JP4033616B2 - Manufacturing method of copper plating material - Google Patents

Manufacturing method of copper plating material Download PDF

Info

Publication number
JP4033616B2
JP4033616B2 JP2000267018A JP2000267018A JP4033616B2 JP 4033616 B2 JP4033616 B2 JP 4033616B2 JP 2000267018 A JP2000267018 A JP 2000267018A JP 2000267018 A JP2000267018 A JP 2000267018A JP 4033616 B2 JP4033616 B2 JP 4033616B2
Authority
JP
Japan
Prior art keywords
copper
carbonate
copper oxide
oxide
basic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000267018A
Other languages
Japanese (ja)
Other versions
JP2002068743A (en
Inventor
詩路士 松木
一則 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsurumi Soda Co Ltd
Original Assignee
Tsurumi Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsurumi Soda Co Ltd filed Critical Tsurumi Soda Co Ltd
Priority to JP2000267018A priority Critical patent/JP4033616B2/en
Priority to TW090121323A priority patent/TW539652B/en
Priority to KR10-2001-0053773A priority patent/KR100539652B1/en
Priority to DE10143076A priority patent/DE10143076B4/en
Priority to CNB011324597A priority patent/CN1170010C/en
Priority to US09/944,344 priority patent/US20020053518A1/en
Publication of JP2002068743A publication Critical patent/JP2002068743A/en
Priority to HK02104082.9A priority patent/HK1043162B/en
Priority to KR1020050078530A priority patent/KR100683598B1/en
Application granted granted Critical
Publication of JP4033616B2 publication Critical patent/JP4033616B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、塩基性炭酸銅を原料とした易溶解性酸化銅からなる銅メッキ材料の製造方法に関する。
【0002】
【従来の技術】
被メッキ体に銅メッキ処理を施す手法の一つとして、電解液である硫酸中に銅メッキ材料を供給し、不溶性陽極と陰極をなす被メッキ体との間で通電する電解メッキ法があり、この方法に用いられる銅メッキ材料として、塩基性炭酸銅を熱分解して得た酸化銅を用いることが知られている(特許第2753855号公報)。
【0003】
酸化銅は、フェライト材料の原料として広く用いられ、また特開平3-80116号公報に記載されているように、無電解銅メッキ浴の銅イオン補給材としても用いられている。一般には銅のミルスケ−ル、亜酸化銅あるいは水酸化銅を熱処理して生成されるが、銅のミルスケ−ル系は溶解しにくいので銅メッキ材料としては使えないし、また亜酸化銅系はClイオン(塩素イオン)が多いのでメッキ不良となり使用できない。上述の公報(特開平3-80116号)では、水酸化銅を60〜100℃で加熱して酸化銅を得ることが記載されているが、水酸化第二銅系はClイオンやSO4 体のSが多いので電解メッキに用いるとメッキ不良となってしまう。これに対して塩基性炭酸銅を熱分解して得た酸化銅は、ClイオンやSO4 体のSが少ないので銅メッキ材料として使用可能である。
【0004】
【発明が解決しようとする課題】
しかしながら塩基性炭酸銅を熱分解して得た酸化銅を銅メッキ材料として用いるには次のような課題があった。
【0005】
a.酸化銅は、通常フェライトの原料として用いられるので、フェライトの製造特に焼結工程において重量減少の少ないことが要求され、そのため原料を熱分解や熱処理するときの加熱温度は一般には900℃以上であるが、得られた酸化銅は一般的な酸化銅に比べ易溶解性であるものの溶解性の程度はそれ程大きくない。このため銅メッキ材料を銅メッキ浴(電解液に銅メッキ材料を供給した液)に補給したときに電解液に溶けきるまでに長い時間がかかり、銅イオン濃度にむらが生じてメッキ処理品の品質にばらつきが生じる原因となるし、また処理効率の低下の要因にもなる。
【0006】
b.通常の分解炉として熱効率を重視したフレ−ムによる直接加熱のロ−タリキルンが常用されているが、フレ−ムの還元炎が炭酸銅や酸化銅に触れることで亜酸化銅や金属銅が一部に生成されてしまう。これら亜酸化銅や金属銅は電解液である硫酸に溶かしたときに不純物である不溶解残渣の増加につながり、電解液中の銅濃度が不安定になりつまり一定濃度であるべき銅メッキ材料の品位を損ない、メッキ処理品の品質が不安定になる一因となる。
【0007】
c.塩基性炭酸銅の原料から持ち込まれた塩基性炭酸銅自体が含有する不純物、例えば少量のアルカリ金属(NaやK)やアルカリ土類金属(MgやCa)、ClイオンやSO4 体のSなどが、熱分解して得た酸化銅中では例えば約1.4〜1.5倍に濃縮される。Clイオンがメッキ浴中に蓄積されると、被メッキ体の表面が粗面となるか、瘤状や針状の析出が起こり、製品不良となる。またSO4 体のSが蓄積した場合、メッキ状態に悪い影響を与えるだけでなく、メッキ浴中のSO4 濃度を制御することが困難になり、メッキ処理品の品質が不安定になる。更にまたアルカリ金属やアルカリ土類金属が蓄積した場合には、メッキ面上にそれらの硫酸塩の析出が心配され、建浴の頻度を増す懸念がある。
【0008】
このため酸化銅を直接メッキ材料とする連続運転をする場合、メッキ浴中にこれら不純物が蓄積される結果となった。蓄積量が管理上の上限まで達するとメッキ不良を起こすため、メッキ浴を予定よりも早く建浴しなければならないが、メッキ浴の建浴は非常にコストが高いので、システムの運用としてはコストアップにつながってしまう。
【0009】
本発明はこのような背景の下になされたものであり、その目的は易溶解性が高く、不溶解残渣の生成を抑えることのできる易溶解性酸化銅を提供すること、更には不純物が少ない易溶解性酸化銅を提供することにある。また他の目的は易溶解性が高く、不溶解残渣の生成を抑えることのできる銅メッキ材料を提供することにある。更に他の目的は、高純度の易溶解性酸化銅を用いた銅メッキ方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明は、易溶解性酸化銅からなる銅メッキ材料を製造する方法において、
塩化銅または硫酸銅と、アルカリ金属、アルカリ土類金属またはNH 4 の炭酸塩の水溶液とを混合して加熱しながら反応させて塩基性炭酸銅を得る工程と、
塩基性炭酸銅を還元雰囲気とはならない雰囲気下で250℃〜800℃に加熱して熱分解することにより易溶解性酸化銅を得る工程と、次いでこの易溶解性酸化銅を水洗する工程と、を含むことを特徴とする銅メッキ材料の製造方法である。還元雰囲気とはならない雰囲気下で加熱するとは、例えばバ−ナにより直接加熱するのではなく、電気炉などを用いて加熱することである。
【0011】
塩基性炭酸銅は、市販のものを用いてもよいが、塩化銅、硫酸銅または硝酸銅の水溶液と例えばアルカリ金属、アルカリ土類金属またはNH4 の炭酸塩の水溶液とを混合して加熱しながら反応させ、これにより析出した反応生成物を濾過分離して得るようにしてもよい。この場合前記炭酸塩の水溶液と塩化銅、硫酸銅または硝酸銅の水溶液とを混合するとは、炭酸塩を固体の状態で塩化銅、硫酸銅または硝酸銅の水溶液に投入して炭酸塩が水溶液になる場合を含み、また逆に塩化銅、硫酸銅または硝酸銅の固体を炭酸塩の水溶液に投入して水溶液になる場合も含む。本発明にかかる易溶解性酸化銅は高い易溶解性を有しているため、例えば不溶性陽極と陰極をなす被メッキ体とが設けられた電解液に供給される銅メッキ材料として好適に用いることができる。この場合銅メッキ材料中に上述の不純物を多く含んでいるとメッキ処理品の品質が低下するため、塩基性炭酸銅がアルカリ金属(NaやK)やアルカリ土類金属(MgやCa)、及び陰イオン(ClイオンやSO4 イオン)などの不純物を多く含んでいる場合には、熱分解して得られた易溶解性酸化銅を水洗することが好ましい。
【0013】
【発明の実施の形態】
本発明では、易溶解性酸化銅の原料である塩基性炭酸銅として市販品のものを購入してもよいが、この実施の形態では塩基性炭酸銅を購入せずに工場側で製造することとする。図1はこの場合の製造フロ−を示す説明図であり、例えば銅濃度が10重量%である塩化第二銅(CuCl2 )の水溶液とアルカリ金属の炭酸塩例えば炭酸濃度が7重量%である炭酸ナトリウム(Na2 CO3 )の水溶液とを例えば混合液のpHが7〜9となるように反応槽1内に投入し、混合液の温度が例えば70℃となるように加熱しながら撹拌手段11により例えば30分間撹拌して反応させる。混合液の加熱は例えば反応槽1内に図示しないが散気管などからなるバブリング手段を設け、このバブリング手段から蒸気を混合液にバブリングすることにより行われる。
【0014】
上述の反応は次のように進行する。先ず(1)式のように炭酸銅が生成され、
Na2 CO3 +CuCl2 →CuCO3 +2NaCl (1)
続いて(2)式のように炭酸銅が水和して塩基性炭酸銅の二水塩が生成され、
CuCO3 +3/2H2 O→1/2{CuCO3 ・Cu(OH)2・2H2 O}+1/2CO2 (2)
更に(3)式のように上記の二水塩から水が抜け、無水の塩基性炭酸銅が生成される。
【0015】
CuCO3 ・Cu(OH)2・2H2 O→CuCO3 ・Cu(OH)2+2H2 O (3)
こうして塩基性炭酸銅が析出生成されて粉体となって沈殿する。そしてバルブ12を開いて沈殿物であるスラリ−を抜き出して遠心分離機2に送り、ここで遠心分離により固形分を母液から分離し、その固形分を乾燥機3に入れて乾燥し、塩基性炭酸銅の粉体を得る。
【0016】
塩基性炭酸銅の原料である銅イオン源としては塩化銅の他に例えば硫酸銅または硝酸銅などの銅塩の水溶液を用いることができる。炭酸イオン源としては炭酸ナトリウムの他に炭酸水素ナトリウム、炭酸カリウムなどのアルカリ金属の炭酸塩、または炭酸カルシウム、炭酸マグネシウム、炭酸バリウムなどのアルカリ土類金属の炭酸塩あるいは炭酸アンモニウム((NH4)2 CO3 )などを用いることができる。
【0017】
次に粉体である前記塩基性炭酸銅を加熱炉、例えばロ−タリキルン4に供給し、ここで例えば250℃以上で800℃以下の温度に加熱して熱分解する。この例では加熱炉として、管軸を回転軸として回転する例えばステンレス製の回転管41を僅かに傾斜して設け、この回転管41の周囲をヒ−タ42により囲み、回転管41を回転させることにより塩基性炭酸銅の粉体を移送するロ−タリキルンを用いている。このようにして塩基性炭酸銅を加熱すれば加熱雰囲気が還元雰囲気にならない。塩基性炭酸銅を直接バ−ナで加熱しない理由は、還元雰囲気にすると、炭酸銅そのものや炭酸銅が酸化銅に分解された後、一部が還元されて亜酸化銅(Cu2 O)や金属銅(Cu)を生成してしまうので、これを避けるためである。
【0018】
金属銅は、酸化銅を銅メッキ材料として使用する場合に電解液である硫酸に溶解しないか溶解し難く、不溶解残渣となり新たなろ過設備が必要となる。また金属銅や亜酸化銅ができると、メッキ浴中への補給銅量が一定とならず、メッキ品の品質がばらついてしまう。従って塩基性炭酸銅を加熱するときには還元雰囲気にしないことが必要である。
【0019】
また加熱温度については、250℃であれば例えば2時間程度加熱することにより酸化銅が得られるが,200℃では熱分解しない。220℃では示差熱分析においても熱分解しきれていないことを把握していることから、250℃以上で加熱することが必要であるが、熱分解の時間を短くして生産効率を高くするためには350℃以上であることが好ましい。800℃を越えると、得られる酸化銅の易溶解性が小さくなってしまうので800℃以下であることが必要である。更により易溶解性の大きな酸化銅を得ようとすると600℃以下にすることが好ましい。
【0020】
このようにして酸化銅を得た後、この酸化銅を洗浄液である純水の入った洗浄槽5内に投入し、撹拌手段51により撹拌して水洗する。そしてバルブ52を開いて水と酸化銅との混合スラリ−を洗浄槽5から抜き出し、遠心分離機6またはろ過機により水分を飛ばしてから乾燥機7で乾燥させ、粉体である酸化銅を得る。洗浄液としては蒸留水やイオン交換水などの純水を用いることができるが、その他それより不純分が少ない水、例えば超純水などを用いることもできる。
【0021】
ここで酸化銅を銅メッキ材料の補給材として用いた銅メッキ方法を実施する装置の一例を図2に示しておく。図2中8はメッキ浴槽であり、この中に電解液である硫酸に酸化銅を溶解したメッキ浴が満たされていると共に、直流電源Eの正極側に接続された不溶性陽極81例えばチタン板に白金属の白金イリジウムを7:3の割合でコーディングしたものと、直流電源Eの負極側に接続された陰極である被メッキ材82例えば被メッキ用金属板とが浸漬されている。83は溶解槽であり、メッキ浴槽8内の銅イオンが少なくなってきたときに、補給源であるホッパ84から酸化銅の粉体を溶解槽83内に所定量補給し、撹拌手段85により撹拌して硫酸に溶解させた後、ポンプP1,P2を作動させてメッキ浴を循環させ、その後次の銅メッキ処理を行う。Fはフィルタである。
【0022】
上述の実施例によれば、塩基性炭酸銅を250〜800℃で熱分解しているので後述の実施例からも分かるように得られた酸化銅は易溶解性が大きく、また還元雰囲気で熱分解していないため、亜酸化銅や金属銅といった不溶解残渣となる成分の生成が抑えられ、酸化銅を銅メッキ材料として使用する場合にフィルターにほとんど負荷がかからないと共に銅メッキ浴中の銅イオンの濃度が安定する。
【0023】
そして塩基性炭酸銅には、その原料に応じた陰イオン及び陽イオンが含まれる。例えば塩化第二銅(CuCl2 )の水溶液と炭酸ナトリウム(Na2 CO3 )の水溶液とを原料とする場合、Clイオン及びNaイオンが塩基性炭酸銅に含まれ、例えば塩化第二銅の代わりに硫酸第二銅(CuSO4 )を用いた場合にはNaイオンとSO4 イオン体のSが含まれることになる。これらClイオンあるいはSO4 イオン体のS、Na,Kなどは塩基性炭酸銅を洗浄してもほとんど減少、精製することはできないが、後述の実施例にも裏付けされているように塩基性炭酸銅を熱分解して酸化銅に変えた後洗浄すると、これら不純物を低減することができる。また従って銅メッキ材料として用いた場合に、不純物濃度が管理上の上限に達するまでの時間が長くなるので、建浴に至るまでの時間が長くなり、コストアップを抑えることができる。
【0024】
【実施例】
参考例1−1)
先の実施の形態において塩基性炭酸銅を400℃でおよそ60分間加熱して熱分解して酸化銅を得た。
【0025】
参考例1−2)
先の実施の形態において塩基性炭酸銅を600℃でおよそ60分間加熱して熱分解して酸化銅を得た。
【0026】
参考例1−3)
先の実施の形態において塩基性炭酸銅を700℃でおよそ60分間加熱して熱分解して酸化銅を得た。
【0027】
参考例1−4)
先の実施の形態において塩基性炭酸銅を750℃でおよそ60分間加熱して熱分解して酸化銅を得た。
【0028】
参考例1−5)
先の実施の形態において塩基性炭酸銅を800℃でおよそ60分間加熱して熱分解して酸化銅を得た。
【0029】
(比較例1)
先の実施の形態において塩基性炭酸銅を900℃でおよそ60分間加熱して熱分解して酸化銅を得た。
【0030】
酸化銅を銅メッキ材料として銅メッキ浴に補給したときの溶解性を把握するために、参考例1−1〜1−5及び比較例1の酸化銅を夫々H2 S04 濃度が245g/リットルである硫酸水溶液10リットルに550g投入し、溶解させた。各サンプルにおける溶解過程の液の導電率を測定したところ図3に示す結果が得られた。図4及び図5は、この結果を導電率の経時変化としてグラフ化したものである。導電率の値が一定になった時点を溶解終了とし、酸化銅粉の投入から溶解終了時点までの時間を測定してそれを溶解時間とすると、各サンプルにおける溶解時間は図6に示す通りである。この結果から塩基性炭酸銅の熱分解時の温度が800℃までは易溶解性が高いが、900℃になると易溶解性が低くなることが分かる。また熱分解時の温度が800℃から600℃に下がるにつれて溶解時間が短くなっているので(易溶解性が大くなっている)ので、800℃よりも低い温度例えば600℃以下であることがより好ましい。温度が高い方が易溶解性が低くなる理由は、分解して出来た酸化銅の固相焼結が進むためであると考えられる。
参考例2)
先の実施の形態において塩基性炭酸銅を400℃でおよそ60分間加熱して熱分解して酸化銅を得た。
【0031】
(比較例2−1)
バ−ナで直接加熱できる還元雰囲気が存在するロ−タリ−キルンを用いた他は実施例2と同様にして酸化銅を得た。
【0032】
(比較例2−2)
塩基性炭酸銅の熱分解の温度を900℃とした他は実施例2と同様にして酸化銅を得た。
【0033】
参考例2、比較例2−1、比較例2−2の酸化銅を夫々H2 S04 濃度が245g/リットルである硫酸水溶液10リットルに550g投入し、溶解させた。溶解終了後、液を濾過して濾紙上に残った不溶解残渣量を測定したところ、図に示す結果が得られた。この結果から、塩基性炭酸銅を還元雰囲気で熱分解すると不溶解残渣量が多く、還元雰囲気でなくとも900℃もの高温で熱分解すると還元雰囲気に比べてかなり不溶解残渣量は少ないが、まだ高い値を示しており、これに対して本発明によれば不溶解残渣量が極めて低減できることが分かる。
【0034】
(実施例3)先の実施の形態において塩基性炭酸銅を400℃でおよそ60分間加熱して熱分解して酸化銅を得、以下の水洗条件で水洗し、水洗前後の酸化銅中に含まれるNa,Clの濃度をICP−AES(誘導プラズマ発光分光分析計)やタイトレーターにより調べたところ図8に示す結果が得られた。水洗条件:酸化銅粉500gを水4500gに投入し、10分間撹拌し、その後濾過、水洗する。水洗は酸化銅粉500gに対して水5000gを使用した。塩基性炭酸銅の場合には水洗してもNa,Clの濃度を低減することができないが、酸化銅においては水洗が不純物濃度の低減に非常に有効であることが分かる。
【0035】
参考例4)
塩素濃度(Cl濃度)が約20ppmである酸化銅を銅補給剤として電気メッキを下記条件で実施した。
【0036】
電気メッキ条件
・陽極 :チタンに白金族(Pt:Ir=7:3)を被覆したもの
・陰極 :銅板
・電極面積 :10cm×10cm
・電流密度、電流、電圧 :1A/dm2 ,1A,2,2 V
・銅濃度 Cuとして18g/リットル
・硫酸濃度 H2 S04 として180g/リットル
開始時のメッキ浴中の塩素濃度を約20ppmに調整した。銅濃度を一定に保持するように酸化銅を供給した場合、浴中の塩素濃度は増加せず、逆に減少した。このため浴中の塩素濃度を一定に維持するために塩素分を5〜20ppm/日添加している。この結果から、供給した酸化銅に含まれる塩素量よりも、陽極からの塩素発生量が多いと考えられる。最終的に得られた陰極の表面は非常に平坦で平滑であった。
【0037】
参考比較例4)
塩素濃度が約140ppmである酸化銅を銅補給剤として電気メッキを上記の参考例4と同一の条件で実施した。
【0038】
開始時のメッキ浴中の塩素濃度を約20ppmに調整した。銅濃度を一定に保持するように酸化銅を供給した場合、メッキ浴中で2〜4ppm/日の塩素濃度の増加が起こった。これは陽極からの塩素発生量よりも、供給した酸化銅に含まれる塩素量の方が大きいことが原因であると考えられる。40日間経過後、メッキ浴中の塩素濃度は約150ppmとなった。最終的に得られた陰極の表面は参考例4に比較して粗面となった。
【0039】
【発明の効果】
以上のように本発明によれば、易溶解性が高く、不溶解残渣の生成を抑えることのできる易溶解性酸化銅が得られる。また易溶解性酸化銅を洗浄することにより高純度のものが得られ、例えば電解メッキにおける銅メッキ材料として好適に用いることができる。そしてこの易溶解性酸化銅を銅メッキ材料として電解メッキを行うと、良好なメッキ処理を行うことができ、また建浴に至るまでの時間が長くなり、コストアップを抑えることができる。
【図面の簡単な説明】
【図1】本発明の易溶解性酸化銅の製造方法の実施の形態を示す工程図である。
【図2】本発明のメッキ方法に用いられるメッキ処理装置の一例を示す構成図である。
【図3】塩基性炭酸銅の熱分解温度をパラメ−タとし、酸化銅を硫酸に投入したときの導電率の経時変化を表として表わした説明図である。
【図4】図3に示す導電率の経時変化をグラフとして表わした説明図である。
【図5】図3に示す導電率の経時変化をグラフとして表わした説明図である。
【図6】図3の結果に基づいて、各熱分解温度で得られた酸化銅の溶解時間を示す説明図である。
【図7】塩基性炭酸銅の熱分解の条件と不溶解残渣量との関係を示す説明図である。
【図8】酸化銅の水洗の有無と不純物量との関係を示す説明図である。
【符号の説明】
1 反応槽
2 遠心分離機
3 乾燥機
4 加熱炉
5 洗浄槽
6 遠心分離機
7 乾燥機
8 電解槽
81 不溶性陽極
82 陰極である被メッキ体
83 溶解槽
84 ホッパ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a copper plating material made of easily soluble copper oxide using basic copper carbonate as a raw material .
[0002]
[Prior art]
As one of the methods of performing copper plating treatment on the object to be plated, there is an electrolytic plating method in which a copper plating material is supplied in sulfuric acid, which is an electrolytic solution, and electricity is passed between the object to be plated that forms an insoluble anode and a cathode. As a copper plating material used in this method, it is known to use copper oxide obtained by thermally decomposing basic copper carbonate (Japanese Patent No. 2753855).
[0003]
Copper oxide is widely used as a raw material for ferrite materials, and is also used as a copper ion replenisher for electroless copper plating baths as described in JP-A-3-80116. In general, it is produced by heat treatment of copper mill scale, cuprous oxide or copper hydroxide, but copper mill scale system is difficult to dissolve, so it cannot be used as a copper plating material, and cuprous oxide system is Cl. Since there are a lot of ions (chlorine ions), plating is poor and cannot be used. In the above-mentioned publication (Japanese Patent Laid-Open No. 3-80116), it is described that copper hydroxide is obtained by heating copper hydroxide at 60 to 100 ° C., but cupric hydroxide is used for Cl ions and SO4 bodies. Since there is much S, when it uses for electrolytic plating, it will become a plating defect. On the other hand, copper oxide obtained by thermally decomposing basic copper carbonate can be used as a copper plating material because it contains less Cl ions and S in SO4 form.
[0004]
[Problems to be solved by the invention]
However, the use of copper oxide obtained by thermally decomposing basic copper carbonate as a copper plating material has the following problems.
[0005]
a. Since copper oxide is usually used as a raw material for ferrite, it is required that the weight of the ferrite be reduced, particularly in the sintering process, so that the heating temperature when the raw material is pyrolyzed or heat-treated is generally 900 ° C. or higher. However, although the obtained copper oxide is more soluble than general copper oxide, the degree of solubility is not so high. For this reason, it takes a long time for the copper plating material to dissolve in the electrolytic solution when the copper plating material is replenished to the copper plating bath (the solution in which the copper plating material is supplied to the electrolytic solution), resulting in uneven copper ion concentration. This causes variations in quality and causes a reduction in processing efficiency.
[0006]
b. As a normal cracking furnace, a rotary kiln with direct heating using a frame that emphasizes thermal efficiency is commonly used, but when the reducing flame of the frame comes into contact with copper carbonate or copper oxide, cuprous oxide or metallic copper is unified. Will be generated. These cuprous oxides and metallic copper lead to an increase in insoluble residues as impurities when dissolved in sulfuric acid, which is an electrolytic solution, and the copper concentration in the electrolytic solution becomes unstable, that is, the copper plating material that should be at a constant concentration. The quality is lost and the quality of the plated product becomes unstable.
[0007]
c. Impurities contained in the basic copper carbonate itself brought from the raw material of the basic copper carbonate, such as a small amount of alkali metals (Na and K) and alkaline earth metals (Mg and Ca), Cl ions and SO4 form S, etc. In the copper oxide obtained by thermal decomposition, for example, it is concentrated about 1.4 to 1.5 times. If Cl ions are accumulated in the plating bath, the surface of the object to be plated becomes rough or precipitates in the form of knobs or needles occur, resulting in a product defect. If S in the SO4 body accumulates, it not only adversely affects the plating state but also makes it difficult to control the SO4 concentration in the plating bath, resulting in unstable quality of the plated product. Furthermore, when alkali metal or alkaline earth metal accumulates, there is a concern about the precipitation of those sulfates on the plating surface, and there is a concern that the frequency of building baths will increase.
[0008]
For this reason, in the case of continuous operation using copper oxide as a direct plating material, these impurities are accumulated in the plating bath. If the accumulated amount reaches the upper limit for management, plating failure will occur, so it is necessary to build a plating bath earlier than planned, but the plating bath is very expensive, so it is costly to operate the system. It will lead to up.
[0009]
The present invention has been made under such a background. The object of the present invention is to provide an easily soluble copper oxide that is highly soluble and can suppress the formation of insoluble residues, and further has less impurities. It is to provide an easily soluble copper oxide. Another object is to provide a copper plating material that is highly soluble and can suppress the formation of insoluble residues. Still another object is to provide a copper plating method using high-purity, readily soluble copper oxide.
[0010]
[Means for Solving the Problems]
The present invention, in a method for producing a copper plating material comprising a readily soluble copper oxide,
A step of mixing copper chloride or copper sulfate with an alkali metal, alkaline earth metal or NH 4 carbonate aqueous solution and reacting while heating to obtain basic copper carbonate;
A step of obtaining easily soluble copper oxide by heating to 250 ° C. to 800 ° C. in an atmosphere that is not a reducing atmosphere and thermally decomposing basic copper carbonate, and then washing the easily soluble copper oxide with water; It is a manufacturing method of the copper plating material characterized by including . Heating in an atmosphere that does not become a reducing atmosphere is, for example, heating using an electric furnace or the like, not directly by a burner.
[0011]
As the basic copper carbonate, commercially available ones may be used, while mixing and heating an aqueous solution of copper chloride, copper sulfate or copper nitrate and an aqueous solution of an alkali metal, alkaline earth metal or NH4 carbonate, for example. The reaction product thus precipitated may be obtained by filtration and separation. In this case, mixing the carbonate aqueous solution with the copper chloride, copper sulfate or copper nitrate aqueous solution means that the carbonate is added to the copper chloride, copper sulfate or copper nitrate aqueous solution in a solid state to convert the carbonate into the aqueous solution. On the contrary, the case where a solid solution of copper chloride, copper sulfate or copper nitrate is added to an aqueous carbonate solution to form an aqueous solution is also included. Since the easily soluble copper oxide according to the present invention has high solubility, for example, it is preferably used as a copper plating material supplied to an electrolytic solution provided with an insoluble anode and a body to be plated. Can do. In this case, if the copper plating material contains a large amount of the above-mentioned impurities, the quality of the plated product is deteriorated, so that the basic copper carbonate is alkali metal (Na or K), alkaline earth metal (Mg or Ca), and When many impurities such as anions (Cl ions and SO4 ions) are contained, it is preferable to wash the readily soluble copper oxide obtained by thermal decomposition with water.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, a commercially available product may be purchased as basic copper carbonate, which is a raw material for easily soluble copper oxide, but in this embodiment, it is manufactured on the factory side without purchasing basic copper carbonate. And FIG. 1 is an explanatory view showing the production flow in this case. For example, an aqueous solution of cupric chloride (CuCl2) having a copper concentration of 10% by weight and an alkali metal carbonate, for example, a carbonic acid having a carbonic acid concentration of 7% by weight. An aqueous solution of sodium (Na2 CO3) is introduced into the reaction vessel 1 so that the pH of the mixed solution becomes, for example, 7-9, and is stirred by the stirring means 11 while being heated so that the temperature of the mixed solution becomes, for example, 70 ° C. Stir for 30 minutes to react. The liquid mixture is heated by, for example, providing bubbling means such as an air diffuser (not shown) in the reaction tank 1 and bubbling vapor from the bubbling means into the liquid mixture.
[0014]
The above reaction proceeds as follows. First, copper carbonate is generated as in equation (1),
Na2 CO3 + CuCl2 → CuCO3 + 2NaCl (1)
Subsequently, copper carbonate is hydrated as shown in formula (2) to produce basic copper carbonate dihydrate,
CuCO3 + 3 / 2H2 O → 1/2 {CuCO3 · Cu (OH) 2 · 2H2 O} + 1 / 2CO2 (2)
Furthermore, as shown in the formula (3), water is released from the dihydrate, and anhydrous basic copper carbonate is generated.
[0015]
CuCO3 · Cu (OH) 2 · 2H 2 O → CuCO 3 · Cu (OH) 2 + 2H 2 O (3)
In this way, basic copper carbonate is precipitated and formed into a powder. And the valve | bulb 12 is opened, the slurry which is a deposit is extracted, and it sends to the centrifuge 2, and solid content is isolate | separated from mother liquor here by centrifugation, The solid content is put into the dryer 3, and it is dried, and is basic. Obtain copper carbonate powder.
[0016]
As a copper ion source which is a raw material of basic copper carbonate, an aqueous solution of a copper salt such as copper sulfate or copper nitrate can be used in addition to copper chloride. Sources of carbonate ions include sodium carbonate, alkali metal carbonates such as sodium bicarbonate and potassium carbonate, alkaline earth metal carbonates such as calcium carbonate, magnesium carbonate, and barium carbonate, or ammonium carbonate ((NH4) 2 CO3) or the like can be used.
[0017]
Next, the basic copper carbonate as a powder is supplied to a heating furnace, for example, a rotary kiln 4, where it is heated to a temperature of, for example, 250 ° C. to 800 ° C. and thermally decomposed. In this example, as a heating furnace, a rotating tube 41 made of, for example, stainless steel that rotates with a tube axis serving as a rotating shaft is provided with a slight inclination, the rotating tube 41 is surrounded by a heater 42, and the rotating tube 41 is rotated. Thus, a rotary kiln for transferring basic copper carbonate powder is used. If basic copper carbonate is heated in this way, the heating atmosphere does not become a reducing atmosphere. The reason why basic copper carbonate is not heated directly with a burner is that when it is in a reducing atmosphere, copper carbonate itself or copper carbonate is decomposed into copper oxide, and then partially reduced to cuprous oxide (Cu2 O) or metal This is because copper (Cu) is generated, which is avoided.
[0018]
When copper oxide is used as a copper plating material, metallic copper does not dissolve or hardly dissolves in sulfuric acid, which is an electrolytic solution, and becomes an insoluble residue and requires new filtration equipment. Further, when metallic copper or cuprous oxide is formed, the amount of copper to be supplied into the plating bath is not constant, and the quality of the plated product varies. Therefore, it is necessary not to use a reducing atmosphere when heating basic copper carbonate.
[0019]
As for the heating temperature, if it is 250 ° C., for example, copper oxide can be obtained by heating it for about 2 hours, but it is not thermally decomposed at 200 ° C. It is necessary to heat at 250 ° C. or higher because it is known that thermal decomposition is not complete at 220 ° C. even in differential thermal analysis, but in order to shorten the time of thermal decomposition and increase production efficiency Is preferably 350 ° C. or higher. If it exceeds 800 ° C., the resulting copper oxide is less readily soluble, so it is necessary that the temperature be 800 ° C. or lower. Furthermore, when it is going to obtain copper oxide with much easier solubility, it is preferable to make it 600 degrees C or less.
[0020]
After obtaining copper oxide in this way, this copper oxide is put into a washing tank 5 containing pure water as a washing liquid, and is stirred by the stirring means 51 and washed with water. Then, the valve 52 is opened, the mixed slurry of water and copper oxide is taken out from the washing tank 5, water is removed by the centrifuge 6 or the filter, and then dried by the dryer 7 to obtain copper oxide as powder. . As the cleaning liquid, pure water such as distilled water or ion-exchanged water can be used, but water having a lower impurity content than that, such as ultrapure water, can also be used.
[0021]
An example of an apparatus for carrying out a copper plating method using copper oxide as a replenisher for the copper plating material is shown in FIG. In FIG. 2, reference numeral 8 denotes a plating bath, which is filled with a plating bath in which copper oxide is dissolved in sulfuric acid, which is an electrolytic solution, and an insoluble anode 81 connected to the positive electrode side of the DC power source E, such as a titanium plate. A white metal platinum iridium coded in a ratio of 7: 3 and a material 82 to be plated, which is a cathode connected to the negative electrode side of the DC power source E, are immersed. 83 is a dissolution tank, and when the copper ions in the plating bath 8 are reduced, a predetermined amount of copper oxide powder is replenished into the dissolution tank 83 from a hopper 84 as a supply source and stirred by the stirring means 85. After dissolving in sulfuric acid, the pumps P1 and P2 are operated to circulate the plating bath, and then the next copper plating process is performed. F is a filter.
[0022]
According to the above-mentioned examples, since the basic copper carbonate is thermally decomposed at 250 to 800 ° C., the obtained copper oxide has high solubility and can be heated in a reducing atmosphere as can be seen from the examples described later. Since it is not decomposed, the formation of insoluble residue components such as cuprous oxide and metallic copper is suppressed, and when copper oxide is used as a copper plating material, the filter is hardly loaded and the copper ions in the copper plating bath The concentration of is stable.
[0023]
And basic copper carbonate contains the anion and cation according to the raw material. For example, when an aqueous solution of cupric chloride (CuCl2) and an aqueous solution of sodium carbonate (Na2 CO3) are used as raw materials, Cl ions and Na ions are contained in the basic copper carbonate. When dicopper (CuSO4) is used, Na ions and SO4 ion bodies S are contained. These Cl ions or SO4 ions such as S, Na, and K can hardly be reduced or purified even by washing the basic copper carbonate, but the basic copper carbonate is supported by the examples described later. When these are thermally decomposed and changed to copper oxide and then washed, these impurities can be reduced. Therefore, when used as a copper plating material, the time until the impurity concentration reaches the upper limit in management becomes longer, so the time until reaching the building bath becomes longer, and the cost increase can be suppressed.
[0024]
【Example】
( Reference Example 1-1)
In the previous embodiment, the basic copper carbonate was heated at 400 ° C. for about 60 minutes and thermally decomposed to obtain copper oxide.
[0025]
( Reference Example 1-2)
In the previous embodiment, the basic copper carbonate was heated at 600 ° C. for about 60 minutes and thermally decomposed to obtain copper oxide.
[0026]
( Reference Example 1-3)
In the previous embodiment, basic copper carbonate was heated at 700 ° C. for about 60 minutes to thermally decompose to obtain copper oxide.
[0027]
( Reference Example 1-4)
In the previous embodiment, basic copper carbonate was heated at 750 ° C. for about 60 minutes to thermally decompose to obtain copper oxide.
[0028]
( Reference Example 1-5)
In the previous embodiment, basic copper carbonate was heated at 800 ° C. for about 60 minutes to thermally decompose to obtain copper oxide.
[0029]
(Comparative Example 1)
In the previous embodiment, basic copper carbonate was heated at 900 ° C. for about 60 minutes and thermally decomposed to obtain copper oxide.
[0030]
In order to grasp the solubility when copper oxide is supplied to the copper plating bath as a copper plating material, the copper oxides of Reference Examples 1-1 to 1-5 and Comparative Example 1 each have a H2 S04 concentration of 245 g / liter. 550 g was added to 10 liter of sulfuric acid aqueous solution and dissolved. When the electric conductivity of the solution in the dissolution process in each sample was measured, the results shown in FIG. 3 were obtained. 4 and 5 are graphs of the results as changes in conductivity over time. When the conductivity value becomes constant, the dissolution is completed, and the time from the addition of the copper oxide powder to the dissolution end time is measured and taken as the dissolution time. The dissolution time in each sample is as shown in FIG. is there. From this result, it can be seen that the solubility at the time of thermal decomposition of the basic copper carbonate is high up to 800 ° C., but the solubility is low at 900 ° C. Further, since the dissolution time is shortened as the temperature during pyrolysis is decreased from 800 ° C. to 600 ° C. (the solubility is increased), the temperature is lower than 800 ° C., for example, 600 ° C. or less. More preferred. The reason why the solubility becomes lower at higher temperatures is considered to be due to the progress of solid-phase sintering of the copper oxide produced by decomposition.
( Reference Example 2)
In the previous embodiment, the basic copper carbonate was heated at 400 ° C. for about 60 minutes and thermally decomposed to obtain copper oxide.
[0031]
(Comparative Example 2-1)
Copper oxide was obtained in the same manner as in Example 2 except that a rotary kiln having a reducing atmosphere that could be directly heated by a burner was used.
[0032]
(Comparative Example 2-2)
Copper oxide was obtained in the same manner as in Example 2 except that the thermal decomposition temperature of basic copper carbonate was 900 ° C.
[0033]
550 g of the copper oxides of Reference Example 2, Comparative Example 2-1, and Comparative Example 2-2 were added to 10 liters of an aqueous sulfuric acid solution having an H2 SO4 concentration of 245 g / liter, and dissolved. After dissolution, the solution was filtered and the amount of insoluble residue remaining on the filter paper was measured. The result shown in FIG. 7 was obtained. From this result, when the basic copper carbonate is pyrolyzed in a reducing atmosphere, there is a large amount of insoluble residue. In contrast to this, it can be seen that according to the present invention, the amount of insoluble residue can be greatly reduced.
[0034]
(Example 3) In the previous embodiment, basic copper carbonate was heated at 400 ° C for about 60 minutes to thermally decompose to obtain copper oxide, washed with water under the following water washing conditions, and contained in the copper oxide before and after water washing. When the concentrations of Na and Cl were examined using ICP-AES (Induction Plasma Emission Spectrometer) or a titrator, the results shown in FIG. 8 were obtained. Washing conditions: 500 g of copper oxide powder is put into 4500 g of water, stirred for 10 minutes, then filtered and washed with water. The water washing used 5000 g of water for 500 g of copper oxide powder. In the case of basic copper carbonate, the concentration of Na and Cl cannot be reduced by washing with water. However, in the case of copper oxide, the washing with water is very effective in reducing the impurity concentration.
[0035]
( Reference Example 4)
Electroplating was performed under the following conditions using copper oxide having a chlorine concentration (Cl concentration) of about 20 ppm as a copper supplement.
[0036]
Electroplating conditions / Anode: Titanium covered with platinum group (Pt: Ir = 7: 3) Cathode: Copper plate / electrode area: 10 cm × 10 cm
・ Current density, current, voltage: 1A / dm2, 1A, 2,2 V
-Copper concentration 18 g / liter as Cu-Sulfuric acid concentration The chlorine concentration in the plating bath at the start of 180 g / liter as H2 S04 was adjusted to about 20 ppm. When copper oxide was supplied so as to keep the copper concentration constant, the chlorine concentration in the bath did not increase but decreased. For this reason, in order to keep the chlorine concentration in the bath constant, the chlorine content is added at 5 to 20 ppm / day. From this result, it is considered that the amount of chlorine generated from the anode is larger than the amount of chlorine contained in the supplied copper oxide. The surface of the finally obtained cathode was very flat and smooth.
[0037]
( Reference Comparative Example 4)
Electroplating was performed under the same conditions as in Reference Example 4 above using copper oxide having a chlorine concentration of about 140 ppm as a copper replenisher.
[0038]
The chlorine concentration in the plating bath at the start was adjusted to about 20 ppm. When copper oxide was supplied so as to keep the copper concentration constant, an increase in the chlorine concentration of 2-4 ppm / day occurred in the plating bath. This is considered to be because the amount of chlorine contained in the supplied copper oxide is larger than the amount of chlorine generated from the anode. After 40 days, the chlorine concentration in the plating bath was about 150 ppm. The surface of the finally obtained cathode was rough as compared with Reference Example 4.
[0039]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain a readily soluble copper oxide that has high solubility and can suppress the formation of insoluble residues. Moreover, a highly purified thing is obtained by wash | cleaning easily soluble copper oxide, For example, it can use suitably as a copper plating material in electrolytic plating. When electrolytic plating is performed using this easily soluble copper oxide as a copper plating material, a good plating process can be performed, and the time until reaching a building bath is lengthened, thereby suppressing an increase in cost.
[Brief description of the drawings]
FIG. 1 is a process diagram showing an embodiment of a method for producing a readily soluble copper oxide of the present invention.
FIG. 2 is a configuration diagram showing an example of a plating apparatus used in the plating method of the present invention.
FIG. 3 is an explanatory diagram showing, as a table, changes in conductivity with time when the thermal decomposition temperature of basic copper carbonate is a parameter and copper oxide is added to sulfuric acid.
FIG. 4 is an explanatory diagram showing the change over time of the conductivity shown in FIG. 3 as a graph.
FIG. 5 is an explanatory diagram showing, as a graph, the temporal change in conductivity shown in FIG.
6 is an explanatory diagram showing the dissolution time of copper oxide obtained at each thermal decomposition temperature based on the result of FIG. 3. FIG.
FIG. 7 is an explanatory diagram showing the relationship between the thermal decomposition conditions of basic copper carbonate and the amount of insoluble residue.
FIG. 8 is an explanatory diagram showing the relationship between the presence or absence of copper oxide washing and the amount of impurities.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Reaction tank 2 Centrifuge 3 Dryer 4 Heating furnace 5 Washing tank 6 Centrifuge 7 Dryer 8 Electrolyzer 81 Insoluble anode 82 To-be-plated object 83 which is a cathode Dissolution tank 84 Hopper

Claims (1)

易溶解性酸化銅からなる銅メッキ材料を製造する方法において、
塩化銅または硫酸銅の水溶液と、アルカリ金属、アルカリ土類金属またはNH4の炭酸塩の水溶液とを混合して加熱しながら反応させて塩基性炭酸銅を得る工程と、
塩基性炭酸銅を還元雰囲気とはならない雰囲気下で250℃〜800℃に加熱して熱分解することにより易溶解性酸化銅を得る工程と、
次いでこの易溶解性酸化銅を水洗する工程と、を含むことを特徴とする銅メッキ材料の製造方法。
In a method for producing a copper plating material made of easily soluble copper oxide,
A step of obtaining a basic copper carbonate by mixing an aqueous solution of copper chloride or copper sulfate with an aqueous solution of alkali metal, alkaline earth metal or NH 4 carbonate and reacting while heating;
A step of obtaining easily soluble copper oxide by heating the basic copper carbonate to 250 ° C. to 800 ° C. in an atmosphere that is not a reducing atmosphere and thermally decomposing it;
Then, the process of washing this easily soluble copper oxide with water, The manufacturing method of the copper plating material characterized by the above-mentioned.
JP2000267018A 2000-09-04 2000-09-04 Manufacturing method of copper plating material Expired - Lifetime JP4033616B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2000267018A JP4033616B2 (en) 2000-09-04 2000-09-04 Manufacturing method of copper plating material
TW090121323A TW539652B (en) 2000-09-04 2001-08-29 Material for copper electroplating, method for manufacturing same and copper electroplating method
DE10143076A DE10143076B4 (en) 2000-09-04 2001-09-03 A method of making a copper plating material and copper plating material obtainable by the method
KR10-2001-0053773A KR100539652B1 (en) 2000-09-04 2001-09-03 Manufacturing method of electrolytic copper plating materials, electrolytic copper plating material and copper plating method
CNB011324597A CN1170010C (en) 2000-09-04 2001-09-04 Copper plated material, its manufacturing method and method for copper plating
US09/944,344 US20020053518A1 (en) 2000-09-04 2001-09-04 Material for copper electroplating, method for manufacturing same and copper electroplating method
HK02104082.9A HK1043162B (en) 2000-09-04 2002-05-31 Material for copper electroplating, method for manufacturing same and copper electroplating method
KR1020050078530A KR100683598B1 (en) 2000-09-04 2005-08-26 Manufacturing method of electrolytic copper plating materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000267018A JP4033616B2 (en) 2000-09-04 2000-09-04 Manufacturing method of copper plating material

Publications (2)

Publication Number Publication Date
JP2002068743A JP2002068743A (en) 2002-03-08
JP4033616B2 true JP4033616B2 (en) 2008-01-16

Family

ID=18754006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000267018A Expired - Lifetime JP4033616B2 (en) 2000-09-04 2000-09-04 Manufacturing method of copper plating material

Country Status (1)

Country Link
JP (1) JP4033616B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI267494B (en) * 2004-06-18 2006-12-01 Tsurumisoda Co Ltd Copper plating material, and copper plating method
JP5266477B2 (en) * 2005-12-26 2013-08-21 Dowaエレクトロニクス株式会社 Method for producing copper oxide
KR100840553B1 (en) 2007-06-12 2008-06-23 에코 서비스 코리아(주) Method for preparing high purity copper oxide containing a trace amount of chlorine from waste etchant
JP5622108B2 (en) * 2011-01-14 2014-11-12 住友金属鉱山株式会社 High purity cupric oxide fine powder and method for producing the same, and copper ion supply method for aqueous copper sulfate solution using high purity cupric oxide fine powder
JP5874910B2 (en) * 2011-02-14 2016-03-02 住友金属鉱山株式会社 Method for producing high-purity cupric oxide fine powder and method for supplying copper ion in aqueous copper sulfate solution
JP5858267B2 (en) * 2011-03-23 2016-02-10 住友金属鉱山株式会社 Copper ion supply method to easily soluble cupric oxide fine powder and copper sulfate aqueous solution
KR101153972B1 (en) 2011-09-28 2012-06-08 씨피텍 주식회사 Process for preparing copper oxide from basic copper carbonate
TW201532714A (en) * 2014-02-21 2015-09-01 Co Tech Copper Foil Corp Method and apparatus for producing copper oxide therewith
JP6653799B2 (en) * 2017-07-31 2020-02-26 メルテックス株式会社 Anode for electrolytic copper plating and electrolytic copper plating apparatus using the same
JP2021088492A (en) * 2019-12-06 2021-06-10 三菱マテリアル株式会社 Method for producing copper oxide powder, and copper oxide powder

Also Published As

Publication number Publication date
JP2002068743A (en) 2002-03-08

Similar Documents

Publication Publication Date Title
JP4033616B2 (en) Manufacturing method of copper plating material
KR100683598B1 (en) Manufacturing method of electrolytic copper plating materials
JP6299620B2 (en) Method for producing nickel sulfate
JP4113519B2 (en) Copper plating material and copper plating method
JPH0321490B2 (en)
JP2003166100A (en) Copper powder used for copper plating, and method for using copper powder
JP2004299974A (en) Method of producing high purity easily dissolvable copper oxide, high purity easily dissolvable copper oxide, copper plating material and copper plating method
JP4068338B2 (en) Basic copper carbonate manufacturing method, copper oxide manufacturing method, and basic copper carbonate manufacturing apparatus
JPH05319825A (en) Production of cuprous oxide
JP5965213B2 (en) Method and apparatus for recovering copper oxide from copper-containing acidic waste liquid
JP2753855B2 (en) Manufacturing method of copper plating material
KR100650488B1 (en) Copper Plating Material and Copper Plating Method
US3869359A (en) Method of making intimately admixed metal oxides
KR101313844B1 (en) Manufacturing method of high quality copper oxide and material for copper plating from waste copper liquid
JPS63118086A (en) Production of hexavalent chromium used in chlorate electrolytic cell
Smetanin et al. Electrochemical preparation of arsenic and its compounds
KR101258650B1 (en) Process for preparing cupric oxide powder for electric plating
JP3839653B2 (en) Method for producing basic copper carbonate for electrolytic plating
CN111647902B (en) Treatment method of electrolytic solution of tellurium flat plate
JP2002326813A (en) Method for recovering hydrochloric acid and copper carbonate from copper chloride solution
CN115074783B (en) Preparation method of 5N high-purity silver
JP2000017464A (en) Method for recycling waste liquid etchant and device therefor
JP4780864B2 (en) Method for recovering copper from etching waste acid
US814049A (en) Method of treating matte.
US2094276A (en) Method of making lead oxide

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071023

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4033616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term