JP2004299974A - Method of producing high purity easily dissolvable copper oxide, high purity easily dissolvable copper oxide, copper plating material and copper plating method - Google Patents

Method of producing high purity easily dissolvable copper oxide, high purity easily dissolvable copper oxide, copper plating material and copper plating method Download PDF

Info

Publication number
JP2004299974A
JP2004299974A JP2003095539A JP2003095539A JP2004299974A JP 2004299974 A JP2004299974 A JP 2004299974A JP 2003095539 A JP2003095539 A JP 2003095539A JP 2003095539 A JP2003095539 A JP 2003095539A JP 2004299974 A JP2004299974 A JP 2004299974A
Authority
JP
Japan
Prior art keywords
copper
chloride
copper oxide
carbonate
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003095539A
Other languages
Japanese (ja)
Inventor
Shiroshi Matsuki
詩路士 松木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsurumi Soda Co Ltd
Original Assignee
Tsurumi Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsurumi Soda Co Ltd filed Critical Tsurumi Soda Co Ltd
Priority to JP2003095539A priority Critical patent/JP2004299974A/en
Publication of JP2004299974A publication Critical patent/JP2004299974A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing high purity easily dissolvable copper oxide using a copper chloride etching waste liquid as a raw material, and to provide a copper plating material which has high easy-dissolvability and high purity. <P>SOLUTION: Sodium chloride and a metal copper material are added to a copper chloride etching waste liquid to convert cupic chloride in the waste liquid into cuprous chloride, insoluble residue contents are removed from the obtained cuprous chloride aqueous solution, and thereafter, water is added to a mother liquor to precipitate cuprous chloride. The recovered cuprous chloride powder is dipped into water, and is reacted wit chlorine to obtain a cupic chloride aqueous solution, and the cupic chloride aqueous solution is used as a raw material, so that impurities in the copper oxide powder after the production can be suppressed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、塩化銅エッチング廃液を原料とした高純度易溶解性酸化銅の製造方法に関する。
【0002】
【従来の技術】
被メッキ体に銅メッキ処理を施す一つの方法として、電解液(主成分として硫酸、硫酸銅)に銅メッキ材料を供給し、不溶性陽極と陰極をなす被メッキ体との間で通電する電解メッキ法がある。この方法に用いられる銅メッキ材料としては、塩基性炭酸銅を熱分解して得られた酸化銅粉が知られている。銅メッキ材は、電解液中に適宜補給されるものであるため、硫酸に対して易溶解性であることが必要であるが、塩基性炭酸銅を熱分解して得られた酸化銅粉は易溶解性であることから好適な材料である。
【0003】
そして銅メッキ材料として使われる前記酸化銅粉を製造する方法としては、塩化第二銅を主成分とする塩化銅エッチング液により、例えば銅プリント基板などのエッチング処理を行った工場から回収された塩化銅エッチング廃液を原料として、塩基性炭酸銅を生成した後、この塩基性炭酸銅を熱分解して酸化銅粉を得る方法が知られている(特許文献1)
【特許文献1】
特許第2753855号公報
【0004】
【発明が解決しようとする課題】
上述のように塩化銅エッチング廃液を利用して銅メッキ材料である酸化銅粉を製造する方法は、廃液の有効利用を図る事ができ、また市販の塩基性炭酸銅を原料とする場合と比較してコスト的にも有利である。しかしながら、塩化銅エッチング廃液中には、エッチング時に銅プリント基板が溶け出し、銅プリント基板中に含まれていた不純物、例えばMg、Al、Si、Ca、Fe、Znなどがエッチング液中に取り込まれることから、エッチング廃液を原料とすると、得られた酸化銅粉に上記の不純物金属が混入してしまう。この酸化銅粉をメッキ材料として使用した場合、不純物がメッキ浴中に蓄積して、そのままにしておくと電気メッキに悪影響を与えるため、不純物の蓄積量が所定量に達する前に建浴する必要があるが、銅メッキ材料(補給材)に不純物が多く含まれていると建浴を頻繁に行わなければならずメッキ処理のコストが高騰するし、また手間がかかる。そこで、電解液に銅メッキ材料として酸化銅粉を供給する前に塩基性炭酸銅の段階で出来るだけ多く前記不純物を取り除いておくことが重要であるが、不純物を十分に除去することは難しい。なお、電解銅粉を酸化処理する事で不純物の少ない酸化銅を得る事は難しい。また、この場合できたとしても電解銅粉を使用するためにコストがかかり、また、メッキ液に対して易溶解性とはならない事が分かっており、採用することがができない。また、塩化銅エッチング廃液を直接中和して得られる水酸化銅や酸化銅は中和処理で混入する塩化物の分離が容易でない。
【0005】
本発明はかかる事情に鑑みてなされたものであって、本発明の目的は塩化銅エッチング廃液を原料とした高純度易溶解性酸化銅を得るにあたって、高純度な易溶解性酸化銅を製造できる方法を提供することにある。また他の目的は易溶解性が高く、高純度な銅メッキ材料を提供することにある。更に他の目的は、高純度の易溶解性酸化銅を用いた銅メッキ方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明者は、酸化銅中の不純物の多くは銅原料である塩化銅エッチング廃液に含まれている不純物であることから、不純物の少ない高純度酸化銅を得るために塩化銅エッチング廃液の精製について研究を行い、その手法を見出した。
【0007】
本発明は、塩化銅エッチング廃液中の銅分を塩化第一銅として回収する工程と、この工程で回収された塩化第一銅を塩素と反応させて塩化第二銅水溶液を得る工程と、この工程で得られた塩化第二銅水溶液を原料として塩基性炭酸銅を生成する工程と、次いで、前記塩基性炭酸銅を熱分解して酸化銅を得る工程と、を含むことを特徴とする高純度易溶解性酸化銅の製造方法である。
【0008】
前記銅分を塩化第一銅として回収する工程は、塩化銅エッチング廃液にアルカリ金属又はアルカリ土類金属の塩化物と金属銅材とを加えて、塩化第一銅水溶液を生成させる工程と、この塩化第一銅水溶液から不溶解残渣分を除去した後、母液に水を加えて塩化第一銅を析出させる工程と、を含む。ここで塩化銅エッチング廃液に加えられる上記塩化物とは、例えば塩化ナトリウム(NaCl)などのコストの安い工業塩が用いられる。また前記金属銅材としては、塩化第二鉄を主成分とするエッチング液により銅材をエッチングした後のエッチング廃液に鉄粉を供給して得られた銅粉を用いることができる。
【0009】
前記塩化第二銅水溶液を得る工程は、例えば塩化第一銅が浸漬された水中に塩素ガスを供給する工程である。前記塩基性炭酸銅を得る工程は、例えば塩化第二銅水溶液とアルカリ金属、若しくはアルカリ土類金属の炭酸塩の水溶液、或いは炭酸アンモニウムの水溶液とを混合して加熱しながら反応させ、これにより析出した反応生成物を濾過分離する工程である。また酸化銅を得る工程は、例えば塩基性炭酸銅を還元雰囲気とはならない雰囲気下で250℃〜800℃に加熱して熱分解する工程である。還元雰囲気下で加熱するとは、例えばバーナにより直接加熱するのではなく、電気炉などを用いて加熱することである。
【0010】
本発明の製法で得られた酸化銅は高い易溶解性を有しかつ高純度であるため、例えば不溶性陽極と陰極をなす被メッキ体とが設けられた電解液に供給される銅メッキ材料として好適に用いることができる。また本発明は、高純度易溶解性酸化銅の使用方法である銅メッキ方法としても成立するものであり、その方法は、上述の高純度易溶解性酸化銅を不溶性陽極と陰極をなす被メッキ体とが設けられた電解液に銅メッキ材料として供給し、被メッキ体に銅メッキを施すことを特徴とする。
【0011】
【発明の実施の形態】
図1及び図2は本発明に係る高純度易溶解性酸化銅の製造方法を実施する設備を模式的に示す説明図であり、同図を参照しながら高純度易溶解性酸化銅の製造の実施の形態について説明する。先ず塩化銅エッチング廃液、塩化ナトリウム(NaCl)例えば工業塩及び銅粉(Cu)を第1の溶解槽1内に投入し、混合液の温度が例えば45℃〜55℃となるように加熱しながら攪拌手段11により例えば1時間攪拌して反応させる。混合液の加熱は例えば溶解槽1内に図示しない散気管などからなるバブリング手段を設け、このバブリング手段から蒸気を混合液にバブリングすることにより行われる。ここで、塩化銅エッチング廃液とは、塩化第二銅を主成分とした塩酸を含むエッチング液を、銅からなる被エッチング材、例えば銅プリント基板表面をエッチングした時に塩化第二銅(CuCl)が銅(Cu)と反応して塩化第一銅(CuCl)に変わり、その塩化第一銅の濃度が高くなったものである。その組成としては、例えば塩化第二銅が19〜21重量%、塩酸が7〜8重量%含まれている。
【0012】
溶解槽1においては、廃液中の塩化第二銅と銅粉とが(1)式のように反応して塩化第二銅が塩化第一銅となり、塩化ナトリウムから生成される塩化物イオン(Cl)の存在により塩化第一銅と塩化物イオンとが反応して、銅クロロ錯体として溶解する。
CuCl+Cu→2CuCl (1)
【0013】
反応後、バルブ12を開いて塩化第一銅が溶解した溶解液及び塩化第二銅液等が混合している混合液13を吸引濾過手段14に送り、ここで混合液13から不溶解残渣(溶けきれなかった銅粉及び塩化ナトリウム)を除去して、溶解液と固形物とを分離する。塩化第一銅を塩化ナトリウムにより溶解させておく理由は、塩化第一銅が固体になっていると不溶解残渣と分別できなくなるからである。なお、ここでは第1の溶解槽1における処理をバッチ式で説明しているが連続処理として行ってもよい。固液分離されて得られた分離母液(溶解液)を、当該分離母液に対して10倍の重量比の水と共に希釈槽2内に投入し、攪拌手段21により例えば20分間攪拌して塩化第一銅を析出させる。
【0014】
その後、バルブ22を開いて混合液23を吸引濾過手段24に送り、ここで固形分である塩化第一銅を母液から分離すると共に、当該吸引濾過手段24にて洗浄液である例えば純水で塩化第一銅を水洗いをすることによって塩化第一銅表面に付着した微量な不純物を洗い流す。洗浄液としては蒸留水やイオン交換水などの純水を用いることができるが、その他それより不純物が少ない水、例えば超純水などを用いることもできる。
【0015】
洗浄後、塩化第一銅粉を、例えば予め水が貯水されている反応槽3内に投入すると共に、例えば散気管などからなるバブリング手段31から塩素ガスを反応槽3内に供給する。これにより塩化第一銅は(2)式に示すように塩素(Cl)と反応することで酸化されて塩化第二銅(CuCl)に変わり、この塩化第二銅は水溶性であるため塩化第二銅水溶液が得られる。
2CuCl+Cl→2CuCl (2)
その後、前記塩化第二銅水溶液に含まれる銅濃度が10重量%となるように水の量が反応槽3内で調整され、バルブ32を開いて、銅濃度が10重量%である塩化第二銅(CuCl)の水溶液を抜き出す。そして図2に示すように、この塩化第二銅水溶液と外部から供給されるアルカリ金属の炭酸塩、例えば炭酸ナトリウム濃度が12重量%である炭酸ナトリウム(NaCO)の水溶液とを例えば混合液のpHが8.0となるように第2の反応槽4内に投入し、混合液の温度が例えば70℃〜80℃となるように加熱しながら攪拌手段41により例えば2時間攪拌して反応させる。混合液の加熱は例えば反応槽4内に図示しない散気管などからなるバブリング手段を設け、このバブリング手段から蒸気を混合液にバブリングすることにより行われる。
【0016】
上述の反応は次のように進行する。先ず(3)式のように炭酸銅が生成され、
NaCO+CuCl→CuCO+2NaCl (3)
続いて(4)式のように炭酸銅が水和して塩基性炭酸銅の二水塩が生成され、
CuCO+3/2HO→1/2{CuCO・Cu(OH)・2HO}+1/2CO (4)
更に(5)式のように上記の二水塩から水が抜け、無水の塩基性炭酸銅が生成される。
CuCO・Cu(OH)・2HO→CuCO・Cu(OH)+2HO (5)
こうして塩基性炭酸銅が析出生成されて粉体となって沈殿する。そしてバルブ42を開いて沈殿物であるスラリーを抜き出して遠心分離機43に送り、ここで遠心分離により固形物を母液から分離し、その固形分を乾燥機44に入れて乾燥し、塩基性炭酸銅の粉体を得る。
【0017】
このようにして塩基性炭酸銅を得た後、洗浄槽45でこの塩基性酸化銅を洗浄液である例えば純水で洗浄する。洗浄液である例えば純水で塩基性炭酸銅を水洗いをすることによって塩基性炭酸銅表面に付着した微量な不純物を洗い流す。
【0018】
また、炭酸イオン源としては炭酸ナトリウムの他に炭酸水素ナトリウム、炭酸カリウムなどのアルカリ金属の炭酸塩、または炭酸カルシウム、炭酸バリウムなどのアルカリ土類金属の炭酸塩あるいは炭酸アンモニウム((NHCO)などを用いる事ができる。
【0019】
次に粉体である前記塩基性炭酸銅を加熱炉、例えばロータリキルン5に供給し、ここで例えば250℃以上で800℃以下の温度に加熱して熱分解する。この例では加熱炉として、管軸を回転軸として回転する例えばステンレス製の回転管51を僅かに傾斜して設け、この回転管51の周囲をヒータ52により囲み、回転管51を回転させることにより塩基性炭酸銅の粉体を移送するロータリキルン5を用いている。このようにして塩基性炭酸銅を加熱すれば加熱雰囲気が還元雰囲気にならない。塩基性炭酸銅を直接バーナで加熱しない理由は、還元雰囲気にすると、炭酸銅そのものや炭酸銅が酸化銅に分解された後、一部が還元されて亜酸化銅(CuO)や金属銅(Cu)を生成してしまうので、これを避けるためである。
【0020】
金属銅は、酸化銅を銅メッキ材料として使用する場合に電解液である硫酸に溶解しないか若しくは溶解し難く、不溶解残渣となり新たな濾過設備が必要となる。また金属銅や亜酸化銅ができると、メッキ浴中への補給銅量が一定とならず、メッキ品の品質がばらついてしまう。従って塩基性炭酸銅を加熱するときには還元雰囲気にしないことが必要である。
【0021】
また加熱温度については、250℃であれば例えば2時間程度加熱することにより酸化銅が得られるが、250℃以上で加熱することが好ましく、熱分解の時間を短くして生産効率を高くするためには350℃以上であることがより好ましい。800℃を越えると、得られる酸化銅の易溶解性が小さくなってしまうので800℃以下であることが好ましい。更により易溶解性の大きな酸化銅を得ようとすると600℃以下にすることが好ましい。
【0022】
このようにして酸化銅を得た後、この酸化銅を洗浄液である純水の入った洗浄槽6内に投入し、攪拌手段61により攪拌して洗浄する。そしてバルブ62を開いて水と酸化銅との混合スラリーを洗浄槽6から抜き出し、遠心分離機63又は濾過機により水分を飛ばしてから乾燥機64で乾燥させ、粉体である酸化銅を得る。
【0023】
上述の実施の形態では、塩化第二銅の還元剤として金属銅材を使用する場合、金属銅材中の銅分も塩化第一銅となり、最終的には酸化銅原料の増加につながる。このことは、原料として使用される塩化銅エッチング廃液が、今まで回収されていた予定量より少ない場合でも、還元剤として用いられる金属銅材中の銅分が塩化第一銅になることから、結果的に例えば常時回収される塩化銅エッチング廃液の予定量の場合と同等量の酸化銅を得ることができる。従って塩化銅エッチング廃液の入手量(戻り量)が不足しても予定量の酸化銅を製造することができる。また、従来比較的不純物の多い銅材は用途が限られていたが、本発明を実施することによって、銅材の不純物を多く取り除くことができることから、この銅分だけを高純度・高付加価値製品の原料として用いることもできる。
【0024】
比較的不純物の多い銅材としては、塩化第二鉄を主成分とするエッチング液の戻り廃液から回収された銅粉を挙げることができる。このエッチング液により銅からなる被エッチング材例えば銅プリント基板をエッチングすると、(6)式の反応により塩化第二鉄が銅と反応して塩化第一鉄になる。
2FeCl+Cu→2FeCl+CuCl (6)
【0025】
エッチング廃液中には、塩化第一鉄及び塩化第二鉄が含まれており、このエッチング廃液中に鉄材を加えると塩化第二鉄が塩化第一鉄になる。その後、このエッチング廃液中の銅分を回収するために鉄粉を加えると、(7)式のように置換反応が起こり、塩化第二銅が還元されて銅粉となる。
CuCl+Fe→Cu+FeCl (7)
【0026】
こうして得られた銅粉中の95%以上は銅分であるが、鉄分を数千ppm含んでいる。そのため、この銅粉は通常銅化合物原料として直接使用することができず、例えば製鋼原料の一部として使用されている。このように塩化第二鉄エッチング液の廃液から回収された銅粉は不純物を多く含むため用途が制限されているが、塩化銅エッチング廃液中の銅分を塩化第一銅として回収するために使われる金属銅は、そのうちの銅分だけが塩化第二銅から塩化第一銅に変えるための役割を果たすことから、この金属銅として上記の銅粉を用いることができ、これにより用途が制限されている当該銅粉を有効に利用することができる。
【0027】
ここで本発明によって生成された酸化銅を銅メッキ材料の補給材として用いた銅メッキ方法を実施する装置の一例を図3に示しておく。図3中8はメッキ浴槽であり、この中に電解液である硫酸に酸化銅を溶解したメッキ浴が満たされていると共に、直流電源Eの正極側に接続された不溶性陽極81例えばチタン板に白金属の白金、イリジウムを7:3の割合でコーティングしたものと、直流電源Eの負極側に接続された陰極である被メッキ材82例えば被メッキ用金属板とが浸漬されている。83は溶解槽であり、メッキ浴槽8内の銅イオンが少なくなってきたときに、補給源であるホッパ84から酸化銅の粉体を溶解槽83内に所定量補給し、攪拌手段85により攪拌して硫酸に溶解させた後、ポンプP1、P2を作動させてメッキ浴を循環させ、その後、次の銅メッキ処理を行う。Fはフィルターである。
【0028】
上述の実施の形態によれば、塩化銅エッチング廃液中の塩化第二銅から直接塩基性炭酸銅を生成するのではなく、塩化第二銅を一旦塩化第一銅に変え、更にこの塩化第一銅を塩化第二銅に変えて、当該塩化第二銅を原料として塩基性炭酸銅を生成するようにしている。従って塩化銅エッチング廃液中の塩化第二銅中に不純物が含まれていても、塩化第二銅から塩化第一銅に変わる段階で不純物が取り除かれるので、塩基性炭酸銅に取り込まれる不純物の量が極力抑えられ、この結果、高純度の易溶解性酸化銅を得ることができる。
【0029】
【実施例】
(実施例)
塩化銅エッチング廃液(銅濃度:約10重量%)1000gに塩化ナトリウム350g、銅粉120gを加え、50±5℃で1時間反応させた。反応後、吸引濾過を行うことで溶解残渣を除去した。得られた分離母液100gに対して水1000gを加え、20分間攪拌させた。その液を再度吸引濾過し、析出した塩化第一銅を4倍量の水で水洗いした。その塩化第一銅を水を入れた溶液に加え、塩素ガスを散気管を使用してバブリングさせることで塩化第一銅を塩化第二銅に酸化し、塩化第二銅水溶液とした。その後、銅濃度が10重量%となるように水を加え調節した。得られた塩化第二銅水溶液と約12重量%の炭酸ナトリウム(NaCO)水溶液を管理pH8.0、反応温度75±5℃、滞留時間2時間で連続的に反応させた。反応液を吸引濾過し、得られた塩基性炭酸銅を4倍量の水で水洗いした。次いで、塩基性炭酸銅を500℃で、2時間加熱し、熱分解させ酸化銅とした。このようにして得られた酸化銅について各金属不純物の量を調べたところ、図4の下段に示す結果が得られた。なお濃度の単位はppmである。
【0030】
(比較例)
実施例で用いたのと同じ塩化銅エッチング廃液を用いて、この塩化銅エッチング廃液を原料として当該廃液に約12重量%の炭酸ナトリウム水溶液をpHが8.0になるように加え、反応温度75±5℃、滞留時間2時間で連続的に反応させた。反応液を吸引濾過し、得られた塩基性炭酸銅を実施例と同様の処理を行い酸化銅を得た。このようにして得られた酸化銅について各金属不純物の量を調べたところ、図4の上段に示す結果が得られた。なお濃度の単位はppmである。
【0031】
(考察)
ここで塩化銅エッチング廃液と、この廃液中の塩化第二銅を塩化第一銅に変え、塩化第一銅を塩素化して得られた塩化第二銅水溶液とについて、不純物であるMg、Al、Si、Ca、Fe、Znの含有量を夫々調べたところ、図5に示す結果が得られた。この結果から分かるように塩化銅エッチング廃液中の塩化第二銅を一旦塩化第一銅に変え、更に塩化第二銅とすることにより、いわば塩化第二銅が精製されることになり、従ってこの精製された塩化第二銅を原料とすることにより、不純物の少ない酸化銅が得られ、図4に示す結果になったと思われる。
【0032】
【発明の効果】
以上のように本発明によれば、塩化銅エッチング廃液中の塩化第二銅を一旦塩化第一銅に変え、更にこの塩化第一銅を塩化第二銅に変えて原料としているため、廃液の再利用を図りながら高純度な易溶解性酸化銅を得ることができる。そしてこの酸化銅を銅メッキ材として利用することにより、良好な銅メッキを行うことができる。
【図面の簡単な説明】
【図1】本発明の高純度易溶解性酸化銅の製造方法の実施の形態を示す工程図である。
【図2】本発明の高純度易溶解性酸化銅の製造方法の実施の形態を示す工程図である。
【図3】本発明のメッキ方法に用いられるメッキ処理装置の一例示す構成図である。
【図4】精製前の酸化銅中の不純物の量と精製後の酸化銅中の不純物の量を表として表した説明図である。
【図5】精製前の塩化銅エッチング廃液中の不純物の量と精製後の塩化第二銅水溶液中の不純物の量を表として表した説明図である。
【符号の説明】
1 溶解槽
2 希釈槽
3 反応槽
4 反応槽
43 遠心分離機
44 乾燥機
45 洗浄槽
5 加熱炉
6 洗浄槽
63 遠心分離機
64 乾燥機
8 電解槽
81 不溶性陽極
82 陰極である被メッキ体
83 溶解槽
84 ホッパ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing high-purity easily soluble copper oxide using a copper chloride etching waste liquid as a raw material.
[0002]
[Prior art]
As one method of performing a copper plating process on a plated object, an electrolytic plating method in which a copper plating material is supplied to an electrolytic solution (sulfuric acid, copper sulfate as a main component) and a current is passed between the insoluble anode and the plated object forming the cathode. There is a law. As a copper plating material used in this method, a copper oxide powder obtained by thermally decomposing basic copper carbonate is known. Since the copper plating material is to be appropriately replenished in the electrolytic solution, it must be readily soluble in sulfuric acid, but the copper oxide powder obtained by thermally decomposing basic copper carbonate is It is a suitable material because it is easily soluble.
[0003]
As a method for producing the copper oxide powder used as a copper plating material, a copper chloride etching solution mainly composed of cupric chloride is used, for example, chloride recovered from a factory that has performed an etching process on a copper printed circuit board or the like. A method is known in which a basic copper carbonate is generated from a copper etching waste liquid as a raw material, and then the basic copper carbonate is thermally decomposed to obtain copper oxide powder (Patent Document 1).
