JP2002068743A - Method for manufacturing highly soluble copper oxide, highly soluble copper oxide, raw material for copper plating and method of copper plating - Google Patents

Method for manufacturing highly soluble copper oxide, highly soluble copper oxide, raw material for copper plating and method of copper plating

Info

Publication number
JP2002068743A
JP2002068743A JP2000267018A JP2000267018A JP2002068743A JP 2002068743 A JP2002068743 A JP 2002068743A JP 2000267018 A JP2000267018 A JP 2000267018A JP 2000267018 A JP2000267018 A JP 2000267018A JP 2002068743 A JP2002068743 A JP 2002068743A
Authority
JP
Japan
Prior art keywords
copper
copper oxide
carbonate
oxide
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000267018A
Other languages
Japanese (ja)
Other versions
JP4033616B2 (en
Inventor
Shiroshi Matsuki
詩路士 松木
Kazunori Akiyama
一則 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsurumi Soda Co Ltd
Original Assignee
Tsurumi Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsurumi Soda Co Ltd filed Critical Tsurumi Soda Co Ltd
Priority to JP2000267018A priority Critical patent/JP4033616B2/en
Priority to TW090121323A priority patent/TW539652B/en
Priority to KR10-2001-0053773A priority patent/KR100539652B1/en
Priority to DE10143076A priority patent/DE10143076B4/en
Priority to US09/944,344 priority patent/US20020053518A1/en
Priority to CNB011324597A priority patent/CN1170010C/en
Publication of JP2002068743A publication Critical patent/JP2002068743A/en
Priority to HK02104082.9A priority patent/HK1043162B/en
Priority to KR1020050078530A priority patent/KR100683598B1/en
Application granted granted Critical
Publication of JP4033616B2 publication Critical patent/JP4033616B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a highly soluble copper oxide with less impurities, capable of suppressing the generation of insoluble residue, and suitable for, for example, a raw material for copper plating. SOLUTION: The high purity highly soluble copper oxide is obtained by thermal decomposition of basic copper carbonate under a non-reducing atmosphere, for example, in an electric heating furnace, at 250 deg.C-800 deg.C, preferably 350-600 deg.C, and then washing this highly soluble copper oxide in a wash tank and removing moisture by a centrifuge followed by drying.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、塩基性炭酸銅を原
料とした易溶解性酸化銅の製造方法、易溶解性酸化銅及
び、易溶解性酸化銅からなる銅メッキ材料並びに易溶解
性酸化銅を用いた銅メッキ方法に関する。
[0001] The present invention relates to a method for producing a soluble copper oxide from basic copper carbonate, a soluble copper oxide, a copper plating material comprising the soluble copper oxide, and a soluble oxide. The present invention relates to a copper plating method using copper.

【0002】[0002]

【従来の技術】被メッキ体に銅メッキ処理を施す手法の
一つとして、電解液である硫酸中に銅メッキ材料を供給
し、不溶性陽極と陰極をなす被メッキ体との間で通電す
る電解メッキ法があり、この方法に用いられる銅メッキ
材料として、塩基性炭酸銅を熱分解して得た酸化銅を用
いることが知られている(特許第2753855号公
報)。
2. Description of the Related Art As one of the techniques for performing a copper plating process on a plating target, a copper plating material is supplied into sulfuric acid which is an electrolytic solution, and a current is passed between an insoluble anode and a plating target forming a cathode. There is a plating method, and it is known that copper oxide obtained by thermally decomposing basic copper carbonate is used as a copper plating material used in this method (Japanese Patent No. 2753855).

【0003】酸化銅は、フェライト材料の原料として広
く用いられ、また特開平3-80116号公報に記載さ
れているように、無電解銅メッキ浴の銅イオン補給材と
しても用いられている。一般には銅のミルスケ−ル、亜
酸化銅あるいは水酸化銅を熱処理して生成されるが、銅
のミルスケ−ル系は溶解しにくいので銅メッキ材料とし
ては使えないし、また亜酸化銅系はClイオン(塩素イ
オン)が多いのでメッキ不良となり使用できない。上述
の公報(特開平3-80116号)では、水酸化銅を6
0〜100℃で加熱して酸化銅を得ることが記載されて
いるが、水酸化第二銅系はClイオンやSO4 体のSが
多いので電解メッキに用いるとメッキ不良となってしま
う。これに対して塩基性炭酸銅を熱分解して得た酸化銅
は、ClイオンやSO4 体のSが少ないので銅メッキ材
料として使用可能である。
[0003] Copper oxide is widely used as a raw material for ferrite materials, and is also used as a copper ion replenishing material in electroless copper plating baths, as described in JP-A-3-80116. Generally, copper mill scale, cuprous oxide or copper hydroxide is produced by heat treatment. However, copper mill scale is difficult to dissolve and cannot be used as a copper plating material. Since there are many ions (chlorine ions), plating is poor and cannot be used. In the above publication (Japanese Unexamined Patent Publication No. 3-80116), copper hydroxide is used in the amount of 6%.
It is described that copper oxide is obtained by heating at 0 to 100 ° C., but cupric hydroxide system has a large amount of Cl ions and S 4 SO 4, so that when it is used for electrolytic plating, plating failure occurs. On the other hand, copper oxide obtained by thermally decomposing basic copper carbonate can be used as a copper plating material because it has a small amount of Cl ions and S of SO4.

【0004】[0004]

【発明が解決しようとする課題】しかしながら塩基性炭
酸銅を熱分解して得た酸化銅を銅メッキ材料として用い
るには次のような課題があった。
However, using copper oxide obtained by thermally decomposing basic copper carbonate as a copper plating material has the following problems.

【0005】a.酸化銅は、通常フェライトの原料とし
て用いられるので、フェライトの製造特に焼結工程にお
いて重量減少の少ないことが要求され、そのため原料を
熱分解や熱処理するときの加熱温度は一般には900℃
以上であるが、得られた酸化銅は一般的な酸化銅に比べ
易溶解性であるものの溶解性の程度はそれ程大きくな
い。このため銅メッキ材料を銅メッキ浴(電解液に銅メ
ッキ材料を供給した液)に補給したときに電解液に溶け
きるまでに長い時間がかかり、銅イオン濃度にむらが生
じてメッキ処理品の品質にばらつきが生じる原因となる
し、また処理効率の低下の要因にもなる。
A. Since copper oxide is usually used as a raw material for ferrite, it is required that the weight reduction is small in the ferrite production, particularly in the sintering step, and therefore, the heating temperature when the raw material is thermally decomposed or heat-treated is generally 900 ° C.
As described above, although the obtained copper oxide is more soluble than general copper oxide, the degree of solubility is not so large. Therefore, when the copper plating material is supplied to the copper plating bath (a solution in which the copper plating material is supplied to the electrolytic solution), it takes a long time until the copper plating material is completely dissolved in the electrolytic solution. This causes a variation in quality and also causes a reduction in processing efficiency.

【0006】b.通常の分解炉として熱効率を重視した
フレ−ムによる直接加熱のロ−タリキルンが常用されて
いるが、フレ−ムの還元炎が炭酸銅や酸化銅に触れるこ
とで亜酸化銅や金属銅が一部に生成されてしまう。これ
ら亜酸化銅や金属銅は電解液である硫酸に溶かしたとき
に不純物である不溶解残渣の増加につながり、電解液中
の銅濃度が不安定になりつまり一定濃度であるべき銅メ
ッキ材料の品位を損ない、メッキ処理品の品質が不安定
になる一因となる。
B. Rotary kilns of direct heating with a frame that emphasizes thermal efficiency are commonly used as ordinary cracking furnaces, but when the reducing flame of the frame touches copper carbonate or copper oxide, copper suboxide or metallic copper is reduced. Will be generated in the section. When dissolved in sulfuric acid, which is an electrolytic solution, these cuprous oxides and metallic copper lead to an increase in insoluble residues, which are impurities, and the copper concentration in the electrolytic solution becomes unstable. The quality is impaired and the quality of the plated product becomes unstable.

【0007】c.塩基性炭酸銅の原料から持ち込まれた
塩基性炭酸銅自体が含有する不純物、例えば少量のアル
カリ金属(NaやK)やアルカリ土類金属(MgやC
a)、ClイオンやSO4 体のSなどが、熱分解して得
た酸化銅中では例えば約1.4〜1.5倍に濃縮され
る。Clイオンがメッキ浴中に蓄積されると、被メッキ
体の表面が粗面となるか、瘤状や針状の析出が起こり、
製品不良となる。またSO4 体のSが蓄積した場合、メ
ッキ状態に悪い影響を与えるだけでなく、メッキ浴中の
SO4 濃度を制御することが困難になり、メッキ処理品
の品質が不安定になる。更にまたアルカリ金属やアルカ
リ土類金属が蓄積した場合には、メッキ面上にそれらの
硫酸塩の析出が心配され、建浴の頻度を増す懸念があ
る。
C. Impurities contained in the basic copper carbonate itself brought from the raw material of the basic copper carbonate, for example, a small amount of an alkali metal (Na or K) or an alkaline earth metal (Mg or C
a), Cl ions, S of SO4, etc. are concentrated, for example, about 1.4 to 1.5 times in copper oxide obtained by thermal decomposition. When Cl ions are accumulated in the plating bath, the surface of the object to be plated becomes rough, or a knob-like or needle-like precipitate occurs,
Product failure. In addition, when S in the SO4 body accumulates, it not only adversely affects the plating state, but also makes it difficult to control the SO4 concentration in the plating bath, and the quality of the plated product becomes unstable. Furthermore, when an alkali metal or an alkaline earth metal accumulates, there is a concern that the sulfates are deposited on the plating surface, which may increase the frequency of the bath.

【0008】このため酸化銅を直接メッキ材料とする連
続運転をする場合、メッキ浴中にこれら不純物が蓄積さ
れる結果となった。蓄積量が管理上の上限まで達すると
メッキ不良を起こすため、メッキ浴を予定よりも早く建
浴しなければならないが、メッキ浴の建浴は非常にコス
トが高いので、システムの運用としてはコストアップに
つながってしまう。
Therefore, when a continuous operation using copper oxide as a direct plating material is performed, these impurities are accumulated in the plating bath. When the accumulated amount reaches the upper limit of management, plating failure occurs, so plating bath must be built earlier than planned, but since bathing of plating bath is very expensive, cost is low for system operation. It leads to up.

【0009】本発明はこのような背景の下になされたも
のであり、その目的は易溶解性が高く、不溶解残渣の生
成を抑えることのできる易溶解性酸化銅を提供するこ
と、更には不純物が少ない易溶解性酸化銅を提供するこ
とにある。また他の目的は易溶解性が高く、不溶解残渣
の生成を抑えることのできる銅メッキ材料を提供するこ
とにある。更に他の目的は、高純度の易溶解性酸化銅を
用いた銅メッキ方法を提供することにある。
The present invention has been made under such a background. An object of the present invention is to provide an easily soluble copper oxide having high solubility and capable of suppressing generation of an insoluble residue. An object of the present invention is to provide an easily soluble copper oxide containing few impurities. Another object is to provide a copper plating material having high solubility and capable of suppressing generation of insoluble residues. Still another object is to provide a copper plating method using high-purity easily soluble copper oxide.

【0010】[0010]

【課題を解決するための手段】本発明は、塩基性炭酸銅
を還元雰囲気とはならない雰囲気下で250℃〜800
℃に加熱して熱分解することにより易溶解性酸化銅を得
ることを特徴とする易溶解性酸化銅の製造方法である。
還元雰囲気とはならない雰囲気下で加熱するとは、例え
ばバ−ナにより直接加熱するのではなく、電気炉などを
用いて加熱することである。
SUMMARY OF THE INVENTION According to the present invention, a basic copper carbonate is heated at a temperature of 250 DEG C. to 800.degree.
This is a method for producing a readily soluble copper oxide, which is characterized in that a readily soluble copper oxide is obtained by heating to a temperature of ° C. and thermally decomposing.
Heating in an atmosphere that does not become a reducing atmosphere means, for example, heating not using a burner directly but using an electric furnace or the like.

【0011】塩基性炭酸銅は、市販のものを用いてもよ
いが、塩化銅、硫酸銅または硝酸銅の水溶液と例えばア
ルカリ金属、アルカリ土類金属またはNH4 の炭酸塩の
水溶液とを混合して加熱しながら反応させ、これにより
析出した反応生成物を濾過分離して得るようにしてもよ
い。この場合前記炭酸塩の水溶液と塩化銅、硫酸銅また
は硝酸銅の水溶液とを混合するとは、炭酸塩を固体の状
態で塩化銅、硫酸銅または硝酸銅の水溶液に投入して炭
酸塩が水溶液になる場合を含み、また逆に塩化銅、硫酸
銅または硝酸銅の固体を炭酸塩の水溶液に投入して水溶
液になる場合も含む。本発明にかかる易溶解性酸化銅は
高い易溶解性を有しているため、例えば不溶性陽極と陰
極をなす被メッキ体とが設けられた電解液に供給される
銅メッキ材料として好適に用いることができる。この場
合銅メッキ材料中に上述の不純物を多く含んでいるとメ
ッキ処理品の品質が低下するため、塩基性炭酸銅がアル
カリ金属(NaやK)やアルカリ土類金属(MgやC
a)、及び陰イオン(ClイオンやSO4 イオン)など
の不純物を多く含んでいる場合には、熱分解して得られ
た易溶解性酸化銅を水洗することが好ましい。
Commercially available basic copper carbonate may be used, but an aqueous solution of copper chloride, copper sulfate or copper nitrate is mixed with an aqueous solution of, for example, an alkali metal, an alkaline earth metal or a carbonate of NH 4. The reaction may be carried out while heating, and the reaction product thus precipitated may be obtained by filtration and separation. In this case, mixing the aqueous solution of the carbonate with the aqueous solution of copper chloride, copper sulfate or copper nitrate means that the carbonate is poured into an aqueous solution of copper chloride, copper sulfate or copper nitrate in a solid state, and the carbonate is converted into the aqueous solution. Conversely, it also includes the case where a solid of copper chloride, copper sulfate or copper nitrate is charged into an aqueous solution of carbonate to form an aqueous solution. Since the easily soluble copper oxide according to the present invention has high solubility, it is preferably used as a copper plating material supplied to an electrolytic solution provided with, for example, an insoluble anode and a plated object forming a cathode. Can be. In this case, if the copper plating material contains a large amount of the above-described impurities, the quality of the plated product is deteriorated. Therefore, the basic copper carbonate contains alkali metal (Na or K) or alkaline earth metal (Mg or C).
In the case of containing a lot of impurities such as a) and anions (Cl ions and SO4 ions), it is preferable to wash easily soluble copper oxide obtained by thermal decomposition.

【0012】また本発明は、易溶解性酸化銅の使用方法
である銅メッキ方法としても成立するものであり、その
方法は、上述の易溶解性酸化銅を不溶性陽極と陰極をな
す被メッキ体とが設けられた電解液に銅メッキ材料とし
て供給し、被メッキ体に銅メッキを施すことを特徴とす
る。
The present invention is also realized as a copper plating method which is a method of using easily soluble copper oxide, and the method comprises the step of forming the above-mentioned easily soluble copper oxide into an insoluble anode and a cathode to form a cathode. Is supplied as a copper plating material to the electrolytic solution provided with (a) and (b), and the object to be plated is subjected to copper plating.

【0013】[0013]

【発明の実施の形態】本発明では、易溶解性酸化銅の原
料である塩基性炭酸銅として市販品のものを購入しても
よいが、この実施の形態では塩基性炭酸銅を購入せずに
工場側で製造することとする。図1はこの場合の製造フ
ロ−を示す説明図であり、例えば銅濃度が10重量%で
ある塩化第二銅(CuCl2 )の水溶液とアルカリ金属
の炭酸塩例えば炭酸濃度が7重量%である炭酸ナトリウ
ム(Na2 CO3 )の水溶液とを例えば混合液のpHが
7〜9となるように反応槽1内に投入し、混合液の温度
が例えば70℃となるように加熱しながら撹拌手段11
により例えば30分間撹拌して反応させる。混合液の加
熱は例えば反応槽1内に図示しないが散気管などからな
るバブリング手段を設け、このバブリング手段から蒸気
を混合液にバブリングすることにより行われる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a commercially available basic copper carbonate may be purchased as a raw material of easily soluble copper oxide, but in this embodiment, basic copper carbonate is not purchased. It will be manufactured at the factory side. FIG. 1 is an explanatory view showing a production flow in this case. For example, an aqueous solution of cupric chloride (CuCl2) having a copper concentration of 10% by weight and a carbonate of an alkali metal such as a carbonate having a carbonic acid concentration of 7% by weight. An aqueous solution of sodium (Na2 CO3) is charged into the reaction tank 1 so that the pH of the mixture becomes, for example, 7 to 9, and the stirring means 11 is heated while the mixture is heated to, for example, 70 ° C.
For 30 minutes, for example. The heating of the mixed solution is performed, for example, by providing a bubbling unit (not shown) such as a diffuser tube in the reaction tank 1 and bubbling vapor from the bubbling unit to the mixed solution.

【0014】上述の反応は次のように進行する。先ず
(1)式のように炭酸銅が生成され、 Na2 CO3 +CuCl2 →CuCO3 +2NaCl (1) 続いて(2)式のように炭酸銅が水和して塩基性炭酸銅
の二水塩が生成され、 CuCO3 +3/2H2 O→1/2{CuCO3 ・Cu(OH)2・2H 2 O}+1/2CO2 (2) 更に(3)式のように上記の二水塩から水が抜け、無水
の塩基性炭酸銅が生成される。
The above reaction proceeds as follows. First, copper carbonate is generated as shown in equation (1), and Na2 CO3 + CuCl2 → CuCO3 + 2NaCl (1) Subsequently, as shown in equation (2), copper carbonate is hydrated to form a dihydrate of basic copper carbonate. CuCO 3 + 3 / 2H 2 O → 1/2 {CuCO 3 .Cu (OH) 2 .2H 2 O} +1/2 CO 2 (2) Further, as shown in the formula (3), water is removed from the above dihydrate to form an anhydrous base. Copper carbonate is produced.

【0015】 CuCO3 ・Cu(OH)2・2H2 O→CuCO3 ・Cu(OH)2+ 2H2 O (3) こうして塩基性炭酸銅が析出生成されて粉体となって沈
殿する。そしてバルブ12を開いて沈殿物であるスラリ
−を抜き出して遠心分離機2に送り、ここで遠心分離に
より固形分を母液から分離し、その固形分を乾燥機3に
入れて乾燥し、塩基性炭酸銅の粉体を得る。
CuCO 3 .Cu (OH) 2 .2H 2 O → CuCO 3 .Cu (OH) 2 + 2H 2 O (3) Thus, basic copper carbonate is precipitated and formed into a powder and precipitates. Then, the valve 12 is opened to extract the slurry as a precipitate and send it to the centrifugal separator 2, where the solid content is separated from the mother liquor by centrifugation, and the solid content is put into the dryer 3 to be dried. Obtain copper carbonate powder.

【0016】塩基性炭酸銅の原料である銅イオン源とし
ては塩化銅の他に例えば硫酸銅または硝酸銅などの銅塩
の水溶液を用いることができる。炭酸イオン源としては
炭酸ナトリウムの他に炭酸水素ナトリウム、炭酸カリウ
ムなどのアルカリ金属の炭酸塩、または炭酸カルシウ
ム、炭酸マグネシウム、炭酸バリウムなどのアルカリ土
類金属の炭酸塩あるいは炭酸アンモニウム((NH4)2
CO3 )などを用いることができる。
As a source of copper ions which is a raw material of the basic copper carbonate, an aqueous solution of a copper salt such as copper sulfate or copper nitrate can be used in addition to copper chloride. As a carbonate ion source, in addition to sodium carbonate, carbonates of alkali metals such as sodium hydrogen carbonate and potassium carbonate, carbonates of alkaline earth metals such as calcium carbonate, magnesium carbonate and barium carbonate or ammonium carbonate ((NH4) 2
CO3) can be used.

【0017】次に粉体である前記塩基性炭酸銅を加熱
炉、例えばロ−タリキルン4に供給し、ここで例えば2
50℃以上で800℃以下の温度に加熱して熱分解す
る。この例では加熱炉として、管軸を回転軸として回転
する例えばステンレス製の回転管41を僅かに傾斜して
設け、この回転管41の周囲をヒ−タ42により囲み、
回転管41を回転させることにより塩基性炭酸銅の粉体
を移送するロ−タリキルンを用いている。このようにし
て塩基性炭酸銅を加熱すれば加熱雰囲気が還元雰囲気に
ならない。塩基性炭酸銅を直接バ−ナで加熱しない理由
は、還元雰囲気にすると、炭酸銅そのものや炭酸銅が酸
化銅に分解された後、一部が還元されて亜酸化銅(Cu
2 O)や金属銅(Cu)を生成してしまうので、これを
避けるためである。
Next, the basic copper carbonate, which is a powder, is supplied to a heating furnace, for example, a rotary kiln 4 where, for example,
It is thermally decomposed by heating to a temperature of not less than 50 ° C and not more than 800 ° C. In this example, as a heating furnace, a rotating tube 41 made of, for example, stainless steel, which rotates around a tube axis as a rotating shaft, is provided at a slight angle, and the periphery of the rotating tube 41 is surrounded by a heater 42.
A rotary kiln that transfers the basic copper carbonate powder by rotating the rotary tube 41 is used. If the basic copper carbonate is heated in this way, the heating atmosphere does not become a reducing atmosphere. The reason that the basic copper carbonate is not directly heated by a burner is that, when a reducing atmosphere is used, the copper carbonate itself or the copper carbonate is decomposed into copper oxide, and then a part thereof is reduced to form a cuprous oxide (Cu
This is to avoid 2 O) and metallic copper (Cu).

【0018】金属銅は、酸化銅を銅メッキ材料として使
用する場合に電解液である硫酸に溶解しないか溶解し難
く、不溶解残渣となり新たなろ過設備が必要となる。ま
た金属銅や亜酸化銅ができると、メッキ浴中への補給銅
量が一定とならず、メッキ品の品質がばらついてしま
う。従って塩基性炭酸銅を加熱するときには還元雰囲気
にしないことが必要である。
When copper oxide is used as a copper plating material, metallic copper does not dissolve or is hardly dissolved in sulfuric acid which is an electrolytic solution, becomes an insoluble residue, and requires new filtration equipment. If metallic copper or cuprous oxide is produced, the amount of replenished copper in the plating bath will not be constant, and the quality of the plated product will vary. Therefore, it is necessary not to use a reducing atmosphere when heating the basic copper carbonate.

【0019】また加熱温度については、250℃であれ
ば例えば2時間程度加熱することにより酸化銅が得られ
るが,200℃では熱分解しない。220℃では示差熱
分析においても熱分解しきれていないことを把握してい
ることから、250℃以上で加熱することが必要である
が、熱分解の時間を短くして生産効率を高くするために
は350℃以上であることが好ましい。800℃を越え
ると、得られる酸化銅の易溶解性が小さくなってしまう
ので800℃以下であることが必要である。更により易
溶解性の大きな酸化銅を得ようとすると600℃以下に
することが好ましい。
As for the heating temperature, copper oxide can be obtained by heating for about 2 hours at 250 ° C., for example, but not thermally decomposed at 200 ° C. At 220 ° C, it is necessary to heat at 250 ° C or higher because it is understood that thermal decomposition has not been completed even by differential thermal analysis. Is preferably 350 ° C. or higher. If the temperature exceeds 800 ° C., the solubility of the obtained copper oxide becomes small, so the temperature must be 800 ° C. or less. In order to obtain copper oxide having higher solubility, the temperature is preferably set to 600 ° C. or lower.

【0020】このようにして酸化銅を得た後、この酸化
銅を洗浄液である純水の入った洗浄槽5内に投入し、撹
拌手段51により撹拌して水洗する。そしてバルブ52
を開いて水と酸化銅との混合スラリ−を洗浄槽5から抜
き出し、遠心分離機6またはろ過機により水分を飛ばし
てから乾燥機7で乾燥させ、粉体である酸化銅を得る。
洗浄液としては蒸留水やイオン交換水などの純水を用い
ることができるが、その他それより不純分が少ない水、
例えば超純水などを用いることもできる。
After the copper oxide is thus obtained, the copper oxide is put into a cleaning tank 5 containing pure water as a cleaning liquid, and the copper oxide is stirred by a stirring means 51 and washed with water. And the valve 52
Is opened, a mixed slurry of water and copper oxide is extracted from the washing tank 5, and water is removed by a centrifugal separator 6 or a filter, followed by drying by a dryer 7, thereby obtaining copper oxide as powder.
Pure water such as distilled water or ion-exchanged water can be used as the washing liquid, but water with less impurities than that,
For example, ultrapure water can be used.

【0021】ここで酸化銅を銅メッキ材料の補給材とし
て用いた銅メッキ方法を実施する装置の一例を図2に示
しておく。図2中8はメッキ浴槽であり、この中に電解
液である硫酸に酸化銅を溶解したメッキ浴が満たされて
いると共に、直流電源Eの正極側に接続された不溶性陽
極81例えばチタン板に白金属の白金イリジウムを7:
3の割合でコーディングしたものと、直流電源Eの負極
側に接続された陰極である被メッキ材82例えば被メッ
キ用金属板とが浸漬されている。83は溶解槽であり、
メッキ浴槽8内の銅イオンが少なくなってきたときに、
補給源であるホッパ84から酸化銅の粉体を溶解槽83
内に所定量補給し、撹拌手段85により撹拌して硫酸に
溶解させた後、ポンプP1,P2を作動させてメッキ浴
を循環させ、その後次の銅メッキ処理を行う。Fはフィ
ルタである。
FIG. 2 shows an example of an apparatus for performing a copper plating method using copper oxide as a replenishing material for a copper plating material. In FIG. 2, reference numeral 8 denotes a plating bath, which is filled with a plating bath obtained by dissolving copper oxide in sulfuric acid as an electrolytic solution, and is provided with an insoluble anode 81 such as a titanium plate connected to the positive electrode of the DC power source E. White metal platinum iridium 7:
3 is immersed in a material to be plated 82 such as a metal plate to be plated, which is a cathode connected to the negative electrode side of the DC power supply E. 83 is a dissolution tank,
When the amount of copper ions in the plating bath 8 decreases,
A copper oxide powder is supplied from a hopper 84 serving as a replenishing source to a melting tank 83.
After a predetermined amount is supplied to the inside, the mixture is stirred by the stirring means 85 and dissolved in sulfuric acid, and then the pumps P1 and P2 are operated to circulate the plating bath, and then the next copper plating treatment is performed. F is a filter.

【0022】上述の実施例によれば、塩基性炭酸銅を2
50〜800℃で熱分解しているので後述の実施例から
も分かるように得られた酸化銅は易溶解性が大きく、ま
た還元雰囲気で熱分解していないため、亜酸化銅や金属
銅といった不溶解残渣となる成分の生成が抑えられ、酸
化銅を銅メッキ材料として使用する場合にフィルターに
ほとんど負荷がかからないと共に銅メッキ浴中の銅イオ
ンの濃度が安定する。
According to the above example, the basic copper carbonate is
As can be seen from the examples described later, the obtained copper oxide has high solubility and is thermally decomposed at 50 to 800 ° C., and is not thermally decomposed in a reducing atmosphere. The generation of components that become insoluble residues is suppressed, and when copper oxide is used as a copper plating material, a load is hardly applied to the filter, and the concentration of copper ions in the copper plating bath is stabilized.

【0023】そして塩基性炭酸銅には、その原料に応じ
た陰イオン及び陽イオンが含まれる。例えば塩化第二銅
(CuCl2 )の水溶液と炭酸ナトリウム(Na2 CO
3 )の水溶液とを原料とする場合、Clイオン及びNa
イオンが塩基性炭酸銅に含まれ、例えば塩化第二銅の代
わりに硫酸第二銅(CuSO4 )を用いた場合にはNa
イオンとSO4 イオン体のSが含まれることになる。こ
れらClイオンあるいはSO4 イオン体のS、Na,K
などは塩基性炭酸銅を洗浄してもほとんど減少、精製す
ることはできないが、後述の実施例にも裏付けされてい
るように塩基性炭酸銅を熱分解して酸化銅に変えた後洗
浄すると、これら不純物を低減することができる。また
従って銅メッキ材料として用いた場合に、不純物濃度が
管理上の上限に達するまでの時間が長くなるので、建浴
に至るまでの時間が長くなり、コストアップを抑えるこ
とができる。
The basic copper carbonate contains anions and cations according to the raw materials. For example, an aqueous solution of cupric chloride (CuCl2) and sodium carbonate (Na2 CO3)
3) When using the aqueous solution as the raw material, Cl ion and Na
When ions are contained in the basic copper carbonate, for example, when cupric sulfate (CuSO4) is used instead of cupric chloride, Na
The ion and S of the SO4 ion body are included. S, Na, K of these Cl ions or SO4 ions
Although it can hardly be reduced and purified even if the basic copper carbonate is washed, as described in the examples below, when the basic copper carbonate is thermally decomposed into copper oxide and then washed, , These impurities can be reduced. Therefore, when used as a copper plating material, the time required for the impurity concentration to reach the upper limit in management becomes longer, so that the time required for building the bath becomes longer, and an increase in cost can be suppressed.

【0024】[0024]

【実施例】(実施例1−1)先の実施の形態において塩
基性炭酸銅を400℃でおよそ60分間加熱して熱分解
して酸化銅を得た。
EXAMPLES (Example 1-1) In the above embodiment, the basic copper carbonate was heated at 400 ° C. for about 60 minutes and thermally decomposed to obtain copper oxide.

【0025】(実施例1−2)先の実施の形態において
塩基性炭酸銅を600℃でおよそ60分間加熱して熱分
解して酸化銅を得た。
(Example 1-2) In the above embodiment, the basic copper carbonate was heated at 600 ° C for about 60 minutes and thermally decomposed to obtain copper oxide.

【0026】(実施例1−3)先の実施の形態において
塩基性炭酸銅を700℃でおよそ60分間加熱して熱分
解して酸化銅を得た。
(Example 1-3) In the above embodiment, the basic copper carbonate was heated at 700 ° C for about 60 minutes and thermally decomposed to obtain copper oxide.

【0027】(実施例1−4)先の実施の形態において
塩基性炭酸銅を750℃でおよそ60分間加熱して熱分
解して酸化銅を得た。
(Example 1-4) In the above embodiment, the basic copper carbonate was heated at 750 ° C for about 60 minutes and thermally decomposed to obtain copper oxide.

【0028】(実施例1−5)先の実施の形態において
塩基性炭酸銅を800℃でおよそ60分間加熱して熱分
解して酸化銅を得た。
(Example 1-5) In the above embodiment, the basic copper carbonate was heated at 800 ° C. for about 60 minutes and thermally decomposed to obtain copper oxide.

【0029】(比較例1)先の実施の形態において塩基
性炭酸銅を900℃でおよそ60分間加熱して熱分解し
て酸化銅を得た。
Comparative Example 1 In the above embodiment, the basic copper carbonate was heated at 900 ° C. for about 60 minutes and thermally decomposed to obtain copper oxide.

【0030】酸化銅を銅メッキ材料として銅メッキ浴に
補給したときの溶解性を把握するために、実施例1−1
〜1−5及び比較例1の酸化銅を夫々H2 S04 濃度が
245g/リットルである硫酸水溶液10リットルに5
50g投入し、溶解させた。各サンプルにおける溶解過
程の液の導電率を測定したところ図3に示す結果が得ら
れた。図4及び図5は、この結果を導電率の経時変化と
してグラフ化したものである。導電率の値が一定になっ
た時点を溶解終了とし、酸化銅粉の投入から溶解終了時
点までの時間を測定してそれを溶解時間とすると、各サ
ンプルにおける溶解時間は図6に示す通りである。この
結果から塩基性炭酸銅の熱分解時の温度が800℃まで
は易溶解性が高いが、900℃になると易溶解性が低く
なることが分かる。また熱分解時の温度が800℃から
600℃に下がるにつれて溶解時間が短くなっているの
で(易溶解性が大くなっている)ので、800℃よりも
低い温度例えば600℃以下であることがより好まし
い。温度が高い方が易溶解性が低くなる理由は、分解し
て出来た酸化銅の固相焼結が進むためであると考えられ
る。 (実施例2)先の実施の形態において塩基性炭酸銅を4
00℃でおよそ60分間加熱して熱分解して酸化銅を得
た。
In order to determine the solubility when copper oxide was supplied to the copper plating bath as copper plating material, Example 1-1 was used.
1-5 and the copper oxide of Comparative Example 1 were added to 10 liters of a sulfuric acid aqueous solution having an H2 S04 concentration of 245 g / liter.
50 g was charged and dissolved. When the conductivity of the liquid in the dissolving process of each sample was measured, the results shown in FIG. 3 were obtained. FIG. 4 and FIG. 5 are graphs showing the results as a change with time of the conductivity. When the time when the value of the electrical conductivity becomes constant is defined as the end of dissolution, and the time from the introduction of the copper oxide powder to the end of the dissolution is measured and defined as the dissolution time, the dissolution time in each sample is as shown in FIG. is there. From these results, it can be seen that the solubility is high up to a temperature of 800 ° C. at the time of thermal decomposition of the basic copper carbonate, but the solubility becomes low at a temperature of 900 ° C. In addition, since the dissolving time becomes shorter as the temperature at the time of thermal decomposition decreases from 800 ° C. to 600 ° C. (the solubility becomes larger), the temperature may be lower than 800 ° C., for example, 600 ° C. or less. More preferred. It is considered that the reason that the higher the temperature is, the lower the solubility becomes, is that the solid phase sintering of copper oxide formed by decomposition proceeds. (Example 2) In the above embodiment, the basic copper carbonate was replaced with 4
It was heated at 00 ° C. for about 60 minutes and thermally decomposed to obtain copper oxide.

【0031】(比較例2−1)バ−ナで直接加熱できる
還元雰囲気が存在するロ−タリ−キルンを用いた他は実
施例2と同様にして酸化銅を得た。
Comparative Example 2-1 Copper oxide was obtained in the same manner as in Example 2 except that a rotary kiln having a reducing atmosphere capable of directly heating with a burner was used.

【0032】(比較例2−2)塩基性炭酸銅の熱分解の
温度を900℃とした他は実施例2と同様にして酸化銅
を得た。
(Comparative Example 2-2) Copper oxide was obtained in the same manner as in Example 2 except that the temperature of the thermal decomposition of basic copper carbonate was changed to 900 ° C.

【0033】実施例2、比較例2−1、比較例2−2の
酸化銅を夫々H2 S04 濃度が245g/リットルであ
る硫酸水溶液10リットルに550g投入し、溶解させ
た。溶解終了後、液を濾過して濾紙上に残った不溶解残
渣量を測定したところ、図5に示す結果が得られた。こ
の結果から、塩基性炭酸銅を還元雰囲気で熱分解すると
不溶解残渣量が多く、還元雰囲気でなくとも900℃も
の高温で熱分解すると還元雰囲気に比べてかなり不溶解
残渣量は少ないが、まだ高い値を示しており、これに対
して本発明によれば不溶解残渣量が極めて低減できるこ
とが分かる。
550 g of the copper oxide of Example 2, Comparative Example 2-1 and Comparative Example 2-2 was added to and dissolved in 10 liters of a sulfuric acid aqueous solution having an H2S04 concentration of 245 g / liter. After the dissolution was completed, the solution was filtered and the amount of the undissolved residue remaining on the filter paper was measured. The result shown in FIG. 5 was obtained. From this result, when the basic copper carbonate is thermally decomposed in a reducing atmosphere, the amount of the insoluble residue is large, and when the basic copper carbonate is thermally decomposed at a high temperature of 900 ° C. without the reducing atmosphere, the amount of the insoluble residue is considerably smaller than that in the reducing atmosphere. This shows a high value, which indicates that according to the present invention, the amount of insoluble residue can be extremely reduced.

【0034】(実施例3)先の実施の形態において塩基
性炭酸銅を400℃でおよそ60分間加熱して熱分解し
て酸化銅を得、以下の水洗条件で水洗し、水洗前後の酸
化銅中に含まれるNa,Clの濃度をICP−AES
(誘導プラズマ発光分光分析計)やタイトレーターによ
り調べたところ図6に示す結果が得られた。水洗条件:
酸化銅粉500gを水4500gに投入し、10分間撹
拌し、その後濾過、水洗する。水洗は酸化銅粉500g
に対して水5000gを使用した。塩基性炭酸銅の場合
には水洗してもNa,Clの濃度を低減することができ
ないが、酸化銅においては水洗が不純物濃度の低減に非
常に有効であることが分かる。
Example 3 In the above embodiment, the basic copper carbonate was heated at 400 ° C. for about 60 minutes and thermally decomposed to obtain copper oxide, which was washed under the following washing conditions, and before and after washing. The concentration of Na and Cl contained in ICP-AES
(Induction Plasma Emission Spectrometer) and a titrator gave the results shown in FIG. Washing conditions:
500 g of copper oxide powder is added to 4500 g of water, stirred for 10 minutes, and then filtered and washed with water. Washing with copper oxide powder 500g
5000 g of water was used. In the case of basic copper carbonate, the concentration of Na and Cl cannot be reduced by washing with water, but it can be seen that washing with copper oxide is very effective in reducing the concentration of impurities.

【0035】(実施例4)塩素濃度(Cl濃度)が約2
0ppmである酸化銅を銅補給剤として電気メッキを下
記条件で実施した。
(Example 4) The chlorine concentration (Cl concentration) is about 2
Electroplating was carried out under the following conditions using 0 ppm of copper oxide as a copper supplement.

【0036】 電気メッキ条件 ・陽極 :チタンに白金族(Pt:Ir=7:3)を被 覆したもの ・陰極 :銅板 ・電極面積 :10cm×10cm ・電流密度、電流、電圧 :1A/dm2 ,1A,2,2 V ・銅濃度 Cuとして18g/リットル ・硫酸濃度 H2 S04 として180g/リットル 開始時のメッキ浴中の塩素濃度を約20ppmに調整し
た。銅濃度を一定に保持するように酸化銅を供給した場
合、浴中の塩素濃度は増加せず、逆に減少した。このた
め浴中の塩素濃度を一定に維持するために塩素分を5〜
20ppm/日添加している。この結果から、供給した
酸化銅に含まれる塩素量よりも、陽極からの塩素発生量
が多いと考えられる。最終的に得られた陰極の表面は非
常に平坦で平滑であった。
Electroplating conditions Anode: titanium coated with platinum group (Pt: Ir = 7: 3) Cathode: copper plate Electrode area: 10 cm × 10 cm Current density, current, voltage: 1 A / dm 2, 1A, 2,2 V Copper concentration 18 g / l as Cu Cu sulfuric acid concentration 180 g / l as H2 S04 The chlorine concentration in the plating bath at the start was adjusted to about 20 ppm. When copper oxide was supplied so as to keep the copper concentration constant, the chlorine concentration in the bath did not increase but instead decreased. Therefore, in order to keep the chlorine concentration in the bath constant, the chlorine content should be 5 to 5.
20 ppm / day is added. From this result, it is considered that the amount of chlorine generated from the anode is larger than the amount of chlorine contained in the supplied copper oxide. The surface of the finally obtained cathode was very flat and smooth.

【0037】(比較例4)塩素濃度が約140ppmで
ある酸化銅を銅補給剤として電気メッキを上記の実施例
4と同一の条件で実施した。
(Comparative Example 4) Electroplating was carried out under the same conditions as in Example 4 above, using copper oxide having a chlorine concentration of about 140 ppm as a copper supplement.

【0038】開始時のメッキ浴中の塩素濃度を約20p
pmに調整した。銅濃度を一定に保持するように酸化銅
を供給した場合、メッキ浴中で2〜4ppm/日の塩素
濃度の増加が起こった。これは陽極からの塩素発生量よ
りも、供給した酸化銅に含まれる塩素量の方が大きいこ
とが原因であると考えられる。40日間経過後、メッキ
浴中の塩素濃度は約150ppmとなった。最終的に得
られた陰極の表面は実施例4に比較して粗面となった。
The chlorine concentration in the plating bath at the start is about 20 p.
pm. When copper oxide was supplied to keep the copper concentration constant, an increase in chlorine concentration of 2-4 ppm / day occurred in the plating bath. This is considered to be because the amount of chlorine contained in the supplied copper oxide is larger than the amount of chlorine generated from the anode. After 40 days, the chlorine concentration in the plating bath was about 150 ppm. The surface of the finally obtained cathode was rougher than that of Example 4.

【0039】[0039]

【発明の効果】以上のように本発明によれば、易溶解性
が高く、不溶解残渣の生成を抑えることのできる易溶解
性酸化銅が得られる。また易溶解性酸化銅を洗浄するこ
とにより高純度のものが得られ、例えば電解メッキにお
ける銅メッキ材料として好適に用いることができる。そ
してこの易溶解性酸化銅を銅メッキ材料として電解メッ
キを行うと、良好なメッキ処理を行うことができ、また
建浴に至るまでの時間が長くなり、コストアップを抑え
ることができる。
As described above, according to the present invention, an easily soluble copper oxide having high solubility and capable of suppressing generation of an insoluble residue can be obtained. In addition, high-purity copper oxide can be obtained by washing the easily soluble copper oxide, and can be suitably used, for example, as a copper plating material in electrolytic plating. When electroplating is performed using this easily soluble copper oxide as a copper plating material, favorable plating treatment can be performed, and the time required to reach a building bath can be increased, thereby suppressing an increase in cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の易溶解性酸化銅の製造方法の実施の形
態を示す工程図である。
FIG. 1 is a process chart showing an embodiment of a method for producing a readily soluble copper oxide according to the present invention.

【図2】本発明のメッキ方法に用いられるメッキ処理装
置の一例を示す構成図である。
FIG. 2 is a configuration diagram showing an example of a plating apparatus used in the plating method of the present invention.

【図3】塩基性炭酸銅の熱分解温度をパラメ−タとし、
酸化銅を硫酸に投入したときの導電率の経時変化を表と
して表わした説明図である。
FIG. 3 shows the thermal decomposition temperature of basic copper carbonate as a parameter,
FIG. 3 is an explanatory diagram showing a change over time in conductivity when copper oxide is introduced into sulfuric acid as a table.

【図4】図3に示す導電率の経時変化をグラフとして表
わした説明図である。
FIG. 4 is an explanatory diagram showing a change with time of the conductivity shown in FIG. 3 as a graph.

【図5】図3に示す導電率の経時変化をグラフとして表
わした説明図である。
FIG. 5 is an explanatory diagram showing a change over time in the conductivity shown in FIG. 3 as a graph.

【図6】図3の結果に基づいて、各熱分解温度で得られ
た酸化銅の溶解時間を示す説明図である。
FIG. 6 is an explanatory diagram showing the dissolution time of copper oxide obtained at each pyrolysis temperature based on the results of FIG.

【図7】塩基性炭酸銅の熱分解の条件と不溶解残渣量と
の関係を示す説明図である。
FIG. 7 is an explanatory diagram showing the relationship between the conditions for thermal decomposition of basic copper carbonate and the amount of insoluble residue.

【図8】酸化銅の水洗の有無と不純物量との関係を示す
説明図である。
FIG. 8 is an explanatory diagram showing a relationship between the presence / absence of water washing of copper oxide and an impurity amount.

【符号の説明】[Explanation of symbols]

1 反応槽 2 遠心分離機 3 乾燥機 4 加熱炉 5 洗浄槽 6 遠心分離機 7 乾燥機 8 電解槽 81 不溶性陽極 82 陰極である被メッキ体 83 溶解槽 84 ホッパ DESCRIPTION OF SYMBOLS 1 Reaction tank 2 Centrifuge 3 Dryer 4 Heating furnace 5 Cleaning tank 6 Centrifuge 7 Dryer 8 Electrolytic tank 81 Insoluble anode 82 Cathode to be plated 83 Melting tank 84 Hopper

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年9月14日(2000.9.1
4)
[Submission date] September 14, 2000
4)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図1[Correction target item name] Fig. 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図1】 FIG.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図2[Correction target item name] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図2】 FIG. 2

【手続補正3】[Procedure amendment 3]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図3[Correction target item name] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図3】 FIG. 3

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 塩基性炭酸銅を還元雰囲気とはならない
雰囲気下で250℃〜800℃に加熱して熱分解するこ
とにより易溶解性酸化銅を得ることを特徴とする易溶解
性酸化銅の製造方法。
1. An easily soluble copper oxide, which is obtained by heating a basic copper carbonate to 250 ° C. to 800 ° C. in an atmosphere which does not become a reducing atmosphere and thermally decomposing the same to obtain easily soluble copper oxide. Production method.
【請求項2】 塩基性炭酸銅を還元雰囲気とはならない
雰囲気下で250℃〜800℃に加熱して熱分解するこ
とにより易溶解性酸化銅を得る工程と、 次いでこの易溶解性酸化銅を水洗する工程と、を含むこ
とを特徴とする易溶解性酸化銅の製造方法。
2. A step of heating a basic copper carbonate to 250 ° C. to 800 ° C. in an atmosphere which does not become a reducing atmosphere to thermally decompose the same, thereby obtaining a readily soluble copper oxide. A method of producing easily soluble copper oxide, which comprises a step of washing with water.
【請求項3】 塩基性炭酸銅は、塩化銅、硫酸銅または
硝酸銅の水溶液とアルカリ金属、アルカリ土類金属また
はNH4 の炭酸塩の水溶液とを混合して加熱しながら反
応させ、これにより析出した反応生成物を濾過分離して
得ることを特徴とする請求項1または2記載の易溶解性
酸化銅の製造方法。
3. The basic copper carbonate is mixed with an aqueous solution of copper chloride, copper sulfate or copper nitrate and an aqueous solution of an alkali metal, an alkaline earth metal or a carbonate of NH4 and reacted while heating. 3. The method for producing easily soluble copper oxide according to claim 1, wherein the obtained reaction product is obtained by filtration.
【請求項4】 塩基性炭酸銅を還元雰囲気とはならない
雰囲気下で250℃〜800℃に加熱して熱分解するこ
とにより生成されたことを特徴とする易溶解性酸化銅。
4. An easily soluble copper oxide produced by heating basic pyrocarbonate to 250 ° C. to 800 ° C. in an atmosphere which does not become a reducing atmosphere and thermally decomposing it.
【請求項5】 塩基性炭酸銅を還元雰囲気とはならない
雰囲気下で250℃〜800℃に加熱することにより熱
分解し、次いで水洗することにより得られたことを特徴
とする易溶解性酸化銅。
5. An easily soluble copper oxide obtained by thermally decomposing basic copper carbonate by heating it to 250 ° C. to 800 ° C. in an atmosphere which does not become a reducing atmosphere, and then washing it with water. .
【請求項6】 塩基性炭酸銅は、アルカリ金属、アルカ
リ土類金属またはNH4 の炭酸塩の水溶液と塩化銅、硫
酸銅または硝酸銅の水溶液とを混合して加熱しながら反
応させ、これにより析出した反応生成物を濾過分離して
得られたものであることを特徴とする請求項4または5
記載の易溶解性酸化銅。
6. The basic copper carbonate is mixed with an aqueous solution of an alkali metal, an alkaline earth metal or a carbonate of NH4 and an aqueous solution of copper chloride, copper sulfate or copper nitrate and reacted while heating. The reaction product obtained by filtration and separation is obtained.
The easily soluble copper oxide as described.
【請求項7】 不溶性陽極と陰極をなす被メッキ体とが
設けられた電解液に供給される銅メッキ材料において、 請求項4、5または6記載の易溶解性酸化銅からなるこ
とを特徴とする銅メッキ材料。
7. A copper plating material supplied to an electrolytic solution provided with an insoluble anode and an object to be plated serving as a cathode, comprising a readily soluble copper oxide according to claim 4, 5 or 6. Copper plating material.
【請求項8】 請求項4、5または6記載の易溶解性酸
化銅を、不溶性陽極と陰極をなす被メッキ体とが設けら
れた電解液に銅メッキ材料として供給し、被メッキ体に
銅メッキを施すことを特徴とする銅メッキ方法。
8. An easily soluble copper oxide according to claim 4, 5 or 6, which is supplied as a copper plating material to an electrolytic solution provided with an insoluble anode and an object to be plated serving as a cathode, and copper is added to the object to be plated. A copper plating method characterized by plating.
JP2000267018A 2000-09-04 2000-09-04 Manufacturing method of copper plating material Expired - Lifetime JP4033616B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2000267018A JP4033616B2 (en) 2000-09-04 2000-09-04 Manufacturing method of copper plating material
TW090121323A TW539652B (en) 2000-09-04 2001-08-29 Material for copper electroplating, method for manufacturing same and copper electroplating method
DE10143076A DE10143076B4 (en) 2000-09-04 2001-09-03 A method of making a copper plating material and copper plating material obtainable by the method
KR10-2001-0053773A KR100539652B1 (en) 2000-09-04 2001-09-03 Manufacturing method of electrolytic copper plating materials, electrolytic copper plating material and copper plating method
US09/944,344 US20020053518A1 (en) 2000-09-04 2001-09-04 Material for copper electroplating, method for manufacturing same and copper electroplating method
CNB011324597A CN1170010C (en) 2000-09-04 2001-09-04 Copper plated material, its manufacturing method and method for copper plating
HK02104082.9A HK1043162B (en) 2000-09-04 2002-05-31 Material for copper electroplating, method for manufacturing same and copper electroplating method
KR1020050078530A KR100683598B1 (en) 2000-09-04 2005-08-26 Manufacturing method of electrolytic copper plating materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000267018A JP4033616B2 (en) 2000-09-04 2000-09-04 Manufacturing method of copper plating material

Publications (2)

Publication Number Publication Date
JP2002068743A true JP2002068743A (en) 2002-03-08
JP4033616B2 JP4033616B2 (en) 2008-01-16

Family

ID=18754006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000267018A Expired - Lifetime JP4033616B2 (en) 2000-09-04 2000-09-04 Manufacturing method of copper plating material

Country Status (1)

Country Link
JP (1) JP4033616B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100650488B1 (en) * 2004-06-18 2006-11-29 쯔루미소다 가부시끼가이샤 Copper Plating Material and Copper Plating Method
JP2007169135A (en) * 2005-12-26 2007-07-05 Dowa Holdings Co Ltd Basic copper carbonate, copper oxide, and method for producing copper oxide
KR100840553B1 (en) 2007-06-12 2008-06-23 에코 서비스 코리아(주) Method for preparing high purity copper oxide containing a trace amount of chlorine from waste etchant
KR101153972B1 (en) 2011-09-28 2012-06-08 씨피텍 주식회사 Process for preparing copper oxide from basic copper carbonate
JP2012144414A (en) * 2011-01-14 2012-08-02 Sumitomo Metal Mining Co Ltd High purity cupric oxide fine powder, method for producing the same, and method for feeding copper ion to copper sulfate aqueous solution using high purity cupric oxide fine powder
JP2012184154A (en) * 2011-02-14 2012-09-27 Sumitomo Metal Mining Co Ltd Method of manufacturing high-purity cupric oxide fine powder, and method of feeding copper ion of copper sulfate aqueous solution
JP2012201515A (en) * 2011-03-23 2012-10-22 Sumitomo Metal Mining Co Ltd Method for producing soluble cupric oxide powder, soluble cupric oxide fine powder, and copper ion feeding method to copper sulfate aqueous solution
JP2015157741A (en) * 2014-02-21 2015-09-03 金居開發股▲分▼有限公司 Manufacturing method of copper oxide and manufacturing facility of copper oxide
KR20200032101A (en) * 2017-07-31 2020-03-25 멜텍스 가부시키가이샤 Electrolytic copper plating anode and electrolytic copper plating device using the same
WO2021112209A1 (en) * 2019-12-06 2021-06-10 三菱マテリアル株式会社 Method for producing copper oxide powder, and copper oxide powder

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100650488B1 (en) * 2004-06-18 2006-11-29 쯔루미소다 가부시끼가이샤 Copper Plating Material and Copper Plating Method
JP2007169135A (en) * 2005-12-26 2007-07-05 Dowa Holdings Co Ltd Basic copper carbonate, copper oxide, and method for producing copper oxide
KR100840553B1 (en) 2007-06-12 2008-06-23 에코 서비스 코리아(주) Method for preparing high purity copper oxide containing a trace amount of chlorine from waste etchant
JP2012144414A (en) * 2011-01-14 2012-08-02 Sumitomo Metal Mining Co Ltd High purity cupric oxide fine powder, method for producing the same, and method for feeding copper ion to copper sulfate aqueous solution using high purity cupric oxide fine powder
JP2012184154A (en) * 2011-02-14 2012-09-27 Sumitomo Metal Mining Co Ltd Method of manufacturing high-purity cupric oxide fine powder, and method of feeding copper ion of copper sulfate aqueous solution
JP2012201515A (en) * 2011-03-23 2012-10-22 Sumitomo Metal Mining Co Ltd Method for producing soluble cupric oxide powder, soluble cupric oxide fine powder, and copper ion feeding method to copper sulfate aqueous solution
KR101153972B1 (en) 2011-09-28 2012-06-08 씨피텍 주식회사 Process for preparing copper oxide from basic copper carbonate
JP2015157741A (en) * 2014-02-21 2015-09-03 金居開發股▲分▼有限公司 Manufacturing method of copper oxide and manufacturing facility of copper oxide
KR20200032101A (en) * 2017-07-31 2020-03-25 멜텍스 가부시키가이샤 Electrolytic copper plating anode and electrolytic copper plating device using the same
KR102381835B1 (en) 2017-07-31 2022-04-01 멜텍스 가부시키가이샤 Anode for electrolytic copper plating and electrolytic copper plating apparatus using same
WO2021112209A1 (en) * 2019-12-06 2021-06-10 三菱マテリアル株式会社 Method for producing copper oxide powder, and copper oxide powder

Also Published As

Publication number Publication date
JP4033616B2 (en) 2008-01-16

Similar Documents

Publication Publication Date Title
JP3879126B2 (en) Precious metal smelting method
US8277633B2 (en) Process for producing scorodite and recycling the post-scorodite-synthesis solution
CN108190938A (en) It is a kind of to give up the method that silver paste prepares high purity silver nitrate from photovoltaic
JP2014208338A (en) Method for separating and immobilizing arsenic
JP4216307B2 (en) Process for electrolytically precipitated copper
US20120325675A1 (en) Apparatus and method for recovery of valuable metals by alkali leaching
JP2002068743A (en) Method for manufacturing highly soluble copper oxide, highly soluble copper oxide, raw material for copper plating and method of copper plating
CN105905874A (en) Method of recycling tellurium from anode mud
CN105821215A (en) Method for recycling metal bismuth from anode slime
JP2016141594A (en) Production method of nickel sulfate
KR20050089783A (en) Manufacturing method of electrolytic copper plating materials
JP2008126104A (en) Method of treating arsenic-containing liquid
JPH01176227A (en) High-purity chromium chloride water solution and production therefof
JP2004299974A (en) Method of producing high purity easily dissolvable copper oxide, high purity easily dissolvable copper oxide, copper plating material and copper plating method
JP4113519B2 (en) Copper plating material and copper plating method
JP5702272B2 (en) Treatment method of bismuth electrolytic deposits
JP2003166100A (en) Copper powder used for copper plating, and method for using copper powder
JPH05319825A (en) Production of cuprous oxide
JP2009209421A (en) Method for producing high purity silver
JP2010043359A (en) Method for producing scorodite and method for recycling after-synthesis-solution of scorodite
JP2927352B1 (en) Etching waste liquid recycling method and its apparatus
JP2003183023A (en) Method for producing copper carbonate and copper oxide
CN115074783B (en) Preparation method of 5N high-purity silver
JPH06172881A (en) Desilvering or silver recovering method
JP3839653B2 (en) Method for producing basic copper carbonate for electrolytic plating

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071023

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4033616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term