KR20200032101A - Electrolytic copper plating anode and electrolytic copper plating device using the same - Google Patents

Electrolytic copper plating anode and electrolytic copper plating device using the same Download PDF

Info

Publication number
KR20200032101A
KR20200032101A KR1020207002324A KR20207002324A KR20200032101A KR 20200032101 A KR20200032101 A KR 20200032101A KR 1020207002324 A KR1020207002324 A KR 1020207002324A KR 20207002324 A KR20207002324 A KR 20207002324A KR 20200032101 A KR20200032101 A KR 20200032101A
Authority
KR
South Korea
Prior art keywords
anode
copper plating
electrolytic copper
electrolytic
plating solution
Prior art date
Application number
KR1020207002324A
Other languages
Korean (ko)
Other versions
KR102381835B1 (en
Inventor
요시토 츠카하라
토시유키 시게마츠
Original Assignee
멜텍스 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 멜텍스 가부시키가이샤 filed Critical 멜텍스 가부시키가이샤
Publication of KR20200032101A publication Critical patent/KR20200032101A/en
Application granted granted Critical
Publication of KR102381835B1 publication Critical patent/KR102381835B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/188Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by direct electroplating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/001Apparatus specially adapted for electrolytic coating of wafers, e.g. semiconductors or solar cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • C25D7/123Semiconductors first coated with a seed layer or a conductive layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/423Plated through-holes or plated via connections characterised by electroplating method

Abstract

장치 구조를 복잡화시키지 않고, 도금 촉진성이나 비아 충전성 등의 도금 특성의 향상을 도모할 수 있는 전해 구리 도금용 양극 및 그것을 이용한 전해 구리 도금 장치를 제공하는 것을 목적으로 한다. 이 목적을 달성하기 위해, 전해 구리 도금액이 저장된 전해 처리조 내에 배치하는 양극으로서, 상기 전해 구리 도금액이 디설파이드 화합물을 함유한 산성 전해 구리 도금액이며, 상기 양극이 용해성 구리 양극과 불용성 양극을 전기적으로 연결한 상태로 구비한 것을 특징으로 하는 전해 구리 도금용 양극을 채용한다.An object of the present invention is to provide an electrolytic copper plating anode and an electrolytic copper plating apparatus using the same, which can improve plating characteristics such as plating promoting property and via filling without complicating the device structure. To achieve this object, as an anode disposed in an electrolytic treatment tank in which an electrolytic copper plating solution is stored, the electrolytic copper plating solution is an acidic electrolytic copper plating solution containing a disulfide compound, and the anode electrically connects a soluble copper anode and an insoluble anode. An anode for electrolytic copper plating, which is provided in one state, is employed.

Description

전해 구리 도금용 양극 및 그것을 이용한 전해 구리 도금 장치Electrolytic copper plating anode and electrolytic copper plating device using the same

본 발명은 전해 구리 도금용 양극 및 그것을 이용한 전해 구리 도금 장치에 관한 것이다.The present invention relates to an anode for electrolytic copper plating and an electrolytic copper plating apparatus using the same.

종래부터, 프린트 배선 기판 등에 대하여 도체를 형성할 때에는 전해 구리 도금 처리를 행하고 있다. 전해 구리 도금 처리를 행하는 경우에는, 양극으로서, 구리재로 이루어지는 용해성 구리 양극을 사용하는 방법과, 백금, 티탄, 산화이리듐 등으로 이루어지는 불용성 양극을 사용하는 방법이 있다. 또한, 전해 구리 도금액에는 도금 촉진성이나 비아 충전성 등의 도금 특성을 향상시키기 위하여, 브라이트너나 레벨러(leveler) 등의 첨가제가 첨가된다. Conventionally, when forming a conductor on a printed wiring board or the like, electrolytic copper plating treatment is performed. When performing electrolytic copper plating treatment, there are a method of using a soluble copper anode made of a copper material as an anode, and a method of using an insoluble anode made of platinum, titanium, iridium oxide, or the like. Further, an additive such as a brightener or a leveler is added to the electrolytic copper plating solution in order to improve plating properties such as plating promoting properties and via filling properties.

여기서, 현재 전해 구리 도금 처리를 행할 때에는 용해성 구리 양극을 사용하는 것이 주류이다. 그 이유로, 용해성 구리 양극은 불용성 양극에 비해 설비를 간소화할 수 있어 메인테넌스 비용도 들지 않으며, 양극 자체도 비교적 염가이기 때문에, 저비용화를 실현할 수 있는 것을 들 수 있다. Here, it is currently mainstream to use a soluble copper anode when performing electrolytic copper plating treatment. For this reason, the soluble copper anode can simplify equipment compared to the insoluble anode, and thus does not require maintenance costs, and the anode itself is relatively inexpensive, so that it is possible to realize cost reduction.

그러나, 용해성 구리 양극을 이용하면, 도금액중에서 구리 전극이 화학적으로 용해되는 반응에 수반하여, 전해 구리 도금액중에 브라이트너로서 첨가하는 비스(3-술포프로필)디설파이드(이하,, 간단히 「SPS」라고 한다.)가 3-메르캅토프로판-1-술폰산(이하, 간단히 「MPS」라고 한다.)으로 환원되는 것이 알려져 있다. 이 MPS가 전해 구리 도금액중에 일정량 이상 존재하면, 원하는 도금 특성을 얻을 수 없게 되는 문제가 있다. However, when a soluble copper anode is used, a bis (3-sulfopropyl) disulfide (hereinafter simply referred to as "SPS") added as a brightener in an electrolytic copper plating solution is accompanied with a reaction in which the copper electrode is chemically dissolved in the plating solution. ) Is known to be reduced to 3-mercaptopropane-1-sulfonic acid (hereinafter simply referred to as "MPS"). When this MPS is present in a certain amount or more in the electrolytic copper plating solution, there is a problem that desired plating properties cannot be obtained.

상기 서술한 문제에 대해서는, 예를 들면 특허문헌 1에 기재되어 있는 바와 같이, 도금액중에 공기를 불어넣음으로써 도금액중의 용존 산소 농도를 높이는 시도가 이루어지고 있다. 구체적으로, 특허문헌 1에는 「오버 플로우조를 병설한 도금조, 상기 도금조 하부에 마련한 도금액 분류(噴流) 토출부, 구리 애노드 및 피도금품용 바를 가지는 산성 구리용 도금 장치로서, 오버 플로우조 안에 에어 교반 또는 산소 교반 수단을 마련한 것을 특징으로 하는 산성 구리용 도금 장치」가 개시되어 있다. As for the problem described above, for example, as described in Patent Document 1, attempts have been made to increase the dissolved oxygen concentration in the plating liquid by blowing air into the plating liquid. Specifically, in Patent Document 1, "A plating apparatus for an acid copper having a plating tank provided with an overflow tank, a plating liquid discharging portion provided under the plating tank, a copper anode, and a bar for an object to be plated. An acid copper plating apparatus characterized by providing an air stirring or oxygen stirring means therein.

일본 특허 공개 제2004-143478호 공보Japanese Patent Publication No. 2004-143478

그러나, 특허문헌 1에 명시된 도금 장치에서는, 오버 플로우조를 별도로 마련할 필요가 있어 도금 장치의 구조가 복잡해져, 설비 비용이 비싸진다는 문제가 있었다. However, in the plating apparatus specified in Patent Document 1, it is necessary to separately provide an overflow tank, which has a problem that the structure of the plating apparatus is complicated, and the cost of equipment is high.

이상로부터, 본 발명은 장치 구조를 복잡화시키지 않고, 도금 촉진성이나 비아 충전성 등의 도금 특성의 향상을 도모할 수 있는 전해 구리 도금용 양극 및 그것을 이용한 전해 구리 도금 장치를 제공하는 것을 목적으로 한다. From the above, it is an object of the present invention to provide an anode for electrolytic copper plating and an electrolytic copper plating device using the same, which can improve plating properties such as plating promoting property and via filling without complicating the device structure. .