[Patent Document 1]
Japanese Patent No. 2753855 [0004]
[Problems to be solved by the invention]
As described above, the method of producing copper oxide powder as a copper plating material using a copper chloride etching waste liquid can effectively utilize the waste liquid, and can be compared with a case where a commercially available basic copper carbonate is used as a raw material. It is also advantageous in terms of cost. However, in the copper chloride etching waste liquid, the copper printed circuit board dissolves during the etching, and impurities contained in the copper printed circuit board, for example, Mg, Al, Si, Ca, Fe, Zn, etc. are taken into the etching liquid. Therefore, when the etching waste liquid is used as a raw material, the above-described impurity metal is mixed into the obtained copper oxide powder. If this copper oxide powder is used as a plating material, impurities accumulate in the plating bath and if left as it is, adversely affect the electroplating. Therefore, it is necessary to set up the bath before the amount of accumulated impurities reaches a predetermined amount. However, if the copper plating material (supplementary material) contains a large amount of impurities, the bath must be performed frequently, which increases the cost of the plating process and is troublesome. Therefore, it is important to remove as much of the impurities as possible at the stage of basic copper carbonate before supplying copper oxide powder as a copper plating material to the electrolytic solution, but it is difficult to sufficiently remove the impurities. In addition, it is difficult to obtain copper oxide with few impurities by oxidizing the electrolytic copper powder. Also, even in this case, it is known that the use of electrolytic copper powder requires a high cost, and that it is not easily soluble in a plating solution, so that it cannot be adopted. Further, copper hydroxide and copper oxide obtained by directly neutralizing the copper chloride etching waste liquid cannot easily separate chlorides mixed in the neutralization treatment.
[0005]
The present invention has been made in view of such circumstances, and an object of the present invention is to obtain a high-purity easily soluble copper oxide using a copper chloride etching waste liquid as a raw material, and to produce a high-purity easily soluble copper oxide. It is to provide a method. Another object is to provide a highly pure copper plating material having high solubility. Still another object is to provide a copper plating method using high-purity easily soluble copper oxide.
[0006]
[Means for Solving the Problems]
The present inventor, since many impurities in copper oxide are impurities contained in copper chloride etching waste liquid as a copper raw material, about the purification of copper chloride etching waste liquid to obtain high purity copper oxide with less impurities I did research and found the technique.
[0007]
The present invention provides a step of recovering the copper content in the copper chloride etching waste liquid as cuprous chloride, a step of reacting the cuprous chloride recovered in this step with chlorine to obtain a cupric chloride aqueous solution, A step of producing basic copper carbonate using the aqueous cupric chloride solution obtained in the step as a raw material, and then a step of thermally decomposing the basic copper carbonate to obtain copper oxide. This is a method for producing a highly soluble copper oxide having high purity.
[0008]
The step of recovering the copper content as cuprous chloride is a step of adding an alkali metal or alkaline earth metal chloride and a metal copper material to a copper chloride etching waste liquid to generate a cuprous chloride aqueous solution, Removing the insoluble residue from the cuprous chloride aqueous solution, and then adding water to the mother liquor to precipitate cuprous chloride. Here, as the chloride added to the copper chloride etching waste liquid, an inexpensive industrial salt such as sodium chloride (NaCl) is used. Further, as the metallic copper material, copper powder obtained by supplying iron powder to an etching waste liquid after etching the copper material with an etching solution containing ferric chloride as a main component can be used.
[0009]
The step of obtaining the cupric chloride aqueous solution is, for example, a step of supplying chlorine gas into water impregnated with cuprous chloride. In the step of obtaining the basic copper carbonate, for example, an aqueous solution of cupric chloride and an aqueous solution of an alkali metal or alkaline earth metal carbonate, or an aqueous solution of ammonium carbonate are mixed and reacted while heating, thereby precipitating. This is a step of separating the reaction product by filtration. The step of obtaining copper oxide is, for example, a step of thermally decomposing basic copper carbonate by heating it to 250 ° C. to 800 ° C. in an atmosphere that does not become a reducing atmosphere. Heating in a reducing atmosphere means, for example, heating not using a burner directly but using an electric furnace or the like.
[0010]
Copper oxide obtained by the production method of the present invention has high solubility and high purity, for example, as a copper plating material supplied to the electrolytic solution provided with an insoluble anode and a body to be plated serving as a cathode It can be suitably used. The present invention is also realized as a copper plating method which is a method of using high-purity easily-soluble copper oxide, and the method comprises plating the above-described high-purity easily-soluble copper oxide with an insoluble anode and a cathode. It is characterized in that it is supplied as a copper plating material to an electrolytic solution provided with a body and copper plating is performed on the body to be plated.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
