JP2007169135A - Basic copper carbonate, copper oxide, and method for producing copper oxide - Google Patents

Basic copper carbonate, copper oxide, and method for producing copper oxide Download PDF

Info

Publication number
JP2007169135A
JP2007169135A JP2005372946A JP2005372946A JP2007169135A JP 2007169135 A JP2007169135 A JP 2007169135A JP 2005372946 A JP2005372946 A JP 2005372946A JP 2005372946 A JP2005372946 A JP 2005372946A JP 2007169135 A JP2007169135 A JP 2007169135A
Authority
JP
Japan
Prior art keywords
copper
copper oxide
carbonate
basic
basic copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005372946A
Other languages
Japanese (ja)
Other versions
JP5266477B2 (en
Inventor
Kazushi Kamimura
一志 上村
Masami Mogi
正実 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP2005372946A priority Critical patent/JP5266477B2/en
Publication of JP2007169135A publication Critical patent/JP2007169135A/en
Application granted granted Critical
Publication of JP5266477B2 publication Critical patent/JP5266477B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide basic copper carbonate capable of producing copper oxide readily dispersing into primary particles at the time of mixing, with high productivity, and copper oxide and to provide a method for producing copper oxide. <P>SOLUTION: This basic copper carbonate is produced by adding an aqueous copper nitrate solution to an aqueous solution of an ammonium salt, to cause a reverse neutralization reaction. The copper oxide is obtained by washing the basic copper carbonate with warm pure water, followed by drying and firing. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は塩基性炭酸銅および酸化銅、並びに酸化銅の製造方法に関し、特には、当該塩基性炭酸銅から製造した酸化銅を超電導物質の製造原料としたとき、超電導物質として有効なペロプスカイト型の構造を得やすい酸化銅、並びにその酸化銅の製造方法に関する。   The present invention relates to basic copper carbonate and copper oxide, and a method for producing copper oxide, and in particular, when a copper oxide produced from the basic copper carbonate is used as a raw material for producing a superconducting material, a perovskite type effective as a superconducting material. It is related with the copper oxide which is easy to obtain the structure of this, and the manufacturing method of the copper oxide.

従来、微細な1次粒子を有する酸化銅を製造する方法として、例えば特許文献1に記載の方法が公知である。当該製造方法は、硝酸銅水溶液へ、中和剤としてアンモニウム塩を含む水溶液を添加し、当該硝酸銅水溶液を中和して塩基性炭酸銅粒子を生成し、当該塩基性炭酸銅粒子を水洗、乾燥後、大気下で焼成して酸化銅を製造する方法である。   Conventionally, for example, a method described in Patent Document 1 is known as a method for producing copper oxide having fine primary particles. The production method includes adding an aqueous solution containing an ammonium salt as a neutralizing agent to an aqueous copper nitrate solution, neutralizing the aqueous copper nitrate solution to produce basic copper carbonate particles, washing the basic copper carbonate particles with water, This is a method for producing copper oxide by drying in the air after drying.

特公平5−59845号公報Japanese Patent Publication No. 5-59845

特許文献1に係る酸化銅の粉末は、当該酸化銅粉末を超電導物質の原料としたとき、超電導物質として有効なペロプスカイト型の構造を得ることを目的として製造されたものである。そして、当該目的より、酸化銅粉末は、他の超電導の物質との混合時の際、容易に1次粒子に分散することが求められる。しかし、特許文献1に係る酸化銅製造法にて製造された酸化銅粉末に含まれる2次粒子は、容易には1次粒子へと分散しない為、当該混合分散工程に多くの工数を必要とするという問題があった。   The copper oxide powder according to Patent Document 1 is manufactured for the purpose of obtaining a perovskite structure effective as a superconducting material when the copper oxide powder is used as a raw material for the superconducting material. For this purpose, the copper oxide powder is required to be easily dispersed in primary particles when mixed with other superconducting substances. However, since the secondary particles contained in the copper oxide powder produced by the copper oxide production method according to Patent Document 1 are not easily dispersed into primary particles, a large number of man-hours are required for the mixing and dispersing step. There was a problem to do.

さらに、特許文献1に係る酸化銅粉末の製造方法は、水溶液温度、水溶液濃度、および反応温度により、得られる酸化銅粉末の1次および2次粒子径が変化するものであった。この為、酸化銅粉末の製造にあたっては、水溶液温度、水溶液濃度、および反応温度を、特定の条件内で精密に制御する必要があり、製造方法が複雑で生産性が低かった。さらに、当該製造方法により製造される塩基性炭酸銅粒子の2次粒子は粗大である。このため、当該2次粒子を構成している1次粒子間に存在する不純物を除去するためには、生成した塩基性炭酸銅粒子を大量の純水にて水洗しなければならず、当該酸化銅の量産時には多大な手間と時間を要していた。   Furthermore, the manufacturing method of the copper oxide powder which concerns on patent document 1 changed the primary and secondary particle diameter of the obtained copper oxide powder with aqueous solution temperature, aqueous solution density | concentration, and reaction temperature. For this reason, in manufacturing copper oxide powder, it is necessary to precisely control the aqueous solution temperature, the aqueous solution concentration, and the reaction temperature within specific conditions, and the manufacturing method is complicated and the productivity is low. Furthermore, the secondary particles of the basic copper carbonate particles produced by the production method are coarse. For this reason, in order to remove impurities existing between the primary particles constituting the secondary particles, the generated basic copper carbonate particles must be washed with a large amount of pure water, and the oxidation is performed. It took a lot of time and labor when mass-producing copper.

そこで、本発明が解決しようとする課題は、超電導物質の製造原料として適した1次粒子径を有し、超電導物質の製造原料として、当該原料の混合時において容易に当該1次粒子に分散する酸化銅を、高い生産性をもって製造可能とする塩基性炭酸銅および当該塩基性炭酸銅から製造した酸化銅、並びに当該酸化銅の製造方法を提供することである。   Therefore, the problem to be solved by the present invention is to have a primary particle size suitable as a raw material for producing a superconducting substance, and as a raw material for producing a superconducting substance, it is easily dispersed in the primary particles when the raw materials are mixed It is providing the basic copper carbonate which can manufacture copper oxide with high productivity, the copper oxide manufactured from the said basic copper carbonate, and the manufacturing method of the said copper oxide.

上述の課題を解決するため、本発明者らが研究を行った結果、従来の技術に係る、硝酸銅水溶液中へアンモニウム塩を含む水溶液を添加する中和法とは逆に、アンモニウム塩を含む水溶液中へ硝酸銅水溶液を添加するという逆中和反応法に想到した。そして、当該アンモニウム塩を含む水溶液中へ硝酸銅水溶液を添加するという逆中和反応法によれば、反応条件を厳密に制御することが不要である。さらに、反応後に生成した塩基性炭酸銅の粒子の2次粒子が粗大でない為、当該2次粒子を構成している1次粒子間に存在する不純物を除去するための純水洗浄が迅速容易となり、高い生産性をもって酸化銅を製造できることに想到した。   As a result of studies conducted by the present inventors to solve the above-mentioned problems, an ammonium salt is contained, contrary to the neutralization method according to the prior art, in which an aqueous solution containing an ammonium salt is added to an aqueous copper nitrate solution. The inventors came up with a reverse neutralization reaction method in which an aqueous copper nitrate solution was added to the aqueous solution. And according to the reverse neutralization reaction method of adding the copper nitrate aqueous solution to the aqueous solution containing the ammonium salt, it is unnecessary to strictly control the reaction conditions. Furthermore, since the secondary particles of the basic copper carbonate particles produced after the reaction are not coarse, it is possible to quickly and easily perform pure water cleaning for removing impurities existing between the primary particles constituting the secondary particles. The idea was that copper oxide could be produced with high productivity.

さらに製造された酸化銅は、湿式混合法において所定物質と定量混合することにより、容易に1次粒子に分散することに加え、その1次粒子径が100Å〜600Åで、超電導物質として有効なペロプスカイト型の構造を得やすいものであった。   Further, the manufactured copper oxide is easily dispersed in primary particles by quantitative mixing with a predetermined substance in a wet mixing method, and has a primary particle size of 100 to 600 liters and is effective as a superconducting substance. It was easy to obtain a kite type structure.

即ち、上述の課題を解決するための第1の手段は、
アンモニウム塩の水溶液へ硝酸銅水溶液を添加して逆中和反応を行い、当該逆中和反応により塩基性炭酸銅を生成させ、当該塩基性炭酸銅を焼成して酸化銅を生成させることを特徴とする酸化銅の製造方法である。
That is, the first means for solving the above-described problem is:
A copper nitrate aqueous solution is added to an aqueous solution of an ammonium salt to perform a reverse neutralization reaction, basic copper carbonate is generated by the reverse neutralization reaction, and the basic copper carbonate is baked to generate copper oxide. It is a manufacturing method of the copper oxide made into.

第2の手段は、
前記逆中和反応によって生成する塩基性炭酸銅を固液分離し、当該固液分離された塩基性炭酸銅を純水にて洗浄した後、200℃〜300℃にて大気焼成して酸化銅を生成させることを特徴とする第1の手段に記載の酸化銅の製造方法である。
The second means is
The basic copper carbonate produced by the reverse neutralization reaction is subjected to solid-liquid separation, and the solid copper-separated basic copper carbonate is washed with pure water, and then calcined in air at 200 ° C. to 300 ° C. to obtain copper oxide. The method for producing copper oxide according to the first means, wherein

第3の手段は、
アンモニウム塩の水溶液へ硝酸銅水溶液を添加して逆中和反応を行い、当該逆中和反応により生成した塩基性炭酸銅へ、遠心分離器を用いた純水洗浄をおこなって製造された残留アンモニア濃度が0.6%以下であることを特徴とする塩基性炭酸銅である。
The third means is
Residual ammonia produced by adding a copper nitrate aqueous solution to an aqueous ammonium salt solution to perform a reverse neutralization reaction, and washing the basic copper carbonate produced by the reverse neutralization reaction with pure water using a centrifuge It is basic copper carbonate characterized by having a concentration of 0.6% or less.

第4の手段は、
第3の手段に記載の塩基性炭酸銅を、焼成して製造されたことを特徴とする酸化銅である。
The fourth means is
A copper oxide produced by firing the basic copper carbonate described in the third means.

第1または第2の手段に係る酸化銅の製造方法によれば、超電導物質として有効なペロプスカイト型の構造を得やすい酸化銅を、高い生産性をもって製造することが出来た。   According to the method for producing copper oxide according to the first or second means, it was possible to produce copper oxide that can easily obtain a perovskite structure effective as a superconducting substance with high productivity.

第3の手段に係る塩基性炭酸銅は、当該塩基性炭酸銅を大気下で焼成することにより、超電導物質として有効なペロプスカイト型の構造を得やすい酸化銅となる。   The basic copper carbonate according to the third means becomes copper oxide that easily obtains a perovskite structure effective as a superconducting material by firing the basic copper carbonate in the atmosphere.

第4の手段に係る酸化銅を原料として用いた超電導物質は、超電導物質として有効なペロプスカイト型の構造を得ることが容易であった。   The superconducting material using copper oxide as a raw material according to the fourth means can easily obtain a perovskite structure effective as a superconducting material.

本発明に係る製造方法により製造される酸化銅は、1次粒子の平均粒子径が300Å〜500Åであり、2次粒子の平均粒子径が1μm〜3μmであり、比表面積が40m2/g以上、70m2/g以下という粉体特性を有する酸化銅である。そして、本発明に係る製造方法により製造される酸化銅は、2次粒子を構成している1次粒子間に存在する不純物が少ない為、2次粒子が容易に1次粒子へと分散する。そこで、当該酸化銅を超電導物質の製造原料としたとき、当該製造原料の混合分散工程において容易に1次粒子へと分散する。この結果、当該酸化銅を超電導物質の製造原料としたとき、超電導物質として有効なペロプスカイト型の構造を得やすいのであると考えられる。 The copper oxide produced by the production method according to the present invention has an average primary particle size of 300 to 500 あ り, an average secondary particle size of 1 to 3 µm, and a specific surface area of 40 m 2 / g or more. , Copper oxide having a powder characteristic of 70 m 2 / g or less. And since the copper oxide manufactured by the manufacturing method which concerns on this invention has few impurities which exist between the primary particles which comprise the secondary particle, a secondary particle disperse | distributes to a primary particle easily. Therefore, when the copper oxide is used as a raw material for producing a superconducting material, it is easily dispersed into primary particles in the mixing and dispersing step of the raw material. As a result, it is considered that when the copper oxide is used as a raw material for producing a superconducting material, a perovskite structure effective as a superconducting material can be easily obtained.

さらに、当該粉体特性を有する酸化銅は、1次粒子径が100Å〜600Åの範囲にある為、粉体の比表面積が非常に大きく、少なくとも40m2/g以上を有している。この比表面積が大きいことにより、当該酸化銅を原料粉体として用いた超伝導物質製造における仮焼時の反応性を大きく上げることができる。 Furthermore, since the primary particle diameter of the copper oxide having the powder characteristics is in the range of 100 to 600 mm, the specific surface area of the powder is very large and at least 40 m 2 / g or more. The large specific surface area can greatly increase the reactivity during calcination in the production of a superconducting material using the copper oxide as a raw material powder.

次に、本発明に係る酸化銅を生産する方法について説明する。
当該生産方法は、アンモニウム塩水溶液を硝酸銅水溶液にて逆中和反応を行う第1工程と、当該第1工程で得られた反応物を固液分離し、純温水による洗浄を行った後、乾燥を行う第2工程とを有する。
以下、工程毎にその製造方法を下記に記す。
Next, a method for producing copper oxide according to the present invention will be described.
The production method includes a first step of performing a reverse neutralization reaction of an aqueous ammonium salt solution with an aqueous copper nitrate solution, and a solid-liquid separation of the reaction product obtained in the first step, followed by washing with pure warm water, And a second step of performing drying.
Hereinafter, the manufacturing method is described below for each process.

(第1工程:逆中和反応工程)
銅濃度99.0%以上の硝酸銅(Cu(NO3)2)を導電率1μs以下の純水に投入し、およそ10分間程度、撹拌機にて攪拌溶解してCu濃度200g/L前後の硝酸銅水溶液を得る。尚、このときの溶解温度は10℃〜30℃であるのが望ましい。
一方、純度95%以上の炭酸水素アンモニウム(NH4HCO3)を導電率1μs以下の純水に投入し、撹拌機にて攪拌溶解して濃度100g/L前後の炭酸水素アンモニウム水溶液を得る。このとき、溶解時間に規定はなく、炭酸水素アンモニウムが完全に溶解するまで撹拌を行う。尚、このときの溶解温度は10℃〜30℃であるのが望ましい。アンモニウム塩としての炭酸水素アンモニウムは金属元素を含有しないので、最終的に製造される酸化銅を金属元素で汚染することがなく好ましい。
(First step: reverse neutralization reaction step)
Copper nitrate (Cu (NO 3 ) 2 ) with a copper concentration of 99.0% or more was put into pure water with a conductivity of 1 μs or less, and stirred and dissolved for about 10 minutes with a stirrer to obtain a Cu concentration of around 200 g / L. An aqueous copper nitrate solution is obtained. In addition, as for the melting temperature at this time, it is desirable that it is 10 to 30 degreeC.
On the other hand, ammonium hydrogen carbonate (NH 4 HCO 3 ) having a purity of 95% or more is put into pure water having a conductivity of 1 μs or less, and stirred and dissolved with a stirrer to obtain an ammonium hydrogen carbonate aqueous solution having a concentration of around 100 g / L. At this time, the dissolution time is not specified, and stirring is performed until the ammonium hydrogen carbonate is completely dissolved. In addition, as for the melting temperature at this time, it is desirable that it is 10 to 30 degreeC. Since ammonium hydrogen carbonate as an ammonium salt does not contain a metal element, copper oxide finally produced is preferably not contaminated with the metal element.

前記溶解した炭酸水素アンモニウム水溶液を攪拌しながら、当該炭酸水素アンモニウム水溶液中へ、前記硝酸銅水溶液を連続的に添加し逆中和反応を行う。当該逆中和反応において、前記硝酸銅水溶液の添加速度は、例えば前記溶解した炭酸水素アンモニウム水溶液量を150Lとしたとき、2.5L/min〜3.5L/minの範囲の速度で硝酸銅水溶液を連続添加する速度が好ましい。   While stirring the dissolved ammonium hydrogen carbonate aqueous solution, the copper nitrate aqueous solution is continuously added to the ammonium hydrogen carbonate aqueous solution to perform a reverse neutralization reaction. In the reverse neutralization reaction, the copper nitrate aqueous solution is added at a rate in the range of 2.5 L / min to 3.5 L / min, for example, when the amount of the dissolved ammonium hydrogen carbonate aqueous solution is 150 L. The rate at which is continuously added is preferred.

このときの撹拌は、例えば、200Lタンクと3枚・1段羽とを用いた場合、タンクの底部中心から5cm〜10cmの位置に設置し、撹拌機の回転速度を100rpm〜200rpmとする程度の弱攪拌が好ましい。当該弱攪拌を行うことで、反応槽もしくはビーカーに邪魔板を用いた回転速度300rpm以上の強攪拌を行った場合のような、2次粒子平均径が1μm〜10μm程度の凝集体が混在している状態とならず、均一な2次粒子径を有する塩基性炭酸銅粒子を得ることが出来るからである。   The stirring at this time is, for example, when using a 200 L tank and three sheets / one stage blade, installed at a position of 5 cm to 10 cm from the center of the bottom of the tank, and the rotation speed of the stirrer is set to 100 rpm to 200 rpm. Weak stirring is preferred. By performing the weak stirring, aggregates having an average secondary particle diameter of about 1 μm to 10 μm are mixed, as in the case of performing strong stirring at a rotational speed of 300 rpm or more using a baffle plate in a reaction vessel or beaker. This is because basic copper carbonate particles having a uniform secondary particle size can be obtained.

そして、当該逆中和反応にかける時間は10分間〜30分間程度とし、急激に核生成させた後、反応を終了させるのが望ましい。反応時間を30分間以下とし、反応後の熟成時間を30分間以下とすることで、生成した塩基性炭酸銅の1次粒子径が100Å〜600Åであり、2次粒子平均径が1μm〜3μmである、均一な凝集体を得ることが出来る。   The time for the reverse neutralization reaction is preferably about 10 to 30 minutes, and it is desirable to terminate the reaction after rapidly nucleating. By setting the reaction time to 30 minutes or less and the aging time after reaction to 30 minutes or less, the primary particle diameter of the produced basic copper carbonate is 100 to 600 mm, and the secondary particle average diameter is 1 to 3 μm. A certain uniform aggregate can be obtained.

さらに好ましいことに、当該逆中和反応時においては反応温度を10℃〜30℃の範囲で行えば良いことから、特別な設備をもって反応液温度を制御する必要が無く、高い生産性をもって当該逆中和反応を行うことが可能となった。尚、当該逆中和反応および攪拌は吸熱反応である為、当該逆中和反応時および攪拌時の液温は10℃〜20℃となる。   More preferably, since the reaction temperature may be in the range of 10 ° C. to 30 ° C. during the reverse neutralization reaction, there is no need to control the reaction liquid temperature with special equipment, and the reverse temperature is high. It became possible to carry out a neutralization reaction. In addition, since the said reverse neutralization reaction and stirring are endothermic reactions, the liquid temperature at the time of the said reverse neutralization reaction and stirring will be 10 to 20 degreeC.

(第2工程:洗浄、乾燥工程)
前記第1工程に続いて、当該逆中和反応で生成した生成物を洗浄、乾燥する第2工程を行う。
まず、当該生成物の固液分離を行い、塩基性炭酸銅(CuCO3・Cu(OH)2・nH2O)を収集する。このとき、塩基性炭酸銅から液体分が固液分離され、残留した塩基性炭酸銅から濾液が排出されなくなったら、55℃〜65℃の温純水を約3000L投入し、塩基性炭酸銅をスラリー状として、40分間〜60分間洗浄を行う。
(Second step: washing and drying step)
Subsequent to the first step, a second step of washing and drying the product generated by the reverse neutralization reaction is performed.
First, the product is subjected to solid-liquid separation, and basic copper carbonate (CuCO 3 · Cu (OH) 2 · nH 2 O) is collected. At this time, when the liquid is separated from the basic copper carbonate and the filtrate is no longer discharged from the remaining basic copper carbonate, about 3000 L of hot pure water at 55 ° C. to 65 ° C. is added, and the basic copper carbonate is slurried. Then, washing is performed for 40 minutes to 60 minutes.

従来の技術に係る酸化銅の製造においては、生成する塩基性炭酸銅の2次粒子が10μm程度にまで粗大化してしまう。この為、当該粗大化した2次粒子を構成する1次粒子間に存在するアンモニウム塩等の不純物を除去する為には、当該生成した塩基性炭酸銅を、純水を大量に用いて長時間洗浄する必要があり、且つ、当該洗浄を行っても、前記1次粒子間には、アンモニウム塩等の不純物が残留していた。   In the production of copper oxide according to the conventional technology, the secondary particles of the basic copper carbonate to be produced are coarsened to about 10 μm. For this reason, in order to remove impurities such as ammonium salts existing between primary particles constituting the coarsened secondary particles, the generated basic copper carbonate is used for a long time using a large amount of pure water. It was necessary to wash, and even after the washing, impurities such as ammonium salt remained between the primary particles.

これに対し、本発明に係る酸化銅の製造においては、生成する塩基性炭酸銅の2次粒子の粒径は1μm〜3μm程度であって粗大化しないので、当該2次粒子を構成する1次粒子間に存在するアンモニウム塩等の不純物を除去する為には、純水を用いた1回の洗浄とすることが出来る。ここで、当該純水の液温が50℃以上であると、洗浄時間が短縮され、均一な洗浄を行うことが可能となり好ましい。一方、当該液温が70℃以下であると、洗浄中の塩基性炭酸銅の表面が酸化し始めることがなく好ましい。   On the other hand, in the production of the copper oxide according to the present invention, the secondary particles of the basic copper carbonate to be produced have a particle size of about 1 μm to 3 μm and do not become coarse. In order to remove impurities such as an ammonium salt existing between the particles, it is possible to perform a single cleaning with pure water. Here, it is preferable that the liquid temperature of the pure water is 50 ° C. or higher because the cleaning time is shortened and uniform cleaning can be performed. On the other hand, when the liquid temperature is 70 ° C. or lower, the surface of the basic copper carbonate being washed does not start to be oxidized, which is preferable.

ここで、温純水洗浄におけるスラリー状の塩基性炭酸銅(CuCO3・Cu(OH)2・nH2O)を固液分離操作について説明する。
当該固液分離のための方法、装置としては、遠心分離機を用いた遠心分離法が望ましい。これは、当該スラリーが多くのH2O分子を含むため、固液分離中にそれらのH2O分子を放出してケーキとなる際、体積の収縮変化を起こすためである。例えば、固液分離の際に、ヌッチェを用いた吸引濾過法を用いた場合、上述したスラリーの体積収縮のために、温純水洗浄中に分離されつつあるケーキにヒビ割れが生じる。すると、洗浄水は、ケーキ中を通らず、このヒビ割れ部分を通過して濾紙に達する、いわゆるショートパスを起こしてしまうので、洗浄効率が著しく悪くなるのである。また、例えば、フィルタープレスを用いた固液分離法の場合も、吸引濾過法の場合と同様に、ケーキにヒビ割れが生じ、ショートパスを起こしてしまうので、好ましくない。
Here, the solid-liquid separation operation of the slurry-like basic copper carbonate (CuCO 3 · Cu (OH) 2 · nH 2 O) in the warm pure water cleaning will be described.
As the method and apparatus for solid-liquid separation, a centrifugal method using a centrifuge is desirable. This is because the slurry contains a lot of H 2 O molecules, so that when the H 2 O molecules are released during solid-liquid separation to form a cake, the volume contracts. For example, when the suction filtration method using Nutsche is used in the solid-liquid separation, cracks occur in the cake being separated during the warm pure water cleaning due to the volume shrinkage of the slurry described above. Then, the washing water does not pass through the cake, but passes through the cracked portion and reaches the filter paper, so-called short pass is caused, so that the washing efficiency is remarkably deteriorated. In addition, for example, in the case of a solid-liquid separation method using a filter press, as in the case of the suction filtration method, cracking occurs in the cake and a short pass is caused, which is not preferable.

これに対し、当該固液分離のための方法、装置として遠心分離機を用いた場合、ケーキの体積収縮が起こったとしても、強力な遠心力が作用することにより、ケーキの亀裂部分の空間が瞬時に埋められる。この結果、洗浄水が、常に効率よくケーキ内をパスすることになる。
この結果、2次粒子平均径が1μm〜3μmである為、粉体のハンドリングが容易であり、当該2次粒子を構成する1次粒子間に不純物が少ないため、容易に1次粒子に分散可能な酸化銅粉末を得ることができた。
On the other hand, when a centrifuge is used as the method and apparatus for solid-liquid separation, even if volume shrinkage of the cake occurs, the space of the cracked portion of the cake is reduced due to the strong centrifugal force acting. Immediately filled. As a result, the washing water always passes through the cake efficiently.
As a result, since the secondary particle average diameter is 1 μm to 3 μm, the handling of the powder is easy, and since there are few impurities between the primary particles constituting the secondary particles, they can be easily dispersed in the primary particles. Copper oxide powder could be obtained.

こうして得られた温純水洗浄後の塩基性炭酸銅(CuCO3・Cu(OH)2・nH2O)を、100℃〜120℃の温度域で17時間以上乾燥させた。このときの塩基性炭酸銅の1次粒子の粒径は100Å〜600Å、2次粒子の平均粒径は2.0μm程度の均一な凝集体である事が確認された。そして、当該2次粒子を構成する1次粒子間に不純物として残留するアンモニウム塩が極めて少なく、該当アンモニウム塩が結晶化し塊状となることがない為、乾燥後の当該塩基性炭酸銅の解砕は容易である。 The thus obtained basic copper carbonate (CuCO 3 · Cu (OH) 2 · nH 2 O) after washing with warm pure water was dried in a temperature range of 100 ° C. to 120 ° C. for 17 hours or more. At this time, it was confirmed that the primary copper carbonate primary particles had a uniform particle size of 100 to 600Å and the secondary particles had an average particle size of about 2.0 µm. And since there is very little ammonium salt which remains as an impurity between the primary particles which comprise the said secondary particle, and the said ammonium salt does not crystallize and become a lump, the crushing of the said basic copper carbonate after drying is carried out. Easy.

次に、得られた塩基性炭酸銅の乾燥物を、大気を始めとする酸化性雰囲気下において200℃〜300℃の温度範囲内で10時間〜20時間焼成を行い本発明に係る酸化銅の粉末を得た。当該酸化銅粉末は、1次粒子径が100Å〜600Åで、比表面積が40m2/g以上、70m2/g以下であった。 Next, the obtained dried product of basic copper carbonate is baked for 10 hours to 20 hours in a temperature range of 200 ° C. to 300 ° C. in an oxidizing atmosphere including air, and the copper oxide according to the present invention is baked. A powder was obtained. The copper oxide powder had a primary particle size of 100 to 600 and a specific surface area of 40 m 2 / g or more and 70 m 2 / g or less.

本発明に係る酸化銅と、Bi、Sr、Ca等の酸化物または炭酸塩とを、超電導物質の製造原料としたとき、湿式混合法により各種酸化物もしくは炭酸塩を定量混合することにより、超電導用材料を製造する事が出来る。そして当該定量混合時において、当該酸化銅は、その2次粒子が容易に1次粒子(100Å〜600Å)に分散する為、超微粒粉末としての望ましい混和特性を発揮する。この結果、当該酸化銅を原料粉体として製造された超電導物質においては、有効なペロプスカイト型の構造を得やすかった。   When the copper oxide according to the present invention and an oxide or carbonate such as Bi, Sr, or Ca are used as raw materials for production of a superconducting material, superconductivity is obtained by quantitatively mixing various oxides or carbonates by a wet mixing method. Materials can be manufactured. And at the time of the said quantitative mixing, since the said secondary particle disperse | distributes to a primary particle (100 to 600 Å) easily, the said copper oxide exhibits the desirable mixing characteristic as an ultrafine powder. As a result, it was easy to obtain an effective perovskite structure in the superconducting material produced using the copper oxide as a raw material powder.

(実施例1)
純度99.0%以上の硝酸銅(Cu(NO3)2)と、純度95%以上の炭酸水素アンモニウム(NH4HCO3)とを準備した。
内容量60Lタンクに、硝酸銅20kgを投入し、導電率1μsの純水を35L加えて10分間撹拌機にて溶解し、Cu濃度200g/Lの硝酸銅水溶液とした。この時の溶解温度は20℃とした。
一方、内容量200Lタンク内に炭酸水素アンモニウム15kgを投入し、導電率1μsの純水を150L加えた後、撹拌機で溶解し、濃度100g/Lの炭酸水素アンモニウム水溶液とした。このとき、溶解温度は20℃としたところ、攪拌時間が60分間で炭酸水素アンモニウムは完全に溶解した。
Example 1
Copper nitrate (Cu (NO 3 ) 2 ) having a purity of 99.0% or more and ammonium hydrogen carbonate (NH 4 HCO 3 ) having a purity of 95% or more were prepared.
20 kg of copper nitrate was put into a tank with an internal volume of 60 L, 35 L of pure water having a conductivity of 1 μs was added and dissolved with a stirrer for 10 minutes to obtain a copper nitrate aqueous solution with a Cu concentration of 200 g / L. The melting temperature at this time was 20 ° C.
On the other hand, 15 kg of ammonium hydrogen carbonate was put into a 200 L tank, 150 L of pure water having a conductivity of 1 μs was added, and then dissolved with a stirrer to obtain an aqueous ammonium hydrogen carbonate solution having a concentration of 100 g / L. At this time, when the dissolution temperature was 20 ° C., the ammonium bicarbonate was completely dissolved in 60 minutes.

当該溶解した炭酸水素アンモニウム水溶液を攪拌し、ここへ前記硝酸銅水溶液を3L/minの速度で連続添加し逆中和反応を行った。このとき撹拌機として、3枚・1段羽のものを用い当該200Lタンクの底部中心から5cmの位置に設置した。また撹拌機の回転速度は150rpmとした。
当該逆中和反応時間は20分間で核生成させて反応を終了させ、スラリー状の反応液を得た。このときの反応液温度は15℃であった。
The dissolved aqueous ammonium hydrogen carbonate solution was stirred, and the aqueous copper nitrate solution was continuously added thereto at a rate of 3 L / min to carry out a reverse neutralization reaction. At this time, as the stirrer, a three-stage, one-stage blade was used, and was installed at a position 5 cm from the center of the bottom of the 200 L tank. The rotational speed of the stirrer was 150 rpm.
The reverse neutralization reaction time nucleated in 20 minutes to complete the reaction, and a slurry-like reaction solution was obtained. The reaction liquid temperature at this time was 15 degreeC.

続いて当該スラリー状の反応液を、上排出型遠心分離機内に設置して固液分離を行う。そして、反応液全量を固液分離した後、濾液が排出されなくなったら、当該上排出型遠心分離機投入口より60℃の純温水を投入し50分間の洗浄を行った。使用した温純水量は約3000Lであった。当該洗浄後のスラリー状塩基性炭酸銅の残留アンモニア濃度は500ppmであった。
尚、当該残留アンモニア濃度の分析は、スラリー状塩基性炭酸銅の残留アンモニアを純水中へ溶出させ、当該純水中のアンモニア濃度をイオンクロマトグラフ(ダイオネクス社製)にて測定することで行った。
Subsequently, the slurry-like reaction liquid is placed in an upper discharge centrifuge to perform solid-liquid separation. And after carrying out solid-liquid separation of the whole reaction liquid, when the filtrate was no longer discharged | emitted, the pure warm water of 60 degreeC was supplied from the said top discharge | emission type centrifuge inlet, and the washing | cleaning for 50 minutes was performed. The amount of warm pure water used was about 3000 L. The residual ammonia concentration of the slurry-like basic copper carbonate after the washing was 500 ppm.
The analysis of the residual ammonia concentration is performed by eluting the residual ammonia of the slurry-like basic copper carbonate into pure water and measuring the ammonia concentration in the pure water with an ion chromatograph (Dionex). It was.

こうして得られた洗浄後のスラリー状塩基性炭酸銅を、強制排気型乾燥機にて110℃の温度で17時間乾燥させて塩基性炭酸銅粒子を得た。得られた塩基性炭酸銅の1次粒子を透過型電子顕微鏡(TEM)にて確認したところ1次粒子は平均粒径400Å、2次粒子径はレーザー回折式粒度分布測定装置にて確認したところ平均粒径2μm、の均一な凝集体であった。
続いて当該塩基性炭酸銅の乾燥物をステンレス製バット10枚程度に小分けし、大気下において250℃の温度範囲内で15時間の焼成を行い、本実施例に係る酸化銅を得た。
The washed slurry-like basic copper carbonate thus obtained was dried for 17 hours at a temperature of 110 ° C. in a forced exhaust dryer to obtain basic copper carbonate particles. When the obtained primary copper carbonate primary particles were confirmed with a transmission electron microscope (TEM), the primary particles were confirmed to have an average particle diameter of 400 mm, and the secondary particle diameter was confirmed with a laser diffraction particle size distribution analyzer. It was a uniform aggregate having an average particle diameter of 2 μm.
Subsequently, the dried product of the basic copper carbonate was subdivided into about 10 stainless steel vats, and baked in the temperature range of 250 ° C. for 15 hours in the atmosphere to obtain the copper oxide according to this example.

ここで、本実施例に係る酸化銅の品位を表1に、粉体特性を表2に示す。
当該品位の測定において、Fe、Ni、Al、SiはICP分析装置により測定し、Cu含量は差数法にて算出した。比表面積はBET法にて求めた値である。また、平均粒径はWINDOX製HELOS&RODOS乾式レーザー回折式粒度分布測定装置を用い、分散圧3.00bar、吸引圧125.00mbarにて測定した値である。
Here, the quality of the copper oxide according to this example is shown in Table 1, and the powder characteristics are shown in Table 2.
In the measurement of the quality, Fe, Ni, Al, and Si were measured with an ICP analyzer, and the Cu content was calculated by the difference method. The specific surface area is a value determined by the BET method. The average particle diameter is a value measured using a HELD & RODOS dry laser diffraction particle size distribution analyzer manufactured by WINDOX at a dispersion pressure of 3.00 bar and a suction pressure of 125.00 mbar.

Figure 2007169135
Figure 2007169135
Figure 2007169135
Figure 2007169135

本実施例に係る酸化銅と、Bi、Sr、Caの酸化物または炭酸塩とを、超電導物質の製造原料としたとき、湿式混合法により、各種酸化物または炭酸塩を定量混合することにより、超電導要材料を製造する事が出来た。そして、当該酸化銅は、当該定量混合時において容易に1次粒子(100Å〜600Å)に分散する為、超微粒粉末としての望ましい混和特性を発揮し、超電導物質として有効なペロプスカイト型の構造を得やすいことが判明した。   When copper oxide according to this example and Bi, Sr, Ca oxide or carbonate are used as raw materials for producing a superconducting material, by quantitative mixing of various oxides or carbonates by a wet mixing method, We were able to manufacture superconducting materials. And since the said copper oxide is easily disperse | distributed to a primary particle (100 ~ 600 ~) at the time of the said quantitative mixing, it exhibits the desirable mixing characteristic as an ultrafine powder, and has a perovskite type structure effective as a superconducting substance. It turned out to be easy to obtain.

(実施例2)
純温水洗浄の際の純水温度を20℃とした以外は、実施例1と同様の方法で、実施例2に係る塩基性炭酸銅を製造した。当該実施例2に係る塩基性炭酸銅の残留アンモニア濃度は0.1%であった。このスラリー状塩基性炭酸銅を強制排気型乾燥機にて110℃の温度で17時間乾燥させて塩基性炭酸銅粒子を得た。得られた塩基性炭酸銅の1次粒子を透過型電子顕微鏡(TEM)にて確認したところ1次粒子は平均粒径500Å、2次粒子径はレーザー回折式粒度分布測定装置にて確認したところ平均粒径3μm、の均一な凝集体であった。
当該実施例2に係る酸化銅と、Bi、Sr、Caの酸化物または炭酸塩とを、超電導物質の製造原料としたとき、湿式混合法により、各種酸化物または炭酸塩を定量混合することにより、超電導用材料を製造することが出来た。そして、当該酸化銅は、当該定量混合時において容易に1次粒子(100Å〜600Å)に分散する為、超微粒粉末としての望ましい混和特性を発揮し、超電導物質として有効なペロプスカイト型の構造を得やすいことが判明した。
(Example 2)
Basic copper carbonate according to Example 2 was produced in the same manner as in Example 1 except that the temperature of pure water at the time of washing with pure warm water was 20 ° C. The residual ammonia concentration of the basic copper carbonate according to Example 2 was 0.1%. This slurry-like basic copper carbonate was dried at a temperature of 110 ° C. for 17 hours with a forced exhaust dryer to obtain basic copper carbonate particles. When the obtained primary copper carbonate primary particles were confirmed with a transmission electron microscope (TEM), the primary particles were confirmed to have an average particle size of 500 mm, and the secondary particle size was confirmed with a laser diffraction particle size distribution analyzer. It was a uniform aggregate having an average particle size of 3 μm.
When the copper oxide according to Example 2 and the oxides or carbonates of Bi, Sr, and Ca are used as raw materials for producing a superconducting material, various oxides or carbonates are quantitatively mixed by a wet mixing method. We were able to produce superconducting materials. And since the said copper oxide is easily disperse | distributed to a primary particle (100 ~ 600 ~) at the time of the said quantitative mixing, it exhibits the desirable mixing characteristic as an ultrafine powder, and has a perovskite type structure effective as a superconducting substance It turned out to be easy to obtain.

(比較例1)
実施例1と同様の、硝酸銅と炭酸水素アンモニウムとを準備した。
内容量200Lタンクに当該硝酸銅20kgを投入し、導電率1μsの純水を35L加えて10分間撹拌機にて溶解し、Cu濃度200g/Lの硝酸銅水溶液とし、当該硝酸銅水溶液の液温を26℃に制御した。
一方、内容量200Lタンク内に炭酸水素アンモニウム15kgを投入し、導電率1μsの純水を150L加えた後、撹拌機で溶解し、濃度100g/Lの炭酸水素アンモニウム水溶液とした。このとき、溶解温度は26℃に制御したところ、攪拌時間が60分間で炭酸水素アンモニウムは完全に溶解した。そこで、当該炭酸水素アンモニウム水溶液の液温をそのまま26℃に制御し中和剤とした。
(Comparative Example 1)
The same copper nitrate and ammonium hydrogen carbonate as in Example 1 were prepared.
20 kg of the copper nitrate is put into a 200 L tank, 35 L of pure water having a conductivity of 1 μs is added and dissolved with a stirrer for 10 minutes to obtain a copper nitrate aqueous solution with a Cu concentration of 200 g / L, and the liquid temperature of the copper nitrate aqueous solution Was controlled at 26 ° C.
On the other hand, 15 kg of ammonium hydrogen carbonate was put into a 200 L tank, 150 L of pure water having a conductivity of 1 μs was added, and then dissolved with a stirrer to obtain an aqueous ammonium hydrogen carbonate solution having a concentration of 100 g / L. At this time, when the dissolution temperature was controlled at 26 ° C., the ammonium hydrogen carbonate was completely dissolved in a stirring time of 60 minutes. Therefore, the liquid temperature of the aqueous ammonium hydrogen carbonate solution was directly controlled at 26 ° C. to obtain a neutralizing agent.

次に、前記硝酸銅水溶液の入っている200Lタンクへ、中和剤溶液を入れた200Lタンクから定量ポンプを用いて、液温度を26℃に制御した炭酸水素アンモニウム水溶液を、中和剤として少量ずつ連続的に注入した。当該注入に際して、反応温度は26℃(±1℃)前後になる様に温度コントローラーを用いて、前記硝酸銅水溶液の入っている200Lタンク内の温度を調節した。そして、実施例1と同様の撹拌装置を用い、同様の攪拌条件で、当該硝酸銅水溶液を45分間かけて中和し、スラリー状の反応液を得た。   Next, a 200 L tank containing the aqueous solution of copper nitrate is used as a neutralizing agent with a small amount of an aqueous ammonium hydrogen carbonate solution whose liquid temperature is controlled at 26 ° C. from a 200 L tank containing the neutralizing agent solution. Each was continuously injected. During the injection, the temperature in the 200 L tank containing the copper nitrate aqueous solution was adjusted using a temperature controller so that the reaction temperature was around 26 ° C. (± 1 ° C.). And using the same stirring apparatus as Example 1, the said copper nitrate aqueous solution was neutralized over 45 minutes on the same stirring conditions, and the slurry-like reaction liquid was obtained.

続いて当該スラリー状の反応液を、上排出型遠心分離機内に設置して固液分離を行う。そして、反応液全量を固液分離した後、濾液が排出されなくなったら、当該上排出型遠心分離機投入口より20℃の純水を投入し3時間の洗浄を行った。使用した純水量は約9000Lであった。そして、当該純水洗浄を2回実施した。洗浄後の比較例1に係る塩基性炭酸銅の残留アンモニア濃度は0.6%であった。
こうして得られた洗浄後のスラリー状塩基性炭酸銅(CuCO3・Cu(OH)2・nH2O)を強制排気型乾燥機にて110℃の温度で24時間乾燥させた。
得られた塩基性炭酸銅の乾燥物の1次粒子は600Å、2次粒子の平均粒子径は1μm〜10μmの不均一な凝集体であった。
続いて当該塩基性炭酸銅の乾燥物をステンレス製バット10枚程度に小分けし、大気下において250℃の温度範囲内で15時間の焼成を行い、本比較例に係る酸化銅を得た。
Subsequently, the slurry-like reaction liquid is placed in an upper discharge centrifuge to perform solid-liquid separation. And after carrying out solid-liquid separation of the reaction liquid whole quantity, when the filtrate was no longer discharged | emitted, 20 degreeC pure water was supplied from the said top discharge | emission type centrifuge inlet, and it wash | cleaned for 3 hours. The amount of pure water used was about 9000 L. And the said pure water washing | cleaning was implemented twice. The residual ammonia concentration of the basic copper carbonate according to Comparative Example 1 after washing was 0.6%.
The washed slurry-like basic copper carbonate (CuCO 3 · Cu (OH) 2 · nH 2 O) thus obtained was dried at a temperature of 110 ° C. for 24 hours in a forced exhaust dryer.
The primary particles of the obtained dried basic copper carbonate were 600Å, and the secondary particles were non-uniform aggregates having an average particle diameter of 1 µm to 10 µm.
Subsequently, the dried product of the basic copper carbonate was subdivided into about 10 stainless steel bats, and baked in the temperature range of 250 ° C. for 15 hours in the atmosphere to obtain copper oxide according to this comparative example.

ここで、本比較例に係る酸化銅の品位を表3に、粉体特性を表4に示す。
当該品位の測定も実施例1と同様に、Fe、Ni、Al、SiはICP分析装置により測定し、Cu含量は差数法にて算出した。比表面積はBET法にて求めた値である。また、平均粒径はWINDOX製HELOS&RODOS乾式レーザー回折式粒度分布測定装置を用い、分散圧3.00bar、吸引圧125.00mbarにて測定した値である。
Here, the quality of the copper oxide according to this comparative example is shown in Table 3, and the powder characteristics are shown in Table 4.
In the same manner as in Example 1, the quality was measured for Fe, Ni, Al, and Si using an ICP analyzer, and the Cu content was calculated by the difference method. The specific surface area is a value determined by the BET method. The average particle diameter is a value measured using a HELD & RODOS dry laser diffraction particle size distribution analyzer manufactured by WINDOX at a dispersion pressure of 3.00 bar and a suction pressure of 125.00 mbar.

Figure 2007169135
Figure 2007169135
Figure 2007169135
Figure 2007169135

本比較例に係る酸化銅と、Bi、Sr、Caの酸化物または炭酸塩とを、超電導物質の製造原料としたとき、湿式混合法により各種酸化物もしくは炭酸塩を定量混合することにより、超電導要材料を製造する事が出来た。しかし、本比較例に係る酸化銅は、製造段階でのスラリー洗浄時に液温20℃前後の純水を使用している為、スラリー洗浄が不均一となり、乾燥後の1次粒子の凝集粒が肥大化した2次粒子となった。そして当該肥大化した2次粒子は、超電導物質の製造原料の混合時において、容易に1次粒子へと分散しなかった。その結果、上述した本実施例に係る酸化銅を用いた場合と比較して、超電導物質として有効なペロプスカイト型の構造が得難いことが判明した。   When the copper oxide according to this comparative example and the oxide or carbonate of Bi, Sr, Ca are used as raw materials for producing a superconducting material, the superconductivity is obtained by quantitatively mixing various oxides or carbonates by a wet mixing method. We were able to manufacture the necessary materials. However, since the copper oxide according to this comparative example uses pure water having a liquid temperature of about 20 ° C. at the time of slurry cleaning in the production stage, the slurry cleaning becomes uneven, and the aggregated particles of primary particles after drying It became enlarged secondary particles. The enlarged secondary particles were not easily dispersed into primary particles when the superconducting material was mixed. As a result, it has been found that it is difficult to obtain a perovskite structure that is effective as a superconducting material as compared with the case of using the copper oxide according to this example.

Claims (4)

アンモニウム塩の水溶液へ硝酸銅水溶液を添加して逆中和反応を行い、当該逆中和反応により塩基性炭酸銅を生成させ、当該塩基性炭酸銅を焼成して酸化銅を生成させることを特徴とする酸化銅の製造方法。   A copper nitrate aqueous solution is added to an aqueous solution of an ammonium salt to perform a reverse neutralization reaction, basic copper carbonate is generated by the reverse neutralization reaction, and the basic copper carbonate is baked to generate copper oxide. A method for producing copper oxide. 前記逆中和反応によって生成する塩基性炭酸銅を固液分離し、当該固液分離された塩基性炭酸銅を純水にて洗浄した後、200℃〜300℃にて大気焼成して酸化銅を生成させることを特徴とする請求項1に記載の酸化銅の製造方法。   The basic copper carbonate produced by the reverse neutralization reaction is subjected to solid-liquid separation, and the solid copper-separated basic copper carbonate is washed with pure water, and then calcined in air at 200 ° C. to 300 ° C. to obtain copper oxide. The method for producing copper oxide according to claim 1, wherein: アンモニウム塩の水溶液へ硝酸銅水溶液を添加して逆中和反応を行い、当該逆中和反応により生成した塩基性炭酸銅へ、遠心分離器を用いた純水洗浄をおこなって製造された残留アンモニア濃度が0.6%以下であることを特徴とする塩基性炭酸銅。   Residual ammonia produced by adding a copper nitrate aqueous solution to an aqueous ammonium salt solution to perform a reverse neutralization reaction, and washing the basic copper carbonate produced by the reverse neutralization reaction with pure water using a centrifuge A basic copper carbonate characterized by having a concentration of 0.6% or less. 請求項3に記載の塩基性炭酸銅を、焼成して製造されたことを特徴とする酸化銅。   A copper oxide produced by firing the basic copper carbonate according to claim 3.
JP2005372946A 2005-12-26 2005-12-26 Method for producing copper oxide Active JP5266477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005372946A JP5266477B2 (en) 2005-12-26 2005-12-26 Method for producing copper oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005372946A JP5266477B2 (en) 2005-12-26 2005-12-26 Method for producing copper oxide

Publications (2)

Publication Number Publication Date
JP2007169135A true JP2007169135A (en) 2007-07-05
JP5266477B2 JP5266477B2 (en) 2013-08-21

Family

ID=38296195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005372946A Active JP5266477B2 (en) 2005-12-26 2005-12-26 Method for producing copper oxide

Country Status (1)

Country Link
JP (1) JP5266477B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001963A1 (en) * 2007-06-27 2008-12-31 The University Of Tokyo Sample holder for maldi mass spectrometric analysis, and mass spectrometric analysis method
KR101153972B1 (en) 2011-09-28 2012-06-08 씨피텍 주식회사 Process for preparing copper oxide from basic copper carbonate
KR101367187B1 (en) * 2012-11-21 2014-02-27 주식회사 대창 Manufacturing method of copper oxide for printed circuit board
CN113249714A (en) * 2021-05-19 2021-08-13 许昌学院 Preparation method of adjustable super-wettability copper surface

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02145422A (en) * 1988-11-24 1990-06-04 Dowa Mining Co Ltd Production of fine copper oxide powder
JP2002068743A (en) * 2000-09-04 2002-03-08 Tsurumi Soda Co Ltd Method for manufacturing highly soluble copper oxide, highly soluble copper oxide, raw material for copper plating and method of copper plating
JP2004300459A (en) * 2003-03-28 2004-10-28 Mitsui Chemicals Inc Method for recovering metallic component in spent detoxifying agent
JP2005029892A (en) * 2003-06-18 2005-02-03 Tsurumi Soda Co Ltd Copper plating material, and copper plating method
JP2008540116A (en) * 2005-05-19 2008-11-20 ユーオーピー エルエルシー Metal oxide with improved reduction resistance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02145422A (en) * 1988-11-24 1990-06-04 Dowa Mining Co Ltd Production of fine copper oxide powder
JP2002068743A (en) * 2000-09-04 2002-03-08 Tsurumi Soda Co Ltd Method for manufacturing highly soluble copper oxide, highly soluble copper oxide, raw material for copper plating and method of copper plating
JP2004300459A (en) * 2003-03-28 2004-10-28 Mitsui Chemicals Inc Method for recovering metallic component in spent detoxifying agent
JP2005029892A (en) * 2003-06-18 2005-02-03 Tsurumi Soda Co Ltd Copper plating material, and copper plating method
JP2008540116A (en) * 2005-05-19 2008-11-20 ユーオーピー エルエルシー Metal oxide with improved reduction resistance

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001963A1 (en) * 2007-06-27 2008-12-31 The University Of Tokyo Sample holder for maldi mass spectrometric analysis, and mass spectrometric analysis method
JP2009009811A (en) * 2007-06-27 2009-01-15 Univ Of Tokyo Sample holder for maldi mass spectrometry, and mass spectrometry
US8168441B2 (en) 2007-06-27 2012-05-01 The University Of Tokyo Sample holder for MALDI mass spectrometric analysis, and mass spectrometric analysis method
US8278117B2 (en) 2007-06-27 2012-10-02 The University Of Tokyo Sample holder for maldi mass spectrometric analysis, and mass spectrometric analysis method
KR101153972B1 (en) 2011-09-28 2012-06-08 씨피텍 주식회사 Process for preparing copper oxide from basic copper carbonate
KR101367187B1 (en) * 2012-11-21 2014-02-27 주식회사 대창 Manufacturing method of copper oxide for printed circuit board
CN113249714A (en) * 2021-05-19 2021-08-13 许昌学院 Preparation method of adjustable super-wettability copper surface

Also Published As

Publication number Publication date
JP5266477B2 (en) 2013-08-21

Similar Documents

Publication Publication Date Title
CN102574696B (en) Composition comprising cerium oxide and zirconium oxide having a specific porosity, preparation method thereof and use of same in catalysis
CN102428026B (en) Synthesize lithium-iron-phosphate under hydrothermal conditions
CN102369161B (en) Method for producing alkali metal niobate particles, and alkali metal niobate particles
JP5907169B2 (en) Nickel oxide fine powder and method for producing the same
JP5266477B2 (en) Method for producing copper oxide
JP6289381B2 (en) Method for producing transition metal carbonate containing hydroxide
JP2019106240A (en) Nickel cobalt aluminum composite hydroxide, method for manufacturing the same, and lithium nickel cobalt aluminum composite oxide
JP2022116215A (en) Nickel manganese cobalt composite hydroxide and lithium nickel manganese cobalt composite oxide
JP2005001949A (en) Magnesium oxide powder and method of manufacturing the same
JP4257959B2 (en) Method for producing gallium oxide
JPH0559845B2 (en)
JP2018024535A (en) Production method of nickel oxide fine powder
JP7315887B2 (en) A method for producing a positive electrode active material precursor for lithium ion secondary batteries, a method for producing a positive electrode active material intermediate for lithium ion secondary batteries, and a method for producing a positive electrode active material for lithium ion secondary batteries combining them
JP5509725B2 (en) Nickel oxide powder and method for producing the same
JP2011132107A (en) Method of manufacturing cerium oxide fine particle
JP7285418B2 (en) Positive electrode active material for lithium ion secondary battery and method for producing the same
JP6969120B2 (en) Manufacturing method of nickel oxide fine powder
JP4565704B2 (en) High purity holmium oxide and method for producing the same
JP2020163334A (en) Nickel catalyst and production method of the same
JP2015054312A (en) Method for producing catalyst particles for hydrogenation, and catalyst particles for hydrogenation
CN116037085B (en) Macroporous alumina carrier and preparation method thereof
JP2016172658A (en) Manufacturing method of nickel oxide powder
JP2018123019A (en) Method for producing nickel oxide fine powders
JP6699402B2 (en) Multi-step method for producing nickel-manganese composite oxyhydroxide
JP3333547B2 (en) γ-lithium aluminate and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130410

R150 Certificate of patent or registration of utility model

Ref document number: 5266477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250