JP2018123019A - Method for producing nickel oxide fine powders - Google Patents

Method for producing nickel oxide fine powders Download PDF

Info

Publication number
JP2018123019A
JP2018123019A JP2017015202A JP2017015202A JP2018123019A JP 2018123019 A JP2018123019 A JP 2018123019A JP 2017015202 A JP2017015202 A JP 2017015202A JP 2017015202 A JP2017015202 A JP 2017015202A JP 2018123019 A JP2018123019 A JP 2018123019A
Authority
JP
Japan
Prior art keywords
nickel oxide
nickel
heat treatment
oxide fine
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017015202A
Other languages
Japanese (ja)
Other versions
JP6819322B2 (en
Inventor
法道 米里
Kazumichi Yonesato
法道 米里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2017015202A priority Critical patent/JP6819322B2/en
Publication of JP2018123019A publication Critical patent/JP2018123019A/en
Application granted granted Critical
Publication of JP6819322B2 publication Critical patent/JP6819322B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing nickel oxide fine powders that comprise sulfur in a trace controlled amount, have low contents of impurities, have a fine particle diameter, and are suited as electronic member materials and electrode materials of solid oxide fuel cells.SOLUTION: A method for producing nickel oxide fine particles is provided which comprises a neutralization step of neutralizing an aqueous nickel sulfate solution with an alkali to give nickel hydroxide particles; a first heat treatment step of heat-treating the nickel hydroxide particles in a non-reducing atmosphere at a heat treatment temperature that is higher than 850°C and lower than 1050°C to give nickel oxide powders; a second heat treatment temperature of heat-treating the nickel oxide particles under reduced pressure at a heat treatment temperature that is higher than 850°C and lower than 1050°C; and a disintegration step of disintegrating a sintered product of the nickel oxide powders that can be formed at the first and second heat treatment steps. The atmosphere at the second heat treatment step has a pressure that is lower than atmospheric pressure by 20 kPa to 100 kPa.SELECTED DRAWING: None

Description

本発明は、電子部品や固体酸化物形燃料電池の電極に用いられる材料として好適な酸化ニッケル微粉末の製造方法に関する。   The present invention relates to a method for producing nickel oxide fine powder suitable as a material used for an electrode of an electronic component or a solid oxide fuel cell.

酸化ニッケル微粉末は、電子部品用材料や固体酸化物形燃料電池の電極用材料等の多様な用途に用いられている。例えば、電子部品材料としての用途では、酸化ニッケル粉末を酸化鉄、酸化亜鉛等の他の材料と混合した後、焼結することによりフェライト部品等を作製することが行われている。このフェライト部品のように、複数の材料の焼成により複合金属酸化物を製造する場合は、その生成反応は固相の拡散反応で律速されるので、当該材料はより微細であるのが一般的に好ましい。その理由は、微細であれば他材料との接触確率が高くなると共に粒子の活性が高くなるため、低温で且つ短時間の処理であっても反応が均一に進むからである。従って、上記のような複合金属酸化物の製造では、原料となる粉体の粒径を小さくして微細にすることが効率向上の重要な要素となる。   Nickel oxide fine powders are used in various applications such as materials for electronic parts and materials for electrodes of solid oxide fuel cells. For example, in use as an electronic component material, a nickel component powder is mixed with another material such as iron oxide or zinc oxide, and then sintered to produce a ferrite component or the like. When a composite metal oxide is produced by firing a plurality of materials, such as this ferrite component, the formation reaction is limited by a solid phase diffusion reaction, so that the material is generally finer. preferable. The reason is that, if fine, the contact probability with other materials increases and the activity of the particles increases, so that the reaction proceeds uniformly even at a low temperature and for a short time. Therefore, in the production of the composite metal oxide as described above, it is an important factor for improving efficiency to reduce the particle size of the raw material powder to be fine.

近年、フェライト部品は高機能化が図られており、不純物元素の低減が求められている。不純物元素の中でも特に塩素(Cl)や硫黄(S)は、電極に利用されている銀と反応して電極劣化を生じさせたり、焼成炉を腐食させたりすることがあるため、できるだけ低減することが望ましい。そこで、例えば特許文献1には、フェライト材料の原料段階におけるフェライト粉において、その硫黄成分の含有量をS換算で300〜900ppmにし、塩素成分の含有量をCl換算で100ppmにする技術が提案されている。このフェライト材料は、低温焼成においても添加物を用いることなく高密度化を図ることができ、これを用いて作製されたフェライト磁心及び積層チップ部品は、耐湿性と温度特性の優れたものにすることができると記載されている。   In recent years, ferrite parts have been improved in functionality, and reduction of impurity elements is required. Chlorine (Cl) and sulfur (S), among other impurity elements, should be reduced as much as possible because they may react with the silver used for the electrodes, causing electrode deterioration and corroding the firing furnace. Is desirable. Therefore, for example, Patent Document 1 proposes a technique for setting the content of the sulfur component to 300 to 900 ppm in terms of S and the content of the chlorine component to 100 ppm in terms of Cl in the ferrite powder at the raw material stage of the ferrite material. ing. This ferrite material can be densified without using additives even in low-temperature firing, and the ferrite core and multilayer chip component produced using this material should have excellent moisture resistance and temperature characteristics. It is described that it can.

酸化ニッケル粉末は、上記のフェライト部品等の電子部品以外にも用途が広がっており、例えば、低環境負荷及び省エネルギーの両面から新しい発電システムとして期待されている固体酸化物形燃料電池においても、その電極材料に酸化ニッケル粉末が用いられている。一般に、固体酸化物形燃料電池のセルスタックは、空気極、固体電解質及び燃料極からなる単セルが順次積層された構造を有している。この燃料極に、例えばニッケル又は酸化ニッケルと、安定化ジルコニアからなる固体電解質とを混合したものが用いられている。燃料極では発電時に水素や炭化水素等の燃料ガスにより還元されてニッケルメタルとなり、ニッケルと固体電解質と空隙からなる三相界面が燃料ガスと酸素の反応場となるため、上記のフェライト部品の場合と同様に原料となる粉体の粒径を小さくして微細にすることが発電効率向上の重要な要素となる。   Nickel oxide powder is used in applications other than the above-mentioned electronic parts such as ferrite parts. For example, in solid oxide fuel cells that are expected as a new power generation system in terms of both low environmental load and energy saving. Nickel oxide powder is used as the electrode material. In general, a cell stack of a solid oxide fuel cell has a structure in which single cells including an air electrode, a solid electrolyte, and a fuel electrode are sequentially stacked. For this fuel electrode, for example, a mixture of nickel or nickel oxide and a solid electrolyte made of stabilized zirconia is used. In the case of the above-mentioned ferrite parts, the fuel electrode is reduced by fuel gas such as hydrogen or hydrocarbon during power generation to become nickel metal, and the three-phase interface consisting of nickel, solid electrolyte and voids becomes the reaction field of fuel gas and oxygen. Similarly to the above, it is an important factor for improving the power generation efficiency to reduce the particle size of the raw material powder to be fine.

従来、酸化ニッケル粉末を製造する方法としては、硫酸ニッケル、硝酸ニッケル、炭酸ニッケル、水酸化ニッケル等のニッケル塩類又はニッケルメタル粉を、ロータリーキルン等の転動炉、プッシャー炉等のような連続炉、あるいはバーナー炉のようなバッチ炉を用いて、酸化性雰囲気下で焼成することによって作製することが一般的に行われている。例えば、特許文献2には、原料としての硫酸ニッケルを、キルンなどを用いて酸化雰囲気中で焙焼温度950〜1000℃未満で焙焼する第1段焙焼と、焙焼温度1000〜1200℃で焙焼する第2段焙焼とを行って酸化ニッケル粉末を製造する方法が提案されている。この製造方法によれば、平均粒径が制御され、且つ硫黄品位が50質量ppm以下である酸化ニッケル微粉末が得られると記載されている。   Conventionally, as a method for producing nickel oxide powder, nickel salts such as nickel sulfate, nickel nitrate, nickel carbonate, nickel hydroxide, or nickel metal powder, a rotary kiln or other rolling furnace, a continuous furnace such as a pusher furnace, Alternatively, it is generally performed by firing in an oxidizing atmosphere using a batch furnace such as a burner furnace. For example, Patent Document 2 discloses a first stage roasting in which nickel sulfate as a raw material is roasted at a roasting temperature of less than 950 to 1000 ° C. in an oxidizing atmosphere using a kiln and the like, and a roasting temperature of 1000 to 1200 ° C. There has been proposed a method of producing nickel oxide powder by performing second-stage roasting that is roasted at the same time. According to this manufacturing method, it is described that a nickel oxide fine powder having an average particle size controlled and a sulfur quality of 50 mass ppm or less can be obtained.

また、特許文献3には、450〜600℃の仮焼による脱水工程と、1000〜1200℃の焙焼による硫酸ニッケルの分解工程とを明確に分離した酸化ニッケル粉末の製造方法が提案されている。この製造方法によれば、硫黄品位が低く且つ平均粒径が小さい酸化ニッケル粉末を安定して製造できると記載されている。更に、特許文献4には、横型回転式製造炉を用いて、強制的に空気を導入しながら、最高温度を900〜1250℃として焙焼する方法が提案されている。この製造方法によっても、不純物が少なく、硫黄品位が500質量ppm以下の酸化ニッケル粉末が得られると記載されている。   Patent Document 3 proposes a method for producing nickel oxide powder in which a dehydration step by calcining at 450 to 600 ° C. and a decomposition step of nickel sulfate by roasting at 1000 to 1200 ° C. are clearly separated. . According to this production method, it is described that nickel oxide powder having a low sulfur quality and a small average particle diameter can be produced stably. Furthermore, Patent Document 4 proposes a method of roasting at a maximum temperature of 900 to 1250 ° C. while forcibly introducing air using a horizontal rotary manufacturing furnace. It is described that nickel oxide powder with few impurities and a sulfur quality of 500 mass ppm or less can be obtained by this manufacturing method.

上記の乾式法に対して一部湿式法で酸化ニッケル微粉末を合成する方法として、硫酸ニッケルや塩化ニッケル等のニッケル塩を含む水溶液を、水酸化ナトリウム水溶液等のアルカリで中和して水酸化ニッケルを晶析させ、これを焙焼する方法も提案されている。例えば、特許文献5には、塩化ニッケル水溶液をアルカリで中和して水酸化ニッケルを生成し、得られた水酸化ニッケルを500〜800℃の温度で熱処理して酸化ニッケルを生成し、得られた酸化ニッケルに水を加えてスラリーにした後、湿式ジェットミルを用いて解砕すると同時に洗浄することにより、硫黄品位及び塩素品位が低く且つ微細な粒径の酸化ニッケル粉末を得る方法が提案されている。この方法は水酸化ニッケルを焙焼する際に陰イオン成分由来のガスの発生が少ないため、排ガス処理は不要となるか若しくは簡易な設備でよく、よって低コストでの製造が可能になる。   As a method for synthesizing fine nickel oxide powder by a partial wet method with respect to the dry method described above, an aqueous solution containing a nickel salt such as nickel sulfate or nickel chloride is neutralized with an alkali such as an aqueous sodium hydroxide solution to perform hydroxylation. A method for crystallizing nickel and roasting it has also been proposed. For example, in Patent Document 5, a nickel chloride aqueous solution is neutralized with an alkali to produce nickel hydroxide, and the obtained nickel hydroxide is heat-treated at a temperature of 500 to 800 ° C. to produce nickel oxide. A method for obtaining nickel oxide powder with low sulfur and chlorine grades and fine particle size by adding water to nickel oxide to make a slurry, followed by crushing using a wet jet mill and washing at the same time is proposed. ing. In this method, when nickel hydroxide is roasted, the generation of gas derived from the anion component is small, so that the exhaust gas treatment is not necessary or simple equipment is required, and therefore it is possible to manufacture at low cost.

特開2002−198213号公報JP 2002-198213 A 特開2001−032002号公報Japanese Patent Laid-Open No. 2001-032002 特開2004−123488号公報JP 2004-123488 A 特開2004−189530号公報JP 2004-189530 A 特開2011−042541号公報JP 2011-025441 A

上記特許文献2〜4の製造方法によりある程度硫黄品位が抑えられた微細な酸化ニッケル粉末を得ることができるが、これら製造方法のいずれにおいても、硫黄品位を低減するために焙焼温度を高くすると粒径が粗大になり、また粒子を微細にするために焙焼温度を下げると硫黄品位が高くなるという欠点があり、粒径と硫黄品位を同時に最適値に制御することは困難であった。また、加熱する際に大量のSOを含むガスが発生し、これを除害処理するために高価な設備が必要になるという問題も抱えている。 Although the fine nickel oxide powder in which the sulfur grade is suppressed to some extent can be obtained by the production methods of Patent Documents 2 to 4 above, in any of these production methods, if the roasting temperature is increased in order to reduce the sulfur grade When the roasting temperature is lowered in order to make the particle size coarser and the particles become finer, there is a disadvantage that the sulfur quality becomes high, and it is difficult to simultaneously control the particle size and sulfur quality to the optimum values. In addition, there is a problem in that a gas containing a large amount of SO x is generated during heating, and expensive equipment is required to remove the gas.

更に、酸化ニッケル粉末を電子部品用として、特にフェライト部品用の原料として用いる場合は、硫黄の含有量を単に低減するだけでなく、硫黄の含有量を所定の範囲内に厳密に制御することが求められることがある。すなわち、酸化ニッケル粉末を電子部品用材料として用いる場合は、粒径の微細化と不純物の低減に加えて、硫黄の含有量の厳密な制御が必要になることがある。しかしながら、特許文献5の酸化ニッケル粉末の製造方法は、原料に塩化ニッケルを用いていることから硫黄の低減は可能であるが、硫黄品位を所定の範囲内に制御することは困難であった。また、湿式解砕しているため、その後工程として必要な乾燥工程にコストがかかる上、乾燥時に凝集する虞があった。   Furthermore, when nickel oxide powder is used for electronic parts, particularly as a raw material for ferrite parts, it is possible not only to reduce the sulfur content but also to strictly control the sulfur content within a predetermined range. Sometimes required. That is, when nickel oxide powder is used as a material for electronic components, in addition to refinement of particle size and reduction of impurities, it is sometimes necessary to strictly control the sulfur content. However, since the nickel oxide powder production method of Patent Document 5 uses nickel chloride as a raw material, sulfur can be reduced, but it is difficult to control the sulfur quality within a predetermined range. Moreover, since it is wet-pulverized, the drying process required as a subsequent process is costly and may be aggregated during drying.

このように、従来の酸化ニッケル粉末の製造方法は、微細な粒子径を有すると共に、塩素品位が低く且つ硫黄品位が制御された酸化ニッケル粉末を得るのは困難であり、更なる改善が望まれていた。本発明は、上記した問題点に鑑みてなされたものであり、含有量の制御された微量の硫黄を含み、不純物品位、特に塩素品位が低く、且つ粒径が微細であって、電子部品材料や固体酸化物形燃料電池の電極材料として好適な酸化ニッケル微粉末の製造方法を提供することを目的としている。   Thus, it is difficult to obtain a nickel oxide powder having a fine particle size, a low chlorine quality and a controlled sulfur quality in the conventional nickel oxide powder production method, and further improvement is desired. It was. The present invention has been made in view of the above-mentioned problems, contains a small amount of sulfur with a controlled content, has low impurity quality, particularly chlorine quality, and has a fine particle size, and is an electronic component material. Another object of the present invention is to provide a method for producing fine nickel oxide powder suitable as an electrode material for a solid oxide fuel cell.

本発明者は、上記目的を達成するため、熱処理時に大量の有害ガスが発生しない製造方法である、ニッケル塩水溶液を中和して得た水酸化ニッケルを焙焼して酸化ニッケル微粉末を製造する方法について鋭意研究を重ねた結果、硫酸ニッケル水溶液をアルカリで中和し、得られた水酸化ニッケルを所定の条件で熱処理することで、硫黄品位が制御され、不純物品位、特に塩素品位が低い微細な酸化ニッケル微粉末を得ることができることを見出し、本発明を完成するに至った。   In order to achieve the above object, the present inventor produces nickel oxide fine powder by roasting nickel hydroxide obtained by neutralizing an aqueous nickel salt solution, which is a production method that does not generate a large amount of harmful gas during heat treatment. As a result of earnest research on the method to do this, the sulfuric acid quality is controlled by neutralizing the nickel sulfate aqueous solution with alkali and heat-treating the obtained nickel hydroxide under predetermined conditions, and the impurity quality, especially the chlorine quality is low The inventors have found that fine nickel oxide fine powder can be obtained, and have completed the present invention.

すなわち、本発明の酸化ニッケル微粉末の製造方法は、硫酸ニッケル水溶液をアルカリで中和して水酸化ニッケル粒子を得る中和工程と、前記水酸化ニッケル粒子を非還元性雰囲気中において850℃を超え1050℃未満の熱処理温度で熱処理して酸化ニッケル粉末を生成する第1熱処理工程と、減圧下において850℃を超え1050℃未満の熱処理温度で前記酸化ニッケル粉末を熱処理する第2熱処理工程と、前記第1及び第2熱処理工程の際に形成され得る酸化ニッケル粉末の焼結体を解砕する解砕工程とを含む酸化ニッケル微粉末の製造方法であって、記第2熱処理工程の雰囲気圧力が大気圧より20kPa〜100kPa低いことを特徴としている。   That is, the nickel oxide fine powder production method of the present invention comprises a neutralization step of neutralizing a nickel sulfate aqueous solution with an alkali to obtain nickel hydroxide particles, and the nickel hydroxide particles at 850 ° C. in a non-reducing atmosphere. A first heat treatment step of producing a nickel oxide powder by heat treatment at a heat treatment temperature of more than 1050 ° C. and a second heat treatment step of heat-treating the nickel oxide powder at a heat treatment temperature of more than 850 ° C. and less than 1050 ° C. under reduced pressure; A method for producing fine nickel oxide powder, comprising a crushing step of crushing a sintered body of nickel oxide powder that can be formed during the first and second heat treatment steps, wherein the atmospheric pressure in the second heat treatment step is Is characterized by being 20 kPa to 100 kPa lower than the atmospheric pressure.

本発明によれば、フェライト部品などの電子部品材料や固体酸化物形燃料電池の電極材料として好適な、硫黄品位が50質量ppm以下に制御され、不純物品位としての塩素品位が50質量ppm以下、ナトリウム品位が100質量ppm未満と低い微細な酸化ニッケル微粉末を、大量の塩素やSOガスを発生させることなく容易に得ることができる。 According to the present invention, the sulfur quality is controlled to 50 mass ppm or less, which is suitable as an electronic component material such as a ferrite component or an electrode material of a solid oxide fuel cell, and the chlorine quality as an impurity quality is 50 mass ppm or less, A fine nickel oxide fine powder having a sodium quality of less than 100 ppm by mass can be easily obtained without generating a large amount of chlorine or SO x gas.

以下、本発明の実施形態に係る酸化ニッケル微粉末の製造方法について説明する。この酸化ニッケル微粉末の製造方法は、硫酸ニッケル水溶液をアルカリによって中和して水酸化ニッケル粒子を得る中和工程と、得られた水酸化ニッケル粒子を炉内に装入し、非還元性雰囲気中において850℃を超え1050℃未満の熱処理温度で熱処理して酸化ニッケル粉末を生成する第1熱処理工程と、該炉内を減圧雰囲気にして850℃を超え1050℃未満の熱処理温度で熱処理する第2熱処理工程と、該第1及び第2熱処理工程の際に形成され得る酸化ニッケル粉末の焼結体を解砕して酸化ニッケル微粉末を得る解砕工程とを有している。   Hereinafter, the manufacturing method of the nickel oxide fine powder which concerns on embodiment of this invention is demonstrated. The method for producing the nickel oxide fine powder includes a neutralization step in which an aqueous nickel sulfate solution is neutralized with an alkali to obtain nickel hydroxide particles, and the obtained nickel hydroxide particles are charged into a furnace to produce a non-reducing atmosphere. A first heat treatment step in which nickel oxide powder is produced by heat treatment at a heat treatment temperature exceeding 850 ° C. and less than 1050 ° C., and heat treatment is performed at a heat treatment temperature exceeding 850 ° C. and less than 1050 ° C. in the furnace. 2 heat treatment steps, and a crushing step of crushing a sintered body of nickel oxide powder that can be formed during the first and second heat treatment steps to obtain a nickel oxide fine powder.

上記の通り本発明の実施形態に係る製造方法においては、中和工程においてアルカリで中和するニッケル塩水溶液の原料に硫酸ニッケルを使用する。これにより原料に他のニッケル塩を用いる場合と比べ、後工程の第1熱処理工程や第2熱処理工程で熱処理温度を高温化しても酸化ニッケル粉末の粒子径が大きくなるのを抑えることが可能となり、その結果、微細で且つ硫黄品位が制御された酸化ニッケル微粉末を得ることができる。すなわち、原料に含まれる硫黄成分の効果により、熱処理温度が粒径に及ぼす影響を抑えることができ、その結果、微細な粒径を維持したまま熱処理温度によって酸化ニッケルの硫黄品位を制御できることを本発明者は見出した。しかも、本発明の実施形態の製造方法は、原料に塩化ニッケルを用いないため塩素が混入する虞がなく、原料に不可避的に含まれる不純物以外は実質的に塩素を含有しない酸化ニッケル微粉末を得ることができる。   As described above, in the manufacturing method according to the embodiment of the present invention, nickel sulfate is used as a raw material for the nickel salt aqueous solution that is neutralized with an alkali in the neutralization step. This makes it possible to suppress the increase in the particle diameter of the nickel oxide powder even when the heat treatment temperature is increased in the first heat treatment step or the second heat treatment step in the subsequent step, compared to the case where other nickel salts are used as the raw material. As a result, a fine nickel oxide fine powder having a controlled sulfur quality can be obtained. That is, the effect of the heat treatment temperature on the particle size can be suppressed by the effect of the sulfur component contained in the raw material, and as a result, the sulfur quality of nickel oxide can be controlled by the heat treatment temperature while maintaining a fine particle size. The inventor found out. Moreover, since the manufacturing method of the embodiment of the present invention does not use nickel chloride as a raw material, there is no possibility that chlorine is mixed in, and nickel oxide fine powder that does not substantially contain chlorine other than impurities inevitably contained in the raw material is used. Can be obtained.

上記方法で微細な粒径の酸化ニッケル粉末が得られる明確な理由は不明であるが、硫酸ニッケルの分解温度は848℃と高温であるため、水酸化ニッケル粒子の表面や界面に硫黄成分が硫酸塩として巻きこまれ、これが酸化ニッケル粉末の焼結を高温まで抑制していると考えられる。   Although there is no clear reason why nickel oxide powder having a fine particle diameter can be obtained by the above method, since the decomposition temperature of nickel sulfate is as high as 848 ° C., sulfur component is not present on the surface or interface of nickel hydroxide particles. It is thought that it is wound up as a salt and this suppresses the sintering of the nickel oxide powder to a high temperature.

上記熱処理により水酸化ニッケル結晶内の水酸基が脱離して酸化ニッケル粉末が生成されるが、その際、熱処理温度を適切に設定することによって、粒径の微細化と硫黄品位の制御が可能である。具体的には、第1熱処理工程において、水酸化ニッケルの熱処理温度を850℃を超え1050℃未満、好ましくは860〜1000℃の温度範囲とし、第2熱処理工程において、減圧下で熱処理温度を850℃を超え1050℃未満、好ましくは860〜1000℃の温度範囲にする。これらの条件で熱処理することによって、解砕工程で解砕された後の酸化ニッケル微粉末の硫黄品位を50質量ppm以下に制御でき、且つ比表面積を3m/g以上4m/g未満にすることができる。 By the heat treatment, the hydroxyl group in the nickel hydroxide crystal is desorbed to produce nickel oxide powder. At that time, by appropriately setting the heat treatment temperature, the particle size can be refined and the sulfur quality can be controlled. . Specifically, in the first heat treatment step, the heat treatment temperature of nickel hydroxide is more than 850 ° C. and less than 1050 ° C., preferably 860 to 1000 ° C., and in the second heat treatment step, the heat treatment temperature is 850 under reduced pressure. The temperature is higher than ℃ and lower than 1050 ° C, preferably 860-1000 ° C. By heat-treating under these conditions, the sulfur quality of the nickel oxide fine powder after being crushed in the pulverization step can be controlled to 50 ppm by mass or less, and the specific surface area can be 3 m 2 / g or more and less than 4 m 2 / g. can do.

尚、粒径と比表面積には、下記の式1の関係があるので、比表面積によって粉体がどの程度微細であるか判断することができる。
[計算式1]
粒径=6/(密度×比表面積)
但し、上記式1の関係は粒子が真球状であると仮定して導き出されたものであるため、上記式1から得られる粒径と実際の粒径との間にはいくらかの誤差を含むことになるが、比表面積が大きいほど粒径が小さくなることが分かる。次に、本発明の実施形態に係る酸化ニッケルの製造方法を工程毎に詳細に説明する。
Since the particle size and the specific surface area have the relationship of the following formula 1, it can be determined how fine the powder is based on the specific surface area.
[Calculation Formula 1]
Particle size = 6 / (density × specific surface area)
However, since the relationship of the above equation 1 is derived on the assumption that the particles are spherical, there is some error between the particle size obtained from the above equation 1 and the actual particle size. However, it can be seen that the larger the specific surface area, the smaller the particle size. Next, the nickel oxide manufacturing method according to the embodiment of the present invention will be described in detail for each step.

(中和工程)
先ず中和工程では、原料としての硫酸ニッケルの水溶液にアルカリを添加して得た反応液中で中和反応を行って水酸化ニッケルを得る工程である。この反応液中の濃度や中和条件等は公知の技術が適用できる。原料として用いる硫酸ニッケルやアルカリは、最終的に作製される酸化ニッケル微粉末が電子部品用や固体酸化物形燃料電池の電極用として用いられることから、腐食を防止するため、それら各々に含まれる不純物が100質量ppm未満であることが望ましい。
(Neutralization process)
First, in the neutralization step, nickel hydroxide is obtained by performing a neutralization reaction in a reaction solution obtained by adding an alkali to an aqueous solution of nickel sulfate as a raw material. Known techniques can be applied to the concentration and neutralization conditions in the reaction solution. Nickel sulfate and alkali used as raw materials are included in each of them to prevent corrosion because the nickel oxide fine powder finally produced is used for electronic parts and electrodes for solid oxide fuel cells. It is desirable that the impurities are less than 100 ppm by mass.

硫酸ニッケル水溶液中のニッケルの濃度は、特に限定されるものではないが、生産性を考慮すると、ニッケル濃度で50〜150g/Lが好ましい。この濃度が50g/L未満では生産性が悪くなる。一方、150g/Lを超えると水溶液中の陰イオン濃度が高くなりすぎ、生成した水酸化ニッケル粒子中の硫黄品位が高くなるため、最終的に得られる酸化ニッケル微粉末中の不純物品位が十分に低くならない場合がある。   The concentration of nickel in the aqueous nickel sulfate solution is not particularly limited, but considering productivity, the nickel concentration is preferably 50 to 150 g / L. If this concentration is less than 50 g / L, the productivity will deteriorate. On the other hand, if it exceeds 150 g / L, the anion concentration in the aqueous solution becomes too high and the sulfur quality in the produced nickel hydroxide particles becomes high, so that the impurity quality in the finally obtained nickel oxide fine powder is sufficiently high. It may not be lowered.

中和に用いるアルカリとしては、特に限定されるものではないが、反応液中に残留するニッケルの量を考慮するとアルカリ金属の水酸化物が好ましく、水酸化ナトリウム若しくは水酸化カリウム又はそれら両方がより好ましく、コストを考慮すると水酸化ナトリウムが特に好ましい。また、アルカリは固体又は液体のいずれの形態で硫酸ニッケル水溶液に添加してもよいが、取扱いの容易さから水溶液を用いることが好ましい。   The alkali used for neutralization is not particularly limited, but an alkali metal hydroxide is preferable in consideration of the amount of nickel remaining in the reaction solution, and sodium hydroxide or potassium hydroxide or both are more preferable. In view of cost, sodium hydroxide is particularly preferable. The alkali may be added to the nickel sulfate aqueous solution in a solid or liquid form, but it is preferable to use an aqueous solution for ease of handling.

均一な特性の水酸化ニッケル粒子を得るためには、反応槽内において十分に撹拌されている液に、予め調製しておいたニッケル塩水溶液である硫酸ニッケル水溶液とアルカリとをいわゆるダブルジェット方式で添加して反応液とするのが有効である。即ち、反応槽内に硫酸ニッケル水溶液及びアルカリ水溶液のうちのいずれか一方を入れておき、そこにもう一方を添加して反応液とするのではなく、反応槽内において十分に攪拌されている液中に、好適には攪拌しながら硫酸ニッケル水溶液とアルカリとを同時並行的に且つ連続的に乱流状態で添加して反応液とする方式が有効である。その際、反応槽内に予め入れておく液は、純水にアルカリを添加し、所定のpHに調整したものであるのが好ましい。   In order to obtain nickel hydroxide particles with uniform characteristics, a nickel sulfate aqueous solution that is a nickel salt aqueous solution prepared in advance and an alkali are mixed with a sufficiently stirred liquid in a reaction vessel by a so-called double jet method. It is effective to add to the reaction solution. That is, a liquid that is sufficiently stirred in the reaction tank, not one of the nickel sulfate aqueous solution and the alkaline aqueous solution is put in the reaction tank and the other is added to the reaction liquid. In particular, a system in which a nickel sulfate aqueous solution and an alkali are added simultaneously and continuously in a turbulent state while stirring is effective. In that case, it is preferable that the liquid previously put in the reaction tank is adjusted to a predetermined pH by adding alkali to pure water.

上記の反応液は、中和反応時のpHを8.3〜9.0の範囲内に設定することが好ましく、この範囲内でpHをほぼ一定に保つことが特に好ましい。このpHが8.3より低いと、水酸化ニッケル中に残存する硫酸イオンなどの陰イオン成分の濃度が増大し、これらは後工程の第1熱処理工程で焼成する際に、大量の塩酸やSOとなって炉体をいためるため好ましくない。逆に、このpHが9.0より高くなると、得られる水酸化ニッケルが微細になりすぎ、この水酸化ニッケルを含むスラリーの濾過が困難になることがある。また、後工程での第1熱処理工程において焼結が進みすぎ、微細な酸化ニッケル微粉末を得ることが困難になることがある。 In the above reaction solution, the pH during the neutralization reaction is preferably set in the range of 8.3 to 9.0, and it is particularly preferable to keep the pH substantially constant within this range. When this pH is lower than 8.3, the concentration of anion components such as sulfate ions remaining in the nickel hydroxide increases, and when these are calcined in the first heat treatment step, a large amount of hydrochloric acid or SO It is not preferable because it becomes x and damages the furnace body. On the other hand, when the pH is higher than 9.0, the resulting nickel hydroxide becomes too fine, and it may be difficult to filter the slurry containing the nickel hydroxide. In addition, sintering may progress excessively in the first heat treatment step in the subsequent step, and it may be difficult to obtain fine nickel oxide fine powder.

尚、中和反応時のpHを9.0以下にすると反応後の水溶液中に僅かにニッケル成分が残存することがあるが、この場合は、上記中和工程での中和反応による晶析の後、該水溶液のpHを10程度まで上げることによって、これを固液分離した後の濾液中のニッケルを低減することができる。前述したように中和反応時のpHは一定に保つのが好ましく、具体的にはその変動幅が設定値を中心として絶対値で0.2以内となるように制御することが好ましい。pHの変動幅がこれより大きくなると、不純物が増大したり、最終的に得られる酸化ニッケル微粉末の比表面積が低下したりするおそれがある。   If the pH during the neutralization reaction is set to 9.0 or less, a slight amount of nickel component may remain in the aqueous solution after the reaction. In this case, crystallization due to the neutralization reaction in the neutralization step may occur. Thereafter, by raising the pH of the aqueous solution to about 10, the nickel in the filtrate after solid-liquid separation can be reduced. As described above, the pH during the neutralization reaction is preferably kept constant, and specifically, it is preferable to control the fluctuation range to be within an absolute value of 0.2 around the set value. If the fluctuation range of the pH is larger than this, impurities may increase or the specific surface area of the finally obtained nickel oxide fine powder may decrease.

中和反応時の液温は、一般的な中和反応時の温度で特に問題はなく、室温で行うことも可能であるが、水酸化ニッケル粒子を十分に成長させるために50〜70℃に調整するのが好ましい。水酸化ニッケル粒子を十分に成長させることで、水酸化ニッケル粒子中に硫黄が過度に含有されるのを防止することができる。また、水酸化ニッケル粒子中へのナトリウムなどの不純物の巻き込みを抑制でき、これにより最終的に得られる酸化ニッケル微粉末の不純物品位を低減することができる。この液温が50℃未満では水酸化ニッケル粒子の成長が十分ではなく、水酸化ニッケル粒子中への硫黄及び不純物の巻き込みが多くなるおそれがある。逆に、液温が70℃を超えると、水の蒸発が顕著になり、水溶液中の硫黄及び不純物濃度が高くなるため、生成した水酸化ニッケル粒子中の硫黄品位及び不純物品位が高くなることがある。   The liquid temperature during the neutralization reaction is not particularly limited as the temperature during the general neutralization reaction, and can be carried out at room temperature. However, in order to sufficiently grow nickel hydroxide particles, the temperature is set to 50 to 70 ° C. It is preferable to adjust. By sufficiently growing the nickel hydroxide particles, it is possible to prevent the nickel hydroxide particles from excessively containing sulfur. In addition, the inclusion of impurities such as sodium into the nickel hydroxide particles can be suppressed, whereby the impurity quality of the finally obtained nickel oxide fine powder can be reduced. When the liquid temperature is less than 50 ° C., the nickel hydroxide particles are not sufficiently grown, and there is a risk that sulfur and impurities are involved in the nickel hydroxide particles. On the contrary, when the liquid temperature exceeds 70 ° C., the evaporation of water becomes prominent, and the concentration of sulfur and impurities in the aqueous solution increases, so that the sulfur quality and impurity quality in the produced nickel hydroxide particles may increase. is there.

上記中和反応の終了後、析出した水酸化ニッケル粒子を例えば濾過により固液分離して回収する。回収した濾過ケーキは、次の第1熱処理工程で処理する前に洗浄することが好ましい。洗浄はレパルプ洗浄とすることが好ましく、その洗浄に用いる洗浄液としては水が好ましく、純水が特に好ましい。洗浄時の水酸化ニッケル粒子と水との混合割合は特に限定されるものではなく、硫酸ニッケルに含まれる陰イオン、特に硫酸イオン、及びアルカリ金属成分が、十分に除去できる混合割合とすればよい。   After completion of the neutralization reaction, the deposited nickel hydroxide particles are recovered by solid-liquid separation, for example, by filtration. The recovered filter cake is preferably washed before being processed in the next first heat treatment step. The washing is preferably repulp washing, and the washing liquid used for the washing is preferably water, and particularly preferably pure water. The mixing ratio of nickel hydroxide particles and water at the time of washing is not particularly limited, and may be a mixing ratio at which anions contained in nickel sulfate, particularly sulfate ions and alkali metal components can be sufficiently removed. .

具体的には、水酸化ニッケルに対する洗浄液の量は、残留陰イオンやアルカリ金属成分等の不純物が十分に低減でき且つ水酸化ニッケル粒子を良好に分散させるため、50〜150gの水酸化ニッケル粒子に対して洗浄液1Lを混合するのが好ましく、100g程度の水酸化ニッケル粒子に対して洗浄液1Lを混合するのがより好ましい。尚、洗浄時間については、処理条件に応じて適宜定めることができ、残留不純物を十分に低減可能な時間とすればよい。1回の洗浄で陰イオン及びアルカリ金属成分が十分に低減されない場合は、複数回繰り返して洗浄することが好ましい。特に、アルカリ金属成分は次工程の第1熱処理工程や第2熱処理工程における熱処理ではほとんど除去できないため、この洗浄によって十分に除去することが好ましい。   Specifically, the amount of the cleaning liquid with respect to nickel hydroxide can be reduced to 50 to 150 g of nickel hydroxide particles in order to sufficiently reduce impurities such as residual anions and alkali metal components and to disperse nickel hydroxide particles well. On the other hand, it is preferable to mix 1 L of cleaning liquid, and it is more preferable to mix 1 L of cleaning liquid with respect to about 100 g of nickel hydroxide particles. The cleaning time can be appropriately determined according to the processing conditions, and may be a time that can sufficiently reduce residual impurities. When the anion and the alkali metal component are not sufficiently reduced by a single washing, it is preferable to wash repeatedly several times. In particular, since the alkali metal component can hardly be removed by the heat treatment in the first heat treatment step or the second heat treatment step in the next step, it is preferable that the alkali metal component be sufficiently removed by this washing.

(第1熱処理工程及び第2熱処理工程)
上記中和工程の次に行われる第1熱処理工程及び第2熱処理工程は、上記中和工程で得られた水酸化ニッケル粒子を熱処理して酸化ニッケル粉末を得る工程である。第1熱処理工程では、非還元性雰囲気中において、850℃を超え1050℃未満の温度範囲で、好ましくは860〜1000℃の温度範囲で熱処理を行う。この熱処理時の雰囲気は、非還元性雰囲気であれば特に限定されないが、経済性を考慮すると大気雰囲気とすることが好ましい。また、熱処理の際に水酸基の脱離により発生する水蒸気を効率よく排出するため、十分な流速を持った気流中で行うことが好ましい。尚、第1熱処理工程の熱処理を行う装置には、一般的な焙焼炉を使用することができ、後工程の第2熱処理工程の熱処理をも実施できるように、減圧設備を備えた炉であってもよい。
(First heat treatment step and second heat treatment step)
The first heat treatment step and the second heat treatment step performed after the neutralization step are steps in which nickel hydroxide particles obtained in the neutralization step are heat-treated to obtain nickel oxide powder. In the first heat treatment step, heat treatment is performed in a non-reducing atmosphere in a temperature range of more than 850 ° C. and less than 1050 ° C., preferably in a temperature range of 860 to 1000 ° C. The atmosphere at the time of the heat treatment is not particularly limited as long as it is a non-reducing atmosphere, but it is preferably an air atmosphere in consideration of economy. Moreover, in order to discharge efficiently the water vapor | steam which generate | occur | produces by the detachment | desorption of a hydroxyl group at the time of heat processing, it is preferable to carry out in the airflow with sufficient flow velocity. It should be noted that a general roasting furnace can be used for the apparatus for performing the heat treatment in the first heat treatment process, and a furnace equipped with a decompression facility so that the heat treatment in the second heat treatment process in the subsequent process can also be performed. There may be.

次の第2熱処理工程では、炉内を減圧下とし、850℃を超え1050℃未満の温度範囲で、好ましくは860〜1000℃の温度範囲で熱処理を行う。この熱処理時は、炉内雰囲気を大気圧より20〜100kPa低い圧力、すなわちゲージ圧で−20〜−100kPaGの減圧下にする。この条件で熱処理を行うことにより、酸化ニッケル微粉末の硫黄品位をより一層低減することができる。尚、この第2熱処理工程の熱処理を行う装置は、炉内を減圧することができる設備を備えた炉であれば、公知の熱処理装置を用いることができる。   In the next second heat treatment step, the inside of the furnace is under reduced pressure, and the heat treatment is performed in a temperature range of more than 850 ° C. and less than 1050 ° C., preferably in the temperature range of 860 to 1000 ° C. At the time of this heat treatment, the atmosphere in the furnace is set to a pressure that is 20 to 100 kPa lower than the atmospheric pressure, that is, a reduced pressure of −20 to −100 kPaG as a gauge pressure. By performing the heat treatment under these conditions, the sulfur quality of the nickel oxide fine powder can be further reduced. In addition, if the apparatus which performs the heat processing of this 2nd heat processing process is a furnace provided with the equipment which can pressure-reduce the inside of a furnace, a well-known heat processing apparatus can be used.

ところで、水酸化ニッケル粒子に含まれる硫黄成分は、前述したように主として硫酸ニッケルの形態であるが、この硫酸ニッケル(NiSO)は下記式2の反応により分解される。
[式2]
2NiSO→2NiO+2SO+O
By the way, the sulfur component contained in the nickel hydroxide particles is mainly in the form of nickel sulfate as described above, but this nickel sulfate (NiSO 4 ) is decomposed by the reaction of the following formula 2.
[Formula 2]
2NiSO 4 → 2NiO + 2SO 2 + O 2

上記式2より、熱処理雰囲気の酸素分圧が低くなること、つまり熱処理時に減圧雰囲気にすることでこの反応が促進され、第1熱処理工程の熱処理後に残留する硫酸ニッケルなどの硫黄成分を良好に分解することができる。その結果、得られる酸化ニッケル微粉末の硫黄品位より一層低減する。この第2熱処理工程の熱処理時の炉内の気圧が−20kPaGよりも高くなると、硫酸ニッケルなどの硫黄成分の分解反応が良好に進行せず、第2熱処理工程の熱処理を行っても酸化ニッケル微粉末の硫黄品位がほとんど低減しないことがある。逆に炉内の気圧を−100kPaGよりも低くしてもよいが、その減圧のための設備コストが高くなるので経済的ではない。   From the above formula 2, this reaction is promoted by lowering the oxygen partial pressure in the heat treatment atmosphere, that is, by reducing the pressure during the heat treatment, and the sulfur component such as nickel sulfate remaining after the heat treatment in the first heat treatment step is decomposed well. can do. As a result, the sulfur quality of the obtained nickel oxide fine powder is further reduced. When the atmospheric pressure in the furnace during the heat treatment in the second heat treatment step becomes higher than −20 kPaG, the decomposition reaction of the sulfur component such as nickel sulfate does not proceed well. The sulfur quality of the powder may not be reduced. Conversely, the pressure inside the furnace may be lower than −100 kPaG, but it is not economical because the equipment cost for the pressure reduction increases.

これら第1及び第2熱処理工程の熱処理温度が1050℃以上では、硫酸ニッケル等の硫黄成分の分解が進行しすぎるため、上記焼結の抑制効果が不十分になり、温度による焼結促進が顕著になる。その結果、第1熱処理工程や第2熱処理工程の熱処理によって得られる酸化ニッケル粉末同士の焼結が顕著になり、後工程の解砕工程において酸化ニッケル粉末の焼結体の解砕が困難になり、解砕できたとしても所望の比表面積を有する微細な酸化ニッケル微粉末が得られなくなる。逆に、上記水酸化ニッケルの熱処理温度が850℃以下の場合は、硫酸ニッケル等の硫黄成分の分解による硫黄成分の揮発が不十分となり、水酸化ニッケル中に硫黄成分が残留するため、酸化ニッケル微粉末の硫黄品位が50質量ppmを超えてしまう。熱処理時間は、上記の熱処理温度や熱処理が施される水酸化ニッケル粒子の量等の処理条件に応じて適宜設定することができるが、最終的に得られる酸化ニッケル微粉末の比表面積が3m/g以上4m/g未満となるように設定すればよい。 When the heat treatment temperature in these first and second heat treatment steps is 1050 ° C. or higher, the decomposition of sulfur components such as nickel sulfate proceeds excessively, so that the effect of suppressing the sintering becomes insufficient, and the promotion of sintering due to temperature is remarkable. become. As a result, the sintering of the nickel oxide powders obtained by the heat treatment in the first heat treatment step and the second heat treatment step becomes remarkable, and it becomes difficult to crush the sintered body of the nickel oxide powder in the crushing step in the subsequent step. Even if pulverized, fine nickel oxide fine powder having a desired specific surface area cannot be obtained. On the contrary, when the heat treatment temperature of the nickel hydroxide is 850 ° C. or lower, the volatilization of the sulfur component due to the decomposition of the sulfur component such as nickel sulfate becomes insufficient, and the sulfur component remains in the nickel hydroxide. The sulfur quality of the fine powder exceeds 50 ppm by mass. The heat treatment time can be appropriately set according to the treatment conditions such as the above heat treatment temperature and the amount of nickel hydroxide particles subjected to the heat treatment, but the specific surface area of the finally obtained nickel oxide fine powder is 3 m 2. What is necessary is just to set so that it may become more than / g and less than 4 m < 2 > / g.

上記熱処理条件で熱処理した後の酸化ニッケル粉末は、前述した硫黄成分の効果により、微細であって焼結していても容易に解砕することができる。よって、最終的に粉砕して得られる酸化ニッケル微粉末の比表面積は、熱処理後の酸化ニッケル粉末の比表面積に対して約1.5〜2.5m/g増加する程度である。従って、熱処理後の酸化ニッケル粉末の比表面積で判断して熱処理条件を設定することができる。すなわち、解砕前の酸化ニッケル粉末の比表面積が0.5〜1.5m/gとなるような条件で熱処理することが好ましい。このように、本発明の実施形態の製造方法は、熱処理温度を上記範囲で設定することにより、硫黄品位と比表面積を容易に制御できる。 The nickel oxide powder after the heat treatment under the above heat treatment conditions is fine and can be easily crushed even if it is sintered due to the effect of the sulfur component described above. Therefore, the specific surface area of the nickel oxide fine powder finally obtained by pulverization is such that the specific surface area of the nickel oxide powder after the heat treatment is increased by about 1.5 to 2.5 m 2 / g. Therefore, the heat treatment conditions can be set by judging from the specific surface area of the nickel oxide powder after the heat treatment. That is, it is preferable to heat-treat on the conditions that the specific surface area of the nickel oxide powder before pulverization is 0.5 to 1.5 m 2 / g. Thus, the manufacturing method of embodiment of this invention can control sulfur quality and a specific surface area easily by setting heat processing temperature in the said range.

(解砕工程)
第2熱処理工程の次に行われる解砕工程は、上記第1及び第2熱処理工程の熱処理の際に形成され得る酸化ニッケル粒子の焼結体を解砕する工程である。上記第1熱処理工程では、水酸化ニッケル結晶中の水酸基が離脱して酸化ニッケルの粒子が形成されるが、その際、粒径の微細化が起こると共に、硫酸成分により抑制されてはいるものの、高温の影響で酸化ニッケル粒子同士の焼結がある程度進行する。この焼結体を破壊するため、解砕工程では熱処理後の酸化ニッケルに対して解砕処理を行い、これにより酸化ニッケル微粉末を得るものである。
(Crushing process)
The crushing step performed after the second heat treatment step is a step of crushing a sintered body of nickel oxide particles that can be formed during the heat treatment in the first and second heat treatment steps. In the first heat treatment step, the hydroxyl group in the nickel hydroxide crystal is detached and nickel oxide particles are formed. At that time, the particle size is reduced and the sulfuric acid component suppresses the particle size. Sintering between nickel oxide particles proceeds to some extent due to the influence of high temperature. In order to destroy this sintered body, in the crushing step, the nickel oxide after the heat treatment is crushed, thereby obtaining a nickel oxide fine powder.

一般的な解砕方法としては、ビーズミルやボールミル等の解砕メディアを用いたものや、ジェットミル等の解砕メディアを用いない流体エネルギーによる解砕方法があるが、本発明の製造方法においては、後者の解砕メディアを用いない解砕方法を採用することが好ましい。なぜなら、解砕メディアを用いると解砕自体は容易となるものの、ジルコニア等の解砕メディアを構成している成分が不純物として混入するおそれがあるからである。特に、電子部品用として酸化ニッケル微粉末を用いる場合には、解砕メディアを用いない解砕方法を採用することが好ましい。   General pulverization methods include those using pulverization media such as bead mills and ball mills, and fluid pulverization methods that do not use pulverization media such as jet mills, but in the production method of the present invention, It is preferable to employ a crushing method that does not use the latter crushing media. This is because, when the crushing media is used, crushing itself is easy, but components constituting the crushing media such as zirconia may be mixed as impurities. In particular, when nickel oxide fine powder is used for electronic parts, it is preferable to employ a crushing method that does not use a crushing medium.

低減すべき不純物がジルコニウムのみであるならば、解砕メディアにジルコニア等のジルコニウムを含有しないものを用いて解砕することで対処することができるが、この場合であっても解砕メディアから他の不純物が混入し、結果的に低不純物品位の酸化ニッケル微粉末が得られにくくなるので好ましくない。また、ジルコニウムを含有しない解砕メディア、例えば、イットリア安定化ジルコニアを含有しない解砕メディアは強度や耐摩耗性が十分でなく、この観点からも解砕メディアを用いない解砕方法が望ましい。   If the impurity to be reduced is only zirconium, it can be dealt with by crushing using a crushed media that does not contain zirconium, such as zirconia. As a result, it becomes difficult to obtain a low-impurity grade nickel oxide fine powder, which is not preferable. Further, a crushing medium not containing zirconium, for example, a crushing medium not containing yttria-stabilized zirconia, is insufficient in strength and wear resistance. From this viewpoint, a crushing method using no crushing media is desirable.

解砕メディアを用いない解砕方法としては、粉体の粒子同士を衝突させる方法や、液体などの溶媒により粉体にせん断力をかける方法、溶媒のキャビテーションによる衝撃力を用いる方法等がある。粉体の粒子同士を衝突させる解砕装置としては、例えば、乾式ジェットミルや湿式ジェットミルがあり、具体的には前者にはナノグラインディングミル(登録商標)や、クロスジェットミル(登録商標)、後者にはアルティマイザー(登録商標)、スターバースト(登録商標)等を挙げることができる。また、溶媒によりせん断力を与える解砕装置としては、例えば、ナノマイザー(登録商標)等があり、溶媒のキャビテーションによる衝撃力を用いた解砕装置としては、例えば、ナノメーカー(登録商標)等を挙げることができる。   As a crushing method not using a crushing media, there are a method of colliding powder particles, a method of applying a shearing force to the powder with a solvent such as a liquid, and a method of using an impact force due to cavitation of a solvent. Examples of the crushing device that collides particles of powder include a dry jet mill and a wet jet mill. Specifically, the former includes a nano grinding mill (registered trademark) and a cross jet mill (registered trademark). Examples of the latter include Optimizer (registered trademark) and Starburst (registered trademark). In addition, as a crushing device that gives a shearing force with a solvent, for example, there is a nanomizer (registered trademark), and as a crushing device using an impact force due to cavitation of a solvent, for example, a nano maker (registered trademark) or the like. Can be mentioned.

上記解砕方法のうち、粉体の粒子同士を衝突させる方法が、不純物混入の虞が少なく、比較的大きな解砕力が得られることから特に好ましい。このように、解砕メディアを用いることなく解砕を行うことにより、解砕メディアからの不純物、特にジルコニウムの混入が実質的にない微細な酸化ニッケル微粉末を得ることができる。尚、湿式解砕では解砕後に必要に応じて行う乾燥時に再凝集をするおそれがあるため、乾式解砕がより好ましい。本発明の実施形態に係る製造方法では、硫酸ニッケルを原料とするため、洗浄による塩素除去を行う必要がない。従って、乾式解砕を行うことが可能であり、この場合は乾燥工程を省略することが可能であるため、コスト的にも有利である。解砕条件には特に限定がなく、通常の条件の範囲内での調整により容易に目的とする粒度分布を有する酸化ニッケル微粉末を得ることができる。これにより、フェライト部品などの電子部品材料として好適な分散性に優れた微細な酸化ニッケル微粉末を得ることができる。   Among the above-mentioned pulverization methods, a method of causing powder particles to collide with each other is particularly preferable because there is little possibility of mixing impurities and a relatively large pulverization force can be obtained. Thus, by performing crushing without using a crushing medium, it is possible to obtain fine nickel oxide fine powder that is substantially free of impurities from the crushing medium, particularly zirconium. In wet crushing, dry crushing is more preferable because there is a risk of reaggregation during drying performed as necessary after crushing. In the manufacturing method according to the embodiment of the present invention, since nickel sulfate is used as a raw material, it is not necessary to remove chlorine by washing. Therefore, dry crushing can be performed. In this case, the drying step can be omitted, which is advantageous in terms of cost. The crushing conditions are not particularly limited, and nickel oxide fine powder having a desired particle size distribution can be easily obtained by adjustment within the range of normal conditions. Thereby, the fine nickel oxide fine powder excellent in the dispersibility suitable as electronic component materials, such as a ferrite component, can be obtained.

(酸化ニッケル微粉末の物性)
以上説明した工程からなる製造方法により作製される本発明の実施形態の酸化ニッケル微粉末は、原料から不純物として混入する以外に塩素が混入する工程を含まないので、塩素品位が極めて低い。加えて、硫黄品位が制御されると共に、ナトリウム等の総アルカリ金属の品位が低く、比表面積も大きい。具体的には、硫黄品位が50質量ppm以下、塩素品位が50質量ppm以下、総アルカリ金属の品位が100質量ppm以下である。また、比表面積は3m/g以上4m/g未満である。従って、電子部品用、特にフェライト部品用の材料や固体酸化物形燃料電池の電極用材料として好適である。尚、固体酸化物形燃料電池の電極用材料としては、硫黄品位が100質量ppm以下であることが好ましい。
(Physical properties of fine nickel oxide powder)
The nickel oxide fine powder according to the embodiment of the present invention manufactured by the manufacturing method including the steps described above does not include a step of mixing chlorine other than mixing as impurities from the raw material, and therefore has extremely low chlorine quality. In addition, the quality of sulfur is controlled, the quality of total alkali metals such as sodium is low, and the specific surface area is also large. Specifically, the sulfur quality is 50 mass ppm or less, the chlorine quality is 50 mass ppm or less, and the quality of the total alkali metal is 100 mass ppm or less. The specific surface area is 3 m 2 / g or more and less than 4 m 2 / g. Therefore, it is suitable as a material for electronic parts, particularly for ferrite parts, and as a material for electrodes of solid oxide fuel cells. The electrode material for the solid oxide fuel cell preferably has a sulfur quality of 100 mass ppm or less.

また、上記した本発明の実施形態の酸化ニッケル微粉末の製造方法においては、マグネシウム等の第2族元素を添加する工程を含まないので、これらの元素が不純物として含まれることは実質的にない。更に、解砕メディアを使用せずに解砕する場合はジルコニアも含まれなくなるので、ジルコニア品位及び第2族元素品位を30質量ppm以下にすることができる。   Moreover, in the manufacturing method of the nickel oxide fine powder of the above-described embodiment of the present invention, since the step of adding a Group 2 element such as magnesium is not included, these elements are substantially not included as impurities. . Furthermore, since zirconia is not included when crushing without using a crushing media, the zirconia quality and the Group 2 element quality can be reduced to 30 ppm by mass or less.

更に、本発明の実施形態の製造方法により作製される酸化ニッケル微粉末は、レーザー散乱法で測定したD50(粒度分布曲線における粒子量の体積積算50%での粒径)を好ましくは1μm以下に、より好ましくは0.2〜0.6μmにすることができる。尚、レーザー散乱法で測定したD50は、電子部品等の製造の際、他の材料と混合されるときに解砕されて小さくなるが、この解砕によって比表面積が大きくなる可能性は低いため、酸化ニッケル微粉末自体の比表面積が大きいことがより重要である。更に、本発明の実施形態に係る酸化ニッケル微粉末の製造方法においては、湿式法により製造した水酸化ニッケルを熱処理するため、有害なSOが大量に発生することがない。従って、これを除害処理するための高価な設備が不要であることから、製造コストを低く抑えることができる。 Furthermore, the nickel oxide fine powder produced by the production method of the embodiment of the present invention preferably has a D50 (particle diameter in the particle size distribution curve with a volume integral of 50%) measured by a laser scattering method of 1 μm or less. More preferably, the thickness can be 0.2 to 0.6 μm. The D50 measured by the laser scattering method is crushed and reduced when mixed with other materials in the production of electronic components and the like, but it is unlikely that the specific surface area will increase due to this crushing. It is more important that the nickel oxide fine powder itself has a large specific surface area. Furthermore, in the method for producing fine nickel oxide powder according to the embodiment of the present invention, since nickel hydroxide produced by a wet method is heat-treated, no harmful SO x is generated in large quantities. Therefore, since expensive equipment for removing this is unnecessary, the manufacturing cost can be kept low.

以下、実施例及び比較例により本発明を更に詳細に説明するが、本発明はこれらの実施例等によってなんら限定されるものではない。尚、以下の実施例及び比較例における塩素品位の分析は、酸化ニッケル微粉末を塩素の揮発を抑制できる密閉容器内にてマイクロ波照射下で硝酸に溶解し、硝酸銀を加えて塩化銀を沈殿させ、得られた沈殿物中の塩素を蛍光X線定量分析装置(PANalytical社製 Magix)を用いて検量線法で評価することによって行った。また、硫黄品位の分析は、硝酸に溶解した後、ICP発光分光分析装置(セイコー社製 SPS−3000)によって行った。ナトリウム品位の分析は、硝酸に溶解した後、原子吸光装置(日立ハイテク社製 Z−2300)により評価することによって行った。酸化ニッケル微粉末の粒径は、レーザー散乱法により測定し、その粒度分布から体積積算50%での粒径D50を求めた。また、比表面積の分析は、窒素ガス吸着によるBET法により求めた。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited at all by these Examples. In the following Examples and Comparative Examples, chlorine quality analysis was conducted by dissolving nickel oxide fine powder in nitric acid under microwave irradiation in a sealed container capable of suppressing volatilization of chlorine, and adding silver nitrate to precipitate silver chloride. The chlorine in the resulting precipitate was evaluated by a calibration curve method using a fluorescent X-ray quantitative analyzer (Magnix manufactured by PANalytical). In addition, the analysis of sulfur quality was performed with an ICP emission spectroscopic analyzer (SEP SPS-3000) after dissolving in nitric acid. The analysis of sodium quality was performed by dissolving in nitric acid and then evaluating with an atomic absorption device (Z-2300 manufactured by Hitachi High-Tech). The particle diameter of the nickel oxide fine powder was measured by a laser scattering method, and the particle diameter D50 with a volume integration of 50% was determined from the particle size distribution. The specific surface area was analyzed by the BET method using nitrogen gas adsorption.

[実施例1]
先ず、邪魔板とオーバーフロー口を具備する攪拌機構付きの容量2Lの反応槽を、純水と水酸化ナトリウムとからなるpH8.5に調整した水酸化ナトリウム水溶液2Lで満たし、十分に攪拌した。他方、硫酸ニッケルを純水に溶解してニッケル濃度120g/Lのニッケル水溶液を調製した。また、12.5質量%の水酸化ナトリウム水溶液を用意した。これらニッケル水溶液と水酸化ナトリウム水溶液とを、上記反応槽内の水溶液のpHを8.5を中心としてその変動幅が絶対値で0.2以内となるように調整しながら該水溶液に同時並行的且つ連続的に添加して混合した。
[Example 1]
First, a 2 L reaction tank with a stirring mechanism having a baffle plate and an overflow port was filled with 2 L of an aqueous sodium hydroxide solution adjusted to pH 8.5 consisting of pure water and sodium hydroxide, and sufficiently stirred. On the other hand, nickel sulfate was dissolved in pure water to prepare a nickel aqueous solution having a nickel concentration of 120 g / L. Moreover, 12.5 mass% sodium hydroxide aqueous solution was prepared. The aqueous nickel solution and the aqueous sodium hydroxide solution were simultaneously adjusted to the aqueous solution while adjusting the pH of the aqueous solution in the reaction vessel to be within 0.2 with respect to the absolute value around 8.5. And added continuously and mixed.

このようにして、中和反応により水酸化ニッケルの析出物を連続的に生成させ、該析出物を含むスラリーをオーバーフローにより回収した。尚、ニッケル水溶液は5mL/分の流量で添加することによって、水酸化ニッケルの反応時間を約3時間に調整した。この時、ニッケル水溶液と水酸化ナトリウム水溶液は、供給ノズル出口部において各々乱流になっていた。また、反応槽内では液温を60℃とし、攪拌羽により700rpmで撹拌した。上記のオーバーフローにより回収したスラリーに対してヌッチェによる濾過と保持時間30分の純水レパルプを10回繰り返して、水酸化ニッケル濾過ケーキを得た。この濾過ケーキを、送風乾燥機を用いて110℃の大気中にて24時間乾燥し、水酸化ニッケルを得た(中和工程)。   In this way, nickel hydroxide precipitates were continuously generated by the neutralization reaction, and the slurry containing the precipitates was recovered by overflow. The nickel aqueous solution was added at a flow rate of 5 mL / min to adjust the reaction time of nickel hydroxide to about 3 hours. At this time, the nickel aqueous solution and the sodium hydroxide aqueous solution were each turbulent at the supply nozzle outlet. In the reaction vessel, the liquid temperature was 60 ° C., and the mixture was stirred at 700 rpm with a stirring blade. Filtration with Nutsche and pure water repulp with a holding time of 30 minutes were repeated 10 times for the slurry collected by the above overflow to obtain a nickel hydroxide filter cake. This filter cake was dried in the atmosphere at 110 ° C. for 24 hours using a blower dryer to obtain nickel hydroxide (neutralization step).

上記中和工程で得た水酸化ニッケル500gを大気焼成炉に装入し、雰囲気温度900℃の大気で3時間かけて熱処理して酸化ニッケル粒子を得た(第1熱処理工程)。得られた酸化ニッケル粒子の硫黄品位は110質量ppmであった。次に、上記第1熱処理工程で得た酸化ニッケル350gを雰囲気焼成炉に装入し、大気圧との差圧を示すゲージ圧が−50kPaとなるように調整した減圧雰囲気の下、雰囲気温度900℃で2時間かけて熱処理して酸化ニッケル粒子を得た(第2熱処理工程)。次に、上記第2熱処理工程で得た酸化ニッケル粒子から分取した300gをナノグラインディングミル(徳寿工作所製)にてプッシャーノズル圧力1.0MPa、グラインディング圧力0.9MPaにて粉砕した(解砕工程)。   Nickel hydroxide (500 g) obtained in the neutralization step was charged into an air firing furnace and heat-treated for 3 hours in air at an atmospheric temperature of 900 ° C. to obtain nickel oxide particles (first heat treatment step). The sulfur quality of the obtained nickel oxide particles was 110 ppm by mass. Next, 350 g of nickel oxide obtained in the first heat treatment step was charged into an atmosphere firing furnace, and the atmosphere temperature was 900 under a reduced-pressure atmosphere adjusted so that the gauge pressure indicating the differential pressure from the atmospheric pressure was −50 kPa. Nickel oxide particles were obtained by heat treatment at 2 ° C. for 2 hours (second heat treatment step). Next, 300 g fractioned from the nickel oxide particles obtained in the second heat treatment step was pulverized with a nano grinding mill (manufactured by Deoksugaku Kogyo) at a pusher nozzle pressure of 1.0 MPa and a grinding pressure of 0.9 MPa ( Crushing step).

得られた酸化ニッケル微粉末は、硫黄(S)品位が45質量ppm、塩素(Cl)品位が50質量ppm未満、ナトリウム(Na)品位が100質量ppm未満であった。また、比表面積は4.0m/g、D50は0.44μmであった。 The obtained nickel oxide fine powder had a sulfur (S) grade of 45 ppm by mass, a chlorine (Cl) grade of less than 50 ppm by mass, and a sodium (Na) grade of less than 100 ppm by mass. The specific surface area was 4.0 m 2 / g and D50 was 0.44 μm.

[実施例2]
第2熱処理工程のゲージ圧力を−90kPaとした以外は実施例1と同様にして酸化ニッケル微粉末を得ると共に分析を行った。得られた酸化ニッケル微粉末は、硫黄品位が25質量ppm、塩素品位が50質量ppm未満、ナトリウム品位が100質量ppm未満であった。また、比表面積は3.9m/g、D50は0.46μmであった。
[Example 2]
Nickel oxide fine powder was obtained and analyzed in the same manner as in Example 1 except that the gauge pressure in the second heat treatment step was -90 kPa. The obtained nickel oxide fine powder had a sulfur quality of 25 mass ppm, a chlorine quality of less than 50 mass ppm, and a sodium quality of less than 100 mass ppm. The specific surface area was 3.9 m 2 / g and D50 was 0.46 μm.

[実施例3]
第2熱処理工程の熱処理温度を910℃とした以外は実施例1と同様にして酸化ニッケル微粉末を得ると共に分析を行った。得られた酸化ニッケル微粉末は、硫黄品位が18質量ppm、塩素品位が50質量ppm未満、ナトリウム品位が100質量ppm未満であった。また、比表面積は3.7m/g、D50は0.60μmであった。
[Example 3]
A nickel oxide fine powder was obtained and analyzed in the same manner as in Example 1 except that the heat treatment temperature in the second heat treatment step was 910 ° C. The obtained nickel oxide fine powder had a sulfur quality of 18 mass ppm, a chlorine quality of less than 50 mass ppm, and a sodium quality of less than 100 mass ppm. The specific surface area was 3.7 m 2 / g, and D50 was 0.60 μm.

[比較例1]
第2熱処理工程の熱処理を大気、つまりゲージ圧力を0kPaで行った以外は実施例1と同様にして酸化ニッケル微粉末を得ると共に分析を行った。得られた酸化ニッケル微粉末は、硫黄品位が104質量ppm、塩素品位が50質量ppm未満、ナトリウム品位が100質量ppm未満であった。また、比表面積は4.3m/g、D50は0.42mであった。
[Comparative Example 1]
A nickel oxide fine powder was obtained and analyzed in the same manner as in Example 1 except that the heat treatment of the second heat treatment step was performed in the atmosphere, that is, the gauge pressure was 0 kPa. The obtained nickel oxide fine powder had a sulfur quality of 104 mass ppm, a chlorine quality of less than 50 mass ppm, and a sodium quality of less than 100 mass ppm. The specific surface area was 4.3 m 2 / g and D50 was 0.42 m.

[比較例2]
第2熱処理工程の熱処理温度を910℃とした以外は比較例1と同様にして酸化ニッケル微粉末を得ると共に分析を行った。得られた酸化ニッケル微粉末は、硫黄品位が100質量ppm、塩素品位が50質量ppm未満、ナトリウム品位が100質量ppm未満であった。また、比表面積は4.1m/g、D50は0.58μmであった。
[Comparative Example 2]
A nickel oxide fine powder was obtained and analyzed in the same manner as in Comparative Example 1 except that the heat treatment temperature in the second heat treatment step was 910 ° C. The obtained nickel oxide fine powder had a sulfur quality of 100 mass ppm, a chlorine quality of less than 50 mass ppm, and a sodium quality of less than 100 mass ppm. The specific surface area was 4.1 m 2 / g, and D50 was 0.58 μm.

[比較例3]
第2熱処理工程のゲージ圧力を−10kPaとした以外は実施例1と同様にして酸化ニッケル微粉末を得ると共に分析を行った。得られた酸化ニッケル微粉末は、硫黄品位が95質量ppm未満、塩素品位が50質量ppm未満、ナトリウム品位が100質量ppm未満であった。また、比表面積は4.1m/g、D50は0.43μmであった。
[Comparative Example 3]
Nickel oxide fine powder was obtained and analyzed in the same manner as in Example 1 except that the gauge pressure in the second heat treatment step was set to -10 kPa. The obtained nickel oxide fine powder had a sulfur quality of less than 95 mass ppm, a chlorine quality of less than 50 mass ppm, and a sodium quality of less than 100 mass ppm. The specific surface area was 4.1 m 2 / g, and D50 was 0.43 μm.

上記実施例1〜3及び比較例1〜3において得られた酸化ニッケル微粉末の硫黄品位、塩素品位、ナトリム品位、比表面積及びD50を、第1熱処理工程後の硫黄品位及び第2熱処理工程の熱処理条件(焙焼温度及び雰囲気圧力)と共に下記の表1にまとめて示す。   The sulfur quality, chlorine quality, sodium quality, specific surface area and D50 of the nickel oxide fine powders obtained in Examples 1 to 3 and Comparative Examples 1 to 3 are the same as those in the sulfur quality after the first heat treatment step and the second heat treatment step. Table 1 below collectively shows the heat treatment conditions (roasting temperature and atmospheric pressure).

Figure 2018123019
Figure 2018123019

上記表1の結果から分かるように、全ての実施例において、硫黄品位が50質量ppm以下に制御されている上、塩素品位は50質量ppm未満、ナトリウム品位が100質量ppm未満となっている。また、比表面積は3.0m/g以上4.0m/gに収まっており、所望の大きさの酸化ニッケル微粉末が得られていることが分かる。これに対して、比較例1〜3では、第2熱処工程での雰囲気圧力が本発明の要件から外れているため、硫黄品位又は比表面積の少なくとも一方が、電子部品材料として好適な範囲内となっていない。また、比較例1〜3の酸化ニッケル微粉末の硫黄品位は、第1熱処理工程の熱処理後の酸化ニッケル粉末の硫黄品位(110質量ppm)と大きく変わらないことも分かる。


As can be seen from the results in Table 1 above, in all Examples, the sulfur quality is controlled to 50 ppm by mass or less, the chlorine quality is less than 50 ppm by mass, and the sodium quality is less than 100 ppm by mass. Further, the specific surface area is within the range of 3.0 m 2 / g or more and 4.0 m 2 / g, and it can be seen that nickel oxide fine powder having a desired size is obtained. On the other hand, in Comparative Examples 1 to 3, since the atmospheric pressure in the second heat treatment step is out of the requirements of the present invention, at least one of the sulfur quality and the specific surface area is within a range suitable as an electronic component material. It is not. Moreover, it turns out that the sulfur quality of the nickel oxide fine powder of Comparative Examples 1-3 does not change significantly from the sulfur quality (110 mass ppm) of the nickel oxide powder after the heat treatment in the first heat treatment step.


Claims (8)

硫酸ニッケル水溶液をアルカリで中和して水酸化ニッケル粒子を得る中和工程と、前記水酸化ニッケル粒子を非還元性雰囲気中において850℃を超え1050℃未満の熱処理温度で熱処理して酸化ニッケル粉末を生成する第1熱処理工程と、減圧下において850℃を超え1050℃未満の熱処理温度で前記酸化ニッケル粉末を熱処理する第2熱処理工程と、前記第1及び第2熱処理工程の際に形成され得る酸化ニッケル粉末の焼結体を解砕する解砕工程とを含む酸化ニッケル微粉末の製造方法であって、
前記第2熱処理工程の雰囲気圧力が大気圧より20kPa〜100kPa低いことを特徴とする酸化ニッケル微粉末の製造方法。
A neutralization step of neutralizing a nickel sulfate aqueous solution with an alkali to obtain nickel hydroxide particles, and nickel oxide powder obtained by heat-treating the nickel hydroxide particles in a non-reducing atmosphere at a heat treatment temperature of more than 850 ° C. and less than 1050 ° C. A first heat treatment step of generating heat, a second heat treatment step of heat treating the nickel oxide powder at a heat treatment temperature of more than 850 ° C. and less than 1050 ° C. under reduced pressure, and the first and second heat treatment steps. A method for producing a nickel oxide fine powder comprising a crushing step of crushing a sintered body of nickel oxide powder,
A method for producing fine nickel oxide powder, wherein the atmospheric pressure in the second heat treatment step is 20 kPa to 100 kPa lower than atmospheric pressure.
前記アルカリが水酸化ナトリウム若しくは水酸化カリウム又はそれら両方であることを特徴とする、請求項1に記載の酸化ニッケル微粉末の製造方法。   The method for producing fine nickel oxide powder according to claim 1, wherein the alkali is sodium hydroxide or potassium hydroxide or both. 前記中和工程では、反応液のpHを8.3〜9.0に制御することを特徴とする、請求項1又は2に記載の酸化ニッケル微粉末の製造方法。   The method for producing fine nickel oxide powder according to claim 1 or 2, wherein in the neutralization step, the pH of the reaction solution is controlled to 8.3 to 9.0. 前記硫酸ニッケル水溶液中のニッケル濃度が50〜150g/Lであることを特徴とする、請求項1〜3のいずれか1項に記載の酸化ニッケル微粉末の製造方法。   The nickel concentration in the said nickel sulfate aqueous solution is 50-150 g / L, The manufacturing method of the nickel oxide fine powder of any one of Claims 1-3 characterized by the above-mentioned. 前記解砕工程が流体エネルギーによる解砕方法により行われることを特徴とする、請求項1〜4のいずれか1項に記載の酸化ニッケル微粉末の製造方法。   The said crushing process is performed by the crushing method by fluid energy, The manufacturing method of the nickel oxide fine powder of any one of Claims 1-4 characterized by the above-mentioned. 前記解砕工程が乾式で行われることを特徴とする、請求項5に記載の酸化ニッケル微粉末の製造方法。   The said crushing process is performed by a dry type, The manufacturing method of the nickel oxide fine powder of Claim 5 characterized by the above-mentioned. 前記解砕工程で得た酸化ニッケル微粉末の比表面積が3m/g以上4m/g未満、硫黄品位が50質量ppm以下、塩素品位が50質量ppm以下、総アルカリ金属の品位が100質量ppm以下であることを特徴とする、請求項1〜6のいずれか1項に記載の酸化ニッケル微粉末の製造方法。 The nickel oxide fine powder obtained in the crushing step has a specific surface area of 3 m 2 / g or more and less than 4 m 2 / g, a sulfur grade of 50 mass ppm or less, a chlorine grade of 50 mass ppm or less, and a total alkali metal grade of 100 mass. It is below ppm, The manufacturing method of the nickel oxide fine powder of any one of Claims 1-6 characterized by the above-mentioned. 前記解砕工程で得た酸化ニッケル微粉末をレーザー散乱法で測定したD50が1μm以下であることを特徴とする、請求項7に記載の酸化ニッケル微粉末の製造方法。


8. The nickel oxide fine powder production method according to claim 7, wherein D50 of the nickel oxide fine powder obtained in the crushing step measured by a laser scattering method is 1 μm or less.


JP2017015202A 2017-01-31 2017-01-31 Manufacturing method of nickel oxide fine powder Active JP6819322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017015202A JP6819322B2 (en) 2017-01-31 2017-01-31 Manufacturing method of nickel oxide fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017015202A JP6819322B2 (en) 2017-01-31 2017-01-31 Manufacturing method of nickel oxide fine powder

Publications (2)

Publication Number Publication Date
JP2018123019A true JP2018123019A (en) 2018-08-09
JP6819322B2 JP6819322B2 (en) 2021-01-27

Family

ID=63111005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017015202A Active JP6819322B2 (en) 2017-01-31 2017-01-31 Manufacturing method of nickel oxide fine powder

Country Status (1)

Country Link
JP (1) JP6819322B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7478090B2 (en) 2020-12-17 2024-05-02 本田技研工業株式会社 Vehicle control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7478090B2 (en) 2020-12-17 2024-05-02 本田技研工業株式会社 Vehicle control device

Also Published As

Publication number Publication date
JP6819322B2 (en) 2021-01-27

Similar Documents

Publication Publication Date Title
JP5907169B2 (en) Nickel oxide fine powder and method for producing the same
JP5942659B2 (en) Method for producing nickel oxide fine powder and method for producing nickel hydroxide powder for raw material for producing nickel oxide fine powder
JP5862919B2 (en) Nickel oxide fine powder and method for producing the same
JP5168070B2 (en) Nickel oxide powder and method for producing the same
JP6159306B2 (en) Nickel oxide powder
JP5621268B2 (en) Nickel oxide fine powder and method for producing the same
JP2011225395A (en) Nickel oxide fine powder, and method for producing the same
JP6763228B2 (en) Manufacturing method of nickel oxide fine powder
JP5504750B2 (en) Nickel oxide fine powder and method for producing the same
JP5733101B2 (en) Method for producing nickel oxide powder
JP6772646B2 (en) Nickel oxide fine powder and its manufacturing method
JP5509725B2 (en) Nickel oxide powder and method for producing the same
JP5790292B2 (en) Method for producing nickel oxide powder
JP6819322B2 (en) Manufacturing method of nickel oxide fine powder
JP6834235B2 (en) Manufacturing method of nickel hydroxide particles
JP7088231B2 (en) Nickel hydroxide particles
JP6241491B2 (en) Nickel oxide fine powder and method for producing the same, nickel hydroxide powder for use in the raw material for producing the nickel oxide fine powder, and method for producing the same
JP7088236B2 (en) Nickel hydroxide particles
JP2018154510A (en) Method of manufacturing nickel oxide fine powder
JP6772571B2 (en) A method for producing nickel hydroxide particles and a method for producing nickel oxide fine powder using the same.
JP5834612B2 (en) Nickel oxide powder and method for producing the same
JP6870232B2 (en) Manufacturing method of nickel oxide fine powder
JP2018162173A (en) Method for producing nickel oxide fine powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201214

R150 Certificate of patent or registration of utility model

Ref document number: 6819322

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150