1 and 2 are explanatory views schematically showing equipment for implementing the method for producing a high-purity easily soluble copper oxide according to the present invention. Referring to FIG. An embodiment will be described. First, a copper chloride etching waste liquid, sodium chloride (NaCl), for example, an industrial salt and copper powder (Cu) are charged into the first dissolving tank 1, and the mixture is heated so that the temperature of the mixed liquid becomes, for example, 45 ° C to 55 ° C. The reaction is carried out by stirring for one hour, for example, by the stirring means 11. The heating of the mixed solution is performed by, for example, providing a bubbling unit including a diffuser tube (not shown) in the dissolving tank 1 and bubbling vapor from the bubbling unit to the mixed solution. Here, the copper chloride etching waste liquid refers to an etching solution containing hydrochloric acid containing cupric chloride as a main component, which is an etching target material made of copper, for example, cupric chloride (CuCl 2 ) when a copper printed board surface is etched. Reacts with copper (Cu) to change to cuprous chloride (CuCl), and the concentration of cuprous chloride is increased. The composition contains, for example, 19 to 21% by weight of cupric chloride and 7 to 8% by weight of hydrochloric acid.
[0012]
In the dissolution tank 1, cupric chloride and copper powder in the waste liquid react as shown in equation (1), so that cupric chloride becomes cuprous chloride and chloride ions (Cl 2) generated from sodium chloride - ) The cuprous chloride reacts with the chloride ion due to the presence of ( - ), and is dissolved as a copper chloro complex.
CuCl 2 + Cu → 2CuCl (1)
[0013]
After the reaction, the valve 12 is opened, and a mixed solution 13 in which a solution in which cuprous chloride is dissolved and a solution of cupric chloride are mixed is sent to suction filtration means 14, where the undissolved residue ( Undissolved copper powder and sodium chloride) are removed, and the solution and the solid are separated. The reason that cuprous chloride is dissolved with sodium chloride is that if cuprous chloride is solid, it cannot be separated from insoluble residues. Here, the processing in the first dissolving tank 1 is described as a batch type, but may be performed as a continuous processing. The separated mother liquor (solution) obtained by the solid-liquid separation is put into the diluting tank 2 together with water having a weight ratio of 10 times the weight of the separated mother liquor, and stirred by the stirring means 21 for 20 minutes, for example. Deposit copper.
[0014]
After that, the valve 22 is opened and the mixed solution 23 is sent to the suction filtration means 24, where the cuprous chloride which is a solid content is separated from the mother liquor, and the suction filtration means 24 converts the mixed solution 23 with pure water as a washing liquid. A small amount of impurities attached to the surface of cuprous chloride are washed away by washing cuprous water with water. As the cleaning liquid, pure water such as distilled water or ion-exchanged water can be used, but water having less impurities than that, for example, ultrapure water can also be used.
[0015]
After the washing, the cuprous chloride powder is charged into the reaction tank 3 in which water is stored in advance, for example, and chlorine gas is supplied into the reaction tank 3 from the bubbling means 31 such as an air diffuser. As a result, cuprous chloride is oxidized by reacting with chlorine (Cl) as shown in the formula (2) to be converted to cupric chloride (CuCl 2 ). An aqueous cupric solution is obtained.
2CuCl + Cl 2 → 2CuCl 2 (2)
Thereafter, the amount of water is adjusted in the reaction tank 3 so that the copper concentration contained in the cupric chloride aqueous solution becomes 10% by weight, and the valve 32 is opened to open the cupric chloride having a copper concentration of 10% by weight. An aqueous solution of copper (CuCl 2 ) is extracted. Then, as shown in FIG. 2, this cupric chloride aqueous solution is mixed with an alkali metal carbonate supplied from the outside, for example, an aqueous solution of sodium carbonate (Na 2 CO 3 ) having a sodium carbonate concentration of 12% by weight, for example. The mixture is charged into the second reaction tank 4 so that the pH of the mixture becomes 8.0, and the mixture is stirred by the stirring means 41 for, for example, 2 hours while being heated so that the temperature of the mixture is, for example, 70 ° C. to 80 ° C. Let react. The heating of the mixed solution is performed, for example, by providing a bubbling unit such as a diffuser tube (not shown) in the reaction tank 4 and bubbling steam from the bubbling unit to the mixed solution.
[0016]
The above reaction proceeds as follows. First, copper carbonate is generated as in equation (3),
Na 2 CO 3 + CuCl 2 → CuCO 3 + 2NaCl (3)
Subsequently, the copper carbonate is hydrated to form a basic copper carbonate dihydrate as shown in formula (4),
CuCO 3 + 3 / 2H 2 O → 1/2 {CuCO 3 · Cu (OH) 2 · 2H 2 O} + 1 / 2CO 2 (4)
Further, as shown in the formula (5), water escapes from the dihydrate, and anhydrous basic copper carbonate is produced.
CuCO 3 .Cu (OH) 2 .2H 2 O → CuCO 3 .Cu (OH) 2 + 2H 2 O (5)
In this way, the basic copper carbonate is precipitated and formed into a powder and precipitated. Then, the valve 42 is opened to extract the slurry, which is a precipitate, and send it to the centrifugal separator 43 where the solid matter is separated from the mother liquor by centrifugation, and the solid matter is put in the dryer 44 for drying, and the basic carbonate is dried. Obtain copper powder.
[0017]
After obtaining the basic copper carbonate in this manner, the basic copper oxide is washed in the washing tank 45 with a washing liquid such as pure water. A small amount of impurities attached to the surface of the basic copper carbonate are washed away by washing the basic copper carbonate with, for example, pure water as a cleaning liquid.
[0018]
As a carbonate ion source, in addition to sodium carbonate, carbonates of alkali metals such as sodium hydrogen carbonate and potassium carbonate, carbonates of alkaline earth metals such as calcium carbonate and barium carbonate, or ammonium carbonate ((NH 4 ) 2 ) CO 3 ) or the like can be used.
[0019]
Next, the basic copper carbonate, which is a powder, is supplied to a heating furnace, for example, a rotary kiln 5, where it is heated to a temperature of, for example, 250 ° C. or more and 800 ° C. or less to be thermally decomposed. In this example, as a heating furnace, a rotating tube 51 made of, for example, stainless steel, which rotates around the tube axis, is provided with a slight inclination. The periphery of the rotating tube 51 is surrounded by a heater 52, and the rotating tube 51 is rotated. A rotary kiln 5 for transferring basic copper carbonate powder is used. If the basic copper carbonate is heated in this way, the heating atmosphere does not become a reducing atmosphere. The reason that the basic copper carbonate is not directly heated by the burner is that, when a reducing atmosphere is used, the copper carbonate itself or the copper carbonate is decomposed into copper oxide, and then a part is reduced and the cuprous oxide (CuO 2 ) or metallic copper ( This is because Cu) is generated, and this is avoided.
[0020]
When copper oxide is used as a copper plating material, metallic copper does not dissolve in or hardly dissolves in sulfuric acid as an electrolytic solution, becomes an insoluble residue, and requires new filtration equipment. If metallic copper or cuprous oxide is produced, the amount of replenished copper in the plating bath will not be constant, and the quality of the plated product will vary. Therefore, when heating the basic copper carbonate, it is necessary not to use a reducing atmosphere.
[0021]
Regarding the heating temperature, if the temperature is 250 ° C., for example, copper oxide can be obtained by heating for about 2 hours, but it is preferable to heat at 250 ° C. or more, in order to shorten the time of thermal decomposition and increase production efficiency. The temperature is more preferably 350 ° C. or higher. If the temperature exceeds 800 ° C., the solubility of the obtained copper oxide becomes small, so that the temperature is preferably 800 ° C. or less. In order to obtain more easily soluble copper oxide, the temperature is preferably set to 600 ° C. or lower.
[0022]
After the copper oxide is thus obtained, the copper oxide is put into the cleaning tank 6 containing pure water as a cleaning liquid, and the copper oxide is stirred and washed by the stirring means 61. Then, the valve 62 is opened to take out the mixed slurry of water and copper oxide from the washing tank 6, to remove water by the centrifugal separator 63 or the filter, and then to dry it with the drier 64 to obtain copper oxide as powder.
[0023]
In the above-described embodiment, when a metallic copper material is used as a reducing agent for cupric chloride, the copper content in the metallic copper material also becomes cuprous chloride, which ultimately leads to an increase in a copper oxide raw material. This means that even if the copper chloride etching waste liquid used as a raw material is less than the planned amount that has been recovered, the copper content in the metal copper material used as the reducing agent becomes cuprous chloride, As a result, it is possible to obtain, for example, the same amount of copper oxide as the expected amount of the copper chloride etching waste liquid that is constantly collected. Therefore, even if the available amount (return amount) of the copper chloride etching waste liquid is insufficient, a predetermined amount of copper oxide can be produced. Conventionally, the use of copper materials having relatively many impurities has been limited. However, by implementing the present invention, it is possible to remove a large amount of impurities from the copper materials. It can also be used as a raw material for products.
[0024]
Examples of the copper material having a relatively large amount of impurities include copper powder recovered from a return waste liquid of an etching solution containing ferric chloride as a main component. When a material to be etched made of copper, for example, a copper printed circuit board, is etched by this etchant, ferric chloride reacts with copper to become ferrous chloride by the reaction of the formula (6).
2FeCl 3 + Cu → 2FeCl 2 + CuCl 2 (6)
[0025]
Ferrous chloride and ferric chloride are contained in the etching waste liquid, and when an iron material is added to the etching waste liquid, ferric chloride becomes ferrous chloride. Thereafter, when iron powder is added to recover the copper content in the etching waste liquid, a substitution reaction occurs as shown in equation (7), and cupric chloride is reduced to copper powder.
CuCl 2 + Fe → Cu + FeCl 2 (7)
[0026]
95% or more of the copper powder thus obtained is copper, but contains several thousand ppm of iron. Therefore, this copper powder cannot usually be used directly as a raw material for a copper compound, but is used as a part of a raw material for steelmaking, for example. Although the use of copper powder recovered from waste ferric chloride etching solution is limited due to its high content of impurities, it is used to recover copper in copper chloride etching waste solution as cuprous chloride. Metallic copper is used, since only the copper content plays a role in changing from cupric chloride to cuprous chloride, the above copper powder can be used as the metallic copper, thereby limiting the use. The said copper powder can be used effectively.
[0027]
Here, FIG. 3 shows an example of an apparatus for performing a copper plating method using the copper oxide generated by the present invention as a replenishing material for a copper plating material. In FIG. 3, reference numeral 8 denotes a plating bath, which is filled with a plating bath in which copper oxide is dissolved in sulfuric acid as an electrolytic solution, and which has an insoluble anode 81, for example, a titanium plate, connected to the positive electrode of the DC power source E. A coating of white metal, platinum and iridium at a ratio of 7: 3, and a material to be plated 82 such as a metal plate to be plated, which is a cathode connected to the negative electrode side of the DC power supply E, are immersed. Reference numeral 83 denotes a dissolving tank. When the amount of copper ions in the plating bath 8 becomes low, a predetermined amount of copper oxide powder is supplied into the dissolving tank 83 from a hopper 84, which is a supply source, and stirred by stirring means 85. After dissolving in sulfuric acid, the pumps P1 and P2 are operated to circulate the plating bath, and then the next copper plating process is performed. F is a filter.
[0028]
According to the above-described embodiment, instead of directly producing basic copper carbonate from cupric chloride in the copper chloride etching waste liquid, cupric chloride is temporarily changed to cuprous chloride, and Copper is changed to cupric chloride to produce basic copper carbonate using the cupric chloride as a raw material. Therefore, even if impurities are contained in cupric chloride in the copper chloride etching waste liquid, the impurities are removed at the stage of changing from cupric chloride to cuprous chloride, so the amount of impurities taken into basic copper carbonate Is suppressed as much as possible, and as a result, highly pure and easily soluble copper oxide can be obtained.
[0029]
【Example】
(Example)
350 g of sodium chloride and 120 g of copper powder were added to 1000 g of copper chloride etching waste liquid (copper concentration: about 10% by weight), and reacted at 50 ± 5 ° C. for 1 hour. After the reaction, dissolved residue was removed by performing suction filtration. 1000 g of water was added to 100 g of the obtained separated mother liquor, followed by stirring for 20 minutes. The solution was suction filtered again, and the precipitated cuprous chloride was washed with 4 times the amount of water. The cuprous chloride was added to the solution containing water, and chlorine gas was bubbled using a diffuser to oxidize cuprous chloride to cupric chloride to obtain a cupric chloride aqueous solution. Thereafter, water was added and adjusted so that the copper concentration became 10% by weight. The obtained aqueous cupric chloride solution and an aqueous solution of sodium carbonate (Na 2 CO 3 ) of about 12% by weight were continuously reacted at a control pH of 8.0, a reaction temperature of 75 ± 5 ° C., and a residence time of 2 hours. The reaction solution was subjected to suction filtration, and the obtained basic copper carbonate was washed with 4 times the amount of water. Next, the basic copper carbonate was heated at 500 ° C. for 2 hours to be thermally decomposed into copper oxide. When the amount of each metal impurity in the copper oxide thus obtained was examined, the results shown in the lower part of FIG. 4 were obtained. The unit of the concentration is ppm.
[0030]
(Comparative example)
Using the same copper chloride etching waste liquid as used in the examples, using the copper chloride etching waste liquid as a raw material, an aqueous solution of about 12% by weight of sodium carbonate was added to the waste liquid so that the pH became 8.0, and the reaction temperature was increased to 75%. The reaction was continuously performed at ± 5 ° C. and a residence time of 2 hours. The reaction solution was subjected to suction filtration, and the obtained basic copper carbonate was treated in the same manner as in the example to obtain copper oxide. When the amount of each metal impurity in the copper oxide thus obtained was examined, the result shown in the upper part of FIG. 4 was obtained. The unit of the concentration is ppm.
[0031]
(Discussion)
Here, regarding the copper chloride etching waste liquid and the cupric chloride aqueous solution obtained by changing cupric chloride in the waste liquid to cuprous chloride and chlorinating cuprous chloride, impurities Mg, Al, When the contents of Si, Ca, Fe, and Zn were examined, the results shown in FIG. 5 were obtained. As can be seen from the results, the cupric chloride in the copper chloride etching waste liquid is temporarily changed to cuprous chloride and further converted to cupric chloride, so to say, cupric chloride is purified. By using the purified cupric chloride as a raw material, copper oxide with few impurities was obtained, and the results shown in FIG. 4 are considered to be obtained.
[0032]
【The invention's effect】
As described above, according to the present invention, the cupric chloride in the copper chloride etching waste liquid is temporarily changed to cuprous chloride, and further, this cuprous chloride is changed to cupric chloride as a raw material. High-purity easily soluble copper oxide can be obtained while recycling. Good copper plating can be performed by using this copper oxide as a copper plating material.
[Brief description of the drawings]
FIG. 1 is a process chart showing an embodiment of a method for producing a high-purity easily soluble copper oxide of the present invention.
FIG. 2 is a process chart showing an embodiment of the method for producing a high-purity easily soluble copper oxide of the present invention.
FIG. 3 is a configuration diagram showing an example of a plating apparatus used in the plating method of the present invention.
FIG. 4 is an explanatory diagram showing the amount of impurities in copper oxide before purification and the amount of impurities in copper oxide after purification as a table.
FIG. 5 is an explanatory diagram showing the amount of impurities in a copper chloride etching waste liquid before purification and the amount of impurities in a cupric chloride aqueous solution after purification in a table.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Dissolution tank 2 Dilution tank 3 Reaction tank 4 Reaction tank 43 Centrifuge 44 Dryer 45 Cleaning tank 5 Heating furnace 6 Cleaning tank 63 Centrifugal separator 64 Dryer 8 Electrolytic tank 81 Insoluble anode 82 Cathode to be plated 83 Melting Vessel 84 Hopper

Claims (9)

塩化銅エッチング廃液中の銅分を塩化第一銅として回収する工程と、この工程で回収された塩化第一銅を塩素と反応させて塩化第二銅水溶液を得る工程と、この工程で得られた塩化第二銅水溶液を原料として塩基性炭酸銅を生成する工程と、次いで、前記塩基性炭酸銅を熱分解して酸化銅を得る工程と、を含むことを特徴とする高純度易溶解性酸化銅の製造方法。A step of recovering the copper content in the copper chloride etching waste liquid as cuprous chloride, a step of reacting the cuprous chloride recovered in this step with chlorine to obtain a cupric chloride aqueous solution, Producing a basic copper carbonate using the aqueous cupric chloride solution as a raw material, and then thermally decomposing the basic copper carbonate to obtain copper oxide, characterized by comprising: A method for producing copper oxide. 前記銅分を塩化第一銅として回収する工程は、塩化銅エッチング廃液にアルカリ金属又はアルカリ土類金属の塩化物と金属銅材とを加えて塩化第一銅水溶液を生成させる工程と、この塩化第一銅水溶液から不溶解残渣分を除去した後、母液に水を加えて塩化第一銅を析出させる工程と、を含むことを特徴とする請求項1記載の高純度易溶解性酸化銅の製造方法。The step of recovering the copper content as cuprous chloride includes a step of adding an alkali metal or alkaline earth metal chloride and a metal copper material to the copper chloride etching waste liquid to generate a cuprous chloride aqueous solution; Removing the undissolved residue from the aqueous cuprous solution, and then adding water to the mother liquor to precipitate cuprous chloride. Production method. 前記金属銅材としては、塩化第二鉄を主成分とするエッチング液により銅材をエッチングした後のエッチング廃液に鉄粉を供給して得られた銅粉を用いることを特徴とする請求項2記載の高純度易溶解性酸化銅の製造方法。3. A copper powder obtained by supplying iron powder to an etching waste liquid after etching a copper material with an etching solution containing ferric chloride as a main component, as the metal copper material. A method for producing the high-purity easily soluble copper oxide according to the above. 前記塩化第二銅水溶液を得る工程は、塩化第一銅が浸漬された水中に塩素ガスを供給する工程であることを特徴とする請求項1ないし3のいずれかに記載の高純度易溶解性酸化銅の製造方法。4. The high purity and easy solubility according to claim 1, wherein the step of obtaining the cupric chloride aqueous solution is a step of supplying a chlorine gas into water impregnated with cuprous chloride. A method for producing copper oxide. 前記塩基性炭酸銅を得る工程は、塩化第二銅水溶液とアルカリ金属、若しくはアルカリ土類金属の炭酸塩の水溶液、或いは炭酸アンモニウムの水溶液とを混合して加熱しながら反応させ、これにより析出した反応生成物を濾過分離する工程であることを特徴とする請求項1ないし4のいずれかに記載の高純度易溶解性酸化銅の製造方法。In the step of obtaining the basic copper carbonate, an aqueous solution of a cupric chloride aqueous solution and an aqueous solution of an alkali metal or alkaline earth metal carbonate, or an aqueous solution of ammonium carbonate are mixed and reacted while heating. The method for producing high-purity easily soluble copper oxide according to any one of claims 1 to 4, which is a step of filtering and separating a reaction product. 酸化銅を得る工程は、塩基性炭酸銅を還元雰囲気とはならない雰囲気下で250℃〜800℃に加熱して熱分解する工程であることを特徴とする請求項1ないし5のいずれかに記載の高純度易溶解性酸化銅の製造方法。6. The method according to claim 1, wherein the step of obtaining copper oxide is a step of thermally decomposing the basic copper carbonate by heating it to 250 ° C. to 800 ° C. in an atmosphere which does not become a reducing atmosphere. For producing highly pure and easily soluble copper oxide. 請求項1から6のいずれかの製造方法により得られたことを特徴とする高純度易溶解性酸化銅。A high-purity easily soluble copper oxide obtained by the production method according to claim 1. 不溶性陽極と陰極をなす被メッキ体とが設けられた電解液に供給される銅メッキ材料において、請求項7記載の高純度易溶解性酸化銅からなることを特徴とする銅メッキ材料。8. A copper plating material supplied to an electrolytic solution provided with an insoluble anode and an object to be plated serving as a cathode, comprising the high-purity easily soluble copper oxide according to claim 7. 請求項7記載の高純度易溶解性酸化銅を、不溶性陽極と陰極をなす被メッキ体とが設けられた電解液に銅メッキ材料として供給し、被メッキ体に銅メッキを施すことを特徴とする銅メッキ方法。The high-purity easily soluble copper oxide according to claim 7 is supplied as a copper plating material to an electrolytic solution provided with an insoluble anode and an object to be plated serving as a cathode, and the object is plated with copper. Copper plating method.
JP2003095539A 2003-03-31 2003-03-31 Method of producing high purity easily dissolvable copper oxide, high purity easily dissolvable copper oxide, copper plating material and copper plating method Pending JP2004299974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003095539A JP2004299974A (en) 2003-03-31 2003-03-31 Method of producing high purity easily dissolvable copper oxide, high purity easily dissolvable copper oxide, copper plating material and copper plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003095539A JP2004299974A (en) 2003-03-31 2003-03-31 Method of producing high purity easily dissolvable copper oxide, high purity easily dissolvable copper oxide, copper plating material and copper plating method

Publications (1)

Publication Number Publication Date
JP2004299974A true JP2004299974A (en) 2004-10-28

Family

ID=33407850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003095539A Pending JP2004299974A (en) 2003-03-31 2003-03-31 Method of producing high purity easily dissolvable copper oxide, high purity easily dissolvable copper oxide, copper plating material and copper plating method

Country Status (1)

Country Link
JP (1) JP2004299974A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1307107C (en) * 2005-04-21 2007-03-28 吴江市阮氏化工有限公司 Method for producing cuprous chloride form deposed copper chloride fluid of etching board
JP2010006658A (en) * 2008-06-27 2010-01-14 Tsurumi Soda Co Ltd Method for producing basic copper carbonate and basic copper carbonate produced by the method
JP2010105912A (en) * 2008-10-31 2010-05-13 Park Sungjong METHOD FOR PREPARING HIGH PURITY COPPER OXIDE CONTAINING A TRACE AMOUNT OF CHLORINE FROM WASTE LIQUID CONTAINING Cu(NH3)4Cl2
JP2010202457A (en) * 2009-03-03 2010-09-16 Dowa Metals & Mining Co Ltd Method for removing chlorine in acidic liquid
WO2013176110A1 (en) * 2012-05-24 2013-11-28 水ing株式会社 Method and apparatus for recovering copper oxide from copper-containing acidic waste liquids
KR101576555B1 (en) 2014-10-01 2015-12-10 (주)에이치에스켐텍 Manufacturing method of cuprous oxide
JP2018062453A (en) * 2016-10-14 2018-04-19 株式会社荏原製作所 Copper oxide powder for use in plating of substrate, method of plating substrate with copper oxide powder, and method of managing plating liquid with copper oxide powder

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1307107C (en) * 2005-04-21 2007-03-28 吴江市阮氏化工有限公司 Method for producing cuprous chloride form deposed copper chloride fluid of etching board
JP2010006658A (en) * 2008-06-27 2010-01-14 Tsurumi Soda Co Ltd Method for producing basic copper carbonate and basic copper carbonate produced by the method
JP2010105912A (en) * 2008-10-31 2010-05-13 Park Sungjong METHOD FOR PREPARING HIGH PURITY COPPER OXIDE CONTAINING A TRACE AMOUNT OF CHLORINE FROM WASTE LIQUID CONTAINING Cu(NH3)4Cl2
JP2010202457A (en) * 2009-03-03 2010-09-16 Dowa Metals & Mining Co Ltd Method for removing chlorine in acidic liquid
WO2013176110A1 (en) * 2012-05-24 2013-11-28 水ing株式会社 Method and apparatus for recovering copper oxide from copper-containing acidic waste liquids
JP2013245123A (en) * 2012-05-24 2013-12-09 Swing Corp Method and apparatus for recovering copper oxide from copper-containing acidic waste liquid
CN104395240A (en) * 2012-05-24 2015-03-04 水ing株式会社 Method and apparatus for recovering copper oxide from copper-containing acidic waste liquids
KR101576555B1 (en) 2014-10-01 2015-12-10 (주)에이치에스켐텍 Manufacturing method of cuprous oxide
JP2018062453A (en) * 2016-10-14 2018-04-19 株式会社荏原製作所 Copper oxide powder for use in plating of substrate, method of plating substrate with copper oxide powder, and method of managing plating liquid with copper oxide powder
CN107955956A (en) * 2016-10-14 2018-04-24 株式会社荏原制作所 Cupric oxide powder, the method for electroplating substrate, the method for management electroplate liquid
TWI692554B (en) * 2016-10-14 2020-05-01 日商荏原製作所股份有限公司 Copper oxide powder, method of plating a substrate, and method of managing plating solution

Similar Documents

Publication Publication Date Title
JP6299620B2 (en) Method for producing nickel sulfate
JP5370777B2 (en) Method for recovering copper from copper sulfide
JP2007297662A (en) Method for producing high purity electrolytic copper from ammonia-based copper etching waste liquid
JP2001316736A (en) Method for recovering silver
JP4216657B2 (en) Method for recovering nickel sulfate from nickel-containing waste liquid sludge
KR20120083529A (en) Method for the removal of chloride from zinc sulphate solution
JP2004299974A (en) Method of producing high purity easily dissolvable copper oxide, high purity easily dissolvable copper oxide, copper plating material and copper plating method
JP2008162823A (en) Method for producing cupric oxide from waste copper etching solution
KR20050089783A (en) Manufacturing method of electrolytic copper plating materials
JP2008127266A (en) Method for producing cupric oxide from copper etching waste liquid
WO2014181833A1 (en) Zinc production method
JP6656709B2 (en) Manufacturing method of zinc ingot
JP2002068743A (en) Method for manufacturing highly soluble copper oxide, highly soluble copper oxide, raw material for copper plating and method of copper plating
JP4113519B2 (en) Copper plating material and copper plating method
JP2002248480A (en) Method for treating copper-containing waste acid
WO2011120093A1 (en) Recovering metals from pickle liquor
JP5965213B2 (en) Method and apparatus for recovering copper oxide from copper-containing acidic waste liquid
JP2927352B1 (en) Etching waste liquid recycling method and its apparatus
US20070041883A1 (en) Process for hydrometallurgical treatment of electric arc furnace dust
JPH0489315A (en) Method for recovering copper sulfate and alkali chloride from aqueous copper chloride solution containing hydrochoric acid
JP2006176353A (en) Method for recovering hydrochloric acid and copper from copper etching waste liquid
JP2011068528A (en) Method for recovering tellurium from copper electrolysis precipitation
JP5145843B2 (en) Wet copper refining method for copper raw materials containing copper sulfide minerals
JP2019189891A (en) Method for separating selenium and tellurium from mixture containing selenium and tellurium
US712640A (en) Process of treating anode residues.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A02 Decision of refusal

Effective date: 20090310

Free format text: JAPANESE INTERMEDIATE CODE: A02