JP2005029892A - Copper plating material, and copper plating method - Google Patents
Copper plating material, and copper plating method Download PDFInfo
- Publication number
- JP2005029892A JP2005029892A JP2004181810A JP2004181810A JP2005029892A JP 2005029892 A JP2005029892 A JP 2005029892A JP 2004181810 A JP2004181810 A JP 2004181810A JP 2004181810 A JP2004181810 A JP 2004181810A JP 2005029892 A JP2005029892 A JP 2005029892A
- Authority
- JP
- Japan
- Prior art keywords
- oxide powder
- copper oxide
- copper
- plating material
- peak intensity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000007747 plating Methods 0.000 title claims abstract description 231
- 239000010949 copper Substances 0.000 title claims abstract description 136
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 125
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 118
- 239000000463 material Substances 0.000 title claims abstract description 88
- 238000000034 method Methods 0.000 title claims description 48
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims abstract description 425
- 238000002441 X-ray diffraction Methods 0.000 claims abstract description 72
- 239000000843 powder Substances 0.000 claims abstract description 68
- 238000001228 spectrum Methods 0.000 claims abstract description 62
- 229940116318 copper carbonate Drugs 0.000 claims abstract description 42
- GEZOTWYUIKXWOA-UHFFFAOYSA-L copper;carbonate Chemical compound [Cu+2].[O-]C([O-])=O GEZOTWYUIKXWOA-UHFFFAOYSA-L 0.000 claims abstract description 42
- 239000000654 additive Substances 0.000 claims abstract description 24
- 230000000996 additive effect Effects 0.000 claims abstract description 19
- 238000010438 heat treatment Methods 0.000 claims description 183
- JJLJMEJHUUYSSY-UHFFFAOYSA-L Copper hydroxide Chemical compound [OH-].[OH-].[Cu+2] JJLJMEJHUUYSSY-UHFFFAOYSA-L 0.000 claims description 54
- 150000001879 copper Chemical class 0.000 claims description 31
- 239000006259 organic additive Substances 0.000 claims description 31
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 claims description 30
- 239000007864 aqueous solution Substances 0.000 claims description 26
- 239000008151 electrolyte solution Substances 0.000 claims description 17
- 239000012670 alkaline solution Substances 0.000 claims description 16
- SUVIGLJNEAMWEG-UHFFFAOYSA-N propane-1-thiol Chemical compound CCCS SUVIGLJNEAMWEG-UHFFFAOYSA-N 0.000 claims description 16
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 15
- 229910052717 sulfur Inorganic materials 0.000 claims description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 10
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 9
- 239000003792 electrolyte Substances 0.000 claims description 9
- 239000011593 sulfur Substances 0.000 claims description 9
- JCYPECIVGRXBMO-UHFFFAOYSA-N 4-(dimethylamino)azobenzene Chemical compound C1=CC(N(C)C)=CC=C1N=NC1=CC=CC=C1 JCYPECIVGRXBMO-UHFFFAOYSA-N 0.000 claims description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 7
- WQOXQRCZOLPYPM-UHFFFAOYSA-N dimethyl disulfide Chemical compound CSSC WQOXQRCZOLPYPM-UHFFFAOYSA-N 0.000 claims description 6
- 150000003839 salts Chemical class 0.000 claims description 6
- LMPMFQXUJXPWSL-UHFFFAOYSA-N 3-(3-sulfopropyldisulfanyl)propane-1-sulfonic acid Chemical compound OS(=O)(=O)CCCSSCCCS(O)(=O)=O LMPMFQXUJXPWSL-UHFFFAOYSA-N 0.000 claims description 5
- VZCCTDLWCKUBGD-UHFFFAOYSA-N 8-[[4-(dimethylamino)phenyl]diazenyl]-10-phenylphenazin-10-ium-2-amine;chloride Chemical compound [Cl-].C1=CC(N(C)C)=CC=C1N=NC1=CC=C(N=C2C(C=C(N)C=C2)=[N+]2C=3C=CC=CC=3)C2=C1 VZCCTDLWCKUBGD-UHFFFAOYSA-N 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- OBDVFOBWBHMJDG-UHFFFAOYSA-N 3-mercapto-1-propanesulfonic acid Chemical compound OS(=O)(=O)CCCS OBDVFOBWBHMJDG-UHFFFAOYSA-N 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims 1
- 239000007788 liquid Substances 0.000 abstract description 15
- 239000005416 organic matter Substances 0.000 abstract description 3
- 238000005485 electric heating Methods 0.000 abstract 1
- 238000001953 recrystallisation Methods 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 105
- 238000004090 dissolution Methods 0.000 description 30
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 25
- 229910000431 copper oxide Inorganic materials 0.000 description 18
- 239000005751 Copper oxide Substances 0.000 description 17
- 238000007922 dissolution test Methods 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 15
- 238000002425 crystallisation Methods 0.000 description 15
- 230000008025 crystallization Effects 0.000 description 15
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 229960003280 cupric chloride Drugs 0.000 description 12
- 238000005979 thermal decomposition reaction Methods 0.000 description 12
- 229910001868 water Inorganic materials 0.000 description 12
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 10
- 238000003756 stirring Methods 0.000 description 10
- 229910000366 copper(II) sulfate Inorganic materials 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 7
- 239000000047 product Substances 0.000 description 6
- 238000000197 pyrolysis Methods 0.000 description 6
- 238000005406 washing Methods 0.000 description 6
- -1 disulfide compound Chemical class 0.000 description 5
- 239000011259 mixed solution Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 238000012916 structural analysis Methods 0.000 description 5
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 4
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 4
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 4
- 230000005587 bubbling Effects 0.000 description 4
- OVFCVRIJCCDFNQ-UHFFFAOYSA-N carbonic acid;copper Chemical compound [Cu].OC(O)=O OVFCVRIJCCDFNQ-UHFFFAOYSA-N 0.000 description 4
- 229910001431 copper ion Inorganic materials 0.000 description 4
- 229910000009 copper(II) carbonate Inorganic materials 0.000 description 4
- 239000011646 cupric carbonate Substances 0.000 description 4
- 235000019854 cupric carbonate Nutrition 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 238000013094 purity test Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 3
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 239000012266 salt solution Substances 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 238000000967 suction filtration Methods 0.000 description 3
- 235000011149 sulphuric acid Nutrition 0.000 description 3
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 2
- LDXJRKWFNNFDSA-UHFFFAOYSA-N 2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound C1CN(CC2=NNN=C21)CC(=O)N3CCN(CC3)C4=CN=C(N=C4)NCC5=CC(=CC=C5)OC(F)(F)F LDXJRKWFNNFDSA-UHFFFAOYSA-N 0.000 description 2
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 229910001854 alkali hydroxide Inorganic materials 0.000 description 2
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 2
- 150000008041 alkali metal carbonates Chemical class 0.000 description 2
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229910000365 copper sulfate Inorganic materials 0.000 description 2
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 description 2
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 description 2
- 229940112669 cuprous oxide Drugs 0.000 description 2
- 150000008049 diazo compounds Chemical class 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 229940071106 ethylenediaminetetraacetate Drugs 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000012452 mother liquor Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- DEXFNLNNUZKHNO-UHFFFAOYSA-N 6-[3-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperidin-1-yl]-3-oxopropyl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1CCN(CC1)C(CCC1=CC2=C(NC(O2)=O)C=C1)=O DEXFNLNNUZKHNO-UHFFFAOYSA-N 0.000 description 1
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- 229910018274 Cu2 O Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910004809 Na2 SO4 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910001361 White metal Inorganic materials 0.000 description 1
- JAWMENYCRQKKJY-UHFFFAOYSA-N [3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-ylmethyl)-1-oxa-2,8-diazaspiro[4.5]dec-2-en-8-yl]-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]methanone Chemical compound N1N=NC=2CN(CCC=21)CC1=NOC2(C1)CCN(CC2)C(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F JAWMENYCRQKKJY-UHFFFAOYSA-N 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- AYJRCSIUFZENHW-DEQYMQKBSA-L barium(2+);oxomethanediolate Chemical compound [Ba+2].[O-][14C]([O-])=O AYJRCSIUFZENHW-DEQYMQKBSA-L 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- DDISVBZQSSOXFA-UHFFFAOYSA-L copper carbonate dihydrate Chemical compound O.O.[Cu++].[O-]C([O-])=O DDISVBZQSSOXFA-UHFFFAOYSA-L 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 150000004683 dihydrates Chemical class 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011268 mixed slurry Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 239000010969 white metal Substances 0.000 description 1
Images
Landscapes
- Electroplating And Plating Baths Therefor (AREA)
Abstract
Description
本発明は、塩基性炭酸銅粉、直接湿式法により得た酸化銅粉及び水酸化第二銅粉を原料とした酸化銅粉からなる銅メッキ材料及び前記酸化銅粉を用いた銅メッキ方法に関する。 The present invention relates to a copper plating material composed of basic copper carbonate powder, copper oxide powder obtained by a direct wet method and copper oxide powder made of cupric hydroxide powder, and a copper plating method using the copper oxide powder. .
被メッキ体に銅メッキ処理を施す一つの方法として、電解液(主成分として硫酸又は硫酸銅を含むメッキ液)に銅メッキ材料を供給し、不溶性陽極と陰極をなす被メッキ体との間で通電する電解メッキ法がある。この方法に用いられる銅メッキ材料としては、塩基性炭酸銅粉を熱分解して得られた酸化銅粉が知られている。銅メッキ材料は電解液中に適宜補給されるものであるため、硫酸に対して易溶解性であることが必要であるが、塩基性炭酸銅粉を熱分解して得られた酸化銅粉はこの条件を満たすことから好適な材料である。 As one method of performing copper plating treatment on a body to be plated, a copper plating material is supplied to an electrolytic solution (a plating liquid containing sulfuric acid or copper sulfate as a main component), and between the body to be plated forming an insoluble anode and a cathode. There is an electroplating method to energize. As a copper plating material used in this method, copper oxide powder obtained by thermally decomposing basic copper carbonate powder is known. Since the copper plating material is appropriately replenished in the electrolyte, it must be easily soluble in sulfuric acid, but the copper oxide powder obtained by pyrolyzing the basic copper carbonate powder is Since this condition is satisfied, it is a suitable material.
このような酸化銅粉の製造方法としては、例えば特許文献1に示す方法が提案されている。この文献1には、実施例として、塩基性炭酸銅粉を還元雰囲気とはならない雰囲気下で400℃〜800℃の温度で60分間加熱して熱分解することにより、酸化銅粉を高い変換効率で製造できることが記載されている。この温度範囲では、処理温度を高くする程、高い変換効率を短時間で確保できる。このため、工業的にはスループットが要求されるので、例えば700℃以上の高温にて熱分解が行われている。
As a method for producing such copper oxide powder, for example, a method shown in
ところでメッキ液には、メッキ膜の均一性や光沢を確保するために添加剤を溶解させる場合が多い。この添加剤としては、例えばSPS(ビス(3−スルホプロピル)ジスルフィドのナトリウム塩)、チオ尿素、ヤヌスグリーンなど、炭素(C)と硫黄(S)との二重結合を有する−C=S基や、SとSとの単結合を有する−S−S−基(ジスルフィド化合物)、窒素(N)とNとの二重結合を有する−N=N−基(ジアゾ化合物)のいずれかを有する有機物が用いられる。 By the way, in the plating solution, an additive is often dissolved in order to ensure the uniformity and gloss of the plating film. Examples of the additive include SPS (sodium salt of bis (3-sulfopropyl) disulfide), thiourea, Janus green and the like, -C = S group having a double bond of carbon (C) and sulfur (S). Or -S-S- group (disulfide compound) having a single bond between S and S, or -N = N- group (diazo compound) having a double bond between nitrogen (N) and N Organic matter is used.
しかしながら上述の特許文献1の手法にて製造された酸化銅粉は、上述の有機物よりなる添加剤成分が入ったメッキ液に対しては溶解性がかなり低いことが認められた。また−S−S−基は還元されると−S−H基(チオアルコール類)に変わることから、−S−S−基を有する添加剤をメッキ液に溶解させるとメッキ液中に−S−H基が存在すると推測されるが、上記の酸化銅粉はこの−S−H基の存在によっても溶解性が低いことが認められた。このようにメッキ液に対する銅メッキ材料の溶解性が悪いと、メッキ槽での銅(Cu)補給に遅れが生じる。またメッキ液中の銅イオン濃度が一定にならないのでメッキ膜の均一性が悪化したり、メッキ液に溶解しない銅メッキ材料が存在し、メッキ槽との間に設けられているフィルタに詰まりが生じたり、またフィルタを通過してしまった銅メッキ材料がメッキ物に悪影響を与えるおそれもある。
However, it was recognized that the copper oxide powder produced by the method of the above-mentioned
本発明はこのような事情に基づいてなされたものであり、その目的は、有機物の添加剤を含む電解液に対して溶解性が高く、かつ高純度な銅メッキ材料及び、このような銅メッキ材料を用いた銅メッキ方法を提供することにある。 The present invention has been made based on such circumstances, and an object of the present invention is to provide a high-purity copper plating material that is highly soluble in an electrolyte containing an organic additive, and such a copper plating. It is to provide a copper plating method using a material.
本発明は、不溶性陽極と陰極をなす被メッキ体とが設けられ、有機物の添加剤を含む電解液に供給される銅メッキ材料において、
この銅メッキ材料は、塩基性炭酸銅粉を還元雰囲気とはならない雰囲気下で熱分解することにより得られた純度が98.5%以上の酸化銅粉であって、
この酸化銅粉のX線回折スペクトルの(−1,1,1)面のピーク強度をIとし、
結晶化が終了した基準酸化銅粉のX線回折スペクトルの(−1,1,1)面のピーク強度をIsとしたときに、
前記酸化銅粉のピーク強度Iと基準酸化銅粉のピーク強度Isとのピーク強度比I/Isが0.36以下の酸化銅粉であることを特徴とする。
The present invention provides a copper plating material provided with an insoluble anode and an object to be plated to form a cathode, and supplied to an electrolytic solution containing an organic additive.
This copper plating material is a copper oxide powder having a purity of 98.5% or more obtained by thermally decomposing basic copper carbonate powder in an atmosphere that is not a reducing atmosphere,
The peak intensity of the (-1,1,1) plane of the X-ray diffraction spectrum of this copper oxide powder is I,
When the peak intensity of the (-1, 1, 1) plane of the X-ray diffraction spectrum of the reference copper oxide powder that has been crystallized is Is,
The copper oxide powder is characterized in that the peak intensity ratio I / Is between the peak intensity I of the copper oxide powder and the peak intensity Is of the reference copper oxide powder is 0.36 or less.
また前記銅メッキ材料としては、塩基性炭酸銅粉を還元雰囲気とはならない雰囲気下で熱分解することにより得られた純度が98.5%以上の酸化銅粉であって、
この酸化銅粉のX線回折スペクトルの(−1,1,1)面の半値幅をFとし、
結晶化が終了した基準酸化銅粉のX線回折スペクトルの(−1,1,1)面の半値幅をFsとしたときに、
前記酸化銅粉の半値幅Fと基準酸化銅粉の半値幅Fsとの半値幅比F/Fsが2.9以上の酸化銅粉を用いることもできる。
The copper plating material is a copper oxide powder having a purity of 98.5% or more obtained by pyrolyzing basic copper carbonate powder in an atmosphere that is not a reducing atmosphere,
The full width at half maximum of the (-1,1,1) plane of the X-ray diffraction spectrum of this copper oxide powder is F,
When the full width at half maximum of the (−1, 1, 1) plane of the X-ray diffraction spectrum of the reference copper oxide powder that has been crystallized is Fs,
A copper oxide powder having a half-value width ratio F / Fs of 2.9 or more between the half-value width F of the copper oxide powder and the half-value width Fs of the reference copper oxide powder can also be used.
さらに前記銅メッキ材料としては、塩基性炭酸銅粉を還元雰囲気とはならない雰囲気下で熱分解することにより得られた純度が98.5%以上の酸化銅粉であって、比表面積が7.3m2/g以上の酸化銅粉を用いることもできる。 Further, the copper plating material is a copper oxide powder having a purity of 98.5% or more obtained by thermally decomposing basic copper carbonate powder in an atmosphere that is not a reducing atmosphere, and has a specific surface area of 7. A copper oxide powder of 3 m 2 / g or more can also be used.
また本発明は、不溶性陽極と陰極をなす被メッキ体とが設けられ、有機物の添加剤を含む電解液に供給される銅メッキ材料において、
この銅メッキ材料は、銅塩の水溶液とアルカリ溶液とを反応させて酸化銅粉を得、この酸化銅粉を加熱することにより得られた純度が98.5%以上の酸化銅粉であって、
この酸化銅粉のX線回折スペクトルの(−1,1,1)面のピーク強度をIとし、
結晶化が終了した基準酸化銅粉のX線回折スペクトルの(−1,1,1)面のピーク強度をIsとしたときに、
前記酸化銅粉のピーク強度Iと基準酸化銅粉のピーク強度Isとのピーク強度比I/Isが0.52以下の酸化銅粉であることを特徴とする。ここで銅塩の水溶液としては、塩化第二銅、硫酸第二銅及び硝酸第二銅などの水溶液を挙げることができる。
Further, the present invention provides a copper plating material provided with an insoluble anode and an object to be plated to form a cathode, and supplied to an electrolytic solution containing an organic additive.
This copper plating material is a copper oxide powder having a purity of 98.5% or more obtained by reacting an aqueous solution of a copper salt with an alkaline solution to obtain copper oxide powder and heating the copper oxide powder. ,
The peak intensity of the (-1,1,1) plane of the X-ray diffraction spectrum of this copper oxide powder is I,
When the peak intensity of the (-1, 1, 1) plane of the X-ray diffraction spectrum of the reference copper oxide powder that has been crystallized is Is,
The copper oxide powder is characterized in that the peak intensity ratio I / Is between the peak intensity I of the copper oxide powder and the peak intensity Is of the reference copper oxide powder is 0.52 or less. Here, examples of the aqueous solution of the copper salt include aqueous solutions of cupric chloride, cupric sulfate, cupric nitrate, and the like.
また前記銅メッキ材料としては、銅塩の水溶液とアルカリ溶液とを反応させて酸化銅粉を得、この酸化銅粉を加熱することにより得られた純度が98.5%以上の酸化銅粉であって、
この酸化銅粉のX線回折スペクトルの(−1,1,1)面の半値幅をFとし、
結晶化が終了した基準酸化銅粉のX線回折スペクトルの(−1,1,1)面の半値幅をFsとしたときに、
前記酸化銅粉の半値幅Fと基準酸化銅粉の半値幅Fsとの半値幅比F/Fsが2.9以上の酸化銅粉を用いることもできる。
The copper plating material is a copper oxide powder having a purity of 98.5% or more obtained by reacting an aqueous solution of copper salt with an alkaline solution to obtain copper oxide powder and heating the copper oxide powder. There,
The full width at half maximum of the (-1,1,1) plane of the X-ray diffraction spectrum of this copper oxide powder is F,
When the full width at half maximum of the (−1, 1, 1) plane of the X-ray diffraction spectrum of the reference copper oxide powder that has been crystallized is Fs,
A copper oxide powder having a half-value width ratio F / Fs of 2.9 or more between the half-value width F of the copper oxide powder and the half-value width Fs of the reference copper oxide powder can also be used.
さらに前記銅メッキ材料としては、銅塩の水溶液とアルカリ溶液とを反応させて酸化銅粉を得、この酸化銅粉を加熱することにより得られた純度が98.5%以上の酸化銅粉であって、比表面積が3.3m2/g以上の酸化銅粉を用いることもできる。 Further, as the copper plating material, a copper oxide powder having a purity of 98.5% or more obtained by reacting an aqueous solution of a copper salt with an alkaline solution to obtain a copper oxide powder and heating the copper oxide powder is used. In addition, copper oxide powder having a specific surface area of 3.3 m 2 / g or more can be used.
また本発明は、不溶性陽極と陰極をなす被メッキ体とが設けられ、有機物の添加剤を含む電解液に供給される銅メッキ材料において、
この銅メッキ材料は、水酸化第二銅粉を熱分解することにより得られた純度が98.5%以上の酸化銅粉であって、
この酸化銅粉のX線回折スペクトルの(−1,1,1)面のピーク強度をIとし、
結晶化が終了した基準酸化銅粉のX線回折スペクトルの(−1,1,1)面のピーク強度をIsとしたときに、
前記酸化銅粉のピーク強度Iと基準酸化銅粉のピーク強度Isとのピーク強度比I/Isが0.67以下の酸化銅粉であることを特徴とする。
Further, the present invention provides a copper plating material provided with an insoluble anode and an object to be plated to form a cathode, and supplied to an electrolytic solution containing an organic additive.
This copper plating material is a copper oxide powder having a purity of 98.5% or more obtained by thermally decomposing cupric hydroxide powder,
The peak intensity of the (-1,1,1) plane of the X-ray diffraction spectrum of this copper oxide powder is I,
When the peak intensity of the (-1, 1, 1) plane of the X-ray diffraction spectrum of the reference copper oxide powder that has been crystallized is Is,
The peak intensity ratio I / Is between the peak intensity I of the copper oxide powder and the peak intensity Is of the reference copper oxide powder is 0.67 or less.
また前記銅メッキ材料としては、水酸化第二銅粉を熱分解することにより得られた純度が98.5%以上の酸化銅粉であって、
この酸化銅粉のX線回折スペクトルの(−1,1,1)面の半値幅をFとし、
結晶化が終了した基準酸化銅粉のX線回折スペクトルの(−1,1,1)面の半値幅をFsとしたときに、
前記酸化銅粉の半値幅Fと基準酸化銅粉の半値幅Fsとの半値幅比F/Fsが1.6以上の酸化銅粉を用いることもできる。
The copper plating material is a copper oxide powder having a purity of 98.5% or more obtained by pyrolyzing cupric hydroxide powder,
The full width at half maximum of the (-1,1,1) plane of the X-ray diffraction spectrum of this copper oxide powder is F,
When the full width at half maximum of the (−1, 1, 1) plane of the X-ray diffraction spectrum of the reference copper oxide powder that has been crystallized is Fs,
A copper oxide powder having a half-value width ratio F / Fs between the half-value width F of the copper oxide powder and the half-value width Fs of the reference copper oxide powder of 1.6 or more can also be used.
さらに前記銅メッキ材料としては、水酸化第二銅粉を熱分解することにより得られた純度が98.5%以上の酸化銅粉であって、比表面積が3.6m2/g以上の酸化銅粉を用いることもできる。 Further, as the copper plating material, copper oxide powder having a purity of 98.5% or more obtained by pyrolyzing cupric hydroxide powder and having a specific surface area of 3.6 m 2 / g or more is used. Powder can also be used.
前記添加剤としては、炭素と硫黄との二重結合、硫黄と硫黄との単結合、窒素と窒素との二重結合、硫黄と水素との単結合のいずれかを含む有機物、例えばビス(3−スルホプロピル)ジスルフィド及び塩、チオ尿素、ヤヌスグリーン、ジメチルジスルフィド、プロピルメルカプタン、メルカプトプロピルスルホン酸及び塩、メチルイエローのいずれかを用いることができる。 Examples of the additive include organic substances including any one of a double bond of carbon and sulfur, a single bond of sulfur and sulfur, a double bond of nitrogen and nitrogen, and a single bond of sulfur and hydrogen, such as bis (3 -Sulfopropyl) disulfide and salt, thiourea, Janus green, dimethyl disulfide, propyl mercaptan, mercaptopropyl sulfonic acid and salt, or methyl yellow can be used.
また本発明の銅メッキ方法は、不溶性陽極と陰極をなす被メッキ体とが設けられ、有機物の添加剤を含む電解液に銅メッキ材料を供給し、被メッキ体に銅メッキを施す銅メッキ方法であり、前記銅メッキ材料は、塩基性炭酸銅粉を還元雰囲気とはならない雰囲気下で熱分解することにより得られた純度が98.5%以上の酸化銅粉であって、この酸化銅粉のX線回折スペクトルの(−1,1,1)面のピーク強度をIとし、結晶化が終了した基準酸化銅粉のX線回折スペクトルの(−1,1,1)面のピーク強度をIsとしたときに、前記酸化銅粉のピーク強度Iと基準酸化銅粉のピーク強度Isとのピーク強度比I/Isが0.36以下の酸化銅粉であることを特徴とする。 The copper plating method of the present invention is a copper plating method in which an insoluble anode and a cathode to be plated are provided, a copper plating material is supplied to an electrolytic solution containing an organic additive, and the plated body is plated with copper. The copper plating material is a copper oxide powder having a purity of 98.5% or more obtained by thermally decomposing basic copper carbonate powder in an atmosphere that is not a reducing atmosphere. The peak intensity of the (-1,1,1) plane of the X-ray diffraction spectrum of I is defined as I, and the peak intensity of the (-1,1,1) plane of the X-ray diffraction spectrum of the reference copper oxide powder after crystallization is completed. When Is, it is a copper oxide powder having a peak intensity ratio I / Is between the peak intensity I of the copper oxide powder and the peak intensity Is of the reference copper oxide powder of 0.36 or less.
また本発明の銅メッキ方法では、前記銅メッキ材料として、塩基性炭酸銅粉を還元雰囲気とはならない雰囲気下で熱分解することにより得られた純度が98.5%以上の酸化銅粉であって、この酸化銅粉のX線回折スペクトルの(−1,1,1)面の半値幅をFとし、結晶化が終了した基準酸化銅粉のX線回折スペクトルの(−1,1,1)面の半値幅をFsとしたときに、前記酸化銅粉の半値幅Fと基準酸化銅粉の半値幅Fsとの半値幅比F/Fsが2.9以上の酸化銅粉や、比表面積が7.3m2/g以上の酸化銅粉を用いるようにしてもよい。 In the copper plating method of the present invention, the copper plating material is a copper oxide powder having a purity of 98.5% or more obtained by thermally decomposing basic copper carbonate powder in an atmosphere that is not a reducing atmosphere. Then, the half-value width of the (-1,1,1) plane of the X-ray diffraction spectrum of this copper oxide powder is F, and the (-1,1,1) of the X-ray diffraction spectrum of the reference copper oxide powder after crystallization is completed. ) When the half width of the surface is Fs, the copper oxide powder having a half width ratio F / Fs of the half width F of the copper oxide powder and the half width Fs of the reference copper oxide powder of 2.9 or more, or a specific surface area However, you may make it use the copper oxide powder of 7.3 m2 / g or more.
このような発明では、銅メッキ材料として、純度が98.5%以上の酸化銅粉であって、前記ピーク強度比I/Isが0.36以下又は前記半値幅比F/Fsが2.9以上或いは比表面積が7.3m2/g以上の酸化銅粉を用いているので、有機物の添加剤を含む電解液に対しても高い溶解性を確保することができる。 In such an invention, the copper plating material is a copper oxide powder having a purity of 98.5% or more, and the peak intensity ratio I / Is is 0.36 or less or the half width ratio F / Fs is 2.9. As described above, since the copper oxide powder having a specific surface area of 7.3 m 2 / g or more is used, high solubility can be ensured even in an electrolytic solution containing an organic additive.
さらに本発明の他の銅メッキ方法は、不溶性陽極と陰極をなす被メッキ体とが設けられ、有機物の添加剤を含む電解液に銅メッキ材料を供給し、被メッキ体に銅メッキを施す銅メッキ方法であり、前記銅メッキ材料は、銅塩の水溶液とアルカリ溶液とを反応させて酸化銅粉を得、この酸化銅粉を加熱することにより得られた純度が98.5%以上の酸化銅粉であって、この酸化銅粉のX線回折スペクトルの(−1,1,1)面のピーク強度をIとし、結晶化が終了した基準酸化銅粉のX線回折スペクトルの(−1,1,1)面のピーク強度をIsとしたときに、前記酸化銅粉のピーク強度Iと基準酸化銅粉のピーク強度Isとのピーク強度比I/Isが0.52以下の酸化銅粉であることを特徴とする。 Further, another copper plating method of the present invention is provided with an insoluble anode and a body to be a cathode, and a copper plating material is supplied to an electrolytic solution containing an organic additive to perform copper plating on the body to be plated. A copper plating material is obtained by reacting an aqueous solution of a copper salt with an alkaline solution to obtain a copper oxide powder, and the purity obtained by heating the copper oxide powder is 98.5% or more. It is copper powder, Comprising: The peak intensity of the (-1,1,1) plane of the X-ray diffraction spectrum of this copper oxide powder is set to I, and (-1 , 1, 1) copper oxide powder having a peak intensity ratio I / Is between the peak intensity I of the copper oxide powder and the peak intensity Is of the reference copper oxide powder of 0.52 or less, where Is is the peak intensity of the plane. It is characterized by being.
さらに本発明の他の銅メッキ方法では、前記銅メッキ材料として、銅塩の水溶液とアルカリ溶液とを反応させて酸化銅粉を得、この酸化銅粉を加熱することにより得られた純度が98.5%以上の酸化銅粉であって、この酸化銅粉のX線回折スペクトルの(−1,1,1)面の半値幅をFとし、結晶化が終了した基準酸化銅粉のX線回折スペクトルの(−1,1,1)面の半値幅をFsとしたときに、前記酸化銅粉の半値幅Fと基準酸化銅粉の半値幅Fsとの半値幅比F/Fsが2.9以上の酸化銅粉や、比表面積が3.3m2/g以上の酸化銅粉を用いるようにしてもよい。 Furthermore, in another copper plating method of the present invention, as the copper plating material, an aqueous copper salt solution and an alkali solution are reacted to obtain copper oxide powder, and the purity obtained by heating the copper oxide powder is 98. X-ray of a reference copper oxide powder having a crystallization of 5% or more of copper oxide powder, where the half-value width of the (-1,1,1) plane of the X-ray diffraction spectrum of this copper oxide powder is F When the half-value width of the (-1, 1, 1) plane of the diffraction spectrum is Fs, the half-value width ratio F / Fs between the half-value width F of the copper oxide powder and the half-value width Fs of the reference copper oxide powder is 2. You may make it use the 9 or more copper oxide powder and the copper oxide powder whose specific surface area is 3.3 m <2> / g or more.
このような発明では、銅メッキ材料として、純度が98.5%以上の酸化銅粉であって、前記ピーク強度比I/Isが0.52以下又は前記半値幅比F/Fsが2.9以上或いは比表面積が3.3m2/g以上の酸化銅粉を用いているので、有機物の添加剤を含む電解液に対しても高い溶解性を確保することができる。 In such an invention, the copper plating material is a copper oxide powder having a purity of 98.5% or more, and the peak intensity ratio I / Is is 0.52 or less or the half width ratio F / Fs is 2.9. As mentioned above, since the copper oxide powder having a specific surface area of 3.3 m 2 / g or more is used, high solubility can be ensured even in an electrolytic solution containing an organic additive.
さらにまた本発明の他の銅メッキ方法は、不溶性陽極と陰極をなす被メッキ体とが設けられ、有機物の添加剤を含む電解液に銅メッキ材料を供給し、被メッキ体に銅メッキを施す銅メッキ方法であり、前記銅メッキ材料は、水酸化第二銅粉を熱分解することにより得られた純度が98.5%以上の酸化銅粉であって、この酸化銅粉のX線回折スペクトルの(−1,1,1)面のピーク強度をIとし、結晶化が終了した基準酸化銅粉のX線回折スペクトルの(−1,1,1)面のピーク強度をIsとしたときに、前記酸化銅粉のピーク強度Iと基準酸化銅粉のピーク強度Isとのピーク強度比I/Isが0.67以下の酸化銅粉であることを特徴とする。 Furthermore, in another copper plating method of the present invention, an insoluble anode and a cathode to be plated are provided, a copper plating material is supplied to an electrolytic solution containing an organic additive, and the copper to be plated is plated. A copper plating method, wherein the copper plating material is a copper oxide powder having a purity of 98.5% or more obtained by pyrolyzing cupric hydroxide powder, and X-ray diffraction of the copper oxide powder When the peak intensity on the (-1,1,1) plane of the spectrum is I and the peak intensity on the (-1,1,1) plane of the X-ray diffraction spectrum of the reference copper oxide powder after crystallization is Is Further, the copper oxide powder is characterized in that the peak intensity ratio I / Is between the peak intensity I of the copper oxide powder and the peak intensity Is of the reference copper oxide powder is 0.67 or less.
さらにまた本発明の他の銅メッキ方法では、前記銅メッキ材料として、水酸化第二銅粉を熱分解することにより得られた純度が98.5%以上の酸化銅粉であって、この酸化銅粉のX線回折スペクトルの(−1,1,1)面の半値幅をFとし、結晶化が終了した基準酸化銅粉のX線回折スペクトルの(−1,1,1)面の半値幅をFsとしたときに、前記酸化銅粉の半値幅Fと基準酸化銅粉の半値幅Fsとの半値幅比F/Fsが1.6以上の酸化銅粉や、比表面積が3.6m2/g以上の酸化銅粉を用いるようにしてもよい。 Furthermore, in another copper plating method of the present invention, the copper plating material is a copper oxide powder having a purity of 98.5% or more obtained by thermally decomposing cupric hydroxide powder. The half-value width of the (-1, 1, 1) plane of the X-ray diffraction spectrum of the copper powder is F, and the half of the (-1, 1, 1) plane of the X-ray diffraction spectrum of the reference copper oxide powder after crystallization is completed. When the value width is Fs, the copper oxide powder having a full width at half maximum F / Fs of 1.6 or more and the specific surface area of 3.6 m 2 between the half width F of the copper oxide powder and the half width Fs of the reference copper oxide powder. / G or more of copper oxide powder may be used.
このような発明では、銅メッキ材料として、純度が98.5%以上の酸化銅粉であって、前記ピーク強度比I/Isが0.67以下又は前記半値幅比F/Fsが1.6以上或いは比表面積が3.6m2/g以上の酸化銅粉を用いているので、有機物の添加剤を含む電解液に対しても高い溶解性を確保することができる。 In such an invention, the copper plating material is a copper oxide powder having a purity of 98.5% or more, and the peak intensity ratio I / Is is 0.67 or less or the half width ratio F / Fs is 1.6. As described above, since the copper oxide powder having a specific surface area of 3.6 m 2 / g or more is used, high solubility can be ensured even in an electrolytic solution containing an organic additive.
本発明によれば、塩基性炭酸銅粉を還元雰囲気とはならない雰囲気下で熱分解することで得られた酸化銅粉において、純度が98.5%と高く、X線回折のピーク強度比I/Isが0.36以下又は半値幅比F/Fsが2.9以上あるいは比表面積が7.3m2/g以上の酸化銅粉を銅メッキ材料として用いているので、有機物の添加剤を含む電解液に対しても高い溶解性が確保され、良好なメッキ処理を行うことができる。 According to the present invention, the copper oxide powder obtained by thermally decomposing basic copper carbonate powder in an atmosphere that is not a reducing atmosphere has a high purity of 98.5% and a peak intensity ratio I of X-ray diffraction. Since copper oxide powder having a / Is of 0.36 or less, a half-width ratio F / Fs of 2.9 or more, or a specific surface area of 7.3 m 2 / g or more is used as a copper plating material, electrolysis including an organic additive High solubility is ensured also for the liquid, and a good plating process can be performed.
また本発明によれば、銅塩の水溶液とアルカリ溶液とを用いて直接湿式法により酸化銅粉を得、この酸化銅粉を加熱することにより得られた酸化銅粉において、純度が98.5%と高く、X線回折のピーク強度比I/Isが0.52以下又は半値幅比F/Fsが2.9以上あるいは比表面積が3.3m2/g以上の酸化銅粉を銅メッキ材料として用いても、有機物の添加剤を含む電解液に対して高い溶解性が確保され、良好なメッキ処理を行うことができる。 According to the present invention, copper oxide powder is obtained by a direct wet method using an aqueous solution of copper salt and an alkaline solution, and the copper oxide powder obtained by heating the copper oxide powder has a purity of 98.5. As a copper plating material, copper oxide powder having a high X-ray diffraction peak intensity ratio I / Is of 0.52 or less, a full width at half maximum F / Fs of 2.9 or more, or a specific surface area of 3.3 m 2 / g or more is used. Even if it uses, high solubility is ensured with respect to the electrolyte solution containing the additive of organic substance, and a favorable plating process can be performed.
さらにまた本発明によれば、水酸化第二銅粉を熱分解することにより得られた酸化銅粉において、純度が98.5%と高く、X線回折のピーク強度比I/Isが0.67以下又は半値幅比F/Fsが1.6以上あるいは比表面積が3.6m2/g以上の酸化銅粉を銅メッキ材料として用いても、有機物の添加剤を含む電解液に対して高い溶解性が確保され、良好なメッキ処理を行うことができる。 Furthermore, according to the present invention, the copper oxide powder obtained by thermally decomposing cupric hydroxide powder has a high purity of 98.5% and the peak intensity ratio I / Is of X-ray diffraction is 0.00. Even if a copper oxide powder having a ratio of 67 or less or a full width at half maximum F / Fs of 1.6 or more or a specific surface area of 3.6 m 2 / g or more is used as a copper plating material, it is highly soluble in an electrolyte containing an organic additive. Property is secured, and a good plating process can be performed.
〔第1の実施の形態〕
本発明の第1の実施の形態では、銅メッキ材料(酸化銅粉)の原料である塩基性炭酸銅粉として市販品のものを購入してもよいが、この実施の形態では塩基性炭酸銅粉を購入せずに工場側で製造することとする。図1はこの場合の製造フロ−を示す説明図であり、例えば銅濃度が10重量%である塩化第二銅(CuCl2 )の水溶液とアルカリ金属の炭酸塩例えば炭酸濃度が7重量%である炭酸ナトリウム(Na2 CO3 )の水溶液とを例えば混合液のpHが7〜9となるように反応槽1内に投入し、混合液の温度が例えば70℃となるように加熱しながら撹拌手段11により例えば30分間撹拌して反応させる。混合液の加熱は例えば反応槽1内に散気管などからなるバブリング手段(図示せず)を設け、このバブリング手段から蒸気を混合液に供給することにより行われる。
[First Embodiment]
In the first embodiment of the present invention, a commercially available product may be purchased as the basic copper carbonate powder that is a raw material of the copper plating material (copper oxide powder). In this embodiment, the basic copper carbonate powder is purchased. It will be manufactured at the factory without purchasing powder. FIG. 1 is an explanatory view showing the production flow in this case. For example, an aqueous solution of cupric chloride (CuCl2) having a copper concentration of 10% by weight and an alkali metal carbonate, for example, a carbonic acid having a carbonic acid concentration of 7% by weight. An aqueous solution of sodium (Na2 CO3) is introduced into the
上述の反応は次のように進行する。先ず(1)式のように炭酸銅が生成され、
Na2 CO3 +CuCl2 →CuCO3 +2NaCl (1)
続いて(2)式のように炭酸銅が水和して塩基性炭酸銅の二水塩が生成され、
CuCO3 +3/2H2 O→1/2{CuCO3 ・Cu(OH)2・2H2 O}+1/2CO2 (2)
更に(3)式のように上記の二水塩から水が抜け、無水の塩基性炭酸銅が生成される。
The above reaction proceeds as follows. First, copper carbonate is generated as in equation (1),
Na2 CO3 + CuCl2 → CuCO3 + 2NaCl (1)
Subsequently, copper carbonate is hydrated as shown in formula (2) to produce basic copper carbonate dihydrate,
CuCO3 + 3 / 2H2 O → 1/2 {CuCO3 · Cu (OH) 2 · 2H2 O} + 1 / 2CO2 (2)
Furthermore, as shown in the formula (3), water is released from the dihydrate, and anhydrous basic copper carbonate is generated.
CuCO3 ・Cu(OH)2・2H2 O→CuCO3 ・Cu(OH)2+2H2 O (3)
こうして塩基性炭酸銅が析出生成されて粉体となって沈殿する。そしてバルブ12を開いて沈殿物であるスラリーを抜き出して遠心分離機2に送り、ここで遠心分離により固形分を母液から分離し、その固形分を乾燥機3に入れて乾燥し、塩基性炭酸銅の粉体を得る。
CuCO3 · Cu (OH) 2 · 2H 2 O →
In this way, basic copper carbonate is precipitated and formed into a powder. And the valve |
塩基性炭酸銅の原料である銅イオン源としては塩化銅の他に例えば硫酸銅または硝酸銅などの銅塩の水溶液を用いることができる。炭酸イオン源としては炭酸ナトリウムの他に炭酸水素ナトリウム、炭酸カリウムなどのアルカリ金属の炭酸塩、または炭酸カルシウム、炭酸マグネシウム、炭酸バリウムなどのアルカリ土類金属の炭酸塩あるいは炭酸アンモニウム((NH4)2 CO3 )などを用いることができる。 As a copper ion source which is a raw material of basic copper carbonate, an aqueous solution of a copper salt such as copper sulfate or copper nitrate can be used in addition to copper chloride. Sources of carbonate ions include sodium carbonate, alkali metal carbonates such as sodium bicarbonate and potassium carbonate, alkaline earth metal carbonates such as calcium carbonate, magnesium carbonate, and barium carbonate, or ammonium carbonate ((NH4) 2 CO3) or the like can be used.
次に粉体である前記塩基性炭酸銅を加熱炉、例えばロータリキルン4に供給し、ここで所定の温度で所定時間加熱して熱分解する。この例では加熱炉として、管軸を回転軸として回転する例えばステンレス製の回転管41を僅かに傾斜して設け、この回転管41の周囲をヒータ42により囲み、回転管41を回転させることにより塩基性炭酸銅の粉体を移送するロータリキルンを用いている。このようにして塩基性炭酸銅粉を加熱すれば加熱雰囲気が還元雰囲気にならない。塩基性炭酸銅粉を直接バーナで加熱しない理由は、還元雰囲気にすると、炭酸銅そのものや炭酸銅が酸化銅に分解された後、一部が還元されて亜酸化銅(Cu2 O)や金属銅(Cu)を生成してしまうので、これを避けるためである。
Next, the basic copper carbonate, which is a powder, is supplied to a heating furnace, for example, the rotary kiln 4, where it is thermally decomposed by heating at a predetermined temperature for a predetermined time. In this example, as a heating furnace, a rotating
金属銅は、酸化銅粉を銅メッキ材料として使用する場合に電解液である硫酸に溶解しないか溶解し難く、不溶解残渣となり新たなろ過設備が必要となる。また金属銅や亜酸化銅ができると、メッキ浴中への補給銅量が一定とならず、メッキ品の品質がばらついてしまう。従って塩基性炭酸銅粉を加熱するときには還元雰囲気にしないことが必要である。 When copper oxide powder is used as a copper plating material, metallic copper does not dissolve or hardly dissolves in sulfuric acid, which is an electrolytic solution, and becomes an insoluble residue, requiring new filtration equipment. Further, when metallic copper or cuprous oxide is formed, the amount of copper to be supplied into the plating bath is not constant, and the quality of the plated product varies. Therefore, it is necessary not to use a reducing atmosphere when heating the basic copper carbonate powder.
ここで第1の実施の形態における加熱温度及び加熱時間について説明する。本発明で銅メッキ材料として用いられる酸化銅粉は、銅メッキ液への溶解度やメッキの質を考慮すると、次の要件を満たすことが要求される。 Here, the heating temperature and the heating time in the first embodiment will be described. The copper oxide powder used as a copper plating material in the present invention is required to satisfy the following requirements in consideration of solubility in a copper plating solution and plating quality.
〔1〕純度が98.5%以上であること。 [1] The purity is 98.5% or more.
〔2〕酸化銅粉のX線回折スペクトルの(−1,1,1)面のピーク強度をI、結晶化が終了した基準酸化銅粉のX線回折スペクトルの(−1,1,1)面のピーク強度をIsとしたときに、前記酸化銅粉のピーク強度Iと基準酸化銅粉のピーク強度Isとのピーク強度比I/Isが0.36以下であるか、又は酸化銅粉のX線回折スペクトルの(−1,1,1)面の半値幅をF、結晶化が終了した基準酸化銅粉のX線回折スペクトルの(−1,1,1)面の半値幅をFsとしたときに、前記酸化銅粉の半値幅Fと基準酸化銅粉の半値幅Fsとの半値幅比F/Fsが2.9以上であるか、酸化銅粉の比表面積が7.3m2/g以上であること。ここでX線回折スペクトルの(−1,1,1)面の「−1」は、「1」の上にバーを表記したものを意味する。 [2] The peak intensity of the (-1, 1, 1) plane of the X-ray diffraction spectrum of the copper oxide powder is I, and the (-1, 1, 1) X-ray diffraction spectrum of the reference copper oxide powder after crystallization is completed. When the peak intensity of the surface is Is, the peak intensity ratio I / Is between the peak intensity I of the copper oxide powder and the peak intensity Is of the reference copper oxide powder is 0.36 or less, or the copper oxide powder The half width of the (-1,1,1) plane of the X-ray diffraction spectrum is F, and the half width of the (-1,1,1) plane of the reference copper oxide powder after crystallization is Fs. When the half-value width F / Fs of the half-value width F of the copper oxide powder and the half-value width Fs of the reference copper oxide powder is 2.9 or more, or the specific surface area of the copper oxide powder is 7.3 m 2 / g. That's it. Here, “−1” on the (−1, 1, 1) plane of the X-ray diffraction spectrum means a bar notation above “1”.
ここで基準酸化銅粉とは、結晶化が終了した酸化銅粉、つまり酸化銅粉に対して更に加熱処理を行っても、X線回折のピーク強度や半値幅が変化しないものをいう。第1の実施の形態における基準酸化銅粉とは、具体的には、塩基性炭酸銅粉を加熱炉において750℃の加熱温度で8時間加熱処理して、酸化銅粉とし、さらにこの酸化銅粉を850℃の加熱温度で12時間加熱処理したものである。 Here, the reference copper oxide powder refers to a copper oxide powder that has been crystallized, that is, a powder that does not change the peak intensity and the half-value width of X-ray diffraction even if the heat treatment is further performed on the copper oxide powder. Specifically, the reference copper oxide powder in the first embodiment is obtained by heat-treating basic copper carbonate powder at a heating temperature of 750 ° C. for 8 hours in a heating furnace to obtain copper oxide powder. The powder is heat-treated at a heating temperature of 850 ° C. for 12 hours.
第1の実施の形態における酸化銅粉の純度は、酸化銅粉中のCu濃度を測定し、CuO換算した値であり、酸化銅粉の純度が低いとは炭酸銅の変換率が低く、酸化銅に変化しない炭酸銅が多く残存することを意味する。酸化銅粉の純度が低く、炭酸銅が多く残存すると、酸化銅濃度のばらつきが大きくなる。このため、銅メッキ材料として用いた場合には、処理の度に銅濃度が変化しやすく、メッキ液の銅濃度のコントロールが困難になってしまうので、前記要件〔1〕のように、純度が98.5%以上の酸化銅粉が好ましい。 The purity of the copper oxide powder in the first embodiment is a value obtained by measuring the Cu concentration in the copper oxide powder and converted to CuO. The low purity of the copper oxide powder means that the conversion rate of copper carbonate is low and oxidation is performed. This means that a large amount of copper carbonate that does not change to copper remains. When the purity of the copper oxide powder is low and a large amount of copper carbonate remains, variation in the copper oxide concentration increases. For this reason, when used as a copper plating material, the copper concentration tends to change each time the treatment is performed, and it becomes difficult to control the copper concentration of the plating solution. Therefore, as in the requirement [1], the purity is low. 98.5% or more of copper oxide powder is preferred.
また前記要件〔2〕は、メッキ液への溶解性を決定する要件であり、本発明者らの試行錯誤により、酸化銅粉の構造により有機物の添加剤を含むメッキ液への溶解性が異なり、要件〔2〕を満たす構造の酸化銅粉は前記メッキ液に対する溶解性が高いことを見出した結果、決定された要件である。 The requirement [2] is a requirement for determining the solubility in the plating solution. Due to the trial and error of the present inventors, the solubility in the plating solution containing an organic additive differs depending on the structure of the copper oxide powder. The copper oxide powder having a structure satisfying the requirement [2] is determined as a result of finding that the copper oxide powder has high solubility in the plating solution.
これらの要件を満たす酸化銅粉を得るには、加熱炉における加熱温度や加熱時間が問題となり、加熱温度に関しては200℃では熱分解が起こらず、250℃以上の温度が必要となるが、250℃程度の温度で純度の高い酸化銅粉を得るには加熱時間が例えば2時間以上要求される。一方、加熱温度が高すぎたり、加熱時間が長すぎたりすると、前記要件〔1〕は確保されるものの、要件〔2〕に当てはまらず、メッキ液への溶解性が悪化してしまう。 In order to obtain copper oxide powder satisfying these requirements, there is a problem in the heating temperature and heating time in a heating furnace. Regarding the heating temperature, thermal decomposition does not occur at 200 ° C., and a temperature of 250 ° C. or higher is required. In order to obtain high-purity copper oxide powder at a temperature of about 0 ° C., a heating time of, for example, 2 hours or more is required. On the other hand, if the heating temperature is too high or the heating time is too long, the requirement [1] is ensured, but the requirement [2] is not met, and the solubility in the plating solution deteriorates.
従って本発明者らは、後述する種々の実験を行い、上述の要件を備えた酸化銅粉を製造するための加熱温度と加熱時間の最適化を図った。塩基性炭酸銅粉の熱処理条件の一例を以下に示すが、この条件下で熱分解を行って得られた酸化銅粉については、上述の2つの要件を満たしている。
(塩基性炭酸銅粉の熱処理条件の一例)
加熱温度が300℃のときは、加熱時間は240分以上480分以下
加熱温度が400℃のときは、加熱時間は20分以上40分以下
加熱温度が500℃のときは、加熱時間は5分以上40分以下
加熱温度が550℃のときは、加熱時間は5分以上40分以下
加熱温度が600℃のときは、加熱時間は5分以上20分以下
加熱温度が650℃のときは、加熱時間は5分以上20分以下
このようにして酸化銅粉を得た後、この酸化銅粉を洗浄液である純水の入った洗浄槽5内に投入し、撹拌手段51により撹拌して水洗する。そしてバルブ52を開いて水と酸化銅粉との混合スラリーを洗浄槽5から抜き出し、遠心分離機6またはろ過機により水分を飛ばしてから乾燥機7で乾燥させ、当該酸化銅粉を得る。洗浄液としては蒸留水やイオン交換水などの純水を用いることができるが、その他それより不純分が少ない水、例えば超純水などを用いることもできる。
Therefore, the present inventors conducted various experiments described later, and attempted to optimize the heating temperature and the heating time for producing the copper oxide powder having the above-mentioned requirements. An example of the heat treatment conditions for the basic copper carbonate powder is shown below. The copper oxide powder obtained by thermal decomposition under these conditions satisfies the above two requirements.
(Example of heat treatment conditions for basic copper carbonate powder)
When the heating temperature is 300 ° C, the heating time is 240 minutes or more and 480 minutes or less. When the heating temperature is 400 ° C, the heating time is 20 minutes or more and 40 minutes or less. When the heating temperature is 500 ° C, the heating time is 5 minutes. 40 minutes or less When the heating temperature is 550 ° C., the heating time is 5 minutes or more and 40 minutes or less. When the heating temperature is 600 ° C., the heating time is 5 minutes or more and 20 minutes or less. When the heating temperature is 650 ° C., heating is performed. The time is not less than 5 minutes and not more than 20 minutes After obtaining the copper oxide powder in this way, the copper oxide powder is put into a cleaning tank 5 containing pure water as a cleaning liquid, and stirred by the stirring means 51 and washed with water. . And the valve |
ここで酸化銅粉を銅メッキ材料として用いた銅メッキ方法を実施する装置の一例を図2に示しておく。図2中8はメッキ浴槽であり、この中に電解液である硫酸に上述の手法により製造された酸化銅粉と、有機物の添加剤を溶解したメッキ浴(メッキ液)が満たされていると共に、直流電源Eの正極側に接続された不溶性陽極81例えばチタン板に白金属の白金とイリジウムとを7:3の割合でコーディングしたものと、直流電源Eの負極側に接続された陰極である被メッキ材82例えば被メッキ用金属板とが浸漬されている。
An example of an apparatus for carrying out a copper plating method using copper oxide powder as a copper plating material is shown in FIG. In FIG. 2, reference numeral 8 denotes a plating bath, which is filled with a copper oxide powder produced by the above-described method in sulfuric acid as an electrolytic solution and a plating bath (plating solution) in which an organic additive is dissolved. An
83は溶解槽であり、メッキ浴槽8内の銅イオンが少なくなってきたときに、補給源であるホッパ84から銅メッキ材料である酸化銅粉を溶解槽83内に所定量補給し、撹拌手段85により撹拌して硫酸に溶解させた後、ポンプP1,P2を作動させてメッキ浴を循環させ、その後次の銅メッキ処理を行う。Fはフィルタである。
83 is a dissolution tank, and when the copper ions in the plating bath 8 are reduced, a predetermined amount of copper oxide powder as a copper plating material is supplied into the
前記添加剤は、例えばCとSとの二重結合を有する−C=S基や、SとSとの単結合を有する−S−S−基(ジスルフィド化合物)や、NとNとの二重結合を有する−N=N−基(ジアゾ化合物)や、SとHの結合を有する−S−H基(チオアルコール類)のいずれかを有する有機物であり、例えばメッキ液に対して数ppm〜数100ppm程度の割合で添加される。前記添加剤としては、例えば−C=S基を含むチオ尿素(図3(a)参照)や、−S−S−基を含むジメチルジスルフィド、例えばSPS((ビス(3−スルホプロピル)ジスルフィドのナトリウム塩:NaO3S(CH2)3−S−S−(CH2)3SO3Na)等の(ビス(3−スルホプロピル)ジスルフィド及び塩、−N=N−基を含むヤヌスグリーン(図3(b)参照)やメチルイエロー、−S−H基を含むプロピルメルカプタンやメルカプトプロピルスルホン酸及び塩、等が用いられる。 Examples of the additive include a -C = S group having a double bond of C and S, a -S-S- group having a single bond of S and S (disulfide compound), and two of N and N. An organic substance having either a -N = N- group having a heavy bond (diazo compound) or a -SH group having a bond of S and H (thioalcohols), for example, several ppm relative to the plating solution It is added at a ratio of about several hundred ppm. Examples of the additive include thiourea containing a —C═S group (see FIG. 3A), dimethyl disulfide containing a —S—S— group, such as SPS ((bis (3-sulfopropyl) disulfide). Sodium salt: (Bis (3-sulfopropyl) disulfide and salt, such as NaO3S (CH2) 3-SS- (CH2) 3SO3Na), Janus Green containing -N = N- group (see FIG. 3 (b)) And methyl yellow, propyl mercaptan, mercaptopropyl sulfonic acid and salts containing -S-H group, and the like are used.
上述の実施の形態によれば、上述の熱処理条件にて炭酸銅粉を加熱して熱分解を行っているので、98.5%以上の高い純度を確保しながら、前記ピーク強度比I/Isが0.36以下又は前記半値幅比F/Fsが2.9以上の酸化銅粉或いは比表面積が7.3m2/g以上の酸化銅粉を製造することができる。これにより、高純度の酸化銅粉でありながら、前記酸化銅粉の溶解性が低い前記有機物の添加剤を含むメッキ液に対しても、高い溶解性を確保することができる。このように添加剤を含むメッキ液に対する溶解性が良好であるので、この酸化銅粉を銅メッキ材料として用いれば、銅メッキ浴中の銅イオンの濃度が安定しやすく、メッキ膜の均一性が向上する。この際メッキ液には添加剤が含まれているので、さらにメッキ膜の高い均一性や光沢を確保することができる。またメッキ液への溶解性が良好であるので、フィルタへの負荷が抑えられると共に、不溶解性成分によるメッキ物への悪影響が抑えられる。 According to the above-described embodiment, the thermal decomposition is performed by heating the copper carbonate powder under the above-described heat treatment conditions, so that the peak intensity ratio I / Is is ensured while ensuring a high purity of 98.5% or more. Is 0.36 or less, or a copper oxide powder having a full width at half maximum F / Fs of 2.9 or more or a copper oxide powder having a specific surface area of 7.3 m 2 / g or more. Thereby, although it is high purity copper oxide powder, high solubility is securable also with respect to the plating solution containing the said organic additive with low solubility of the said copper oxide powder. Thus, since the solubility with respect to the plating solution containing an additive is favorable, if this copper oxide powder is used as a copper plating material, the concentration of copper ions in the copper plating bath can be easily stabilized, and the uniformity of the plating film can be achieved. improves. At this time, since the plating solution contains an additive, it is possible to further ensure high uniformity and gloss of the plating film. Further, since the solubility in the plating solution is good, the load on the filter can be suppressed, and the adverse effect on the plated product by the insoluble component can be suppressed.
さらに本発明の純度が98.5%以上であって、前記ピーク強度比I/Isが0.36以下又は前記半値幅比F/Fsが2.9以上の酸化銅粉或いは比表面積が7.3m2/g以上の酸化銅粉は、例えばEDTA(エチレンジアミン四酢酸塩)をキレート剤として含むメッキ液に対しても良好な溶解性を示し、これにより当該酸化銅粉を銅メッキ材料として用いることは、良好なメッキ膜を確保するために、有効である。
〔第2の実施の形態〕
本発明の第2の実施の形態では、銅塩の水溶液とアルカリ溶液とを用いて酸化銅粉を得、そしてこの酸化銅粉を加熱することにより純度の高い酸化銅粉を生成した。この製法は直接酸化銅粉を得ることができるので、炭酸銅などを経由して酸化銅粉を得る間接湿式法と対比して直接湿式法と呼ばれている。ここで銅塩の水溶液としては、塩化第二銅、硫酸第二銅及び硝酸第二銅などの水溶液を挙げることができる。この直接湿式法による酸化銅粉の生成について図4を用いて具体的に説明する。なお図4において図1と同じ構成にある部分については便宜上図1と同じ符号を付してある。先ず、銅塩の水溶液例えば銅濃度が10重量%である塩化第二銅(CuCl2 )の水溶液とアルカリ溶液例えば濃度が20重量%である水酸化ナトリウム(NaOH)水溶液とを例えば混合液のpHが9.8〜10.2となるように反応槽1内に投入し、混合液の温度が例えば73〜77℃となるように加熱しながら攪拌手段11により例えば60分間攪拌して反応させる。混合液の加熱は例えば反応槽1内に散気管などからなるバブリング手段(図示せず)を設け、このバブリング手段から蒸気を混合液に供給することにより行われる。
Furthermore, the purity of the present invention is 98.5% or more, and the copper oxide powder having a peak intensity ratio I / Is of 0.36 or less or a half-width ratio F / Fs of 2.9 or more or a specific surface area of 7. A copper oxide powder of 3 m @ 2 / g or more shows good solubility in a plating solution containing, for example, EDTA (ethylenediaminetetraacetate) as a chelating agent, and this makes it possible to use the copper oxide powder as a copper plating material. It is effective to secure a good plating film.
[Second Embodiment]
In the second embodiment of the present invention, copper oxide powder was obtained using an aqueous solution of copper salt and an alkaline solution, and the copper oxide powder was heated to produce high-purity copper oxide powder. Since this manufacturing method can obtain copper oxide powder directly, it is called a direct wet method in contrast to the indirect wet method in which copper oxide powder is obtained via copper carbonate or the like. Here, examples of the aqueous solution of the copper salt include aqueous solutions of cupric chloride, cupric sulfate, cupric nitrate, and the like. The production | generation of the copper oxide powder by this direct wet method is demonstrated concretely using FIG. 4 that are the same as those in FIG. 1 are denoted by the same reference numerals as those in FIG. First, an aqueous solution of copper salt, for example, an aqueous solution of cupric chloride (CuCl2) having a copper concentration of 10% by weight and an alkaline solution, for example, an aqueous solution of sodium hydroxide (NaOH) having a concentration of 20% by weight, for example, the pH of the mixed solution is The mixture is charged into the
上述の反応は次のように進行して、酸化銅が生成される。 The above reaction proceeds as follows to produce copper oxide.
CuC12 +2NaOH→CuO+2NaCl+H2O (4)
こうして酸化銅が析出生成されて粉体となって沈殿する。そしてバルブ12を開いて沈殿物であるスラリーを抜き出して吸引濾過手段20に送り、ここで固形分である酸化銅粉を母液から分離すると共に、当該吸引濾過手段20にて洗浄液である例えば純水で酸化銅粉を水洗いをすることによって酸化銅表面に付着した微量な不純物を洗い流す。洗浄後、酸化銅粉を加熱炉、例えばロータリキルン4に供給し、ここで所定の温度で所定時間加熱して乾燥させる。また得られた酸化銅の純度が低い場合、加熱処理により純度を上げる。
CuC12 + 2NaOH → CuO + 2NaCl + H2O (4)
Thus, copper oxide is precipitated and formed into a powder. And the valve |
ここで第2の実施の形態における加熱温度及び加熱時間について説明する。ここでいう加熱とは、乾燥または純度を上げる目的で行う加熱である。本発明で銅メッキ材料として用いられる酸化銅粉は、銅メッキ液への溶解度やメッキの質を考慮すると、次の要件を満たすことが要求される。 Here, the heating temperature and the heating time in the second embodiment will be described. The heating here is heating performed for the purpose of drying or increasing the purity. The copper oxide powder used as a copper plating material in the present invention is required to satisfy the following requirements in consideration of solubility in a copper plating solution and plating quality.
〔3〕純度が98.5%以上であること。 [3] The purity is 98.5% or more.
〔4〕酸化銅粉のX線回折スペクトルの(−1,1,1)面のピーク強度をI、結晶化が終了した基準酸化銅粉のX線回折スペクトルの(−1,1,1)面のピーク強度をIsとしたときに、前記酸化銅粉のピーク強度Iと基準酸化銅粉のピーク強度Isとのピーク強度比I/Isが0.52以下であるか、又は酸化銅粉のX線回折スペクトルの(−1,1,1)面の半値幅をF、結晶化が終了した基準酸化銅粉のX線回折スペクトルの(−1,1,1)面の半値幅をFsとしたときに、前記酸化銅粉の半値幅Fと基準酸化銅粉の半値幅Fsとの半値幅比F/Fsが2.9以上であるか、酸化銅粉の比表面積が3.3m2/g以上であること。 [4] The peak intensity of the (-1,1,1) plane of the X-ray diffraction spectrum of the copper oxide powder is I, and the (-1,1,1) X-ray diffraction spectrum of the reference copper oxide powder after crystallization is completed. When the peak intensity of the surface is Is, the peak intensity ratio I / Is between the peak intensity I of the copper oxide powder and the peak intensity Is of the reference copper oxide powder is 0.52 or less, or the copper oxide powder The half width of the (-1,1,1) plane of the X-ray diffraction spectrum is F, and the half width of the (-1,1,1) plane of the reference copper oxide powder after crystallization is Fs. When the half-value width F / Fs of the half-value width F of the copper oxide powder and the half-value width Fs of the reference copper oxide powder is 2.9 or more, or the specific surface area of the copper oxide powder is 3.3 m 2 / g. That's it.
また第2の実施の形態における基準酸化銅粉とは、銅塩の水溶液例えば塩化第二銅の水溶液とアルカリ溶液とを用いて直接湿式法により得た酸化銅粉を加熱炉において700℃の加熱温度で6時間加熱処理し、その後、またこの酸化銅粉を850℃の加熱温度で12時間加熱処理したものである。 Further, the reference copper oxide powder in the second embodiment refers to a copper oxide powder obtained by a direct wet method using an aqueous copper salt solution, for example, an aqueous cupric chloride solution and an alkaline solution, and heated at 700 ° C. in a heating furnace. Then, the copper oxide powder was heat-treated at a heating temperature of 850 ° C. for 12 hours.
また第2の実施の形態における酸化銅粉の純度は、第1の実施の形態と同様に酸化銅粉中のCu濃度を測定し、CuO換算した値である。ここでこの酸化銅粉を銅メッキ剤として用いるためには、メッキ処理における銅濃度の変化を防ぎ、メッキ液の銅濃度のコントロールがし易いように、前記要件〔3〕のように、純度が98.5%以上の酸化銅粉であることが好ましい。 Moreover, the purity of the copper oxide powder in the second embodiment is a value obtained by measuring the Cu concentration in the copper oxide powder and converting it to CuO as in the first embodiment. Here, in order to use this copper oxide powder as a copper plating agent, the purity is reduced as described in the above requirement [3] so that the change in the copper concentration in the plating process can be prevented and the copper concentration of the plating solution can be easily controlled. It is preferable that it is 98.5% or more of copper oxide powder.
また前記要件〔4〕は、この酸化銅粉におけるメッキ液への溶解性を決定するための要件であり、第1の実施の形態と同様に本発明者らの試行錯誤により、決定された要件である。 The requirement [4] is a requirement for determining the solubility of the copper oxide powder in the plating solution, and the requirement determined by the inventors through trial and error as in the first embodiment. It is.
これらの要件を満たす酸化銅粉を得るには、乾燥機または加熱炉における加熱温度や加熱時間が問題となり、加熱温度が高すぎたり、加熱時間が長すぎたりすると、前記要件〔3〕は確保されるものの、要件〔4〕は当てはまらず、メッキ液への溶解性が悪化してしまう。 In order to obtain copper oxide powder satisfying these requirements, heating temperature and heating time in a dryer or heating furnace become a problem. If the heating temperature is too high or the heating time is too long, the requirement [3] is ensured. However, requirement [4] does not apply, and the solubility in the plating solution deteriorates.
従って本発明者らは、後述する種々の実験を行い、上述の要件を備えた酸化銅粉を製造するための加熱温度と加熱時間の最適化を図った。直接湿式法により得た酸化銅粉の熱処理条件の一例を以下に示すが、この条件で熱分解を行って得られた酸化銅粉については、上述の2つの要件を満たしている。
(直接湿式法により得た酸化銅粉の熱処理条件の一例)
加熱温度が300℃のときは、加熱時間は60分以上360分以下
加熱温度が500℃のときは、加熱時間は30分以上360分以下
加熱温度が600℃のときは、加熱時間は30分以下
このようにして酸化銅粉を得た後、この酸化銅粉を第1の実施の形態で述べたように洗浄槽5→遠心分離機6→乾燥機7という工程を経て、当該酸化銅粉が得られる。この酸化銅粉は、図2に示す装置の銅メッキ材料として用いることができる。
Therefore, the present inventors conducted various experiments described later, and attempted to optimize the heating temperature and the heating time for producing the copper oxide powder having the above-mentioned requirements. An example of the heat treatment conditions of the copper oxide powder obtained by the direct wet method is shown below. The copper oxide powder obtained by thermal decomposition under these conditions satisfies the above two requirements.
(Example of heat treatment condition of copper oxide powder obtained by direct wet method)
When the heating temperature is 300 ° C., the heating time is 60 minutes or more and 360 minutes or less. When the heating temperature is 500 ° C., the heating time is 30 minutes or more and 360 minutes or less. When the heating temperature is 600 ° C., the heating time is 30 minutes. Hereinafter, after obtaining the copper oxide powder in this way, the copper oxide powder is subjected to the process of washing tank 5 → centrifugal separator 6 → dryer 7 as described in the first embodiment. Is obtained. This copper oxide powder can be used as a copper plating material for the apparatus shown in FIG.
上述の実施の形態によれば、上述の熱処理条件にて銅塩の水溶液例えば塩化第二銅の水溶液とアルカリ溶液とを用いて直接湿式法により得た酸化銅粉を加熱して熱分解を行っているので、98.5%以上の高い純度を確保しながら、前記ピーク強度比I/Isが0.52以下又は前記半値幅比F/Fsが2.9以上の酸化銅粉或いは比表面積が3.3m2/g以上の酸化銅粉を製造することができる。これにより、第1の実施の形態と同様の効果を得ることができる。
〔第3の実施の形態〕
本発明の第3の実施の形態では、銅塩の水溶液と水酸化アルカリとを反応させて水酸化第二銅粉を生成し、そしてこの水酸化第二銅粉を熱分解することにより純度の高い酸化銅粉を生成した。このような方法による酸化銅粉の生成については、図1と同じ構成にあるので、ここでは便宜上図1を用いて具体的に説明する。先ず、銅塩の水溶液例えば銅濃度が5重量%である硫酸第二銅(CuSO4)の水溶液と水酸化アルカリ例えば濃度が10重量%である水酸化ナトリウム(NaOH)水溶液とを例えば混合液のpHが11となるように反応槽1内に投入し、攪拌手段11により例えば60分間攪拌して反応させる。このとき混合液の温度は例えば5℃に設定される。
According to the above-described embodiment, the copper oxide powder obtained by the direct wet method is heated and pyrolyzed using an aqueous copper salt solution, for example, an aqueous cupric chloride solution and an alkaline solution under the above-described heat treatment conditions. Therefore, while ensuring a high purity of 98.5% or more, the copper oxide powder or the specific surface area of the peak intensity ratio I / Is is 0.52 or less or the half width ratio F / Fs is 2.9 or more. A copper oxide powder of 3.3 m 2 / g or more can be produced. Thereby, the effect similar to 1st Embodiment can be acquired.
[Third Embodiment]
In the third embodiment of the present invention, an aqueous solution of copper salt and an alkali hydroxide are reacted to produce cupric hydroxide powder, and the cupric hydroxide powder is thermally decomposed to achieve purity. A high copper oxide powder was produced. The production of copper oxide powder by such a method has the same configuration as that in FIG. 1 and will be specifically described here with reference to FIG. 1 for convenience. First, an aqueous solution of copper salt, for example, an aqueous solution of cupric sulfate (CuSO4) having a copper concentration of 5% by weight and an alkali hydroxide, for example, an aqueous solution of sodium hydroxide (NaOH) having a concentration of 10% by weight, for example, the pH of the mixed solution. Is put into the
上述の反応は次のように進行して、水酸化第二銅が生成される。 The above reaction proceeds as follows to produce cupric hydroxide.
CuSO4 +2NaOH→Cu(OH)2 +Na2 SO4 (5)
こうして水酸化第二銅が析出生成されて粉体となって沈殿する。そしてバルブ12を開いて沈殿物であるスラリーを抜き出して遠心分離機2に送り、ここで遠心分離により固形分を母液から分離し、その固形分である水酸化第二銅粉を加熱炉、例えばロータリキルン4に供給し、ここで所定の温度で所定時間加熱して熱分解することで酸化銅粉が生成される。上述の反応は以下に示す通りである。
CuSO4 + 2NaOH-> Cu (OH) 2 + Na2 SO4 (5)
Thus, cupric hydroxide is precipitated and formed into a powder. And the valve |
Cu(OH)2 →CuO+H2O (6)
ここで第3の実施の形態における加熱温度及び加熱時間について説明する。本発明で銅メッキ材料として用いられる酸化銅粉は、銅メッキ液への溶解度やメッキの質を考慮すると、次の要件を満たすことが要求される。
Cu (OH) 2 → CuO + H2O (6)
Here, the heating temperature and the heating time in the third embodiment will be described. The copper oxide powder used as a copper plating material in the present invention is required to satisfy the following requirements in consideration of solubility in a copper plating solution and plating quality.
〔5〕純度が98.5%以上であること。 [5] Purity is 98.5% or more.
〔6〕酸化銅粉のX線回折スペクトルの(−1,1,1)面のピーク強度をI、結晶化が終了した基準酸化銅粉のX線回折スペクトルの(−1,1,1)面のピーク強度をIsとしたときに、前記酸化銅粉のピーク強度Iと基準酸化銅粉のピーク強度Isとのピーク強度比I/Isが0.67以下であるか、又は酸化銅粉のX線回折スペクトルの(−1,1,1)面の半値幅をF、結晶化が終了した基準酸化銅粉のX線回折スペクトルの(−1,1,1)面の半値幅をFsとしたときに、前記酸化銅粉の半値幅Fと基準酸化銅粉の半値幅Fsとの半値幅比F/Fsが1.6以上であるか、酸化銅粉の比表面積が3.6m2/g以上であること。 [6] The peak intensity of the (-1,1,1) plane of the X-ray diffraction spectrum of the copper oxide powder is I, and the (-1,1,1) X-ray diffraction spectrum of the reference copper oxide powder after crystallization is completed. When the peak intensity of the surface is Is, the peak intensity ratio I / Is between the peak intensity I of the copper oxide powder and the peak intensity Is of the reference copper oxide powder is 0.67 or less, or the copper oxide powder The half width of the (-1,1,1) plane of the X-ray diffraction spectrum is F, and the half width of the (-1,1,1) plane of the reference copper oxide powder after crystallization is Fs. When the full width at half maximum F / Fs between the full width at half maximum F of the copper oxide powder and the full width at half maximum Fs of the reference copper oxide powder is 1.6 or more, or the specific surface area of the copper oxide powder is 3.6 m 2 / g. That's it.
第3の実施の形態における基準酸化銅粉とは、水酸化第二銅粉を加熱炉において700℃で6時間加熱処理し、酸化銅粉にする。そしてこの酸化銅粉を850℃の加熱温度で12時間加熱処理したものである。 The reference copper oxide powder in the third embodiment is obtained by heat treating cupric hydroxide powder at 700 ° C. for 6 hours in a heating furnace to obtain copper oxide powder. And this copper oxide powder is heat-treated at a heating temperature of 850 ° C. for 12 hours.
また第3の実施の形態における酸化銅粉の純度は、第1の実施の形態と同様に酸化銅粉中のCu濃度を測定し、CuO換算した値であり、酸化銅粉の純度が低いとは水酸化第二銅の変換率が低く、酸化銅に変化しない水酸化第二銅が多く存在することを意味する。酸化銅粉の純度が低く、水酸化第二銅が多く存在すると、酸化銅濃度のばらつきが大きくなる。このため、銅メッキ材料として用いた場合には、処理の度に銅濃度が変化しやすく、メッキ液の銅濃度のコントロールが困難になってしまうので、前記要件〔5〕のように、純度が98.5%以上の酸化銅粉が好ましい。 Moreover, the purity of the copper oxide powder in the third embodiment is a value obtained by measuring the Cu concentration in the copper oxide powder in the same manner as in the first embodiment and converting to CuO, and the purity of the copper oxide powder is low. Means that the conversion rate of cupric hydroxide is low and there are many cupric hydroxides that do not change to copper oxide. If the purity of the copper oxide powder is low and a large amount of cupric hydroxide is present, the variation in the copper oxide concentration increases. For this reason, when used as a copper plating material, the copper concentration easily changes with each treatment, and it becomes difficult to control the copper concentration of the plating solution. 98.5% or more of copper oxide powder is preferred.
また前記要件〔6〕は、この酸化銅粉におけるメッキ液への溶解性を決定するための要件であり、第1の実施の形態と同様に本発明者らの試行錯誤により、決定された要件である。 The requirement [6] is a requirement for determining the solubility of the copper oxide powder in the plating solution, and the requirement determined by the inventors through trial and error as in the first embodiment. It is.
これらの要件を満たす酸化銅粉を得るには、加熱炉における加熱温度や加熱時間が問題となり、加熱温度が高すぎたり、加熱時間が長すぎたりすると、前記要件〔5〕は確保されるものの、要件〔6〕は当てはまらず、メッキ液への溶解性が悪化してしまう。 In order to obtain copper oxide powder satisfying these requirements, heating temperature and heating time in the heating furnace become a problem. If the heating temperature is too high or the heating time is too long, the requirement [5] is ensured. The requirement [6] does not apply and the solubility in the plating solution is deteriorated.
従って本発明者らは、後述する種々の実験を行い、上述の要件を備えた酸化銅粉を製造するための加熱温度と加熱時間の最適化を図った。水酸化第二銅粉の熱処理条件の一例を以下に示すが、この条件で熱分解を行って得られた酸化銅粉については、上述の2つの要件を満たしている。
(水酸化第二銅粉の熱処理条件の一例)
加熱温度が300℃のときは、加熱時間は30分以上360分以下
加熱温度が500℃のときは、加熱時間は30分以上360分以下
加熱温度が600℃のときは、加熱時間は30分以上360分以下
加熱温度が650℃のときは、加熱時間は30分以上60分以下
このようにして酸化銅粉を得た後、この酸化銅粉を第1の実施の形態で述べたように洗浄槽5→遠心分離機6→乾燥機7という工程を経て、当該酸化銅粉が得られる。この酸化銅粉は、図2に示す装置の銅メッキ材料として用いることができる。
Therefore, the present inventors conducted various experiments described later, and attempted to optimize the heating temperature and the heating time for producing the copper oxide powder having the above-mentioned requirements. An example of heat treatment conditions for cupric hydroxide powder is shown below, but the copper oxide powder obtained by thermal decomposition under these conditions satisfies the above two requirements.
(Example of heat treatment conditions for cupric hydroxide powder)
When the heating temperature is 300 ° C., the heating time is 30 minutes or more and 360 minutes or less. When the heating temperature is 500 ° C., the heating time is 30 minutes or more and 360 minutes or less. When the heating temperature is 600 ° C., the heating time is 30 minutes. More than 360 minutes or less When the heating temperature is 650 ° C., the heating time is 30 minutes or more and 60 minutes or less. After obtaining the copper oxide powder in this way, the copper oxide powder is used as described in the first embodiment. The copper oxide powder is obtained through the steps of washing tank 5 → centrifuge 6 → dryer 7. This copper oxide powder can be used as a copper plating material for the apparatus shown in FIG.
上述の実施の形態によれば、上述の熱処理条件にて水酸化第二銅粉を加熱して熱分解を行っているので、98.5%以上の高い純度を確保しながら、前記ピーク強度比I/Isが0.67以下又は前記半値幅比F/Fsが1.6以上の酸化銅粉或いは比表面積が3.6m2/g以上の酸化銅粉を製造することができる。これにより、第1の実施の形態と同様の効果を得ることができる。 According to the above-described embodiment, since the cupric hydroxide powder is heated and pyrolyzed under the above heat treatment conditions, the peak intensity ratio is ensured while ensuring a high purity of 98.5% or more. A copper oxide powder having an I / Is of 0.67 or less or a half-width ratio F / Fs of 1.6 or more or a copper oxide powder having a specific surface area of 3.6 m @ 2 / g or more can be produced. Thereby, the effect similar to 1st Embodiment can be acquired.
本発明は、本発明者らが試行錯誤の結果、前記有機物の添加剤を含むメッキ液への銅メッキ材料(酸化銅粉)の溶解性が、当該酸化銅粉の構造に依存し、この酸化銅粉の構造は第1の実施の形態では塩基性炭酸銅粉の熱分解時の熱処理条件に依存し、第2の実施の形態では銅塩の水溶液とアルカリ溶液とを用いて直接湿式法により得た酸化銅粉の加熱時の熱処理条件に依存し、第3の実施の形態では水酸化第二銅粉の熱分解時の熱処理条件に依存することを見出すことにより成されたものであるので、以下に本発明者らが本発明を見出すに至った経緯について説明する。 In the present invention, as a result of trial and error by the present inventors, the solubility of the copper plating material (copper oxide powder) in the plating solution containing the organic additive depends on the structure of the copper oxide powder. In the first embodiment, the structure of the copper powder depends on the heat treatment conditions during the thermal decomposition of the basic copper carbonate powder. In the second embodiment, a direct wet method using an aqueous solution of copper salt and an alkaline solution is used. Since it depends on the heat treatment conditions at the time of heating of the obtained copper oxide powder, in the third embodiment, it is made by finding that it depends on the heat treatment conditions at the time of thermal decomposition of the cupric hydroxide powder. The following is a description of how the inventors have found the present invention.
先ず本発明者らは、メッキ液に有機物の添加剤を添加すると酸化銅粉の溶解性が悪化することに着目し、どの有機物が酸化銅粉の溶解を阻害するのかを調べるべく、種々の添加剤をメッキ液に添加して、酸化銅粉の溶解試験を行った。この溶解試験は、添加剤を所定濃度でメッキ液に添加し、このメッキ液を攪拌しながら所定量の酸化銅粉を添加して、溶解の程度を目視により確認することにより行った。この結果、−C=S基を含むチオ尿素、−S-S−基を含むSPS、−N=N−基を含むヤヌスグリーンを添加剤として含むメッキ液に対しては酸化銅粉の溶解性がかなり悪いことが認められ、−C=S基、−S−S−基、−N=N−基、−S−H基のいずれかを有する有機物が酸化銅粉の溶解を阻害することを突き止めた。ここでこの溶解試験に用いた酸化銅粉は、塩基性炭酸銅粉を750℃の加熱温度で8時間加熱して熱分解を行ったものと、塩化第二銅の水溶液とアルカリ溶液とを用いて直接湿式法により得た酸化銅粉を700℃の加熱温度で6時間加熱したものと、水酸化第二銅粉を700℃の加熱温度で6時間加熱して熱分解を行ったものとを用いた。 First, the inventors pay attention to the fact that the solubility of copper oxide powder deteriorates when an organic additive is added to the plating solution, and in order to investigate which organic substance inhibits the dissolution of copper oxide powder, various additions are made. An agent was added to the plating solution, and a dissolution test of the copper oxide powder was performed. This dissolution test was performed by adding an additive to the plating solution at a predetermined concentration, adding a predetermined amount of copper oxide powder while stirring the plating solution, and visually checking the degree of dissolution. As a result, the solubility of copper oxide powder in plating solutions containing thiourea containing -C = S group, SPS containing -S-S- group, and Janus Green containing -N = N- group as additives. It is recognized that organic substances having any of —C═S group, —S—S— group, —N═N— group, and —S—H group inhibit the dissolution of copper oxide powder. I found it. Here, the copper oxide powder used in this dissolution test was obtained by thermally decomposing a basic copper carbonate powder at a heating temperature of 750 ° C. for 8 hours, an aqueous solution of cupric chloride and an alkaline solution. A copper oxide powder obtained by a direct wet process was heated at 700 ° C. for 6 hours, and a cupric hydroxide powder was heated at 700 ° C. for 6 hours and thermally decomposed. Using.
次いで先ず塩基性炭酸銅粉、直接湿式法により得た酸化銅粉及び水酸化第二銅粉を各種の熱処理条件で処理して夫々酸化銅粉を得、各酸化銅粉においてその純度を測定することにより、純度が98.5%以上の酸化銅粉を得るための熱処理条件を決定した。続いてユーザーメーカーにて実際に使用されている、有機物の添加剤を含むメッキ液を入手し、前記各種の熱処理条件により得られた3つの酸化銅粉の前記メッキ液に対しての溶解性の試験を行ない、熱処理条件の違いにより酸化銅粉の前記メッキ液に対する溶解性が異なることを見出した。そしてこの理由について、熱処理条件により得られる酸化銅粉の構造が異なるためと推察し、各種の熱処理条件により得られた酸化銅粉についてX線回折による構造分析を行うことにより、前記ユーザーメーカーのメッキ液に対する溶解性と酸化銅粉の構造との関係を見出した。 Next, basic copper carbonate powder, copper oxide powder obtained by a direct wet method and cupric hydroxide powder are treated under various heat treatment conditions to obtain copper oxide powder, and the purity of each copper oxide powder is measured. Thus, the heat treatment conditions for obtaining a copper oxide powder having a purity of 98.5% or more were determined. Subsequently, a plating solution containing an organic additive that is actually used by a user manufacturer is obtained, and the solubility of the three copper oxide powders obtained by the various heat treatment conditions in the plating solution is obtained. The test was conducted and it was found that the solubility of the copper oxide powder in the plating solution was different depending on the heat treatment conditions. And for this reason, it is presumed that the structure of the copper oxide powder obtained by the heat treatment conditions is different, and the copper oxide powder obtained by various heat treatment conditions is subjected to structural analysis by X-ray diffraction, so that the plating of the user manufacturer The relationship between the solubility in liquid and the structure of copper oxide powder was found.
つまり既述のように、〔1〕〜〔6〕に述べた条件を満足する酸化銅粉は、前記ユーザーメーカーのメッキ液に対する溶解性が高いことを種々の実験を行うことにより突き止め、このような酸化銅粉を製造するための熱処理条件を把握することにより本発明を成し得るに至った。このように本発明は、本発明者らの試行錯誤により成し得たものであり、続いて本発明者らが行った実施例について説明する。なお、第1の実施の形態、第2の実施の形態及び第3の実施の形態で述べた酸化銅粉において、ピーク強度比I/Is、半値幅比F/Fs及び比表面積の値が夫々異なる理由の一つとしては、酸化銅粉の粒子の大きさや形状が各製造方法によって変わってくるからであると思われる。 In other words, as described above, the copper oxide powder that satisfies the conditions described in [1] to [6] has been determined by performing various experiments to demonstrate that the copper oxide powder has high solubility in the plating solution of the user manufacturer. The present invention can be accomplished by grasping the heat treatment conditions for producing a simple copper oxide powder. As described above, the present invention can be achieved by the trial and error of the present inventors, and subsequently, examples performed by the present inventors will be described. In the copper oxide powders described in the first embodiment, the second embodiment, and the third embodiment, the peak intensity ratio I / Is, the full width at half maximum ratio F / Fs, and the specific surface area values are respectively. One of the reasons for the difference is considered to be that the size and shape of the copper oxide powder particles vary depending on each production method.
(実験例1−1)
第1の実施の形態において塩基性炭酸銅粉を各種の熱処理条件で熱分解して酸化銅粉を得、その純度を測定した。この結果を図5に示す。この結果により、加熱温度が300℃では240分間以上、400℃では20分間以上、500℃〜750℃では5分間以上熱分解を行うことにより、純度が98.5%以上の酸化銅粉が得られることが認められた。
(Experimental example 1-1)
In the first embodiment, basic copper carbonate powder was pyrolyzed under various heat treatment conditions to obtain copper oxide powder, and the purity was measured. The result is shown in FIG. As a result, by performing thermal decomposition at a heating temperature of 300 ° C. for 240 minutes or more, at 400 ° C. for 20 minutes or more, and at 500 ° C. to 750 ° C. for 5 minutes or more, a copper oxide powder having a purity of 98.5% or more is obtained. It was recognized that
(実験例1−2)
上述の所定の熱処理条件で得た、純度が98.5%以上の酸化銅粉の数種について、ユーザーメーカーから入手したメッキ液に対する溶解試験を行った。この溶解試験は次のような方法にて行った。つまり前記ユーザーメーカーのメッキ液500mlを200rpmの回転数で攪拌させておき、そこへ酸化銅粉5gを投入し、2分間経過後、攪拌を停止して濾過を行ない、不溶解残渣量を測定することにより、溶解率を算出した。ここで前記ユーザ−メーカーのメッキ液には、CuSO4・5H2O、H2SO4、添加剤である200ppmのSPSが含まれており、メッキ液温度は25℃とした。
(Experimental example 1-2)
For several types of copper oxide powders having a purity of 98.5% or more obtained under the above-mentioned predetermined heat treatment conditions, a dissolution test was performed on a plating solution obtained from a user manufacturer. This dissolution test was performed by the following method. That is, 500 ml of the plating solution of the user manufacturer is stirred at a rotation speed of 200 rpm, 5 g of copper oxide powder is added thereto, and after 2 minutes, stirring is stopped and filtration is performed, and the amount of insoluble residue is measured. Thus, the dissolution rate was calculated. Here, the plating solution of the user manufacturer contained CuSO4 · 5H2O, H2SO4, and 200 ppm of SPS as an additive, and the plating solution temperature was 25 ° C.
このときの溶解率を図6に示す。この結果により、700℃で20分間熱分解を行うことにより得られる酸化銅粉の溶解率が21.6%であるのに対し、650℃で20分間熱分解を行うことにより得られる酸化銅粉の溶解率は96.5%であることが認められた。これにより熱処理条件によって酸化銅粉の構造が変化し、この構造変化が前記メッキ液に対する溶解性に影響を与えていることが推察される。 The dissolution rate at this time is shown in FIG. As a result, the dissolution rate of copper oxide powder obtained by pyrolysis at 700 ° C. for 20 minutes is 21.6%, whereas copper oxide powder obtained by pyrolysis at 650 ° C. for 20 minutes. Was found to be 96.5%. Thereby, it is inferred that the structure of the copper oxide powder changes depending on the heat treatment conditions, and this change in the structure affects the solubility in the plating solution.
(実験例1−3)
続いて酸化銅粉の構造と、メッキ液への溶解性との関係を明確化するために、(実験例1−2)にて溶解試験を行った酸化銅粉に対して、X線回折による構造分析を行なった。このとき、前記酸化銅粉についてX線回折スペクトルを測定し、当該スペクトルの(−1,1,1)面のピーク強度をIとし、結晶化が終了した基準酸化銅粉のX線回折スペクトルの(−1,1,1)面のピーク強度をIsとしたときに、前記酸化銅粉のピーク強度Iと基準酸化銅粉のピーク強度Isとの比であるピーク強度比I/Isを求めた。
(Experimental Example 1-3)
Subsequently, in order to clarify the relationship between the structure of the copper oxide powder and the solubility in the plating solution, the copper oxide powder subjected to the dissolution test in (Experimental Example 1-2) was analyzed by X-ray diffraction. Structural analysis was performed. At this time, an X-ray diffraction spectrum is measured for the copper oxide powder, the peak intensity of the (−1, 1, 1) plane of the spectrum is I, and the X-ray diffraction spectrum of the reference copper oxide powder after crystallization is completed. The peak intensity ratio I / Is, which is the ratio of the peak intensity I of the copper oxide powder and the peak intensity Is of the reference copper oxide powder, was determined when the peak intensity of the (-1,1,1) plane was Is. .
またこのとき、前記酸化銅粉のX線回折スペクトルの(−1,1,1)面の回折ピークの半値幅をFとし、前記基準酸化銅粉のX線回折スペクトルの(−1,1,1)面の回折ピークの半値幅をFsとしたときに、前記酸化銅粉の半値幅Fと基準酸化銅粉の半値幅Fsとの比である半値幅比F/Fsを求めた。これらの結果を図7に示す。ここで基準酸化銅粉としては、塩基性炭酸銅粉を750℃にて8時間加熱処理を行い、さらに850℃にて12時間加熱処理を行うことにより得られた酸化銅粉を用いた。 At this time, the half-value width of the diffraction peak of the (−1, 1, 1) plane of the X-ray diffraction spectrum of the copper oxide powder is F, and the (−1, 1, 1) of the X-ray diffraction spectrum of the reference copper oxide powder is 1) When the half-value width of the diffraction peak on the surface is Fs, the half-value width ratio F / Fs, which is the ratio between the half-value width F of the copper oxide powder and the half-value width Fs of the reference copper oxide powder, was obtained. These results are shown in FIG. Here, as the standard copper oxide powder, a copper oxide powder obtained by heat-treating basic copper carbonate powder at 750 ° C. for 8 hours and further heat-treating at 850 ° C. for 12 hours was used.
この結果により、熱処理条件が異なるとピーク強度比I/Isの値が異なること、また前記ピーク強度比I/Isの値が小さい酸化銅粉程、ユーザーメーカーのメッキ液に対する溶解率が大きいことが確認された。これによりユーザーメーカーのメッキ液に対する高い溶解度を確保するためには、ピーク強度比I/Isが0.36以下という要件が必要となることが理解される。 According to this result, when the heat treatment conditions are different, the value of the peak intensity ratio I / Is is different, and the copper oxide powder having a smaller value of the peak intensity ratio I / Is has a higher dissolution rate in the plating solution of the user manufacturer. confirmed. Thus, it is understood that the requirement that the peak intensity ratio I / Is is 0.36 or less is necessary to ensure high solubility in the plating solution of the user manufacturer.
同様に、熱処理条件が異なると半値幅比F/Fsの値が異なり、半値幅比F/Fsの値が大きい酸化銅粉程、ユーザーメーカーのメッキ液に対する溶解率が大きいことが確認され、これによりユーザーメーカーのメッキ液に対する高い溶解度を確保するためには、半値幅比F/Fsが2.9以上という要件が必要となることが理解される。 Similarly, when the heat treatment conditions are different, the value of the half width ratio F / Fs is different, and the copper oxide powder having a larger half width ratio F / Fs has a higher dissolution rate with respect to the plating solution of the user manufacturer. Thus, it is understood that the requirement that the half width ratio F / Fs is 2.9 or more is necessary to ensure high solubility in the plating solution of the user manufacturer.
ここでピーク強度比I/Isは値が大きいほど(半値幅比F/Fsは値が小さいほど)、酸化銅粉の結晶化が進み、安定した状態であることを示しており、このように結晶化が進み安定した酸化銅粉は液体成分に溶解しにくいことから、前記有機物の添加剤を含むメッキ液への高い溶解性を確保するためには、ピーク強度比I/Isが0.36以下(半値幅比F/Fsが2.9以上)の結晶度であることが要求される。 Here, as the peak intensity ratio I / Is is larger (the half-value width ratio F / Fs is smaller), the crystallization of the copper oxide powder progresses, indicating a stable state. Crystallized and stable copper oxide powder is difficult to dissolve in the liquid component. Therefore, in order to ensure high solubility in the plating solution containing the organic additive, the peak intensity ratio I / Is is 0.36. The crystallinity is required to be below (half-value width ratio F / Fs is 2.9 or more).
(実験例1−4)
(実験例1−1)の純度試験により、純度が98.5%以上の熱処理条件にて得られた酸化銅粉から数種を選んで(実験例1−3)と同様のX線回折分析を行なった。この結果をピーク強度比I/Isについては図8に、半値幅比F/Fsについては図9に夫々示す。
(Experimental Example 1-4)
The same X-ray diffraction analysis as in (Experimental Example 1-3) by selecting several types of copper oxide powders obtained under the heat treatment conditions with a purity of 98.5% or more by the purity test in (Experimental Example 1-1) Was done. The results are shown in FIG. 8 for the peak intensity ratio I / Is and in FIG. 9 for the half width ratio F / Fs.
これにより加熱温度が同じであれば加熱時間が長いほどピーク強度比I/Isの値が大きく、加熱時間が同じであれば加熱温度が高いほどピーク強度比I/Isの値が大きいことが認められた。また加熱温度が同じであれば加熱時間が長いほど半値幅比F/Fsの値が小さく、加熱時間が同じであれば加熱温度が高いほど半値幅比F/Fsの値が小さいことが認められた。 Thus, if the heating temperature is the same, the value of the peak intensity ratio I / Is is larger as the heating time is longer, and if the heating time is the same, the value of the peak intensity ratio I / Is is larger as the heating temperature is higher. It was. In addition, when the heating temperature is the same, the longer the heating time is, the smaller the half width ratio F / Fs is. When the heating time is the same, the higher the heating temperature is, the smaller the half width ratio F / Fs is. It was.
従って、純度が98.5%以上であって、かつピーク強度比I/Isが0.36以下の酸化銅粉を得るための熱処理条件は、
加熱温度が300℃のときは、加熱時間は240分以上480分以下
加熱温度が400℃のときは、加熱時間は20分以上40分以下
加熱温度が500℃のときは、加熱時間は5分以上40分以下
加熱温度が550℃のときは、加熱時間は5分以上40分以下
加熱温度が600℃のときは、加熱時間は5分以上20分以下
加熱温度が650℃のときは、加熱時間は5分以上20分以下
であることが確認された。また上述の熱処理条件にて製造された酸化銅粉は、
純度が98.5%以上であって、かつ半値幅比F/Fsが2.9以上という条件も満たしている。
Therefore, the heat treatment conditions for obtaining a copper oxide powder having a purity of 98.5% or more and a peak intensity ratio I / Is of 0.36 or less are:
When the heating temperature is 300 ° C, the heating time is 240 minutes or more and 480 minutes or less. When the heating temperature is 400 ° C, the heating time is 20 minutes or more and 40 minutes or less. When the heating temperature is 500 ° C, the heating time is 5 minutes. 40 minutes or less When the heating temperature is 550 ° C., the heating time is 5 minutes or more and 40 minutes or less. When the heating temperature is 600 ° C., the heating time is 5 minutes or more and 20 minutes or less. When the heating temperature is 650 ° C., heating is performed. It was confirmed that the time was 5 minutes or more and 20 minutes or less. In addition, the copper oxide powder produced under the above heat treatment conditions is
The condition that the purity is 98.5% or more and the half-width ratio F / Fs is 2.9 or more is also satisfied.
(実験例1−5)
(実験例1−1)の純度試験により、純度が98.5%以上の熱処理条件にて得られた酸化銅粉から数種を選んで、比表面積による分析を行なった。このとき比表面積はBET一点法により測定した。この結果を図10に示す。
(Experimental example 1-5)
According to the purity test of (Experimental Example 1-1), several types were selected from the copper oxide powders obtained under the heat treatment conditions with a purity of 98.5% or more, and the analysis by specific surface area was performed. At this time, the specific surface area was measured by the BET single point method. The result is shown in FIG.
この結果により、熱処理条件が異なると酸化銅粉の比表面積の値が異なること、また比表面積の値が大きい酸化銅粉程、ユーザーメーカーのメッキ液に対する溶解性が大きいことが確認された。これによりユーザーのメッキ液に対する高い溶解性を確保するためには、比表面積が7.3m2/g以上であることが必要となることが理解される。さらに(実験例1−4)にて求められた熱処理条件にて製造された酸化銅粉は、純度が98.5%以上であって、かつ比表面積が7.3m2/g以上という条件を満たすことが認められた。 From this result, it was confirmed that when the heat treatment conditions were different, the value of the specific surface area of the copper oxide powder was different, the copper oxide powder having the larger specific surface area value was more soluble in the plating solution of the user manufacturer. Accordingly, it is understood that the specific surface area needs to be 7.3 m 2 / g or more in order to ensure high solubility in the plating solution of the user. Furthermore, the copper oxide powder produced under the heat treatment conditions obtained in (Experimental Example 1-4) satisfies the condition that the purity is 98.5% or more and the specific surface area is 7.3 m 2 / g or more. It was recognized that
(実験例1−6)
(実験例1−1)と同様の熱処理条件で得た、純度が98.5%以上の酸化銅粉について、SPS200ppmを添加したメッキ液(実験室レベルのメッキ液)に対する溶解試験を行った。この溶解試験は次のような方法にて行った。つまりメッキ液500mlを200rpmの回転数で攪拌させておき、そこへ酸化銅粉5gを投入し、2分間経過後、攪拌を停止して濾過を行ない、不溶解残渣量を測定することにより、溶解率を算出した。ここで前記メッキ液の組成は、CuSO4・5H2O:100g/L、H2SO4:200g/L、SPS:200ppm、メッキ液温度は25℃とした。このときの溶解率を図11に示す。
(Experimental example 1-6)
A copper oxide powder having a purity of 98.5% or more obtained under the same heat treatment conditions as in (Experimental Example 1-1) was subjected to a dissolution test with respect to a plating solution (laboratory level plating solution) to which 200 ppm of SPS was added. This dissolution test was performed by the following method. In other words, 500 ml of plating solution is stirred at a rotation speed of 200 rpm, 5 g of copper oxide powder is added thereto, and after 2 minutes, stirring is stopped, filtration is performed, and the amount of insoluble residue is measured to dissolve the plating solution. The rate was calculated. Here, the composition of the plating solution was CuSO4 · 5H2O: 100 g / L, H2SO4: 200 g / L, SPS: 200 ppm, and the plating solution temperature was 25 ° C. The dissolution rate at this time is shown in FIG.
この結果により、当該メッキ液への溶解率は、前記ユーザーメーカーのメッキ液への溶解率より高いこと、加熱温度が高くなり、加熱時間が長くなる程、溶解率が低くなる傾向があることが認められた。ここで前記ユーザーメーカーのメッキ液にもSPSが含まれているが、当該ユーザーメーカーのメッキ液にはSPSの分解物が含まれていて、その分解物の量が累積的に多くなっていくので、当該実施例で用いた実験室レベルのメッキ液よりも酸化銅粉の溶解率が低くなってしまうと推察される。従って、ユーザーメーカーのメッキ液に比べて、実験室レベルのメッキ液では、比表面積が小さくても溶解性が良いということになる。これは、実際のSPSでは使用によりSPS自体が分解し、その分解生成物が溶解性を悪くしているものと考えられ、この発明の効果は、ユーザーメーカーのメッキ液を用いて評価している。 As a result, the dissolution rate in the plating solution may be higher than the dissolution rate in the plating solution of the user manufacturer, and the dissolution rate tends to decrease as the heating temperature increases and the heating time increases. Admitted. Here, SPS is also included in the plating solution of the user manufacturer, but the decomposition solution of SPS is included in the plating solution of the user manufacturer, and the amount of the decomposition product increases cumulatively. It is presumed that the dissolution rate of the copper oxide powder is lower than the laboratory level plating solution used in this example. Therefore, compared with the plating solution of the user manufacturer, the plating solution at the laboratory level has better solubility even if the specific surface area is small. In actual SPS, it is considered that SPS itself is decomposed by use, and the decomposition product has deteriorated solubility, and the effect of the present invention is evaluated using a plating solution of a user manufacturer. .
(実験例1−7)
(実験例1−4)にて求められた熱処理条件にて製造された酸化銅粉に対して、チオ尿素とヤヌスグリーン、プロピルメルカプタン、メルカトプロピルスルホン酸、メチルイエローに対する溶解試験を行った。つまりチオ尿素を20ppm分添加したメッキ液500mlを200rpmの回転数で攪拌させておき、そこへ酸化銅粉5gを投入し、2分間経過後、攪拌を停止して濾過を行ない、不溶解残渣量を測定することにより、溶解性を確認した。前記メッキ液の組成は、CuSO4・5H2O:100g/L、H2SO4:200g/L、メッキ液温度は25℃とした。この結果、前記熱処理条件にて製造された酸化銅粉は、チオ尿素を含むメッキ液に対して99.9以上の溶解率を確保することが認められ、高い溶解性が確認できた。なお、750℃で480分間熱分解を行うことにより得られる酸化銅の溶解率は39.2%であり、この処理条件では溶解性が悪かった。
(Experimental example 1-7)
A dissolution test for thiourea, Janus green, propyl mercaptan, mercatopropyl sulfonic acid, and methyl yellow was performed on the copper oxide powder produced under the heat treatment conditions obtained in (Experimental Example 1-4). In other words, 500 ml of plating solution added with 20 ppm of thiourea is stirred at a rotation speed of 200 rpm, 5 g of copper oxide powder is added thereto, and after 2 minutes, stirring is stopped and filtration is performed, and the amount of insoluble residue The solubility was confirmed by measuring. The composition of the plating solution was CuSO4 · 5H2O: 100 g / L, H2SO4: 200 g / L, and the plating solution temperature was 25 ° C. As a result, it was confirmed that the copper oxide powder produced under the heat treatment conditions secured a dissolution rate of 99.9 or higher with respect to the plating solution containing thiourea, and high solubility was confirmed. The dissolution rate of copper oxide obtained by thermal decomposition at 750 ° C. for 480 minutes was 39.2%, and the solubility was poor under these treatment conditions.
同様にヤヌスグリーンを40ppm分添加したメッキ液500mlに対しても同様の条件で溶解性を確認した。前記メッキ液の組成温度はチオ尿素を用いた場合と同様とした。この結果、ヤヌスグリーンを含むメッキ液に対して99.9以上の溶解率を確保することが認められ、高い溶解性が確認できた。なお、750℃で480分間熱分解を行うことにより得られる酸化銅の溶解率が64.7%であり、この熱処理条件では溶解性が悪かった。 Similarly, the solubility was confirmed under the same conditions with respect to 500 ml of plating solution to which 40 ppm of Janus Green was added. The composition temperature of the plating solution was the same as when thiourea was used. As a result, it was confirmed that a dissolution rate of 99.9 or more was secured with respect to the plating solution containing Janus Green, and high solubility was confirmed. The dissolution rate of copper oxide obtained by thermal decomposition at 750 ° C. for 480 minutes was 64.7%, and the solubility was poor under this heat treatment condition.
同様にプロピルメルカプタンを200ppm分添加したメッキ液500mlに対しても同様の条件で溶解性を確認した。前記メッキ液の組成、温度はチオ尿素を用いた場合と同様とした。この結果、前記熱処理条件にて製造された酸化銅粉は、プロピルメルカプタンを含むメッキ液に対して99.8%以上の溶解率を確保することが認められ、高い溶解性が確認できた。 Similarly, the solubility was confirmed under the same conditions with respect to 500 ml of plating solution to which 200 ppm of propyl mercaptan was added. The composition and temperature of the plating solution were the same as when thiourea was used. As a result, it was confirmed that the copper oxide powder produced under the heat treatment conditions secured a dissolution rate of 99.8% or more with respect to the plating solution containing propyl mercaptan, and high solubility was confirmed.
同様にメルカトプロピルスルホン酸を200ppm分添加したメッキ液500mlに対しても同様の条件で溶解性を確認した。前記メッキ液の組成、温度はチオ尿素を用いた場合と同様とした。この結果、前記熱処理条件にて製造された酸化銅粉は、メルカトプロピルスルホン酸を含むメッキ液に対して99.6%以上の溶解率を確保することが認められ、高い溶解性が確認できた。 Similarly, the solubility was confirmed under the same conditions for 500 ml of a plating solution to which 200 ppm of mercatopropylsulfonic acid was added. The composition and temperature of the plating solution were the same as when thiourea was used. As a result, it was confirmed that the copper oxide powder produced under the heat treatment conditions ensure a dissolution rate of 99.6% or more with respect to the plating solution containing mercatopropylsulfonic acid, and high solubility can be confirmed. It was.
同様にメチルイエローを5ppm分添加したメッキ液500mlに対しても同様の条件で溶解性を確認した。前記メッキ液の組成、温度はチオ尿素を用いた場合と同様とした。この結果、前記熱処理条件にて製造された酸化銅粉は、メチルイエローを含むメッキ液に対して99.9%以上の溶解率を確保することが認められ、高い溶解性が確認できた。 Similarly, the solubility was confirmed under the same conditions with respect to 500 ml of plating solution to which 5 ppm of methyl yellow was added. The composition and temperature of the plating solution were the same as when thiourea was used. As a result, it was confirmed that the copper oxide powder produced under the heat treatment conditions secures a dissolution rate of 99.9% or more with respect to the plating solution containing methyl yellow, and high solubility was confirmed.
(実験例1−8)
さらに酸化銅粉の構造とメッキ液への溶解性との関係を明確化するために、ユーザーメーカーのメッキ液に対する溶解性の高い酸化銅粉と、溶解性の低い酸化銅粉に対して、SEM(走査型電子顕微鏡)による観察を行った。この結果、1000倍の倍率では両者の表面形状に差異が見られなかったが、10万倍の倍率では両者の表面形状が大きく異なり、前記溶解性の高い酸化銅粉は細かい粒子の凝集体であるが、前記溶解性の低い酸化銅粉は細かい粒子の固相焼結が進んでいることが認められた。この粒子の状態の違いにより両者の溶解性の違いが発生していると推察される。
(Experimental Example 1-8)
Furthermore, in order to clarify the relationship between the structure of copper oxide powder and the solubility in the plating solution, SEM is used for the copper oxide powder having high solubility in the plating solution of the user manufacturer and the copper oxide powder having low solubility. Observation was performed with a scanning electron microscope. As a result, there was no difference in the surface shapes of both at a magnification of 1000 times, but the surface shapes of both were greatly different at a magnification of 100,000 times, and the highly soluble copper oxide powder was an aggregate of fine particles. However, it was confirmed that the low-solubility copper oxide powder was advanced in solid-phase sintering of fine particles. It is inferred that the difference in solubility between the two is caused by the difference in the state of the particles.
(実験例2−1)
第2の実施の形態において塩化第二銅とアルカリ溶液とを反応させて得た酸化銅粉を各種の熱処理条件で加熱して酸化銅粉を得、その純度を測定した。この結果を図12に示す。この結果により、加熱温度が300℃では60分間以上、500℃〜700℃では30分間以上加熱を行うことにより、純度が98.5%以上の酸化銅粉が得られることが認められた。
(Experimental example 2-1)
In the second embodiment, copper oxide powder obtained by reacting cupric chloride with an alkaline solution was heated under various heat treatment conditions to obtain copper oxide powder, and the purity was measured. The result is shown in FIG. From this result, it was confirmed that a copper oxide powder having a purity of 98.5% or more can be obtained by heating at a heating temperature of 300 ° C. for 60 minutes or more, and at 500 ° C. to 700 ° C. for 30 minutes or more.
(実験例2−2)
上述の所定の熱処理条件で得た、純度が98.5%以上の酸化銅粉について、ユーザーメーカーから入手したメッキ液に対する溶解試験を行った。この溶解試験は(実験例1−2)と同様の方法で試験を行った。
(Experimental example 2-2)
The copper oxide powder having a purity of 98.5% or more obtained under the above-described predetermined heat treatment conditions was subjected to a dissolution test for a plating solution obtained from a user manufacturer. This dissolution test was conducted in the same manner as in (Experimental Example 1-2).
酸化銅粉の熱処理条件と溶解率との対比を図13に示す。この結果により、700℃で60分間熱分解を行うことにより得られる酸化銅粉の溶解率が19.8%であるのに対し、600℃で30分間熱分解を行うことにより得られる酸化銅粉の溶解率は95.5%であることが認められた。これにより熱処理条件によって酸化銅粉の構造が変化し、この構造変化が前記メッキ液に対する溶解性に影響を与えていることが推察される。 FIG. 13 shows a comparison between the heat treatment conditions and the dissolution rate of the copper oxide powder. As a result, the dissolution rate of copper oxide powder obtained by pyrolysis at 700 ° C. for 60 minutes is 19.8%, whereas copper oxide powder obtained by pyrolysis at 600 ° C. for 30 minutes. Was found to be 95.5%. Thereby, it is inferred that the structure of the copper oxide powder changes depending on the heat treatment conditions, and this change in the structure affects the solubility in the plating solution.
(実験例2−3)
続いて酸化銅粉の構造と、メッキ液への溶解性との関係を明確化するために、(実験例2−2)にて溶解試験を行った酸化銅粉の数種に対して、X線回折による構造分析を行なった。このとき、前記酸化銅粉についてX線回折スペクトルを測定し、当該スペクトルの(−1,1,1)面のピーク強度をIとし、結晶化が終了した基準酸化銅粉のX線回折スペクトルの(−1,1,1)面のピーク強度をIsとしたときに、前記酸化銅粉のピーク強度Iと基準酸化銅粉のピーク強度Isとの比であるピーク強度比I/Isを求めた。
(Experimental Example 2-3)
Subsequently, in order to clarify the relationship between the structure of the copper oxide powder and the solubility in the plating solution, X was compared with several types of copper oxide powder subjected to the dissolution test in (Experimental Example 2-2). Structural analysis by line diffraction was performed. At this time, an X-ray diffraction spectrum is measured for the copper oxide powder, the peak intensity of the (−1, 1, 1) plane of the spectrum is I, and the X-ray diffraction spectrum of the reference copper oxide powder after crystallization is completed. The peak intensity ratio I / Is, which is the ratio of the peak intensity I of the copper oxide powder and the peak intensity Is of the reference copper oxide powder, was determined when the peak intensity of the (-1,1,1) plane was Is. .
またこのとき、前記酸化銅粉のX線回折スペクトルの(−1,1,1)面の回折ピークの半値幅をFとし、前記基準酸化銅粉のX線回折スペクトルの(−1,1,1)面の回折ピークの半値幅をFsとしたときに、前記酸化銅粉の半値幅Fと基準酸化銅粉の半値幅Fsとの比である半値幅比F/Fsを求めた。これらの結果を図14及び図15に示す。ここで基準酸化銅粉としては、塩化第二銅の水溶液とアルカリ溶液とを用いて直接湿式法により得た酸化銅粉を700℃にて6時間加熱処理し、その後、またこの酸化銅粉を850℃の加熱温度で12時間加熱処理した。 At this time, the half-value width of the diffraction peak of the (−1, 1, 1) plane of the X-ray diffraction spectrum of the copper oxide powder is F, and the (−1, 1, 1) of the X-ray diffraction spectrum of the reference copper oxide powder is 1) When the half-value width of the diffraction peak on the surface is Fs, the half-value width ratio F / Fs, which is the ratio between the half-value width F of the copper oxide powder and the half-value width Fs of the reference copper oxide powder, was obtained. These results are shown in FIGS. Here, as the reference copper oxide powder, a copper oxide powder obtained by a direct wet method using an aqueous solution of cupric chloride and an alkaline solution is heat-treated at 700 ° C. for 6 hours, and then the copper oxide powder is treated again. Heat treatment was performed at a heating temperature of 850 ° C. for 12 hours.
この結果により、前記有機物の添加剤を含むメッキ液への高い溶解性を確保するためには、ピーク強度比I/Isが0.52以下(半値幅比F/Fsが2.9以上)の結晶度であることが要求される。 As a result, in order to ensure high solubility in the plating solution containing the organic additive, the peak intensity ratio I / Is is 0.52 or less (half-width ratio F / Fs is 2.9 or more). The crystallinity is required.
また、純度が98.5%以上であって、且つピーク強度比I/Isが0.52以下の酸化銅粉を得るための熱処理条件は、
加熱温度が300℃のときは、加熱時間は60分以上360分以下
加熱温度が500℃のときは、加熱時間は30分以上360分以下
加熱温度が600℃のときは、加熱時間は30分以下
であることが確認された。また、上述の熱処理条件にて製造された酸化銅粉は、純度98.5%以上であって、且つ半値幅比F/Fsが2.9以上という条件も満たしている。
The heat treatment conditions for obtaining a copper oxide powder having a purity of 98.5% or more and a peak intensity ratio I / Is of 0.52 or less are as follows:
When the heating temperature is 300 ° C., the heating time is 60 minutes or more and 360 minutes or less. When the heating temperature is 500 ° C., the heating time is 30 minutes or more and 360 minutes or less. When the heating temperature is 600 ° C., the heating time is 30 minutes. It was confirmed that: Moreover, the copper oxide powder manufactured on the above-mentioned heat processing conditions is 98.5% or more of purity, and also satisfy | fills the conditions that half value width ratio F / Fs is 2.9 or more.
(実験例2−4)
(実験例2−1)の純度試験により、純度が98.5%以上の熱処理条件にて得られた酸化銅粉から数種を選んで、比表面積により分析を行った。このとき比表面積はBET一点法により測定した。この結果を図16に示す。
(Experimental example 2-4)
According to the purity test of (Experimental example 2-1), several types of copper oxide powders obtained under heat treatment conditions with a purity of 98.5% or more were selected and analyzed by specific surface area. At this time, the specific surface area was measured by the BET single point method. The result is shown in FIG.
この結果により、ユーザーのメッキ液に対する高い溶解性を確保するためには、比表面積が3.3m2/g以上であることが必要となることが理解される。さらに、(実験例2−3)にて求められた熱処理条件にて製造された酸化銅粉は、純度が98.5%以上であって、且つ比表面積が3.3m2/g以上という条件を満たすことが認められた。 From this result, it is understood that the specific surface area must be 3.3 m @ 2 / g or more in order to ensure high solubility in the plating solution of the user. Furthermore, the copper oxide powder manufactured under the heat treatment conditions obtained in (Experimental Example 2-3) has a condition that the purity is 98.5% or more and the specific surface area is 3.3 m 2 / g or more. It was approved to meet.
(実験例2−5)
(実験例2−3)にて求められた熱処理条件にて製造された酸化銅粉に対して、添加剤であるチオ尿素とヤヌスグリーン、プロピルメルカプタン、メルカトプロピルスルホン酸、メチルイエローに対する溶解試験を行った。この添加剤を用いた各メッキ液の試験条件は(実験例1−7)に示す通りである。
(Experimental Example 2-5)
Tests for dissolution of copper oxide powder produced under the heat treatment conditions determined in (Experimental Example 2-3) in additives such as thiourea, Janus Green, propyl mercaptan, mercatopropyl sulfonic acid, and methyl yellow Went. Test conditions for each plating solution using this additive are as shown in (Experimental Example 1-7).
前記熱処理条件にて製造された酸化銅粉は、上記添加剤を用いた各メッキ液に対して夫々99.9以上の溶解率を確保することが認められ、高い溶解性を確認することができた。 The copper oxide powder produced under the heat treatment conditions is confirmed to secure a dissolution rate of 99.9 or more with respect to each plating solution using the above additives, and high solubility can be confirmed. It was.
(実験例3−1)
第3の実施の形態において水酸化第二銅粉を各種の熱処理条件で熱分解して酸化銅粉を得、その純度を測定した。この結果を図17に示す。この結果により、加熱温度が300℃〜700℃では30分間以上熱分解を行うことにより、純度が98.5%以上の酸化銅粉が得られることが認められた。
(Experimental example 3-1)
In the third embodiment, cupric hydroxide powder was pyrolyzed under various heat treatment conditions to obtain copper oxide powder, and its purity was measured. The result is shown in FIG. From this result, it was recognized that a copper oxide powder having a purity of 98.5% or more can be obtained by performing thermal decomposition for 30 minutes or more at a heating temperature of 300 ° C. to 700 ° C.
(実験例3−2)
上述の所定の熱処理条件で得た、純度が98.5%以上の酸化銅粉の数種について、ユーザーメーカーから入手したメッキ液に対する溶解試験を行った。この溶解試験は(実験例1−2)と同様の方法で試験を行った。
(Experimental example 3-2)
For several types of copper oxide powders having a purity of 98.5% or more obtained under the above-mentioned predetermined heat treatment conditions, a dissolution test was performed on a plating solution obtained from a user manufacturer. This dissolution test was conducted in the same manner as in (Experimental Example 1-2).
酸化銅粉の熱処理条件と溶解率との対比を図18に示す。この結果により、700℃で30分間熱分解を行うことにより得られる酸化銅粉の溶解率が20.2%であるのに対し、650℃で60分間熱分解を行うことにより得られる酸化銅粉の溶解率は95.6%であることが認められた。これにより熱処理条件によって酸化銅粉の構造が変化し、この構造変化が前記メッキ液に対する溶解性に影響を与えていることが推察される。 FIG. 18 shows a comparison between the heat treatment conditions and the dissolution rate of the copper oxide powder. As a result, the dissolution rate of copper oxide powder obtained by pyrolysis at 700 ° C. for 30 minutes is 20.2%, whereas copper oxide powder obtained by pyrolysis at 650 ° C. for 60 minutes. Was found to be 95.6%. Thereby, it is inferred that the structure of the copper oxide powder changes depending on the heat treatment conditions, and this change in the structure affects the solubility in the plating solution.
(実験例3−3)
続いて酸化銅粉の構造と、メッキ液への溶解性との関係を明確化するために、(実験例3−2)にて溶解試験を行った酸化銅粉の数種に対して、X線回折による構造分析を行なった。このとき、前記酸化銅粉についてX線回折スペクトルを測定し、当該スペクトルの(−1,1,1)面のピーク強度をIとし、結晶化が終了した基準酸化銅粉のX線回折スペクトルの(−1,1,1)面のピーク強度をIsとしたときに、前記酸化銅粉のピーク強度Iと基準酸化銅粉のピーク強度Isとの比であるピーク強度比I/Isを求めた。
(Experimental Example 3-3)
Subsequently, in order to clarify the relationship between the structure of the copper oxide powder and the solubility in the plating solution, X was measured for several types of copper oxide powder subjected to the dissolution test in (Experimental Example 3-2). Structural analysis by line diffraction was performed. At this time, an X-ray diffraction spectrum is measured for the copper oxide powder, the peak intensity of the (−1, 1, 1) plane of the spectrum is I, and the X-ray diffraction spectrum of the reference copper oxide powder after crystallization is completed. The peak intensity ratio I / Is, which is the ratio of the peak intensity I of the copper oxide powder and the peak intensity Is of the reference copper oxide powder, was determined when the peak intensity of the (-1,1,1) plane was Is. .
またこのとき、前記酸化銅粉のX線回折スペクトルの(−1,1,1)面の回折ピークの半値幅をFとし、前記基準酸化銅粉のX線回折スペクトルの(−1,1,1)面の回折ピークの半値幅をFsとしたときに、前記酸化銅粉の半値幅Fと基準酸化銅粉の半値幅Fsとの比である半値幅比F/Fsを求めた。これらの結果を図19及び図20に示す。ここで基準酸化銅粉としては、水酸化第二銅粉を700℃にて6時間加熱処理し、その後、またこの酸化銅粉を850℃の加熱温度で12時間加熱処理した。 At this time, the half-value width of the diffraction peak of the (−1, 1, 1) plane of the X-ray diffraction spectrum of the copper oxide powder is F, and the (−1, 1, 1) of the X-ray diffraction spectrum of the reference copper oxide powder is 1) When the half-value width of the diffraction peak on the surface is Fs, the half-value width ratio F / Fs, which is the ratio between the half-value width F of the copper oxide powder and the half-value width Fs of the reference copper oxide powder, was obtained. These results are shown in FIG. 19 and FIG. Here, as the reference copper oxide powder, cupric hydroxide powder was heat-treated at 700 ° C. for 6 hours, and then this copper oxide powder was heat-treated at a heating temperature of 850 ° C. for 12 hours.
この結果により、前記有機物の添加剤を含むメッキ液への高い溶解性を確保するためには、ピーク強度比I/Isが0.67以下(半値幅比F/Fsが1.6以上)の結晶度であることが要求される。 As a result, in order to ensure high solubility in the plating solution containing the organic additive, the peak intensity ratio I / Is is 0.67 or less (half-width ratio F / Fs is 1.6 or more). The crystallinity is required.
また、純度が98.5%以上であって、且つピーク強度比I/Isが0.67以下の酸化銅粉を得るための熱処理条件は、
加熱温度が300℃のときは、加熱時間は30分以上360分以下
加熱温度が500℃のときは、加熱時間は30分以上360分以下
加熱温度が600℃のときは、加熱時間は30分以上360分以下
加熱温度が650℃のときは、加熱時間は30分以上60分以下
であることが確認された。また、上述の熱処理条件にて製造された酸化銅粉は、純度98.5%以上であって、且つ半値幅比F/Fsが1.6以上という条件も満たしている。
The heat treatment conditions for obtaining a copper oxide powder having a purity of 98.5% or more and a peak intensity ratio I / Is of 0.67 or less are as follows:
When the heating temperature is 300 ° C., the heating time is 30 minutes or more and 360 minutes or less. When the heating temperature is 500 ° C., the heating time is 30 minutes or more and 360 minutes or less. When the heating temperature is 600 ° C., the heating time is 30 minutes. For 360 minutes or less When the heating temperature is 650 ° C., it was confirmed that the heating time was 30 minutes or more and 60 minutes or less. Moreover, the copper oxide powder manufactured on the above-mentioned heat processing conditions is 98.5% or more of purity, and also satisfy | fills the conditions that half value width ratio F / Fs is 1.6 or more.
(実験例3−4)
(実験例3−1)の純度試験により、純度が98.5%以上の熱処理条件にて得られた酸化銅粉から数種を選んで、比表面積により分析を行った。このとき比表面積はBET一点法により測定した。この結果を図21に示す。
(Experimental example 3-4)
According to the purity test of (Experimental example 3-1), several types were selected from the copper oxide powder obtained under the heat treatment conditions with a purity of 98.5% or more, and the analysis was performed based on the specific surface area. At this time, the specific surface area was measured by the BET single point method. The result is shown in FIG.
この結果により、ユーザーのメッキ液に対する高い溶解性を確保するためには、比表面積が3.6m2/g以上であることが必要となることが理解される。さらに、(実験例3−3)にて求められた熱処理条件にて製造された酸化銅粉は、純度が98.5%以上であって、且つ比表面積が3.6m2/g以上という条件を満たすことが認められた。 From this result, it is understood that the specific surface area needs to be 3.6 m 2 / g or more in order to ensure high solubility in the plating solution of the user. Furthermore, the copper oxide powder produced under the heat treatment conditions obtained in (Experimental Example 3-3) has a purity of 98.5% or more and a specific surface area of 3.6 m 2 / g or more. It was approved to meet.
(実験例3−5)
(実験例3−3)にて求められた熱処理条件にて製造された酸化銅粉に対して、添加剤であるチオ尿素とヤヌスグリーン、プロピルメルカプタン、メルカトプロピルスルホン酸、メチルイエローに対する溶解試験を行った。この添加剤を用いた各メッキ液の試験条件は(実験例1−7)に示す通りである。
(Experimental Example 3-5)
A dissolution test for thiourea, Janus Green, propyl mercaptan, mercatopropyl sulfonic acid, and methyl yellow as additives for the copper oxide powder produced under the heat treatment conditions determined in (Experimental Example 3-3) Went. Test conditions for each plating solution using this additive are as shown in (Experimental Example 1-7).
前記熱処理条件にて製造された酸化銅粉は、上記添加剤を用いた各メッキ液に対して夫々99.9以上の溶解率を確保することが認められ、高い溶解性を確認することができた。 The copper oxide powder produced under the heat treatment conditions is confirmed to secure a dissolution rate of 99.9 or more with respect to each plating solution using the above additives, and high solubility can be confirmed. It was.
1 反応槽
2 遠心分離機
20 吸引濾過手段
3 乾燥機
4 加熱炉
5 洗浄槽
6 遠心分離機
7 乾燥機
8 電解槽
81 不溶性陽極
82 陰極である被メッキ体
83 溶解槽
84 ホッパ
DESCRIPTION OF
Claims (12)
この銅メッキ材料は、塩基性炭酸銅粉を還元雰囲気とはならない雰囲気下で熱分解することにより得られた純度が98.5%以上の酸化銅粉であって、
この酸化銅粉のX線回折スペクトルの(−1,1,1)面のピーク強度をIとし、
結晶化が終了した基準酸化銅粉のX線回折スペクトルの(−1,1,1)面のピーク強度をIsとしたときに、
前記酸化銅粉のピーク強度Iと基準酸化銅粉のピーク強度Isとのピーク強度比I/Isが0.36以下の酸化銅粉であることを特徴とする銅メッキ材料。 In a copper plating material provided with an insoluble anode and an object to be plated to form a cathode, and supplied to an electrolyte containing an organic additive,
This copper plating material is a copper oxide powder having a purity of 98.5% or more obtained by thermally decomposing basic copper carbonate powder in an atmosphere that is not a reducing atmosphere,
The peak intensity of the (-1,1,1) plane of the X-ray diffraction spectrum of this copper oxide powder is I,
When the peak intensity of the (-1, 1, 1) plane of the X-ray diffraction spectrum of the reference copper oxide powder that has been crystallized is Is,
A copper plating material, wherein the peak intensity ratio I / Is between the peak intensity I of the copper oxide powder and the peak intensity Is of the reference copper oxide powder is 0.36 or less.
この銅メッキ材料は、塩基性炭酸銅粉を還元雰囲気とはならない雰囲気下で熱分解することにより得られた純度が98.5%以上の酸化銅粉であって、
この酸化銅粉のX線回折スペクトルの(−1,1,1)面の半値幅をFとし、
結晶化が終了した基準酸化銅粉のX線回折スペクトルの(−1,1,1)面の半値幅をFsとしたときに、
前記酸化銅粉の半値幅Fと基準酸化銅粉の半値幅Fsとの半値幅比F/Fsが2.9以上の酸化銅粉であることを特徴とする銅メッキ材料。 In a copper plating material provided with an insoluble anode and an object to be plated to form a cathode, and supplied to an electrolyte containing an organic additive,
This copper plating material is a copper oxide powder having a purity of 98.5% or more obtained by thermally decomposing basic copper carbonate powder in an atmosphere that is not a reducing atmosphere,
The full width at half maximum of the (-1,1,1) plane of the X-ray diffraction spectrum of this copper oxide powder is F,
When the full width at half maximum of the (−1, 1, 1) plane of the X-ray diffraction spectrum of the reference copper oxide powder that has been crystallized is Fs,
A copper plating material, wherein the half-value width ratio F / Fs between the half-value width F of the copper oxide powder and the half-value width Fs of the reference copper oxide powder is 2.9 or more.
この銅メッキ材料は、塩基性炭酸銅粉を還元雰囲気とはならない雰囲気下で熱分解することにより得られた純度が98.5%以上の酸化銅粉であって、比表面積が7.3m2/g以上の酸化銅粉であることを特徴とする銅メッキ材料。 In a copper plating material provided with an insoluble anode and an object to be plated to form a cathode, and supplied to an electrolyte containing an organic additive,
This copper plating material is a copper oxide powder having a purity of 98.5% or more obtained by thermally decomposing basic copper carbonate powder in an atmosphere that is not a reducing atmosphere, and has a specific surface area of 7.3 m @ 2/7. A copper plating material characterized by being a copper oxide powder of g or more.
この銅メッキ材料は、銅塩の水溶液とアルカリ溶液とを反応させて酸化銅粉を得、この酸化銅粉を加熱することにより得られた純度が98.5%以上の酸化銅粉であって、
この酸化銅粉のX線回折スペクトルの(−1,1,1)面のピーク強度をIとし、
結晶化が終了した基準酸化銅粉のX線回折スペクトルの(−1,1,1)面のピーク強度をIsとしたときに、
前記酸化銅粉のピーク強度Iと基準酸化銅粉のピーク強度Isとのピーク強度比I/Isが0.52以下の酸化銅粉であることを特徴とする銅メッキ材料。 In a copper plating material provided with an insoluble anode and an object to be plated to form a cathode, and supplied to an electrolytic solution containing an organic additive,
This copper plating material is a copper oxide powder having a purity of 98.5% or more obtained by reacting an aqueous solution of a copper salt with an alkaline solution to obtain copper oxide powder and heating the copper oxide powder. ,
The peak intensity of the (-1,1,1) plane of the X-ray diffraction spectrum of this copper oxide powder is I,
When the peak intensity of the (-1, 1, 1) plane of the X-ray diffraction spectrum of the reference copper oxide powder that has been crystallized is Is,
A copper plating material, wherein the peak intensity ratio I / Is between the peak intensity I of the copper oxide powder and the peak intensity Is of the reference copper oxide powder is 0.52 or less.
この銅メッキ材料は、銅塩の水溶液とアルカリ溶液とを反応させて酸化銅粉を得、この酸化銅粉を加熱することにより得られた純度が98.5%以上の酸化銅粉であって、
この酸化銅粉のX線回折スペクトルの(−1,1,1)面の半値幅をFとし、
結晶化が終了した基準酸化銅粉のX線回折スペクトルの(−1,1,1)面の半値幅をFsとしたときに、
前記酸化銅粉の半値幅Fと基準酸化銅粉の半値幅Fsとの半値幅比F/Fsが2.9以上の酸化銅粉であることを特徴とする銅メッキ材料。 In a copper plating material provided with an insoluble anode and an object to be plated to form a cathode, and supplied to an electrolyte containing an organic additive,
This copper plating material is a copper oxide powder having a purity of 98.5% or more obtained by reacting an aqueous solution of a copper salt with an alkaline solution to obtain copper oxide powder and heating the copper oxide powder. ,
The full width at half maximum of the (-1,1,1) plane of the X-ray diffraction spectrum of this copper oxide powder is F,
When the full width at half maximum of the (−1, 1, 1) plane of the X-ray diffraction spectrum of the reference copper oxide powder that has been crystallized is Fs,
A copper plating material, wherein the half-value width ratio F / Fs between the half-value width F of the copper oxide powder and the half-value width Fs of the reference copper oxide powder is 2.9 or more.
この銅メッキ材料は、銅塩の水溶液とアルカリ溶液とを反応させて酸化銅粉を得、この酸化銅粉を加熱することにより得られた純度が98.5%以上の酸化銅粉であって、比表面積が3.3m2/g以上の酸化銅粉であることを特徴とする銅メッキ材料。 In a copper plating material provided with an insoluble anode and an object to be plated to form a cathode, and supplied to an electrolyte containing an organic additive,
This copper plating material is a copper oxide powder having a purity of 98.5% or more obtained by reacting an aqueous solution of a copper salt with an alkaline solution to obtain copper oxide powder and heating the copper oxide powder. A copper plating material characterized by being a copper oxide powder having a specific surface area of 3.3 m 2 / g or more.
この銅メッキ材料は、水酸化第二銅粉を熱分解することにより得られた純度が98.5%以上の酸化銅粉であって、
この酸化銅粉のX線回折スペクトルの(−1,1,1)面のピーク強度をIとし、
結晶化が終了した基準酸化銅粉のX線回折スペクトルの(−1,1,1)面のピーク強度をIsとしたときに、
前記酸化銅粉のピーク強度Iと基準酸化銅粉のピーク強度Isとのピーク強度比I/Isが0.67以下の酸化銅粉であることを特徴とする銅メッキ材料。 In a copper plating material provided with an insoluble anode and an object to be plated to form a cathode, and supplied to an electrolytic solution containing an organic additive,
This copper plating material is a copper oxide powder having a purity of 98.5% or more obtained by thermally decomposing cupric hydroxide powder,
The peak intensity of the (-1,1,1) plane of the X-ray diffraction spectrum of this copper oxide powder is I,
When the peak intensity of the (-1, 1, 1) plane of the X-ray diffraction spectrum of the reference copper oxide powder that has been crystallized is Is,
A copper plating material, wherein the peak intensity ratio I / Is between the peak intensity I of the copper oxide powder and the peak intensity Is of the reference copper oxide powder is 0.67 or less.
この銅メッキ材料は、水酸化第二銅粉を熱分解することにより得られた純度が98.5%以上の酸化銅粉であって、
この酸化銅粉のX線回折スペクトルの(−1,1,1)面の半値幅をFとし、
結晶化が終了した基準酸化銅粉のX線回折スペクトルの(−1,1,1)面の半値幅をFsとしたときに、
前記酸化銅粉の半値幅Fと基準酸化銅粉の半値幅Fsとの半値幅比F/Fsが1.6以上の酸化銅粉であることを特徴とする銅メッキ材料。 In a copper plating material provided with an insoluble anode and an object to be plated to form a cathode, and supplied to an electrolyte containing an organic additive,
This copper plating material is a copper oxide powder having a purity of 98.5% or more obtained by thermally decomposing cupric hydroxide powder,
The full width at half maximum of the (-1,1,1) plane of the X-ray diffraction spectrum of this copper oxide powder is F,
When the full width at half maximum of the (−1, 1, 1) plane of the X-ray diffraction spectrum of the reference copper oxide powder that has been crystallized is Fs,
A copper plating material, wherein the half-value width ratio F / Fs between the half-value width F of the copper oxide powder and the half-value width Fs of the reference copper oxide powder is 1.6 or more.
この銅メッキ材料は、水酸化第二銅粉を熱分解することにより得られた純度が98.5%以上の酸化銅粉であって、比表面積が3.6m2/g以上の酸化銅粉であることを特徴とする銅メッキ材料。 In a copper plating material provided with an insoluble anode and an object to be plated to form a cathode, and supplied to an electrolytic solution containing an organic additive,
This copper plating material is a copper oxide powder having a purity of 98.5% or more obtained by pyrolyzing cupric hydroxide powder and having a specific surface area of 3.6 m 2 / g or more. A copper plating material characterized by being.
前記銅メッキ材料として、請求項1ないし9のいずれか一に記載の銅メッキ材料を用いることを特徴とする銅メッキ方法。
In a copper plating method in which an insoluble anode and a body to be plated are provided, a copper plating material is supplied to an electrolytic solution containing an organic additive, and copper is plated on the body to be plated.
The copper plating method according to claim 1, wherein the copper plating material is a copper plating material according to claim 1.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004181810A JP4113519B2 (en) | 2003-06-18 | 2004-06-18 | Copper plating material and copper plating method |
TW093136740A TWI267494B (en) | 2004-06-18 | 2004-11-29 | Copper plating material, and copper plating method |
KR1020040107051A KR100650488B1 (en) | 2004-06-18 | 2004-12-16 | Copper Plating Material and Copper Plating Method |
CN2012100501330A CN102633289A (en) | 2004-06-18 | 2004-12-17 | Copper plating material, and copper plating method |
CN200410101371.5A CN1709797B (en) | 2004-06-18 | 2004-12-17 | Copper plating material, and copper plating method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003173786 | 2003-06-18 | ||
JP2004181810A JP4113519B2 (en) | 2003-06-18 | 2004-06-18 | Copper plating material and copper plating method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005029892A true JP2005029892A (en) | 2005-02-03 |
JP4113519B2 JP4113519B2 (en) | 2008-07-09 |
Family
ID=34219982
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004181810A Expired - Lifetime JP4113519B2 (en) | 2003-06-18 | 2004-06-18 | Copper plating material and copper plating method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4113519B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007131909A (en) * | 2005-11-10 | 2007-05-31 | Mitsui Mining & Smelting Co Ltd | Copper electrolytic solution used for producing electrolytic copper foil, and electrolytic copper foil obtained by using the copper electrolytic solution |
JP2007169135A (en) * | 2005-12-26 | 2007-07-05 | Dowa Holdings Co Ltd | Basic copper carbonate, copper oxide, and method for producing copper oxide |
JP2010006658A (en) * | 2008-06-27 | 2010-01-14 | Tsurumi Soda Co Ltd | Method for producing basic copper carbonate and basic copper carbonate produced by the method |
JP2012144414A (en) * | 2011-01-14 | 2012-08-02 | Sumitomo Metal Mining Co Ltd | High purity cupric oxide fine powder, method for producing the same, and method for feeding copper ion to copper sulfate aqueous solution using high purity cupric oxide fine powder |
JP2012201515A (en) * | 2011-03-23 | 2012-10-22 | Sumitomo Metal Mining Co Ltd | Method for producing soluble cupric oxide powder, soluble cupric oxide fine powder, and copper ion feeding method to copper sulfate aqueous solution |
JP2014111811A (en) * | 2012-12-05 | 2014-06-19 | Sumitomo Metal Mining Co Ltd | Copper plating method |
TWI692554B (en) * | 2016-10-14 | 2020-05-01 | 日商荏原製作所股份有限公司 | Copper oxide powder, method of plating a substrate, and method of managing plating solution |
CN111676498A (en) * | 2020-06-24 | 2020-09-18 | 河北工业大学 | Preparation method of cuprous oxide electrode |
-
2004
- 2004-06-18 JP JP2004181810A patent/JP4113519B2/en not_active Expired - Lifetime
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007131909A (en) * | 2005-11-10 | 2007-05-31 | Mitsui Mining & Smelting Co Ltd | Copper electrolytic solution used for producing electrolytic copper foil, and electrolytic copper foil obtained by using the copper electrolytic solution |
JP2007169135A (en) * | 2005-12-26 | 2007-07-05 | Dowa Holdings Co Ltd | Basic copper carbonate, copper oxide, and method for producing copper oxide |
JP2010006658A (en) * | 2008-06-27 | 2010-01-14 | Tsurumi Soda Co Ltd | Method for producing basic copper carbonate and basic copper carbonate produced by the method |
JP2012144414A (en) * | 2011-01-14 | 2012-08-02 | Sumitomo Metal Mining Co Ltd | High purity cupric oxide fine powder, method for producing the same, and method for feeding copper ion to copper sulfate aqueous solution using high purity cupric oxide fine powder |
JP2012201515A (en) * | 2011-03-23 | 2012-10-22 | Sumitomo Metal Mining Co Ltd | Method for producing soluble cupric oxide powder, soluble cupric oxide fine powder, and copper ion feeding method to copper sulfate aqueous solution |
JP2014111811A (en) * | 2012-12-05 | 2014-06-19 | Sumitomo Metal Mining Co Ltd | Copper plating method |
TWI692554B (en) * | 2016-10-14 | 2020-05-01 | 日商荏原製作所股份有限公司 | Copper oxide powder, method of plating a substrate, and method of managing plating solution |
CN111676498A (en) * | 2020-06-24 | 2020-09-18 | 河北工业大学 | Preparation method of cuprous oxide electrode |
CN111676498B (en) * | 2020-06-24 | 2022-02-18 | 河北工业大学 | Preparation method of cuprous oxide electrode |
Also Published As
Publication number | Publication date |
---|---|
JP4113519B2 (en) | 2008-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4960686B2 (en) | Arsenic-containing liquid treatment method | |
JP4113519B2 (en) | Copper plating material and copper plating method | |
JP2016141594A (en) | Production method of nickel sulfate | |
KR100683598B1 (en) | Manufacturing method of electrolytic copper plating materials | |
KR20120083529A (en) | Method for the removal of chloride from zinc sulphate solution | |
JP2009161803A (en) | Nonferrous refining dust treatment method | |
JP4361908B2 (en) | Method for producing cupric oxide powder | |
JP2003166100A (en) | Copper powder used for copper plating, and method for using copper powder | |
JP2002068743A (en) | Method for manufacturing highly soluble copper oxide, highly soluble copper oxide, raw material for copper plating and method of copper plating | |
JP5305454B2 (en) | Method for removing Cu ions from arsenic acid solution using copper sulfide and elemental sulfur | |
JP2010105912A (en) | METHOD FOR PREPARING HIGH PURITY COPPER OXIDE CONTAINING A TRACE AMOUNT OF CHLORINE FROM WASTE LIQUID CONTAINING Cu(NH3)4Cl2 | |
KR101367187B1 (en) | Manufacturing method of copper oxide for printed circuit board | |
KR100650488B1 (en) | Copper Plating Material and Copper Plating Method | |
CA2306319A1 (en) | Process for making gold salt for use in electroplating process | |
JP5965213B2 (en) | Method and apparatus for recovering copper oxide from copper-containing acidic waste liquid | |
JP2004299974A (en) | Method of producing high purity easily dissolvable copper oxide, high purity easily dissolvable copper oxide, copper plating material and copper plating method | |
JP5858267B2 (en) | Copper ion supply method to easily soluble cupric oxide fine powder and copper sulfate aqueous solution | |
JP2012067361A (en) | Method of separating copper and arsenic from nonferrous smelting intermediary product containing copper and arsenic | |
JP2753855B2 (en) | Manufacturing method of copper plating material | |
JP2010089976A (en) | Method for producing and washing scorodite | |
TWI580643B (en) | Copper oxide (II) oxide powder and method for producing the same | |
KR101258650B1 (en) | Process for preparing cupric oxide powder for electric plating | |
Zhang et al. | Alkaline pretreatment for chlorine removal from high-chlorine rhodochrosite | |
JP2002105554A (en) | Method for recovering tellurium | |
JP2003183023A (en) | Method for producing copper carbonate and copper oxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051228 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080108 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080310 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080408 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080411 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4113519 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110418 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110418 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120418 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120418 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130418 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130418 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140418 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140418 Year of fee payment: 6 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140418 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |