or higher, even more preferably 2800 to 3200 ° C. If the graphitization temperature is low, the development of the graphite crystals becomes worse, and the graphitization catalyst tends to remain in the produced graphite particles, and in any case, the charge / discharge capacity tends to decrease. On the other hand, if the graphitization temperature is too high, the graphite may sublime.

【0016】以上の黒鉛粒子の製造法によれば、比較的
容易に,比表面積の低い黒鉛粒子、特に、特性の良好な
比表面積の値が1.0〜3.0m2/gの黒鉛粒子を作製す
ることができる。リチウム二次電池負極用炭素材料とし
て用いる場合、比表面積の値が3.0m2/gを超えると充
放電の1サイクル目における不可逆容量が大きくなる傾
向にあり、一方、比表面積の値が1.0m2/g未満である
と、急速充放電時の容量が低下する傾向がある。
According to the above-described method for producing graphite particles, graphite particles having a low specific surface area, particularly graphite particles having a good specific surface area of 1.0 to 3.0 m 2 / g, can be relatively easily prepared. Can be produced. When used as a carbon material for a lithium secondary battery negative electrode, if the specific surface area exceeds 3.0 m 2 / g, the irreversible capacity in the first cycle of charge and discharge tends to increase, while the specific surface area is 1 If it is less than 0.0 m 2 / g, the capacity during rapid charge and discharge tends to decrease.

【0017】得られた黒鉛粒子は,必要に応じてさらに
粉砕してもよい。最終的な黒鉛粒子の平均粒子径は1〜
100μmが好ましく、10〜50μmがより好まし
い。平均粒子径が大きすぎる場合、作製した電極表面に
凸凹ができ易くなる。
The obtained graphite particles may be further pulverized if necessary. The average particle size of the final graphite particles is 1 to
100 μm is preferable, and 10 to 50 μm is more preferable. If the average particle diameter is too large, the surface of the produced electrode tends to be uneven.

【0018】前記の製造法により得られる黒鉛粒子又は
前記黒鉛粒子は、本発明のリチウム二次電池用負極の材
料として用いることができる。例えば、黒鉛粒子を有機
系結着剤、さらに必要に応じて溶剤と混合し、得られる
ペーストを集電体と一体化してリチウム二次電池用負極
とすることができる。得られるペーストは、シート状、
ペレット状等の形状に成形することができる。有機系結
着剤としては、例えばポリエチレン、ポリプロピレン、
エチレンプロピレンポリマー、ブタジエンゴム、スチレ
ンブタジエンゴム、ブチルゴム、イオン導電性の大きな
高分子化合物が使用できる。前記イオン導電率の大きな
高分子化合物としては、ポリ弗化ビニリデン、ポリエチ
レンオキサイド、ポリエピクロヒドリン、ポリフォスフ
ァゼン、ポリアクリロニトリル等が使用できる。有機系
結着剤の中では、イオン伝導率の大きな高分子化合物が
好ましく、ポリフッ化ビニリデンが特に好ましい。
The graphite particles obtained by the above-mentioned production method or the graphite particles can be used as a material for a negative electrode for a lithium secondary battery of the present invention. For example, graphite particles can be mixed with an organic binder and, if necessary, a solvent, and the resulting paste can be integrated with a current collector to form a negative electrode for a lithium secondary battery. The resulting paste is sheet-like,
It can be formed into a shape such as a pellet. As the organic binder, for example, polyethylene, polypropylene,
Ethylene propylene polymer, butadiene rubber, styrene butadiene rubber, butyl rubber, and high ion conductive polymer compounds can be used. Examples of the polymer compound having a high ionic conductivity include polyvinylidene fluoride, polyethylene oxide, polyepihydrin, polyphosphazene, polyacrylonitrile, and the like. Among the organic binders, a polymer compound having a large ionic conductivity is preferable, and polyvinylidene fluoride is particularly preferable.

【0019】有機系結着剤の含有量は、黒鉛粒子と有機
系結着剤との混合物に対して3〜20重量%含有するこ
とが好ましい。溶剤としては特に制限はなく、N−メチ
ル2−ピロリドン、ジメチルホルムアミド、イソプロパ
ノール等が用いられる。溶剤の量に特に制限はなく、所
望の粘度に調整できればよいが、通常ペーストに対し
て、30〜70重量%用いられることが好ましい。
The content of the organic binder is preferably 3 to 20% by weight based on the mixture of the graphite particles and the organic binder. The solvent is not particularly limited, and N-methyl 2-pyrrolidone, dimethylformamide, isopropanol and the like are used. The amount of the solvent is not particularly limited as long as it can be adjusted to a desired viscosity, but is preferably used in an amount of 30 to 70% by weight based on the paste.

【0020】上記ペーストを集電体と一体化し、リチウ
ム二次電池用負極とするには、粘度を調整したペースト
を、例えば集電体に塗布し乾燥する方法がある。集電体
としては、例えばニッケル、銅等の箔、メッシュなどが
使用できる。また一体化は、例えばロール、プレス等の
加圧成形法で行うことができる。
In order to integrate the paste with a current collector to form a negative electrode for a lithium secondary battery, there is a method in which a paste whose viscosity is adjusted is applied to, for example, a current collector and dried. As the current collector, for example, a foil or mesh of nickel, copper, or the like can be used. Further, the integration can be performed by a pressure molding method such as a roll or a press.

【0021】このようにして得られたリチウム二次電池
用負極は、リチウムイオン二次電池、リチウムポリマ二
次電池等のリチウム二次電池に使用できる。リチウムイ
オン二次電池においては、通常、上記負極を、セパレー
タを介して正極を対向して配置し、電解液を注入する。
またリチウムポリマ二次電池においては、通常、正極と
高分子固体電解質を組み合わせて製造される。本発明の
リチウム二次電池は、従来の炭素材料を用いたリチウム
二次電池と比較して、急速充放電特性、サイクル特性に
優れ、不可逆容量が小さく、特に安全性に優れる。
The negative electrode for a lithium secondary battery thus obtained can be used for a lithium secondary battery such as a lithium ion secondary battery and a lithium polymer secondary battery. In a lithium ion secondary battery, usually, the above-mentioned negative electrode is arranged with a positive electrode facing the other with a separator interposed therebetween, and an electrolyte is injected.
Further, a lithium polymer secondary battery is usually manufactured by combining a positive electrode and a solid polymer electrolyte. The lithium secondary battery of the present invention is excellent in rapid charge / discharge characteristics and cycle characteristics, has a small irreversible capacity, and is particularly excellent in safety, as compared with a lithium secondary battery using a conventional carbon material.

【0022】本発明におけるリチウム二次電池の正極に
用いられる材料については特に制限はなく、LiNiO
2、LiCoO2、LiMn24等を単独又は混合して使
用することができる。電解液としては、LiClO4
LiPF6、LiAsF6、LiBF4、LiSO3CF3
等のリチウム塩を、例えばエチレンカーボネート、ジエ
チルカーボネート、ジメトキシエタン、ジメチルカーボ
ネート、テトラヒドロフラン、プロピレンカーボネート
等の非水系溶剤に溶解したいわゆる有機電解液、ポリフ
ッ化ビニリデン等の高分子固体電解質に含ませた固体有
機電解液を使用することができる。
The material used for the positive electrode of the lithium secondary battery according to the present invention is not particularly limited.
2 , LiCoO 2 , LiMn 2 O 4, etc. can be used alone or as a mixture. LiClO 4 ,
LiPF 6 , LiAsF 6 , LiBF 4 , LiSO 3 CF 3
A lithium salt such as, for example, ethylene carbonate, diethyl carbonate, dimethoxyethane, dimethyl carbonate, tetrahydrofuran, so-called organic electrolyte dissolved in a non-aqueous solvent such as propylene carbonate, a solid contained in a polymer solid electrolyte such as polyvinylidene fluoride Organic electrolytes can be used.

【0023】セパレータとしては、例えばポリエチレ
ン、ポリプロピレン等のポリオレフィンを主成分とした
不織布、クロス、微孔フィルム又はこれらを組み合わせ
たものを使用することができる。なお、図1に円筒型リ
チウムイオン二次電池の一例の一部断面正面図を示す。
図1において、1は正極、2は負極、3はセパレータ、
4は正極タブ、5は負極タブ、6は正極蓋、7は電池缶
及び8はガスケットである。
As the separator, for example, a nonwoven fabric, cloth, microporous film, or a combination thereof containing a polyolefin such as polyethylene or polypropylene as a main component can be used. FIG. 1 shows a partial cross-sectional front view of an example of a cylindrical lithium ion secondary battery.
In FIG. 1, 1 is a positive electrode, 2 is a negative electrode, 3 is a separator,
4 is a positive electrode tab, 5 is a negative electrode tab, 6 is a positive electrode cover, 7 is a battery can, and 8 is a gasket.

【0024】[0024]

【実施例】以下、本発明の実施例を説明する。 実施例1 (黒鉛粒子の製造)平均粒径が5μmのコークス粉末5
0重量部、タールピッチ20重量部、平均粒子径が48
μmの炭化珪素7重量部及びコールタール10重量部を
混合し、200℃で1時間混合した。得られた混合物を
ハンマーミルを用いて粉砕し、平均粒子径25μmの粉
末を作製した。この粉末を空気中で2℃/分の速度で2
50℃まで昇温し、一時間保持して不融化処理を行っ
た。得られた粉末を、窒素雰囲気中、900℃まで昇温
し、次いで同じく窒素雰囲気中、3000℃で黒鉛化
し、融着のない黒鉛粒子を作製した。この黒鉛粒子のB
ET法による比表面積は2.0m2/gであった。また、平
均粒子径は25μmであった。
Embodiments of the present invention will be described below. Example 1 (Production of graphite particles) Coke powder 5 having an average particle size of 5 μm
0 parts by weight, 20 parts by weight of tar pitch, average particle diameter of 48
7 parts by weight of silicon carbide of 10 μm and 10 parts by weight of coal tar were mixed and mixed at 200 ° C. for 1 hour. The obtained mixture was pulverized using a hammer mill to prepare a powder having an average particle diameter of 25 μm. This powder is dried in air at a rate of 2 ° C./min.
The temperature was raised to 50 ° C., and the temperature was maintained for one hour to perform infusibility treatment. The obtained powder was heated to 900 ° C. in a nitrogen atmosphere and then graphitized at 3000 ° C. in a nitrogen atmosphere to produce graphite particles without fusion. B of this graphite particle
The specific surface area by the ET method was 2.0 m 2 / g. The average particle size was 25 μm.

【0025】(リチウム電池用負極材としての評価)得
られた黒鉛粒子90重量%に、N−メチル−2−ピロリ
ドンに溶解したポリ弗化ビニリデン(PVDF)を固形
分で10重量%加えて混練して黒鉛ペーストを作製し
た。作製した黒鉛ペーストを厚さ10μmの圧延銅箔に
塗布し、さらに乾燥し、面圧490Mpa(0.5トン/c
m2)の圧力で圧縮成形し、試料電極とした。黒鉛粒子層
の厚さは90μm及び密度は1.6g/cm3とした。
(Evaluation as negative electrode material for lithium battery) To 90% by weight of the obtained graphite particles, 10% by weight of polyvinylidene fluoride (PVDF) dissolved in N-methyl-2-pyrrolidone in solid content was added and kneaded. Thus, a graphite paste was prepared. The produced graphite paste was applied to a rolled copper foil having a thickness of 10 μm, dried, and subjected to a surface pressure of 490 MPa (0.5 ton / c).
It was compression molded at a pressure of m 2 ) to obtain a sample electrode. The thickness of the graphite particle layer was 90 μm and the density was 1.6 g / cm 3 .

【0026】作製した試料電極を3端子法による定電流
充放電を行い、リチウム二次電池用負極としての評価を
行った。図2は実験に用いたリチウム二次電池の概略図
である。図2に示すようにガラスセル9に、電解液10
としてLiPF4をエチレンカーボネート(EC)及び
ジメチルカーボネート(DMC)(ECとDMCは体積
比で1:1)の混合溶媒に1モル/リットルの濃度にな
るように溶解した溶液を入れ、試料電極(負極)11、
セパレータ12及び対極(正極)13を積層して配置
し、さらに参照電極14を上部から吊るしてリチウム二
次電池を作製して行った。対極13及び参照電極14に
は金属リチウムを使用し、セパレータ12にはポリエチ
レン微孔膜を使用した。0.5mA/cm2の定電流で、5mV
(V vs Li/Li+)まで充電し、1V(V v
s Li/Li+)まで放電する試験を行った。表1に
1サイクル目の黒鉛粒子の単位重量当たりの充電容量、
放電容量、不可逆容量を示す。
The prepared sample electrode was charged and discharged at a constant current by a three-terminal method, and evaluated as a negative electrode for a lithium secondary battery. FIG. 2 is a schematic diagram of a lithium secondary battery used in the experiment. As shown in FIG.
As a sample electrode (negative electrode) ) 11,
The separator 12 and the counter electrode (positive electrode) 13 were stacked and arranged, and the reference electrode 14 was suspended from above to produce a lithium secondary battery. Lithium metal was used for the counter electrode 13 and the reference electrode 14, and a polyethylene microporous membrane was used for the separator 12. 5 mV at a constant current of 0.5 mA / cm 2
(V vs Li / Li + ), and 1V (V v
s Li / Li + ). Table 1 shows the charge capacity per unit weight of the graphite particles in the first cycle,
Indicates discharge capacity and irreversible capacity.

【0027】実施例2 実施例1と同様にしてタール、タールピッチ、コーク
ス、炭化珪素の混合粉末を作製した。この粉末を65%
硝酸水溶液中に分散し、60℃で1時間攪拌し、不融化
処理を行った。得られた不融化処理粉末を分離、洗浄、
解砕した。次いで、実施例1と同様にして焼成、黒鉛化
処理を行ったところ、融着のない黒鉛粒子が得られた。
この黒鉛粒子のBET法による比表面積は1.8m2/gで
あった。また、平均粒子径は30μmであった。この黒
鉛粒子について測定した負極材特性を表1に示す。
Example 2 A mixed powder of tar, tar pitch, coke, and silicon carbide was prepared in the same manner as in Example 1. 65% of this powder
It was dispersed in a nitric acid aqueous solution, stirred at 60 ° C. for 1 hour, and infusibilized. The obtained infusibilized powder is separated, washed,
Crushed. Next, when calcination and graphitization were performed in the same manner as in Example 1, graphite particles without fusion were obtained.
The specific surface area of the graphite particles determined by the BET method was 1.8 m 2 / g. The average particle size was 30 μm. Table 1 shows the negative electrode material properties measured for the graphite particles.

【0028】実施例3 平均粒径が5μmのコークス粉末50重量部、タールピ
ッチ10重量部、ノボラック型フェノール樹脂(商品名
レジトップ、群栄化学(株)製)10重量部、平均粒子径
が48μmの炭化珪素7重量部及びコールタール10重
量部を混合し、200℃で1時間混合した。得られた混
合物をハンマーミルを用いて粉砕し、平均粒子径25μ
mの粉末を作製した。得られた粉末を、窒素雰囲気中、
900℃まで昇温し、次いで同じく窒素雰囲気中、30
00℃で黒鉛化し、融着のない黒鉛粒子を作製した。こ
の黒鉛粒子のBET法による比表面積は2.2m2/gであ
った。また、平均粒子径は25μmであった。
Example 3 50 parts by weight of coke powder having an average particle diameter of 5 μm, 10 parts by weight of tar pitch, 10 parts by weight of a novolak type phenol resin (trade name: Regitop, manufactured by Gunei Chemical Co., Ltd.), and an average particle diameter of 7 parts by weight of 48 μm silicon carbide and 10 parts by weight of coal tar were mixed and mixed at 200 ° C. for 1 hour. The obtained mixture was pulverized using a hammer mill, and the average particle diameter was 25 μm.
m was prepared. The obtained powder is placed in a nitrogen atmosphere,
The temperature was raised to 900 ° C, and then
Graphite was graphitized at 00 ° C. to produce graphite particles without fusion. The specific surface area of the graphite particles measured by the BET method was 2.2 m 2 / g. The average particle size was 25 μm.

【0029】比較例1 実施例1と同様にしてタール、タールピッチ、コーク
ス、炭化珪素の混合粉末を作製した。この粉末をペレッ
ト状に成形し、次いで、窒素雰囲気中、900℃まで昇
温し、次いで同じく窒素雰囲気中、3000℃で黒鉛化
した。得られた黒鉛化物をハンマーミルを用いて粉砕し
て黒鉛粒子を作製した。得られた黒鉛粒子のBET法に
よる比表面積は3.6m2/gであった。また、平均粒子径
は25μmであった。この黒鉛粒子について測定した負
極材特性を表1に示す。
Comparative Example 1 A mixed powder of tar, tar pitch, coke and silicon carbide was prepared in the same manner as in Example 1. This powder was formed into a pellet, heated to 900 ° C. in a nitrogen atmosphere, and then graphitized at 3000 ° C. in a nitrogen atmosphere. The obtained graphitized product was pulverized using a hammer mill to prepare graphite particles. The specific surface area of the obtained graphite particles measured by the BET method was 3.6 m 2 / g. The average particle size was 25 μm. Table 1 shows the negative electrode material properties measured for the graphite particles.

【0030】比較例2 実施例1と同様にしてタール、タールピッチ、コーク
ス、炭化珪素の混合粉末を作製した。この粉末を不融化
処理することなく、窒素雰囲気中、900℃まで昇温
し、次いで同じく窒素雰囲気中、3000℃で黒鉛化し
た。粉末は互いに融着していた。ハンマーミルを用いて
粉砕して黒鉛粒子を作製した。得られた黒鉛粒子のBE
T法による比表面積は3.3m2/gであった。また、平均
粒子径は26μmであった。この黒鉛粒子について測定
した負極材特性を表1に示す。
Comparative Example 2 A mixed powder of tar, tar pitch, coke and silicon carbide was prepared in the same manner as in Example 1. The powder was heated to 900 ° C. in a nitrogen atmosphere without infusibilizing treatment, and then graphitized at 3000 ° C. in a nitrogen atmosphere. The powders were fused together. The particles were pulverized using a hammer mill to produce graphite particles. BE of the obtained graphite particles
The specific surface area according to the T method was 3.3 m 2 / g. The average particle size was 26 μm. Table 1 shows the negative electrode material properties measured for the graphite particles.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【発明の効果】請求項1〜4記載の製造法によれば、低
比表面積であり、急速充放電特性、サイクル特性、第1
回サイクル目の不可逆容量等に優れ、かつ低比表面積で
あって安全性にも優れたリチウム二次電池に好適な黒鉛
粒子を安定して作製可能である。請求項5及び6記載の
黒鉛粒子は、急速充放電特性、サイクル特性、第1回サ
イクル目の不可逆容量等に優れ、低比表面積であって安
全性にも優れたリチウム二次電池に好適である。請求項
7及び8記載のリチウム二次電池用負極は、急速充放電
特性、サイクル特性、第1回サイクル目の不可逆容量等
に優れ、安全性にも優れる。請求項9記載のリチウム二
次電池は、急速充放電特性、サイクル特性、第1回サイ
クル目の不可逆容量等に優れ、安全性にも優れる。
According to the manufacturing method of the present invention, the low specific surface area, rapid charge / discharge characteristics, cycle characteristics,
Graphite particles suitable for a lithium secondary battery having excellent irreversible capacity at the first cycle, low specific surface area, and excellent safety can be stably produced. The graphite particles according to claims 5 and 6 are suitable for a lithium secondary battery excellent in rapid charge / discharge characteristics, cycle characteristics, irreversible capacity in the first cycle, etc., low in specific surface area and excellent in safety. is there. The negative electrode for a lithium secondary battery according to claims 7 and 8 is excellent in rapid charge / discharge characteristics, cycle characteristics, irreversible capacity in the first cycle, and the like, and also excellent in safety. The lithium secondary battery according to claim 9 is excellent in rapid charge / discharge characteristics, cycle characteristics, irreversible capacity in the first cycle and the like, and also excellent in safety.

【図面の簡単な説明】[Brief description of the drawings]

【図1】円筒型リチウム二次電池の一部断面正面図であ
る。
FIG. 1 is a partial cross-sectional front view of a cylindrical lithium secondary battery.

【図2】実施例及び比較例で充放電特性の測定に用いた
リチウム二次電池の概略図である。
FIG. 2 is a schematic view of a lithium secondary battery used for measurement of charge and discharge characteristics in Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 正極タブ 5 負極タブ 6 正極蓋 7 電池缶 8 ガスケット 9 ガラスセル 10 電解液 11 試料電極(負極) 12 セパレータ 13 対極(正極) 14 参照極 DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Positive electrode tab 5 Negative electrode tab 6 Positive electrode cover 7 Battery can 8 Gasket 9 Glass cell 10 Electrolyte 11 Sample electrode (negative electrode) 12 Separator 13 Counter electrode (positive electrode) 14 Reference electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤田 淳 茨城県日立市鮎川町三丁目3番1号 日立 化成工業株式会社山崎工場内 (72)発明者 山田 和夫 茨城県日立市鮎川町三丁目3番1号 日立 化成工業株式会社山崎工場内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Atsushi Fujita 3-3-1 Ayukawacho, Hitachi City, Ibaraki Prefecture Inside the Yamazaki Plant of Hitachi Chemical Co., Ltd. (72) Kazuo Yamada 3-chome Ayukawacho, Hitachi City, Ibaraki Prefecture No. 1 Inside the Yamazaki Plant of Hitachi Chemical Co., Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 黒鉛化可能な骨材又は黒鉛、及び黒鉛化
可能なバインダを含む混合物の粉末であって、焼成・黒
鉛化工程で互いに融着しない処理が施された混合物粒子
を製造し、これを焼成・黒鉛化することを特徴とする黒
鉛粒子の製造法。
1. A powder of a mixture containing a graphitizable aggregate or graphite, and a graphitizable binder, wherein the mixture particles are subjected to a treatment that does not fuse with each other in a firing and graphitizing step. A method for producing graphite particles, which comprises calcining and graphitizing this.
【請求項2】 互いに融着しない処理が施された混合物
粒子が、黒鉛化可能な骨材又は黒鉛、黒鉛化可能なバイ
ンダ及び黒鉛化触媒を混合して混合物を作製し、これを
粉砕し、ついでバインダを不融化して得られるものであ
る請求項1記載の黒鉛粒子の製造法。
2. A mixture particle which has been subjected to a treatment that does not fuse with each other is mixed with a graphitizable aggregate or graphite, a graphitizable binder and a graphitization catalyst to form a mixture, and the mixture is pulverized. The method for producing graphite particles according to claim 1, which is obtained by making the binder infusible.
【請求項3】 互いに融着しない処理が施された混合物
粒子が、黒鉛化可能な骨材又は黒鉛、熱硬化性樹脂を含
む黒鉛化可能なバインダ及び黒鉛化触媒を混合して混合
物を作製し、これを粉砕して得られるものである請求項
1記載の黒鉛粒子の製造法。
3. A mixture prepared by mixing non-fusible mixture particles with a graphitizable aggregate or graphite, a graphitizable binder containing a thermosetting resin, and a graphitization catalyst. The method for producing graphite particles according to claim 1, which is obtained by pulverizing the particles.
【請求項4】 互いに融着しない処理が施された混合物
粒子が、黒鉛化可能な骨材又は黒鉛、黒鉛化可能なバイ
ンダ及び黒鉛化触媒を混合して混合物を作製し、これを
粉砕し、ついで熱硬化性樹脂を被覆して得られるもので
ある請求項1記載の黒鉛粒子の製造法。
4. A mixture particle which has been subjected to a treatment that does not adhere to each other is mixed with a graphitizable aggregate or graphite, a graphitizable binder and a graphitization catalyst to form a mixture, and the mixture is pulverized. The method for producing graphite particles according to claim 1, which is obtained by coating with a thermosetting resin.
【請求項5】 請求項1、2、3又は4記載の製造法で
製造された黒鉛粒子。
5. Graphite particles produced by the production method according to claim 1, 2, 3 or 4.
【請求項6】 比表面積が1.0〜3.0m2/gである請
求項5記載の黒鉛粒子。
6. The graphite particles according to claim 5, having a specific surface area of 1.0 to 3.0 m 2 / g.
【請求項7】 請求項5又は6記載の黒鉛粒子を含有し
てなるリチウム二次電池用負極。
7. A negative electrode for a lithium secondary battery comprising the graphite particles according to claim 5.
【請求項8】 黒鉛粒子と有機系結着剤の混合物を、集
電体と一体化してなる請求項7記載のリチウム二次電池
用負極。
8. The negative electrode for a lithium secondary battery according to claim 7, wherein a mixture of graphite particles and an organic binder is integrated with a current collector.
【請求項9】 請求項5又は6記載の黒鉛粒子を負極材
として用いてなるリチウム二次電池。
9. A lithium secondary battery using the graphite particles according to claim 5 as a negative electrode material.
JP00853598A 1998-01-20 1998-01-20 Graphite particles, production method thereof, lithium secondary battery and negative electrode thereof Expired - Lifetime JP4224731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00853598A JP4224731B2 (en) 1998-01-20 1998-01-20 Graphite particles, production method thereof, lithium secondary battery and negative electrode thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00853598A JP4224731B2 (en) 1998-01-20 1998-01-20 Graphite particles, production method thereof, lithium secondary battery and negative electrode thereof

Publications (2)

Publication Number Publication Date
JPH11199213A true JPH11199213A (en) 1999-07-27
JP4224731B2 JP4224731B2 (en) 2009-02-18

Family

ID=11695852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00853598A Expired - Lifetime JP4224731B2 (en) 1998-01-20 1998-01-20 Graphite particles, production method thereof, lithium secondary battery and negative electrode thereof

Country Status (1)

Country Link
JP (1) JP4224731B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001106519A (en) * 1999-10-04 2001-04-17 Sumitomo Metal Ind Ltd Graphite material suitable for negative electrode of secondary battery of lithium ion and its producing method
JP2003282054A (en) * 2002-03-20 2003-10-03 Osaka Gas Co Ltd Manufacturing method of negative electrode material for lithium secondary battery and lithium secondary battery
US7052803B2 (en) 2002-07-31 2006-05-30 Matsushita Electric Industrial Co., Ltd. Lithium rechargeable battery
CN103367727A (en) * 2013-07-12 2013-10-23 深圳市贝特瑞新能源材料股份有限公司 Lithium ion battery silicon-carbon anode material and preparation method thereof
WO2020116509A1 (en) * 2018-12-06 2020-06-11 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery and nonaqueous electrolytic solution

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001106519A (en) * 1999-10-04 2001-04-17 Sumitomo Metal Ind Ltd Graphite material suitable for negative electrode of secondary battery of lithium ion and its producing method
JP4547504B2 (en) * 1999-10-04 2010-09-22 中央電気工業株式会社 Graphite material suitable for negative electrode of lithium ion secondary battery and method for producing the same
JP2003282054A (en) * 2002-03-20 2003-10-03 Osaka Gas Co Ltd Manufacturing method of negative electrode material for lithium secondary battery and lithium secondary battery
US7052803B2 (en) 2002-07-31 2006-05-30 Matsushita Electric Industrial Co., Ltd. Lithium rechargeable battery
CN103367727A (en) * 2013-07-12 2013-10-23 深圳市贝特瑞新能源材料股份有限公司 Lithium ion battery silicon-carbon anode material and preparation method thereof
WO2020116509A1 (en) * 2018-12-06 2020-06-11 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery and nonaqueous electrolytic solution

Also Published As

Publication number Publication date
JP4224731B2 (en) 2009-02-18

Similar Documents

Publication Publication Date Title
JP3711726B2 (en) Graphite particles, production method thereof, lithium secondary battery and negative electrode thereof
JP3305995B2 (en) Graphite particles for lithium secondary battery negative electrode
JP3361510B2 (en) Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JP4792618B2 (en) Carbonaceous particles for negative electrode of lithium secondary battery, manufacturing method thereof, negative electrode of lithium secondary battery and lithium secondary battery
JP3779461B2 (en) Lithium secondary battery, negative electrode thereof and method for producing the same
JP3213575B2 (en) Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JP2001089118A (en) Graphite particle, method for producing the same, negative electrode for lithium secondary battery and lithium secondary battery
JPH07302595A (en) Manufacture of carbon particle and negative electrode containing this carbon particle
JP3321782B2 (en) Graphite particles for lithium secondary battery negative electrode
JP2000203817A (en) Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell
JP4224731B2 (en) Graphite particles, production method thereof, lithium secondary battery and negative electrode thereof
JP3651225B2 (en) Lithium secondary battery, negative electrode thereof and method for producing the same
JPH11217266A (en) Graphite particle, its production and negative electrode for lithium secondary battery and lithium secondary battery
JP3951219B2 (en) Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JP4483560B2 (en) Negative electrode for lithium secondary battery
JP4811699B2 (en) Negative electrode for lithium secondary battery
JP2002343341A (en) Negative electrode for lithium secondary battery
JPH10236808A (en) Graphite grain, its production, graphite paste using graphite grain, negative electrode for lithium secondary battery, its production and lithium secondary battery
JP4135162B2 (en) Negative electrode for lithium secondary battery
JP4828118B2 (en) Negative electrode for lithium secondary battery
JP2001006669A (en) Graphite particles for lithium secondary battery negative electrode, manufacture of the particles, negative electrode for lithium secondary battery, and lithium secondary battery
JP4066699B2 (en) Negative electrode for lithium secondary battery
JP2005289803A (en) Graphite grain, graphite paste using graphite grain, negative electrode for lithium secondary battery, and lithium secondary battery
JP5704473B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP4687661B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term