따라서, 본 발명자들은 예의 연구 결과, 이하의 방법을 채용함으로써 상기 목적을 달성하는데 이르렀다. Accordingly, the present inventors have achieved the above object by employing the following method as a result of earnest research.

본 발명에 따른 전해 구리 도금용 양극은 전해 구리 도금액이 저장된 전해 처리조 내에 배치되는 양극으로서, 상기 전해 구리 도금액이 디설파이드 화합물을 함유한 산성 전해 구리 도금액이며, 상기 양극이 용해성 구리 양극과 불용성 양극을 전기적으로 연결한 상태로 구비한 것을 특징으로 한다. An anode for electrolytic copper plating according to the present invention is an anode disposed in an electrolytic treatment tank in which an electrolytic copper plating solution is stored, wherein the electrolytic copper plating solution is an acidic electrolytic copper plating solution containing a disulfide compound, and the anode comprises a soluble copper anode and an insoluble anode. It is characterized in that it is provided in an electrically connected state.

본 발명에 따른 전해 구리 도금 장치는 상기 서술한 전해 구리 도금용 양극을 구비한 것을 특징으로 한다. The electrolytic copper plating apparatus according to the present invention is characterized by having the above-mentioned anode for electrolytic copper plating.

본 발명에 따른 전해 구리 도금용 양극 및 전해 구리 도금 장치에 의하면, 장치 구조를 복잡화시키지 않고 도금 촉진성이나 비아 충전성 등의 도금 특성의 향상을 도모할 수 있다. According to the positive electrode for electrolytic copper plating and the electrolytic copper plating apparatus according to the present invention, it is possible to improve the plating characteristics such as plating promoting property and via filling without complicating the device structure.

도 1은 본 발명에 따른 용해성 구리 양극을 전해 구리 도금 장치에 이용한 경우를 예시한 개략 단면도이다.
도 2는 실시예 1 및 비교예 1에서의 비아 충전 상황을 나타내는 단면 사진이다.
도 3은 실시예 2 및 비교예 2에서의 비아 충전 상황을 나타내는 단면 사진이다.
1 is a schematic cross-sectional view illustrating a case where the soluble copper anode according to the present invention is used in an electrolytic copper plating apparatus.
2 is a cross-sectional photograph showing the via filling situation in Example 1 and Comparative Example 1.
3 is a cross-sectional photograph showing the via filling situation in Example 2 and Comparative Example 2.

이하, 도면을 이용하면서 본 발명에 따른 전해 구리 도금용 양극 및 그것을 이용한 전해 구리 도금 장치에 대해 설명한다. 도 1은 본 발명에 따른 용해성 구리 양극을 전해 구리 도금 장치에 이용한 경우를 예시한 개략 단면도이다. Hereinafter, an anode for electrolytic copper plating according to the present invention and an electrolytic copper plating apparatus using the same will be described while using the drawings. 1 is a schematic cross-sectional view illustrating a case where the soluble copper anode according to the present invention is used in an electrolytic copper plating apparatus.

본 발명에 따른 전해 구리 도금 장치(10)는 본 발명에 따른 전해 구리 도금용 양극(1)을 구비한 것이다. 상기 전해 구리 도금용 양극(1)은 전해 구리 도금액(21)이 저장된 전해 처리조(20) 내에 배치되는 양극이다. 또한, 상기 전해 구리 도금액(21)이 디설파이드 화합물(예를 들면, SPS)을 함유한 산성 전해 구리 도금액이며, 상기 양극(1)이 용해성 구리 양극(2)과 불용성 양극(3)을 전기적으로 연결한 상태로 구비한 것을 특징으로 한다. 이하, 이러한 구성에 대해 설명한다. The electrolytic copper plating apparatus 10 according to the present invention is provided with an anode 1 for electrolytic copper plating according to the present invention. The anode 1 for electrolytic copper plating is an anode disposed in the electrolytic treatment tank 20 in which the electrolytic copper plating solution 21 is stored. In addition, the electrolytic copper plating solution 21 is an acidic electrolytic copper plating solution containing a disulfide compound (for example, SPS), and the anode 1 electrically connects the soluble copper anode 2 and the insoluble anode 3 It is characterized by being provided in one state. Hereinafter, such a configuration will be described.

본 발명에 따른 전해 구리 도금 장치(10)는 전해 구리 도금액(21)을 저장한 전해 처리조(20) 내에 피도금 부재(W)를 침지한 상태에서, 상기 피도금 부재(캐소드)(W)와 양극(애노드)(1) 사이에 급전하고, 상기 피도금 부재(W)의 피처리면을 전해 처리하는 장치이다. 여기서, 본 발명의 피도금 부재(W)는 회로 배선을 에폭시 수지 등의 절연 재료에 의해 적층한 프린트 배선 기판 또는 웨이퍼로 할 수 있다. 또한, 이들 프린트 배선 기판이나 웨이퍼는 스루홀 및/또는 비아홀을 가지는 것을 이용할 수 있다. 이 스루홀이나 비아홀은, 일반적으로 10μm~1000μm 정도의 미세 지름 구멍이며, 이 구멍을 통해 신호층 사이의 전기적 연결이 이루어진다. 본 발명에 따른 전해 구리 도금 장치(10)에 의하면, 이들 스루홀이나 비아홀의 내부에 구리를 충전하는 전해 처리를 행할 수 있다. 한편, 본 발명에 따른 전해 구리 도금 장치(10)는 균일 전착성 등의 향상을 도모하기 위해, 에어 버블을 상기 전해 구리 도금액(21) 중에 확산시키거나 순환 배관(5)과 연결된 노즐(6)로부터 고압 에어를 분출시키는 등, 전해 구리 도금액(21)을 교반하는 구성을 채용할 수도 있다. The electrolytic copper plating apparatus 10 according to the present invention is a state in which the plated member W is immersed in the electrolytic treatment tank 20 storing the electrolytic copper plating solution 21, and the plated member (cathode) W And an anode (anode) 1, which is an apparatus for electrolytically treating the surface to be treated of the plated member W. Here, the plated member W of the present invention can be a printed wiring board or a wafer in which circuit wiring is laminated with an insulating material such as an epoxy resin. In addition, those printed wiring boards or wafers can be used having through holes and / or via holes. These through-holes and via-holes are generally micro-diameter holes of about 10 μm to 1000 μm, through which electrical connections between signal layers are made. According to the electrolytic copper plating apparatus 10 according to the present invention, it is possible to perform electrolytic treatment in which copper is filled in these through holes or via holes. On the other hand, the electrolytic copper plating apparatus 10 according to the present invention is to spread the air bubbles in the electrolytic copper plating solution 21 or the nozzle 6 connected to the circulation pipe 5 in order to improve the uniform electrodeposition properties, etc. It is also possible to adopt a configuration in which the electrolytic copper plating solution 21 is stirred, such as blowing high-pressure air from it.

또한, 본 발명의 전해 구리 도금액(21)은 디설파이드 화합물을 함유한 산성 전해 구리 도금액이 이용된다. 통상, 산성 전해 구리 도금액(21)은 황산구리·5수염, 황산, 염화물 이온 및 첨가제로 이루어지는 것이 이용된다. 예를 들면, 산성 전해 구리 도금액(21)의 조성은, 황산구리·5수염 30g/L~250g/L, 황산 30g/L~250g/L, 염화물 이온 30mg/L~75mg/L의 범위에서 사용할 수 있다. 또한, 산성 전해 구리 도금액(21)의 온도는 통상 15℃~60℃의 범위에서 사용할 수 있으며, 바람직하게는 20℃~35℃이다. 황산구리·5수염 농도의 증가, 또는 황산 농도의 증가에 수반하여 황산구리·5수염의 결정이 구리 양극상에 석출되는 경우가 있으므로, 양자의 농도 관리에는 주의가 필요하다. 여기서, 상기 산성 전해 구리 도금액(21)에서의 황산 농도는 30 g~400g/L로 하는 것이 바람직하다. 황산 농도가 30g/L 미만인 경우, 산성 전해 구리 도금액(21)의 도전성이 저하되어 상기 산성 전해 구리 도금액(21)과의 통전이 어려워진다. 한편, 황산 농도가 400g/L를 넘으면, 산성 전해 구리 도금액 중에 황산구리가 침전되기 쉬워, 도금 특성에 악영향을 미치게 된다. Further, as the electrolytic copper plating solution 21 of the present invention, an acidic electrolytic copper plating solution containing a disulfide compound is used. Usually, the acidic electrolytic copper plating solution 21 is made of copper sulfate, pentahydrate, sulfuric acid, chloride ions and additives. For example, the composition of the acidic electrolytic copper plating solution 21 can be used in the range of 30 g / L to 250 g / L of copper sulfate and pentahydrate, 30 g / L to 250 g / L of sulfuric acid, and 30 mg / L to 75 mg / L of chloride ions. have. In addition, the temperature of the acidic electrolytic copper plating solution 21 can be usually used in a range of 15 ° C to 60 ° C, preferably 20 ° C to 35 ° C. As the concentration of copper sulfate pentahydrate or the concentration of sulfuric acid increases, crystals of copper sulphate pentahydrate may precipitate on the copper anode, so care must be taken in managing both concentrations. Here, the concentration of sulfuric acid in the acidic electrolytic copper plating solution 21 is preferably 30 g to 400 g / L. When the sulfuric acid concentration is less than 30 g / L, the conductivity of the acidic electrolytic copper plating solution 21 is lowered, making it difficult to energize the acidic electrolytic copper plating solution 21. On the other hand, when the sulfuric acid concentration exceeds 400 g / L, copper sulfate is easily precipitated in the acidic electrolytic copper plating solution, which adversely affects the plating properties.

본 발명에 따른 전해 구리 도금 장치(10)에서는, 상기 서술한 바와 같이, 전해 처리조(20) 내에 배치되는 용해성 구리 양극(2)과 불용성 양극(3)이 전기적으로 연결됨으로써, 양극(1)으로서 작용한다. 전해 처리를 행할 때, SPS를 함유한 전해 구리 도금액(21)이 사용되는 경우, 이 SPS가 MPS로 변화하여 이 MPS가 발생함으로써, 스루홀 욕에서는 스로잉 파워의 저하나 도금 외관 불량, 비아필욕에서는 필링율의 저하나 도금 외관 불량 등이 발생하는 문제가 생긴다. 여기서, 전해 정지하여 전해 구리 도금액(21)을 방치한 경우에도 양극(1) 근방에서 SPS가 환원되어 MPS가 생성되는 것이 확인되었다. 이 MPS의 생성은 MPS-Cu착체로 이루어지는 애노드 슬러지를 발생시키는 원인으로도 될 수 있다. 이 애노드 슬러지는, 비아의 충전성이나 균일 전착성 등의 도금 특성의 저하를 초래하게 된다. 그러나, 본 발명에 따른 전해 구리 도금용 양극(1)은 용해성 구리 양극(2)과 불용성 양극(3)을 전기적으로 연결한 상태로 전해 처리조(20) 내에 구비함으로써, 상기 불용성 양극(3)이 전해 구리 도금액(21) 중에 산소를 공급할 수 있다. 이 불용성 양극(3)으로부터 발생한 산소는 MPS를 SPS로 산화시켜 전해 구리 도금액(21) 중의 MPS 농도의 상승을 억제하여 MPS의 악영향을 배제하는 것이 가능하다. 따라서, 본 발명에 따른 전해 구리 도금 장치(10)에 의하면, 전해 구리 도금액(21)에 브라이트너로서 SPS를 포함하였다고 해도 원하는 도금 특성을 얻는 것이 가능해진다. In the electrolytic copper plating apparatus 10 according to the present invention, as described above, the soluble copper anode 2 and the insoluble anode 3 disposed in the electrolytic treatment tank 20 are electrically connected to each other, whereby the anode 1 Acts as When electrolytic treatment is performed, when the electrolytic copper plating solution containing SPS 21 is used, the SPS is changed to MPS, and this MPS is generated, resulting in a drop in throwing power in a through-hole bath, poor plating appearance, and a non-fill bath. A problem arises in that the peeling rate is lowered or the appearance of plating is poor. Here, even when the electrolytic copper plating solution 21 was stopped by electrolysis, it was confirmed that SPS is reduced in the vicinity of the anode 1 to generate MPS. The production of this MPS can also be a cause for generating anode sludge composed of MPS-Cu + complex. This anode sludge causes deterioration in plating characteristics such as filling properties and uniform electrodeposition properties of vias. However, the electrolytic copper plating anode 1 according to the present invention is provided in the electrolytic treatment tank 20 in a state in which the soluble copper anode 2 and the insoluble anode 3 are electrically connected, so that the insoluble anode 3 Oxygen can be supplied to the electrolytic copper plating solution 21. Oxygen generated from the insoluble anode 3 can oxidize MPS to SPS to suppress an increase in the concentration of MPS in the electrolytic copper plating solution 21, thereby eliminating adverse effects of MPS. Therefore, according to the electrolytic copper plating apparatus 10 according to the present invention, even if SPS is included as a brightener in the electrolytic copper plating solution 21, desired plating characteristics can be obtained.

본 발명에 따른 전해 구리 도금용 양극(1)을 구성하는 용해성 구리 양극(2)은 전해시에 소비되는 전해 구리 도금액(21) 중의 구리 이온 농도를 소정 농도로 유지하는데 이용된다. 이 용해성 구리 양극(2)은 그 형상은 한정되지 않지만, 표면적이 최대한 커지는 형상을 채용함으로써, 전해시에 구리 이온을 보다 많이 발생시켜 도금 효율을 더욱 높일 수 있다. The soluble copper anode 2 constituting the anode 1 for electrolytic copper plating according to the present invention is used to maintain the concentration of copper ions in the electrolytic copper plating solution 21 consumed during electrolysis at a predetermined concentration. The shape of the soluble copper anode 2 is not limited, but by adopting a shape in which the surface area is as large as possible, more copper ions are generated during electrolysis to further increase plating efficiency.

또한, 본 발명의 용해성 구리 양극(2)는 인 함유 구리재로 구성된 것인 것이 바람직하다. 상기 용해성 구리 양극(2)이 인 함유 구리 부재로 구성됨으로써, 전해시에 CuP2라고 하는 「블랙 필름」으로 불리는 화합물의 피막을 인 함유 구리 부재의 표면에 형성하고, 1가의 구리 이온의 발생을 억제하여 애노드 슬러지의 발생을 효과적으로 억제하여, 도금 특성의 저하를 방지하는 것이 가능해진다. 상기 인 함유 구리 부재의 애노드 슬러지의 발생을 더욱 억제하는데 있어서, 인의 함유량은 0.02%~0.06% 정도로 하는 것이 바람직하다. 인 함유 구리 부재를 용해성 구리 양극(2)에 사용하는 것은 전해중의 구리 용해를 순조롭게 행하는 것이 가능해지는 점에서 유리하다. Moreover, it is preferable that the soluble copper anode 2 of this invention consists of a phosphorus containing copper material. When the soluble copper anode 2 is composed of a phosphorus-containing copper member, a film of a compound called “black film” called CuP 2 is formed on the surface of the phosphorus-containing copper member during electrolysis, and generation of monovalent copper ions occurs. By suppressing, the generation of anode sludge is effectively suppressed, and it becomes possible to prevent the deterioration of plating properties. In further suppressing the generation of anode sludge of the phosphorus-containing copper member, the phosphorus content is preferably about 0.02% to 0.06%. The use of the phosphorus-containing copper member for the soluble copper anode 2 is advantageous in that it is possible to smoothly dissolve copper during electrolysis.

본 발명에 따른 전해 구리 도금용 양극(1)을 구성하는 불용성 양극(3)은, 전해 구리 도금액(21) 중에서 금속을 용출하지 않는 재질의 것이면 임의의 재질로 이루어지는 양극을 사용할 수 있다. 예를 들면, 산화이리듐, 백금 부착 티타늄, 백금, 그라파이트, 페라이트, 이산화납 및 백금족 원소 산화물을 코팅한 티타늄, 스테인레스 스틸, 납 합금 등의 재질의 양극을 들 수 있으나, 이들에 한정되는 것은 아니다. 또한, 불용성 양극(3)은 기재에 피복물을 피복함으로써 구성하는 것도 가능하다. 이 경우에는, 기재의 전면을 피복할 수도 있으나, 불용성 양극(3)으로서 기능하는 범위에서 기재의 일부만을 피복할 수도 있다. 이때, 피복의 두께는 특별히 한정되지 않으며, 내구성과 비용의 관점으로부터 0.1μm~10μm인 것이 바람직하다. As the insoluble anode 3 constituting the anode 1 for electrolytic copper plating according to the present invention, an anode made of any material can be used as long as it is of a material that does not elute metal in the electrolytic copper plating solution 21. Examples include, but are not limited to, anodes made of iridium oxide, titanium with platinum, platinum, graphite, ferrite, titanium dioxide coated with lead dioxide and platinum group element oxides, stainless steel, and lead alloys. In addition, the insoluble anode 3 can also be configured by coating a coating on a substrate. In this case, the entire surface of the substrate may be coated, but only a part of the substrate may be coated within a range that functions as the insoluble anode 3. At this time, the thickness of the coating is not particularly limited, and is preferably 0.1 μm to 10 μm from the viewpoint of durability and cost.

또한, 본 발명의 불용성 양극(3)은 그 형상에 대해서는 한정되지 않는다. 불용성 양극(3)은 전해중에 용해성 구리 양극(2)의 용해를 방해하지 않고 효율적으로 산소를 발생시키는 형상 및 치수인 것으로부터, 전해 구리 도금액(21) 중에 존재하는 MPS를 신속하게 산화하여 SPS로 되돌려 MPS가 상기 전해 구리 도금액(21) 중에 축적되는 것을 억제하여, 도금 특성의 저하를 방지할 수 있다. In addition, the shape of the insoluble anode 3 of the present invention is not limited. Since the insoluble anode 3 is a shape and dimension that efficiently generates oxygen without interfering with the dissolution of the soluble copper anode 2 during electrolysis, the MPS present in the electrolytic copper plating solution 21 is rapidly oxidized to SPS. By returning the MPS to suppress the accumulation in the electrolytic copper plating solution 21, it is possible to prevent the deterioration of plating properties.

본 발명에 따른 전해 구리 도금용 양극(1)은 MPS의 생성 억제의 관점으로부터, 용해성 구리 양극(2)과 불용성 양극(3)의 전해 구리 도금액(21)에 침지된 표면의 면적 비율이 10:1~1:10인 것이 바람직하다. 용해성 구리 양극(2)과 불용성 양극(3)의 전해 구리 도금액(21)에 침지된 표면의 면적 비율이 10:1 미만이면, 불용성 양극(예를 들면, 산화이리듐 부재)(3) 표면으로부터의 산소 발생이 매우 적어지기 때문에, 전해 구리 도금액(21) 중의 MPS 농도 상승을 충분히 억제하지 못하여 원하는 도금 특성을 얻을 수 없다. 또한, 상기 면적 비율이 1:10을 넘으면 불용성 양극(예를 들면, 산화이리듐 부재)(3) 표면으로부터의 산소 발생이 현저하게 증가하기 때문에, 전해 구리 도금액(21) 중에 포함하는 첨가제를 산화 분해하여 첨가제 소모량이 증가한다. 게다가 이 경우에는, 용해성 구리 양극(2)으로부터의 구리 공급이 부족해져, 전해 구리 도금액(21) 중의 구리 농도를 소정 농도로 유지하기 위해 별도로 구리원의 보급이 필요하다. 여기서, 용해성 구리 양극(2)과 불용성 양극(3)의 전해 구리 도금액(21)에 침지된 표면의 면적 비율은 5:1~1:5인 것이 상술한 효과를 얻는데 있어 보다 바람직하다. The positive electrode 1 for electrolytic copper plating according to the present invention has an area ratio of 10% of the surface immersed in the electrolytic copper plating solution 21 of the soluble copper positive electrode 2 and the insoluble positive electrode 3 from the viewpoint of suppressing the production of MPS: It is preferably 1 to 1:10. If the area ratio of the surface immersed in the electrolytic copper plating solution 21 of the soluble copper anode 2 and the insoluble anode 3 is less than 10: 1, from the surface of the insoluble anode (for example, iridium oxide member) 3 Since the generation of oxygen is very small, the increase in the MPS concentration in the electrolytic copper plating solution 21 cannot be sufficiently suppressed, and the desired plating properties cannot be obtained. Moreover, since the generation of oxygen from the surface of the insoluble anode (for example, iridium oxide member) 3 significantly increases when the area ratio exceeds 1:10, the additive contained in the electrolytic copper plating solution 21 is oxidatively decomposed. The consumption of additives increases. Moreover, in this case, the supply of copper from the soluble copper anode 2 becomes insufficient, and it is necessary to separately supply copper sources in order to maintain the copper concentration in the electrolytic copper plating solution 21 at a predetermined concentration. Here, the area ratio of the surface immersed in the electrolytic copper plating solution 21 of the soluble copper anode 2 and the insoluble anode 3 is 5: 1 to 1: 5, and it is more preferable to obtain the above-described effect.

또한, 본 발명에 따른 전해 구리 도금 장치(10)에서, 적용 가능한 음극 전류 밀도는 통상 프린트 배선 기판의 전해 구리 도금 처리에 사용되고 있는 인 함유 구리 부재를 사용하는 범위로 하는 것이 바람직하다. 구체적으로는, 상기 음극 전류 밀도는 0.1A/dm2~10A/dm2 정도, 바람직하게는 0.5A/dm2~6A/dm2, 보다 바람직하게는 1A/dm2~5A/dm2이다. 양극 전류 밀도는 통상 0.1A/dm2~3A/dm2로 사용 가능하지만, 보다 바람직하게는 1A/dm2~3A/dm2이다. 전해 구리 도금액(21) 중의 구리 농도는, 양극 전류 밀도가 너무 낮으면 상승하는 경향이 있고 양극 전류 밀도가 너무 높으면 저하되는 경향이 있기 때문에, 사용하는 음극 전류 밀도에 따라 양극 면적의 조정이 필요하다. In addition, in the electrolytic copper plating apparatus 10 according to the present invention, it is preferable that the applicable cathode current density is within a range using a phosphorus-containing copper member that is usually used for electrolytic copper plating treatment of a printed wiring board. Specifically, the cathode current density is about 0.1 A / dm 2 to 10 A / dm 2 , preferably 0.5 A / dm 2 to 6 A / dm 2 , and more preferably 1 A / dm 2 to 5 A / dm 2 . The anode current density can usually be used at 0.1 A / dm 2 to 3 A / dm 2 , but more preferably 1 A / dm 2 to 3 A / dm 2 . Since the copper concentration in the electrolytic copper plating solution 21 tends to rise when the anode current density is too low and tends to decrease when the anode current density is too high, it is necessary to adjust the anode area according to the cathode current density used. .

여기서, 본 발명에 따른 전해 구리 도금용 양극(1)을 이용한 경우, 전해시 및 전해 정지시에 얻어지는 효과에 대해 보다 구체적으로 설명한다. 통상적으로는, 전해시 및 전해 정지시, 용해성 구리 양극(2)에서는 하기 화학식 1의 식 (1)과 같이 용해가 일어난다. 또한, 전해시, 음극에서는 하기 화학식 1의 식 (2)에 나타내는 반응이 일어나 구리가 석출된다. 그리고, 전해 구리 도금액(21)이 디설파이드 화합물을 함유한 경우에는, 용해성 구리 양극(2)의 용해시에 방출된 전자에 의해, 하기 화학식 1의 식 (3)과 같이 SPS가 환원되어 MPS가 생성된다. 생성된 MPS는, 하기 화학식 1의 식 (4)와 같이 일부가 산화되어 SPS로 변환되지만, 1가의 구리 이온과 결합된 Cu(I)MPS는, 하기 화학식 1의 식(5)와 같이 MPS가 된다. Here, when the anode 1 for electrolytic copper plating according to the present invention is used, the effect obtained at the time of electrolysis and at the time of electrolysis stop will be described in more detail. Usually, during electrolysis and electrolysis stop, dissolution occurs in the soluble copper anode 2 as shown in the following formula (1). In addition, during electrolysis, the reaction shown in the following formula (2) of the general formula (1) occurs at the negative electrode to precipitate copper. Then, when the electrolytic copper plating solution 21 contains a disulfide compound, SPS is reduced by electrons released upon dissolution of the soluble copper anode 2, as shown in Formula (3) of Formula 1 below, to generate MPS. do. The resulting MPS is partially oxidized and converted into SPS as in Formula (4) of Formula 1, but Cu (I) MPS combined with monovalent copper ions has MPS as in Formula (5) of Formula 1 below. do.

Figure pct00001
Figure pct00001

상기 화학식 1의 식 (1), (3)~(5)에는, 도금 특성의 저하를 초래하는 MPS가 생성되는 과정을 나타냈지만, 본 발명에 따른 전해 구리 도금용 양극(1)은 불용성 양극(3)을 용해성 구리 양극(2)과 전기적으로 연결된 상태로 구비됨으로써, 전해 구리 도금액(21) 중의 MPS 농도의 상승을 억제할 수 있다. 즉, 전해시, 불용성 양극(3)에서는 상기 화학식 1의 식 (6)과 같이 전해 구리 도금액(21) 중의 물의 전기 분해가 이루어지고, 이때 발생한 산소에 의해 MPS가 산화되어 SPS로 변환됨으로써, 발생된 MPS를 줄일 수 있다. In Formulas (1) and (3) to (5) of Chemical Formula 1, a process in which MPS is generated that causes a decrease in plating characteristics is shown, but the anode 1 for electrolytic copper plating according to the present invention is an insoluble anode ( By providing 3) in an electrically connected state with the soluble copper anode 2, an increase in the MPS concentration in the electrolytic copper plating solution 21 can be suppressed. That is, during electrolysis, in the insoluble anode 3, electrolysis of water in the electrolytic copper plating solution 21 is performed as in Formula (6) of Formula 1, and MPS is oxidized by oxygen generated at this time to be converted into SPS. MPS can be reduced.

본 발명에 따른 전해 구리 도금 장치(10)는 상술한 구성을 구비함으로써, 전해 구리 도금액(21) 중에서의 MPS의 농도 상승을 억제할 수 있다. 따라서, 본 발명에 따른 전해 구리 도금용 양극(1) 및 그것을 이용한 전해 구리 도금 장치(10)에 의하면, 장시간 방치한 전해 구리 도금액(21)을 그대로 이용하여 전해를 개시하였다고 해도 도금 외관 불량이 쉽게 생기지 않으며, 유지보수가 불필요하다. The electrolytic copper plating apparatus 10 according to the present invention has the above-described configuration, whereby the increase in the concentration of MPS in the electrolytic copper plating solution 21 can be suppressed. Therefore, according to the anode 1 for electrolytic copper plating according to the present invention and the electrolytic copper plating apparatus 10 using the same, even if electrolysis is started using the electrolytic copper plating solution 21 left for a long time as it is, the plating appearance defect is easily It does not occur, and maintenance is unnecessary.

이상으로, 본 발명에 따른 용해성 구리 양극 및 그것을 이용한 전해 구리 도금액의 보존 방법에 대하여 설명했지만, 이하에 본 발명의 실시예를 나타내고 본 발명을 보다 상세하게 설명한다. 한편, 본 발명은 이러한 예에 한정되지 않는다. The soluble copper anode according to the present invention and the method of preserving the electrolytic copper plating solution using the same have been described above, but the examples of the present invention will be described below and the present invention will be described in more detail. Meanwhile, the present invention is not limited to these examples.

실시예 1Example 1

실시예 1에서는 전해 구리 도금용 양극으로서 용해성 구리 양극과 불용성 양극을 전기적으로 연결한 상태로 병용한 경우의 효과를 확인하기 위한 시험을 행하였다. In Example 1, as an anode for electrolytic copper plating, a test was conducted to confirm the effect when a soluble copper anode and an insoluble anode were used in an electrically connected state.

이 실시예 1에서는 우선 판 두께 1.0mm, 비아 지름 100μm, 깊이 80μm의 피도금 부재(프린트 기판)에 대해 멜플레이트 MLB-6001 프로세스(멜텍스 주식회사제)에 의해 디스미어 처리를 행하였다. 계속하여, 멜플레이트 CU-390 프로세스(멜텍스 주식회사제)에 의해 무전해 구리 도금을 행하였다. 그리고, 이 프린트 기판을 멜플레이트 PC-316(멜텍스 주식회사제)에 의한 산성 탈지, 수세, 황산 처리 후, 이하에 나타내는 조건으로 전해 구리 도금을 행하였다. In Example 1, first, a plated member (printed substrate) having a plate thickness of 1.0 mm, a via diameter of 100 µm, and a depth of 80 µm was subjected to a desmear treatment by a Melplate MLB-6001 process (manufactured by Meltex Corporation). Subsequently, electroless copper plating was performed by the Melplate CU-390 process (made by Meltex Corporation). Then, this printed circuit board was subjected to acidic degreasing, water washing and sulfuric acid treatment with Melplate PC-316 (manufactured by Meltex Co., Ltd.), followed by electrolytic copper plating under the following conditions.

실시예 1에서 이용하는 산성 전해 구리 도금액은, 황산구리·5수화물 200g/L, 농황산 100g/L, 염화물 이온 50mg/L를 포함하는 도금액에, 루센트 코퍼 SVF-A(멜텍스 주식회사제, 디설파이드계) 0.4mL/L, 루센트 코퍼 SVF-B(멜텍스 주식회사제) 20mL/L, 루센트 코퍼 SVF-L(멜텍스 주식회사제) 15mL/L를 첨가하여 조정한 3L의 비아필욕을 사용하였다. 또한, 상기 산성 전해 구리 도금액의 온도는 25℃로 하였다. The acidic electrolytic copper plating solution used in Example 1 is a Lucent Copper SVF-A (manufactured by Meltex Corporation, disulfide system) in a plating solution containing 200 g / L of copper sulfate and pentahydrate, 100 g / L of concentrated sulfuric acid, and 50 mg / L of chloride ions. A 3 L viafill bath adjusted by adding 15 mL / L of mL / L, Lucent Copper SVF-B (manufactured by Meltex Corporation), and 15 mL / L of Lucent Copper SVF-L (manufactured by Meltex Corporation) was used. In addition, the temperature of the acidic electrolytic copper plating solution was 25 ° C.

그리고, 전해 처리조 내에는, 수용된 비아필욕에 침지시킨 상태로 전해 구리 도금용 양극을 배치하였다. 전해 구리 도금용 양극은, 용해성 구리 양극(50mm×120mm의 인 함유 구리판)과 불용성 양극(50mm×120mm의 산화 이리듐 피복판)을 전기적으로 연결한 상태로 전해 처리조 내에 이간하여 배치하였다. 또한, 실시예 1에서는, 전해 처리조에서 펌프를 이용하여 도금액을 순환시키면서 전해 처리를 행하였다. Then, in the electrolytic treatment tank, an anode for electrolytic copper plating was placed in a state immersed in the accommodated via fill bath. The positive electrode for electrolytic copper plating was placed in the electrolytic treatment tank with the soluble copper positive electrode (50 mm × 120 mm phosphorus-containing copper plate) and the insoluble positive electrode (50 mm × 120 mm iridium oxide coated plate) electrically connected. In addition, in Example 1, electrolytic treatment was performed while circulating the plating liquid using a pump in the electrolytic treatment tank.

실시예 1에서, 용해성 구리 양극과 불용성 양극의 전해 구리 도금액에 침지한 표면의 면적 비율은 1:1로 하였다. 또한, 음극으로서 50mm×130mm의 무전해 구리 도금을 실시한 프린트 기판을 전해 구리 도금액에 침지하였다. 그리고, 전해 구리 도금액의 통전량이 0AH/L(새로운 욕), 10AH/L, 50AH/L, 100AH/L의 각 조건 하에서, 전류 밀도 2A/dm2로 45분간 전해 처리를 행하였다. 그 후, 이들 각 조건 하에서의 비아 내의 도금 충전 상황을 크로스 섹션법으로 관찰하였다. 도 2에는, 실시예 1에서의 비아 내의 도금 충전 상황의 단면 사진을 나타낸다. In Example 1, the area ratio of the surface immersed in the electrolytic copper plating solution of the soluble copper anode and the insoluble anode was 1: 1. Further, as a cathode, a printed substrate subjected to electroless copper plating of 50 mm × 130 mm was immersed in an electrolytic copper plating solution. Then, electrolytic treatment was performed for 45 minutes at a current density of 2 A / dm 2 under the conditions of energizing amount of the electrolytic copper plating solution: 0AH / L (new bath), 10AH / L, 50AH / L, and 100AH / L. Then, the plating filling condition in the via under each of these conditions was observed by the cross section method. Fig. 2 shows a cross-sectional photograph of the plating filling condition in the via in Example 1.

실시예 2 Example 2

실시예 2에서는, 실시예 1과 마찬가지로 전해 구리 도금용 양극으로서 용해성구리 양극과 불용성 양극을 전기적으로 연결한 상태로 병용한 경우에서의 효과를 확인하기 위한 시험을 행하였다. In Example 2, as in Example 1, a test was conducted to confirm the effect when the soluble copper anode and the insoluble anode were used in an electrically connected state as an anode for electrolytic copper plating.

이 실시예 2에서는, 실시예 1과 동일한 피도금 부재를 이용하였다. 또한, 실시예 2에서는, 루센트 코퍼 SVF-A(0.4mL/L)를 MPS(1mg/L)로 변경한 것 이외에는, 실시예 1과 동일한 전해 사전 처리 조건 및 전해 처리 조건을 채용하였다. 따라서, 실시예 2에서 채용한 이들 처리 조건에 관한 설명은 생략한다. In Example 2, the same plated member as in Example 1 was used. In addition, in Example 2, the same electrolytic pretreatment conditions and electrolytic treatment conditions as in Example 1 were employed except that Lucent Copper SVF-A (0.4 mL / L) was changed to MPS (1 mg / L). Therefore, description of these processing conditions employed in Example 2 is omitted.

실시예 2에서는, 전해 구리 도금용 양극에 대하여, 용해성 구리 양극과 불용성 양극의 전해 구리 도금액 중의 면적 비율이, 「10:1」, 「5:1」, 「1:1」, 「1:1(불용성 양극으로서 백금 부착 티탄을 사용)」, 「1:5」, 「1:10」으로 이루어진 것을 준비하였다. 그리고, 전해 구리 도금액의 통전량이 0AH/L, 0.5AH/L, 1AH/L, 4AH/L, 10AH/L의 각 조건 하에서, 실시예 1과 마찬가지로 음극으로서 50mm×130mm의 무전해 구리 도금을 실시한 프린트 기판을 전해 구리 도금액에 침지하고, 전류 밀도 2A/dm2로 45분간 전해 처리를 행하였다. 이들 각 조건 하에서의 비아 내의 도금 충전 상황을 크로스 섹션법으로 관찰하였다. 도 3에는, 실시예 2에서의 비아 내의 도금 충전 상황의 단면 사진을 나타낸다. In Example 2, with respect to the positive electrode for electrolytic copper plating, the area ratio of the soluble copper positive electrode and the insoluble positive electrode in the electrolytic copper plating solution was "10: 1", "5: 1", "1: 1", and "1: 1". (Titanium with platinum is used as an insoluble anode). Those made of "1: 5" and "1:10" were prepared. Then, under the conditions of the energized amount of the electrolytic copper plating solution of 0AH / L, 0.5AH / L, 1AH / L, 4AH / L, 10AH / L, 50 mm × 130 mm electroless copper plating was used as a cathode as in Example 1. The printed substrate was immersed in an electrolytic copper plating solution, and electrolytic treatment was performed at a current density of 2 A / dm 2 for 45 minutes. The plating filling condition in the via under each of these conditions was observed by the cross section method. Fig. 3 shows a cross-sectional photograph of the plating filling condition in the via in Example 2.

비교예Comparative example

[비교예 1] [Comparative Example 1]

비교예 1에서는, 전해 구리 도금용 양극으로서 용해성 구리 양극만을 이용한 경우의 효과를 확인하기 위한 시험을 행하였다. In Comparative Example 1, a test was conducted to confirm the effect of using only a soluble copper anode as an anode for electrolytic copper plating.

비교예 1에서는, 전해 구리 도금용 양극으로서 용해성 구리 양극만을 이용한 것 이외에는 실시예 1과 동일한 전해 사전 처리 조건 및 전해 처리 조건을 채용하였다. 따라서, 비교예 1에서 채용한 이들 처리 조건에 관한 설명은 생략한다. In Comparative Example 1, the same electrolytic pretreatment conditions and electrolytic treatment conditions as in Example 1 were employed except that only a soluble copper anode was used as the anode for electrolytic copper plating. Therefore, description of these processing conditions employed in Comparative Example 1 is omitted.

또한, 비교예 1에서는 실시예 1과 동일한 시험을 행하였다. 도 2에는, 실시예 1과 대비 가능한 바와 같이, 비교예 1에서의 비아 내의 도금 충전 상황의 단면 사진을 나타낸다. In addition, in Comparative Example 1, the same test as in Example 1 was performed. Fig. 2 shows a cross-sectional photograph of the plating filling condition in the via in Comparative Example 1, as can be compared with Example 1.

[비교예 2] [Comparative Example 2]

비교예 2에서는, 비교예 1과 마찬가지로, 전해 구리 도금용 양극으로서 용해성 구리 양극만을 이용한 경우의 효과를 확인하기 위한 시험을 행하였다. In Comparative Example 2, as in Comparative Example 1, a test was conducted to confirm the effect of using only a soluble copper anode as an anode for electrolytic copper plating.

비교예 2에서는, 전해 구리 도금용 양극으로서 용해성 구리 양극만 이용한 점, 루센트 코퍼 SVF-A(0.4mL/L)를 MPS(1mg/L)로 변경한 점 이외에는 실시예 1과 동일한 전해 사전 처리 조건 및 전해 처리 조건을 채용하였다. 따라서, 비교예 2에서 채용한 이들 처리 조건에 관한 설명은 생략한다. In Comparative Example 2, the same electrolytic pre-treatment conditions as in Example 1 except that only the soluble copper anode was used as the anode for electrolytic copper plating and Lucent Copper SVF-A (0.4 mL / L) was changed to MPS (1 mg / L). And electrolytic treatment conditions. Therefore, description of these processing conditions employed in Comparative Example 2 is omitted.

또한, 비교예 2에서는, 실시예 2와 동일한 시험을 행하였다. 도 3에는, 실시예 2와 대비 가능한 것 바와 같이, 비교예 2에서의 비아 내의 도금 충전 상황의 단면 사진을 나타낸다. In addition, in Comparative Example 2, the same test as in Example 2 was performed. Fig. 3 shows a cross-sectional photograph of the plating filling condition in the via in Comparative Example 2, as can be compared with Example 2.

도 2에 나타내는 결과로부터, 전해 구리 도금액이 저장된 전해 처리조 내에 배치되는 양극으로서 용해성 구리 양극과 불용성 양극을 전기적으로 연결한 상태로 구비한 것을 이용한 경우에는, 용해성 구리 양극만을 이용한 경우와 달리 통전량이 100AH/L까지 커져도 비아 충전 상황에 거의 차이가 없고, 안정되어 우수한 충전성을 얻을 수 있음을 알 수 있었다. From the results shown in Fig. 2, when an electrolytic copper plating solution is used in which a soluble copper anode and an insoluble anode are electrically connected as an anode disposed in the electrolytic treatment tank, the amount of electricity applied is different from the case where only the soluble copper anode is used. It was found that even when the size was increased to 100AH / L, there was almost no difference in the via filling condition, and it was stable and excellent filling properties were obtained.

도 3에 나타내는 결과로부터, 전해 구리 도금액이 저장된 전해 처리조 내에 배치되는 양극으로서 용해성 구리 양극과 불용성 양극을 전기적으로 연결한 상태로 구비한 것을 이용한 경우에는, 용해성 구리 양극만을 이용한 경우와 비교하여 전해 구리 도금액에 MPS가 1mg/L 포함된 경우에도 비교적 단시간에 충전성의 회복이 도모됨을 알 수 있었다. 또한, 이 때, 실시예 2에서의 용해성 구리 양극과 불용성 양극의 전해 구리 도금액 중의 면적 비율이 「10:1」인 것과 그 이외의 면적 비율인 것을 대비했을 때, 용해성 양극이 차지하는 비율이 커질수록 충전성의 회복이 도모되기 어려운 경향을 보였다. 한편, 용해성 양극이 차지하는 비율이 작아질수록 전해 구리 도금액 중에서의 용해성 구리 양극으로부터의 구리 공급이 부족해져, 전해 구리 도금액 중의 구리 농도를 유지하기 위해서 별도로 구리원의 보급이 필요한 것을 상정할 수 있다. 이상의 관점으로부터, 용해성 구리 양극과 불용성 양극의 전해 구리 도금액 중의 면적 비율은 5:1~1:5인 것이 보다 바람직한 것을 이해할 수 있다. From the results shown in FIG. 3, when an electrode having a soluble copper anode and an insoluble anode electrically connected as an anode disposed in the electrolytic treatment tank in which the electrolytic copper plating solution is stored is used, the electrolysis is compared with the case where only the soluble copper anode is used. It was found that even in the case where MPS was included in 1 mg / L in the copper plating solution, the recovery of filling properties was achieved in a relatively short time. In this case, when the area ratio in the electrolytic copper plating solution of the soluble copper anode and the insoluble anode in Example 2 was "10: 1" and the other area ratio, the larger the proportion of the soluble anode occupied It tended to be difficult to recover the chargeability. On the other hand, as the proportion occupied by the soluble anode decreases, the supply of copper from the soluble copper anode in the electrolytic copper plating solution becomes insufficient, and it can be assumed that additional supply of a copper source is required to maintain the copper concentration in the electrolytic copper plating solution. From the above viewpoint, it can be understood that it is more preferable that the area ratio of the soluble copper anode and the insoluble anode in the electrolytic copper plating solution is 5: 1 to 1: 5.

이상부터, 본 발명에 따른 전해 구리 도금용 양극 및 그것을 이용한 전해 구리 도금 장치를 이용함으로써, 장치 구조를 복잡화시키지 않고, 도금 촉진성이나 비아 충전성 등의 도금 특성의 향상을 도모할 수 있음을 알 수 있었다. 이로부터, 본 발명에 따른 전해 구리 도금용 양극을 이용하여 전해 처리를 행한 경우에는, 전해 구리 도금액 중의 MPS의 농도 상승에 수반하는 악영향을 효과적으로 배제할 수 있음을 이해 할 수 있다. From the above, it is understood that by using the positive electrode for electrolytic copper plating according to the present invention and the electrolytic copper plating apparatus using the same, it is possible to improve the plating characteristics such as plating acceleration and via filling without complicating the device structure. Could. From this, it can be understood that when the electrolytic treatment is performed using the positive electrode for electrolytic copper plating according to the present invention, the adverse effect accompanying the increase in the concentration of MPS in the electrolytic copper plating solution can be effectively excluded.

본 발명에 따른 전해 구리 도금용 양극 및 그것을 이용한 전해 구리 도금 장치에 의하면, 디설파이드 화합물을 함유한 산성 전해 구리 도금액을 이용한 경우에 MPS의 농도 상승을 효과적으로 억제하고, 원하는 도금 특성을 안정적으로 얻을 수 있다. 또한, 본 발명에 따른 전해 구리 도금용 양극을 이용함으로써, 전해 구리 도금 장치의 구조를 간소화하고, 설비 비용의 저감을 도모할 수 있다. 따라서, 본 발명에 따른 전해 구리 도금용 양극 및 그것을 이용한 전해 구리 도금 장치는, 특히 스루홀 및/또는 비아홀을 가지는 프린트 배선 기판이나 웨이퍼에 전해 구리 도금 처리를 가할 때 매우 바람직하게 이용할 수 있다. According to the anode for electrolytic copper plating according to the present invention and an electrolytic copper plating apparatus using the same, when using an acidic electrolytic copper plating solution containing a disulfide compound, the increase in the concentration of MPS can be effectively suppressed, and desired plating properties can be stably obtained. . In addition, by using the positive electrode for electrolytic copper plating according to the present invention, the structure of the electrolytic copper plating device can be simplified and the cost of equipment can be reduced. Therefore, the positive electrode for electrolytic copper plating according to the present invention and the electrolytic copper plating apparatus using the same can be particularly preferably used when electrolytic copper plating is applied to a printed wiring board or wafer having through-holes and / or via-holes.

W: 피도금 부재 1: 전해 구리 도금용 양극
2: 용해성 구리 양극 3: 불용성 양극
5: 순환 배관 6: 노즐
10: 전해 구리 도금 장치 20: 전해 처리조
21: 전해 구리 도금액(산성 전해 구리 도금액)
W: Plated member 1: Anode for electrolytic copper plating
2: soluble copper anode 3: insoluble anode
5: circulation piping 6: nozzle
10: electrolytic copper plating apparatus 20: electrolytic treatment tank
21: electrolytic copper plating solution (acidic electrolytic copper plating solution)

Claims (5)

전해 구리 도금액이 저장된 전해 처리조 내에 배치되는 양극으로서, 상기 전해 구리 도금액이 디설파이드 화합물을 함유한 산성 전해 구리 도금액이며,
상기 양극이 용해성 구리 양극과 불용성 양극을 전기적으로 연결한 상태로 구비한 것을 특징으로 하는 전해 구리 도금용 양극.
As an anode disposed in the electrolytic treatment tank in which the electrolytic copper plating solution is stored, the electrolytic copper plating solution is an acidic electrolytic copper plating solution containing a disulfide compound,
The positive electrode for electrolytic copper plating, characterized in that the positive electrode is provided with a soluble copper anode and an insoluble anode electrically connected.
제1항에 있어서,
상기 용해성 구리 양극과 상기 불용성 양극의 전해 구리 도금액에 침지된 표면의 면적 비율은 10:1~1:10인, 전해 구리 도금용 양극.
According to claim 1,
An anode for electrolytic copper plating, wherein an area ratio of the surface immersed in the electrolytic copper plating solution of the soluble copper anode and the insoluble anode is 10: 1 to 1: 1.
제2항에 있어서,
상기 용해성 구리 양극과 상기 불용성 양극의 전해 구리 도금액에 침지된 표면의 면적 비율은, 5:1~1:5인, 전해 구리 도금용 양극.
According to claim 2,
The area ratio of the surface immersed in the electrolytic copper plating solution between the soluble copper anode and the insoluble anode is 5: 1 to 1: 5, and the anode for electrolytic copper plating.
제1항 내지 제3항 중 어느 한 항에 기재된 전해 구리 도금용 양극을 구비한 것을 특징으로 하는 전해 구리 도금 장치. An electrolytic copper plating apparatus comprising the anode for electrolytic copper plating according to any one of claims 1 to 3. 제4항에 있어서,
피도금 부재가 스루홀 및/또는 비아홀을 가지는 프린트 배선 기판 또는 웨이퍼로서, 상기 스루홀 및/또는 상기 비아홀의 내부에 구리를 충전하는 전해 처리를 행하는, 전해 구리 도금 장치.
According to claim 4,
An electrolytic copper plating apparatus in which a member to be plated is a printed wiring board or wafer having through holes and / or via holes, and electrolytic treatment is performed to fill copper into the through holes and / or the via holes.
KR1020207002324A 2017-07-31 2018-07-11 Anode for electrolytic copper plating and electrolytic copper plating apparatus using same KR102381835B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2017-147707 2017-07-31
JP2017147707A JP6653799B2 (en) 2017-07-31 2017-07-31 Anode for electrolytic copper plating and electrolytic copper plating apparatus using the same
PCT/JP2018/026178 WO2019026578A1 (en) 2017-07-31 2018-07-11 Positive electrode for electrolytic copper plating and electrolytic copper plating apparatus using same

Publications (2)

Publication Number Publication Date
KR20200032101A true KR20200032101A (en) 2020-03-25
KR102381835B1 KR102381835B1 (en) 2022-04-01

Family

ID=65232696

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020207002324A KR102381835B1 (en) 2017-07-31 2018-07-11 Anode for electrolytic copper plating and electrolytic copper plating apparatus using same

Country Status (5)

Country Link
JP (1) JP6653799B2 (en)
KR (1) KR102381835B1 (en)
CN (1) CN110997989A (en)
TW (1) TWI683931B (en)
WO (1) WO2019026578A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018133532A1 (en) * 2018-12-21 2020-06-25 Maschinenfabrik Kaspar Walter Gmbh & Co Kg Electrolyte and process for the production of chrome layers
KR102445229B1 (en) * 2019-09-30 2022-09-21 한국재료연구원 Measuring cell for concentration of additive breakdown product in plating solution
CN111575746A (en) * 2020-06-10 2020-08-25 诸暨企周企业管理有限公司 Copper foil electrolysis production facility of anti-oxidant effect

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002068743A (en) * 2000-09-04 2002-03-08 Tsurumi Soda Co Ltd Method for manufacturing highly soluble copper oxide, highly soluble copper oxide, raw material for copper plating and method of copper plating
JP2004143478A (en) 2002-10-22 2004-05-20 Ebara Udylite Kk Acid copper plating method, and acid copper plating device
JP2005187869A (en) * 2003-12-25 2005-07-14 Hitachi Aic Inc Plating method and plating apparatus
JP2009041070A (en) * 2007-08-09 2009-02-26 C Uyemura & Co Ltd Copper electroplating method
KR20110027585A (en) * 2009-09-08 2011-03-16 우에무라 고교 가부시키가이샤 Electroplating apparatus and electroplating method
JP2017008404A (en) * 2015-06-25 2017-01-12 田中貴金属工業株式会社 Plating device and plating method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3455705B2 (en) * 1999-11-08 2003-10-14 大阪府 Electro-copper plating apparatus and copper plating method using said apparatus
TWI268966B (en) * 2001-06-07 2006-12-21 Shipley Co Llc Electrolytic copper plating method
EP2518187A1 (en) * 2011-04-26 2012-10-31 Atotech Deutschland GmbH Aqueous acidic bath for electrolytic deposition of copper
JP2017210644A (en) * 2016-05-24 2017-11-30 メルテックス株式会社 Soluble copper anode, electrolytic copper plating apparatus, electrolytic copper plating method, and storage method of acidic electrolytic copper plating liquid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002068743A (en) * 2000-09-04 2002-03-08 Tsurumi Soda Co Ltd Method for manufacturing highly soluble copper oxide, highly soluble copper oxide, raw material for copper plating and method of copper plating
JP2004143478A (en) 2002-10-22 2004-05-20 Ebara Udylite Kk Acid copper plating method, and acid copper plating device
JP2005187869A (en) * 2003-12-25 2005-07-14 Hitachi Aic Inc Plating method and plating apparatus
JP2009041070A (en) * 2007-08-09 2009-02-26 C Uyemura & Co Ltd Copper electroplating method
KR20110027585A (en) * 2009-09-08 2011-03-16 우에무라 고교 가부시키가이샤 Electroplating apparatus and electroplating method
JP2017008404A (en) * 2015-06-25 2017-01-12 田中貴金属工業株式会社 Plating device and plating method

Also Published As

Publication number Publication date
WO2019026578A1 (en) 2019-02-07
CN110997989A (en) 2020-04-10
KR102381835B1 (en) 2022-04-01
JP6653799B2 (en) 2020-02-26
TWI683931B (en) 2020-02-01
JP2019026894A (en) 2019-02-21
TW201910565A (en) 2019-03-16

Similar Documents

Publication Publication Date Title
JP5293276B2 (en) Continuous electrolytic copper plating method
JP5110269B2 (en) Electro copper plating method
KR100877923B1 (en) Electrolytic copper plating method
Dow et al. Filling mechanism in microvia metallization by copper electroplating
JP4221064B2 (en) Electrodeposition method of copper layer
WO2017204246A1 (en) Soluble copper anode, electrolytic copper plating device, electrolytic copper plating method, and method for preserving acidic electrolytic copper plating liquid
JP2001200386A (en) Via filling method
Dow et al. Enhancement of filling performance of a copper plating formula at low chloride concentration
KR102381835B1 (en) Anode for electrolytic copper plating and electrolytic copper plating apparatus using same
JP2006316328A (en) Method for manufacturing two-layer flexible copper-clad laminate
CN113802158B (en) Electroplating solution and application thereof, copper plating process and plated part
JP2009299128A (en) Electroplating apparatus
CN107385487B (en) Tetra- oxa- -3,9- of 2,4,8,10-, two phospha spiro-compound is in the application of HDI plate copper plating rapidly pretreatment solution and its pre-treating technology
JP2004143478A (en) Acid copper plating method, and acid copper plating device
KR100934729B1 (en) Electroless Tin Plating Solution Impurity Removal Apparatus and Method
Ganesan et al. Innovative advances in copper electroplating for IC Substrate manufacturing
JP2005179736A (en) Electrolytic copper plating method and electrolytic copper plating device
KR100586842B1 (en) Composition for acidic copper plating additive producing no slime
JP2010138429A (en) Electrolytic copper plating method using insoluble anode
JP2008056968A (en) Method of manufacturing copper wiring and electrolyte for copper plating
JP2016132822A (en) Electrolytic copper plating bath and electrolytic copper plating device, and electrolytic copper plating method
JP3737268B2 (en) Electrolytic copper plating solution and electrolytic copper plating method using the same
JP2004332094A (en) Method and apparatus for via-filling plating substrate having blind viahole
JP2010095775A (en) Method for suppressing whisker in copper plating
JPH06173097A (en) Copper sulfate plating method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant