JP2002057009A - Resistor and method of manufacturing the same - Google Patents

Resistor and method of manufacturing the same

Info

Publication number
JP2002057009A
JP2002057009A JP2000239076A JP2000239076A JP2002057009A JP 2002057009 A JP2002057009 A JP 2002057009A JP 2000239076 A JP2000239076 A JP 2000239076A JP 2000239076 A JP2000239076 A JP 2000239076A JP 2002057009 A JP2002057009 A JP 2002057009A
Authority
JP
Japan
Prior art keywords
resistor
alloy
resistance
shunt resistor
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000239076A
Other languages
Japanese (ja)
Other versions
JP2002057009A5 (en
JP4138215B2 (en
Inventor
Keiji Nakamura
圭史 仲村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koa Corp
Original Assignee
Koa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa Corp filed Critical Koa Corp
Priority to JP2000239076A priority Critical patent/JP4138215B2/en
Publication of JP2002057009A publication Critical patent/JP2002057009A/en
Publication of JP2002057009A5 publication Critical patent/JP2002057009A5/ja
Application granted granted Critical
Publication of JP4138215B2 publication Critical patent/JP4138215B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a shunt resistor for large current measurement having good characteristics and a method for manufacturing the resistor. SOLUTION: The shut resistor 100 is constituted by a resistor 110 made of an alloy of a noble metal or a metal, high-conductivity electrodes 121 and 122, and molten 131 and 132. The resistor 110 and electrodes 121 and 122 are firmly joined to each other and the resistor 110 has no resistance adjusting notch. Consequently, the resistor 100 shows a low resistance value and a low resistance value changing rate, has a small TCR value, and, accordingly, is suitable for measuring large currents with accuracy.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、抵抗器およびその
製造方法に関し、例えば、高電流検出に適する低抵抗素
子部と導電率の高い金属導体よりなる電極を有する抵抗
器およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resistor and a method of manufacturing the same, for example, a resistor having a low resistance element portion suitable for detecting a high current and an electrode made of a metal conductor having high conductivity, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】大電流の検出用にミリオーム程度の極め
て抵抗値が小さい抵抗器(シャント抵抗器)を用いるこ
とは良く知られている。このシャント抵抗器を用いた大
電流I(A)の検出では、既知の低抵抗値を有し、抵抗
値の変動が小さいシャント抵抗器R(Ω)に、高電流I
(A)を流した時のシャント抵抗器の両端における電圧
降下V(V)を測定し、I=V/Rを用いて電流値I
(A)を算出する。
2. Description of the Related Art It is well known to use a resistor (shunt resistor) having an extremely small resistance of about milliohm for detecting a large current. In the detection of the large current I (A) using the shunt resistor, the shunt resistor R (Ω) having a known low resistance value and a small variation in the resistance value is supplied to the high current I (A).
(A), the voltage drop V (V) at both ends of the shunt resistor is measured, and the current value I is calculated using I = V / R.
(A) is calculated.

【0003】シャント抵抗器の一例を図7に示す。シャ
ント抵抗器1000は、金属製の抵抗部1400および
2つの電極部1100から構成されている。抵抗部14
00は、例えば、Cu−Ni合金(例えば、CN49
R)などの金属合金が用いられる。電極1100には、
はんだ付け性を考慮してはんだめっき1200が施され
ている。
FIG. 7 shows an example of a shunt resistor. The shunt resistor 1000 includes a metal resistor portion 1400 and two electrode portions 1100. Resistance section 14
00 is, for example, a Cu—Ni alloy (for example, CN49).
A metal alloy such as R) is used. The electrode 1100 includes
Solder plating 1200 is applied in consideration of solderability.

【0004】ここで、シャント抵抗器の特性は、抵抗の
温度係数(TCR:Temperature Coef
ficient of Resistance)やシャ
ント抵抗器を所定条件下で長時間使用した場合(例え
ば、1000時間)の使用前後における抵抗値変化(寿
命試験)などを用いて評価される。
Here, the characteristics of the shunt resistor are determined by the temperature coefficient of resistance (TCR: Temperature Coef).
The evaluation is made using a change in resistance value (life test) before and after the use of a shunt resistor under a predetermined condition for a long time (for example, 1000 hours).

【0005】ここで、抵抗の温度係数(TCR)は、
(1)式で求められ、1000時間の寿命試験前後の抵
抗値変化ΔR/Rは、(2)式を用いて評価される。
Here, the temperature coefficient of resistance (TCR) is
The resistance change ΔR / R before and after the life test of 1000 hours, which is obtained by the equation (1), is evaluated using the equation (2).

【0006】 TCR=((R−R)/R)×(1/(T−T)) (1) R1:測定温度Tにおける抵抗値(Ω)、T:測定
温度 R0:基準温度Tにおける抵抗値(Ω)、T:基準
温度 ΔR/R=(R1000−R)/R (2) R1000:1000時間の寿命試験後の抵抗値(Ω) R :寿命試験前の抵抗値(Ω) また、シャント抵抗器をプリント配線板などに実装する
ためには、シャント抵抗器を小型化し、高密度実装に適
した構造にすることが必要である。
[0006] TCR = ((R 1 -R 0 ) / R 0) × (1 / (T 1 -T 0)) (1) R1: resistance value at the measurement temperature T 1 (Ω), T 1 : Measurement Temperature R0: the resistance value at the reference temperature T 0 (Ω), T 0 : a reference temperature ΔR / R = (R 1000 -R 0) / R 0 (2) R 1000: resistance after the life test for 1000 hours (Omega) R 0 : resistance value before the life test (Ω) Further, in order to mount the shunt resistor on a printed wiring board or the like, it is necessary to reduce the size of the shunt resistor and make the structure suitable for high-density mounting. .

【0007】[0007]

【発明が解決しようとする課題】ところで、シャント抵
抗器を用いて大電流を精度よく測定するためには、シャ
ント抵抗器の特性である設定した抵抗の温度係数に限り
なく近づけたり、使用時の抵抗の経時変化を小さくする
必要がある。また、大電流を流したときの電流に対する
抵抗値変化を小さくして電圧(V)−電流(I)特性を
良くする必要がある。
By the way, in order to measure a large current with high accuracy using a shunt resistor, the temperature coefficient of the set resistor, which is the characteristic of the shunt resistor, is brought as close as possible or when the shunt resistor is used. It is necessary to reduce the change over time of the resistance. Further, it is necessary to improve a voltage (V) -current (I) characteristic by reducing a change in resistance value with respect to a current when a large current flows.

【0008】図7に示すシャント抵抗器1000では、
所定の抵抗値とするためにレーザ加工機などを用いて1
300で示される切り込みが抵抗部1400中に数カ所
入れられている。この切り込み1300は、抵抗調整に
は必要であるが、シャント抵抗器1000の特性を劣化
させる原因となっている。
[0008] In the shunt resistor 1000 shown in FIG.
Use a laser processing machine or the like to obtain a predetermined resistance value.
Several cuts indicated by 300 are made in the resistance portion 1400. The cut 1300 is necessary for resistance adjustment, but causes deterioration of the characteristics of the shunt resistor 1000.

【0009】本発明は、上述の問題点を解決するために
なされたものであり、その目的は、特性の良好な大電流
測定用のシャント抵抗器およびその製造方法を提供する
ことである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a shunt resistor for measuring a large current having good characteristics and a method of manufacturing the shunt resistor.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
の本発明の抵抗器の製造方法は、以下の構成を有する。
すなわち、抵抗用合金からなる抵抗体と、高導電率の金
属からなる電極とを有する抵抗器の製造方法であって、
略板状の前記抵抗用合金と略板状の前記高導電率の金属
とを積層し、前記抵抗用合金と前記金属との接触界面を
接合して接合体を形成する接合工程と、前記接合体の金
属面の所定範囲を、前記金属面から前記接触界面まで除
去して前記金属を少なくとも2分割して前記電極を形成
する除去工程と、前記接合体を分割して複数の抵抗器を
形成する分割工程と、を有することを特徴とする。
A method of manufacturing a resistor according to the present invention for achieving the above object has the following arrangement.
That is, a method of manufacturing a resistor having a resistor made of a resistance alloy and an electrode made of a metal having high conductivity,
A bonding step of laminating the substantially plate-shaped resistance alloy and the substantially plate-shaped metal having high conductivity, and bonding a contact interface between the resistance alloy and the metal to form a bonded body; Removing a predetermined range of the metal surface of the body from the metal surface to the contact interface to divide the metal into at least two parts to form the electrodes; and forming a plurality of resistors by dividing the joined body And a dividing step.

【0011】また例えば、さらに、前記電極にはんだ層
を形成する工程を有することを特徴とする。
[0011] For example, the method further comprises a step of forming a solder layer on the electrode.

【0012】また例えば、さらに、形成された抵抗器の
抵抗値を調整する工程を有することを特徴とする。
Further, for example, the method is characterized in that the method further comprises a step of adjusting the resistance value of the formed resistor.

【0013】また例えば、前記抵抗用合金は、銅・ニッ
ケル合金、ニッケル・クロム合金、鉄・クロム合金、マ
ンガン・銅・ニッケル合金、白金・パラジウム・銀合
金、金・銀合金、金・白金・銀合金、のいずれかである
ことを特徴とする。
[0013] For example, the alloy for resistance may be a copper-nickel alloy, a nickel-chromium alloy, an iron-chromium alloy, a manganese-copper-nickel alloy, a platinum-palladium-silver alloy, a gold-silver alloy, a gold-platinum-alloy. Silver alloy.

【0014】また例えば、前記電極は、銅または銅を含
む合金であることを特徴とする。
Further, for example, the electrode is made of copper or an alloy containing copper.

【0015】また、上記目的を達成するための本発明の
抵抗器は、以下の構成を有する。すなわち、高導電率の
金属によりなる互いに分離した少なくとも2つの電極
と、前記電極に電気的かつ機械的に結合された、略板状
の抵抗用合金からなる抵抗部と、を有する。
Further, a resistor according to the present invention for achieving the above object has the following configuration. That is, it has at least two electrodes made of a metal having high conductivity and separated from each other, and a resistance portion made of a substantially plate-shaped resistance alloy and electrically and mechanically coupled to the electrodes.

【0016】また例えば、前記抵抗用合金は、銅・ニッ
ケル合金、ニッケル・クロム合金、鉄・クロム合金、マ
ンガン・銅・ニッケル合金、白金・パラジウム・銀合
金、金・銀合金、金・白金・銀合金、のいずれかである
ことを特徴とする。
[0016] For example, the alloy for resistance may be a copper-nickel alloy, a nickel-chromium alloy, an iron-chromium alloy, a manganese-copper-nickel alloy, a platinum-palladium-silver alloy, a gold-silver alloy, a gold-platinum alloy. Silver alloy.

【0017】また例えば、前記電極は、銅または銅を含
む合金であることを特徴とする。
Further, for example, the electrode is made of copper or an alloy containing copper.

【0018】[0018]

【発明の実施の形態】以下に、図面を参照して、本発明
の好適な実施の形態であるシャント抵抗器100および
シャント抵抗器100の作製方法を詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

【0019】なお、本実施の形態に記載されているシャ
ント抵抗器の抵抗体として用いられる合金組成は、一例
であり、特に特定的な記載がない限りは、この発明の範
囲をそれらのみに限定する趣旨のものではなく、作製す
るシャント抵抗器の必要特性や仕様に応じて決定される
ものである。
The alloy composition used as the resistor of the shunt resistor described in the present embodiment is an example, and unless otherwise specified, the scope of the present invention is limited to these. It is not intended to be performed, but is determined according to the required characteristics and specifications of the shunt resistor to be manufactured.

【0020】[シャント抵抗器の構造]図1に、基板1
40の導体パターン上にはんだ付けされた本実施の形態
であるシャント抵抗器100を示す。シャント抵抗器1
00は、110の金属製の抵抗体、接続端子である電極
121および122から構成されている。
[Structure of Shunt Resistor] FIG.
1 shows a shunt resistor 100 according to the present embodiment soldered on a conductor pattern 40. Shunt resistor 1
Reference numeral 00 denotes a metal resistor 110 and electrodes 121 and 122 serving as connection terminals.

【0021】シャント抵抗器100は、1つの直方体形
状を有する抵抗体110に2つの直方体形状の電極12
1と122を図1に示すように接合した構造である。抵
抗体の厚さは、約100〜1000μmである。また、
各電極の厚さは、約10〜300μmである。また、各
電極の表面には、約2〜10μmのはんだ膜が形成され
ている。
The shunt resistor 100 has two rectangular parallelepiped electrodes 12 on a resistor 110 having one rectangular parallelepiped shape.
1 and 122 are joined as shown in FIG. The thickness of the resistor is about 100-1000 μm. Also,
Each electrode has a thickness of about 10 to 300 μm. On the surface of each electrode, a solder film of about 2 to 10 μm is formed.

【0022】シャント抵抗器100は、放熱しやすいよ
うに設計されており、プリント配線板などに実装する際
の基板140としては、例えばアルミ基板などが用いら
れ、その基板140もヒートシンクなどに接続された構
造となっている。
The shunt resistor 100 is designed to easily dissipate heat. For example, an aluminum substrate is used as the substrate 140 when mounted on a printed wiring board or the like. The substrate 140 is also connected to a heat sink or the like. Structure.

【0023】すなわち、高電流を測定したときにシャン
ト抵抗器100に発生する熱は、基板140方向に伝達
されるために、シャント抵抗器100と基板140との
接合面が重要であり、シャント抵抗器100は、基板1
40との接合面である電極121、122に熱伝導の良
い銅の厚板を用い、接合面積を大きく取ることを特徴と
している。
That is, since the heat generated in the shunt resistor 100 when a high current is measured is transmitted in the direction of the substrate 140, the junction surface between the shunt resistor 100 and the substrate 140 is important. The container 100 is a substrate 1
A feature is that a thick copper plate having good heat conductivity is used for the electrodes 121 and 122, which are the bonding surfaces with 40, and the bonding area is large.

【0024】また、高電流を測定するときの電流は、基
板140のパターンよりシャント抵抗器100の一方の
電極121を介して抵抗体110に流れ、さらに抵抗体
110から他の1つの電極122へと流れる。また、高
電流を流したときの電極121と電極122間、すなわ
ちシャント抵抗器100の両端における電圧降下を測定
する。このため図1の構造を有するシャント抵抗器10
0は、大電流での使用が可能である。
The current for measuring the high current flows from the pattern of the substrate 140 to the resistor 110 via one electrode 121 of the shunt resistor 100, and further flows from the resistor 110 to another electrode 122. And flows. Further, a voltage drop between the electrode 121 and the electrode 122 when a high current is applied, that is, a voltage drop at both ends of the shunt resistor 100 is measured. Therefore, the shunt resistor 10 having the structure of FIG.
0 means that a large current can be used.

【0025】抵抗体110用材料としては、例えば、C
u−Ni合金(CN49Rなど)や図4に示す各種金属
合金および各種貴金属合金が用いられ、仕様に応じて決
定される比抵抗、TCR、抵抗値変化などの各種特性に
適合する金属合金や貴金属合金などが図4より適宜選択
されて使用される。また図4以外にも、例えば、マンガ
ン・銅・ニッケル合金などを使用しても良い。
As a material for the resistor 110, for example, C
A u-Ni alloy (such as CN49R), various metal alloys and various noble metal alloys shown in FIG. 4 are used, and a metal alloy or a noble metal that conforms to various characteristics such as specific resistance, TCR, and resistance change determined according to specifications. An alloy or the like is appropriately selected from FIG. 4 and used. Further, other than FIG. 4, for example, a manganese-copper-nickel alloy may be used.

【0026】また、図4に示すように、貴金属合金を使
用する場合には、約2〜約7μΩ・cmと極めて低い電
気抵抗を有する抵抗体110が得られ、例えば、これら
の貴金属合金を抵抗体110として使用する場合には、
図1に示す構造のシャント抵抗器100の抵抗値は、約
0.04〜0.15mΩとなる。
As shown in FIG. 4, when a noble metal alloy is used, a resistor 110 having an extremely low electric resistance of about 2 to about 7 μΩ · cm is obtained. When used as body 110,
The resistance value of the shunt resistor 100 having the structure shown in FIG. 1 is about 0.04 to 0.15 mΩ.

【0027】また電極121および122の材料として
は、電気抵抗が抵抗体110に比べて小さい銅材料(例
えば、1.5μΩ・cm程度)が用いられ、抵抗体11
0と電極121あるい抵抗体110と電極122とはク
ラッド接合により接合される。2つの電極121および
122の電極面は、高電流を測定する際に発生する熱を
放熱しやすくするため、基板140方向に熱が伝達され
やすいように電極面積を広くとるように設計されてお
り、熱伝導性の良い銅の厚板を用い、接合面積を大きく
取ることを特徴としている。
As a material of the electrodes 121 and 122, a copper material (for example, about 1.5 μΩ · cm) having a lower electric resistance than the resistor 110 is used.
0 and the electrode 121 or the resistor 110 and the electrode 122 are joined by cladding. The electrode surfaces of the two electrodes 121 and 122 are designed to have a large electrode area so that heat is easily transmitted in the direction of the substrate 140 in order to easily radiate heat generated when measuring a high current. It is characterized by using a thick copper plate having good thermal conductivity and having a large bonding area.

【0028】また電極121および122の表面には、
基板の導体パターンへのはんだ付け性を向上するため
に、例えば、溶融はんだ材(Sn:Pb=9:1)また
は鉛フリーはんだ材の膜131および132が形成され
ている。溶融はんだ材は、銅材の電極121または12
2との間に拡散層を有するため、電極の接合強度および
電気的信頼性は、向上する。
On the surfaces of the electrodes 121 and 122,
In order to improve the solderability of the substrate to the conductor pattern, for example, films 131 and 132 of a molten solder material (Sn: Pb = 9: 1) or a lead-free solder material are formed. The molten solder is a copper electrode 121 or 12.
Since a diffusion layer is provided between the electrodes, the bonding strength and electrical reliability of the electrodes are improved.

【0029】なお、シャント抵抗器100の特徴は、抵
抗体110が平板からなる単純構造となっており、従来
のシャント抵抗器1000に見られるような切れ込み1
300が無い点である。このように抵抗体110中に切
れ込みがないため、大電流を流したときの電流経路が安
定し、抵抗値変化(ΔR/R)は、約0.1%以下に抑
えることができ、切れ込みがある場合の抵抗値変化(Δ
R/R)数〜20%に比べて抵抗値変化を1/数10〜
1/200程度に低減できる。
The characteristic of the shunt resistor 100 is that the resistor 110 has a simple structure consisting of a flat plate, and the notch 1 as seen in the conventional shunt resistor 1000 is used.
There is no 300. As described above, since there is no cut in the resistor 110, the current path when a large current flows is stabilized, and the change in resistance value (ΔR / R) can be suppressed to about 0.1% or less. The resistance value change in a certain case (Δ
R / R) 1 / Several 10
It can be reduced to about 1/200.

【0030】また、抵抗体110に約2〜7μΩ・cm
の極めて低い電気抵抗を有する貴金属合金を使用する
と、シャント抵抗器100の抵抗値は、約0.04〜
0.15mΩとなるため、高電流の測定に適したシャン
ト抵抗器が得られる。
The resistor 110 has a resistance of about 2 to 7 μΩ · cm.
When a noble metal alloy having an extremely low electric resistance is used, the resistance of the shunt resistor 100 is about 0.04 to about 0.04.
Since it is 0.15 mΩ, a shunt resistor suitable for measuring a high current can be obtained.

【0031】[シャント抵抗器の作製方法]次に、図2
および図3を用いて、シャント抵抗器100の作製方法
について以下に説明する。図2は、シャント抵抗器10
0の作製方法の一例を示すものであり、図3は、図2の
各作製工程で用いられる各素材や作製されるシャント抵
抗器100の形状を示したものである。
[Method of Manufacturing Shunt Resistor] Next, FIG.
A method for manufacturing the shunt resistor 100 will be described below with reference to FIGS. FIG. 2 shows a shunt resistor 10
FIG. 3 shows an example of a manufacturing method of the shunt resistor 100, and FIG. 3 shows the shape of each material used in each manufacturing step of FIG.

【0032】図2において、電極材の銅合金230とし
ては、例えば、比抵抗約1.5μΩ・cmの銅材が選択
され、素材加工240工程において、所定の寸法に加工
される。
In FIG. 2, as the copper alloy 230 of the electrode material, for example, a copper material having a specific resistance of about 1.5 μΩ · cm is selected, and is processed to a predetermined size in a material processing 240 step.

【0033】また、抵抗材の合金210としては、例え
ば、図4に示す所定の比抵抗を有する各種金属合金や各
種貴金属合金の中から用途や仕様に応じて選択され、素
材加工220工程において、所定の寸法に加工される。
The resistance material alloy 210 is selected, for example, from various metal alloys and various noble metal alloys having a predetermined specific resistance shown in FIG. 4 according to applications and specifications. It is processed to a predetermined size.

【0034】次に、図3の120に示す銅材と110に
示す抵抗体、例えば、貴金属合金とが接合250工程に
てクラッド接合される。この接合体310における抵抗
体110と電極120の界面は、拡散層により強固に結
合されているため、抵抗体110と電極120との接合
強度および電気的信頼性は向上する。
Next, a copper material shown at 120 in FIG. 3 and a resistor shown at 110, for example, a noble metal alloy, are clad-bonded in a bonding 250 step. Since the interface between the resistor 110 and the electrode 120 in the joined body 310 is firmly connected by the diffusion layer, the joining strength and the electrical reliability between the resistor 110 and the electrode 120 are improved.

【0035】次に、接合体310は、電極加工260工
程にて、図3の320に示す所定の形状の接合体となる
ように電極120の一部が除去される。例えば、切削装
置を用いて、図3の320に示す電極120の中央部分
123が抵抗体110が露出するまで除去され、電極1
20は、121と122に分割される。電極121と電
極122の厚さは、約10〜300μmである。また、
抵抗体110の厚さは、約100〜1000μmであ
る。
Next, a part of the electrode 120 is removed from the joined body 310 so as to form a joined body having a predetermined shape shown by 320 in FIG. For example, using a cutting device, the central portion 123 of the electrode 120 shown at 320 in FIG. 3 is removed until the resistor 110 is exposed.
20 is divided into 121 and 122. The thickness of the electrode 121 and the electrode 122 is about 10 to 300 μm. Also,
The thickness of the resistor 110 is about 100 to 1000 μm.

【0036】次に、接合体320は、溶融はんだ加工2
70工程にて、電極121と電極122の表面に131
と132で示す約2〜10μmのはんだ膜が形成され、
接合体330を得る。この時使用されるはんだとして
は、例えば、溶融はんだ材(Sn:Pb=9:1)ある
いは、鉛フリーはんだ材などが用いられる。
Next, the joined body 320 is formed by the molten solder processing 2.
In step 70, 131 is applied to the surfaces of the electrodes 121 and 122.
And 132, a solder film of about 2 to 10 μm is formed,
The joined body 330 is obtained. As the solder used at this time, for example, a molten solder material (Sn: Pb = 9: 1) or a lead-free solder material is used.

【0037】この溶融はんだ材と銅材の電極120との
間には、拡散層が形成されるため、溶融はんだ材131
と電極121および溶融はんだ材132と電極122と
は強固に接合される。そのためそれらの界面の接合強度
は高く電気的信頼性も向上し、さらに、溶融はんだ材1
31および132を介してシャント抵抗器100をアル
ミ基板140の導体パターンにはんだ付けすることが可
能となる。
Since a diffusion layer is formed between the molten solder material and the copper electrode 120, the molten solder material 131 is formed.
The electrode 121 and the molten solder material 132 and the electrode 122 are firmly joined. Therefore, the bonding strength at the interface between them is high, and the electrical reliability is improved.
It becomes possible to solder the shunt resistor 100 to the conductor pattern of the aluminum substrate 140 via 31 and 132.

【0038】次に、接合体330は、切断加工280工
程にて、レーザ加工機、プレス加工機、ワイヤー放電加
工機、円盤切削機などを用いて、所定の長さに切断さ
れ、340に示す所定の寸法を有する接合体、例えば、
厚さ約0.1〜20mmを得る。
Next, the joined body 330 is cut to a predetermined length using a laser processing machine, a press machine, a wire electric discharge machine, a disk cutting machine or the like in a cutting process 280 step, and shown by 340. A joined body having predetermined dimensions, for example,
A thickness of about 0.1-20 mm is obtained.

【0039】次に、接合体340は、抵抗調整290工
程にて、所定の抵抗値を有するように調整される。すな
わち接合体350の抵抗値を測定しながら、サンドブラ
スト法など、またはレーザー加工機などの各種切断機を
用いて、接合体350の側面部や表面部の一部を除去す
る。その結果、所定の抵抗値を有すシャント抵抗器10
0が得られる。
Next, the joined body 340 is adjusted to have a predetermined resistance value in a resistance adjusting 290 step. That is, while measuring the resistance value of the joined body 350, a part of the side surface and the surface of the joined body 350 is removed by using a sandblasting method or various cutting machines such as a laser processing machine. As a result, the shunt resistor 10 having a predetermined resistance value
0 is obtained.

【0040】[シャント抵抗器の諸特性]図4の各種金
属合金および各種貴金属合金を用いて作製したシャント
抵抗器の抵抗値の一例を以下に説明する。例えば、図4
に示す約2〜約7μΩcmの低抵抗の貴金属合金を使用
した場合の図1に示す構造のシャント抵抗器の抵抗値
は、約0.05〜0.14mΩ程度であり、低抵抗値を
有するシャント抵抗器が得られる。
[Characteristics of Shunt Resistor] An example of the resistance value of the shunt resistor manufactured using the various metal alloys and various noble metal alloys shown in FIG. 4 will be described below. For example, FIG.
The resistance value of the shunt resistor having the structure shown in FIG. 1 when a low-resistance noble metal alloy having a low resistance of about 2 to about 7 μΩcm is used is about 0.05 to 0.14 mΩ, and a shunt having a low resistance value is used. A resistor is obtained.

【0041】図5に、Cu−Ni系合金であるCN49
を抵抗体110として用い図2の本作製方法で作製され
たシャント抵抗器100のTCR値および1000時間
の寿命試験後の抵抗値変化を一例として示す。また、図
5には、比較として図7に示す従来の方法で作製された
シャント抵抗器1000のTCR値および1000時間
の寿命試験後の抵抗値変化を合わせて示す。図5より、
本作製方法で作製されたシャント抵抗器100は、従来
品に比べてTCR値が約1/3以下に、抵抗値変化が1
/20〜1/30以下に低下し、各々の特性が向上して
いることがわかる。
FIG. 5 shows a Cu—Ni alloy CN49.
2 is shown as an example of the TCR value of the shunt resistor 100 manufactured by the present manufacturing method of FIG. FIG. 5 also shows, for comparison, the TCR value of the shunt resistor 1000 manufactured by the conventional method shown in FIG. 7 and the change in the resistance value after a life test of 1000 hours. From FIG.
The shunt resistor 100 manufactured by this manufacturing method has a TCR value of about 1/3 or less and a change in resistance value of 1
/ 20 to 1/30 or less, and it can be seen that each characteristic is improved.

【0042】ここで、Cu−Ni系合金であるCN49
のTCR値は、約50ppm/℃であり、シャント抵抗
器110のTCR値に極めて近い。このことから、本製
造方法で製造されるシャント抵抗器110は、Cu−N
i系合金(CN49)がもつ本来のTCR値をほぼ再現
できる製造方法といえる。また、従来の製造方法で製造
されたシャント抵抗器1000は、抵抗調整用の切り込
み1400がCu−Ni系合金(CN49)の本来のT
CR値を発現できない阻害要因として働いているといえ
る。
Here, CN49 which is a Cu—Ni alloy is used.
Has a TCR value of about 50 ppm / ° C., which is very close to the TCR value of the shunt resistor 110. From this, the shunt resistor 110 manufactured by the present manufacturing method is
This can be said to be a manufacturing method that can substantially reproduce the original TCR value of the i-based alloy (CN49). Also, in the shunt resistor 1000 manufactured by the conventional manufacturing method, the cut 1400 for adjusting the resistance has the original T-value of the Cu—Ni alloy (CN49).
It can be said that it works as an inhibiting factor that cannot express a CR value.

【0043】なお、図5には示さなかったが、シャント
抵抗器100の抵抗体として図4に示す各金属合金また
は各基金属合金を抵抗体110として用いてTCR値お
よび1000時間の寿命試験後の抵抗値変化を行った。
その結果も図5とほぼ同様のTCR値や抵抗値変化値が
得られた。これらのことから、図4に示す各金属合金ま
たは各基金属合金を抵抗体110として用い、図2の作
製方法によって作製されたたシャント抵抗器100は優
れたTCR値や抵抗値変化値が得られることがわかる。
Although not shown in FIG. 5, each of the metal alloys or base metal alloys shown in FIG. Was changed.
As a result, substantially the same TCR value and resistance value change value as those in FIG. 5 were obtained. From these facts, the shunt resistor 100 manufactured by using the metal alloy or each base metal alloy shown in FIG. 4 as the resistor 110 and manufactured by the manufacturing method of FIG. It is understood that it is possible.

【0044】また、図6に、図5で示した本実施の形態
であるシャント抵抗器100と従来例のシャント抵抗器
1000との電圧(V)−電流(I)特性を測定した結
果を示す。図6の結果より、抵抗体110に切り込みが
無いシャント抵抗器100の電流値の増加に伴う抵抗値
の変化は、0.1%以下に抑えることができ、優れた電
圧(V)−電流(I)特性が得られた。
FIG. 6 shows the results of measuring the voltage (V) -current (I) characteristics of the shunt resistor 100 of the present embodiment shown in FIG. 5 and the shunt resistor 1000 of the conventional example. . From the results of FIG. 6, it is possible to suppress the change in the resistance value of the shunt resistor 100 having no cut in the resistor 110 with an increase in the current value to 0.1% or less, and to obtain an excellent voltage (V) -current ( I) Characteristics were obtained.

【0045】一方、抵抗体に切り込みが多数あるシャン
ト抵抗器1000では、電流値の増加に伴い抵抗値が数
%から20%も増加し、大電流を流したときの抵抗値の
変化が大きい。これは、切り込みがあると電流経路が安
定しないためである。このことから、大電流を流したと
きのシャント抵抗器の抵抗値変化を小さくするために
は、切り込みの無い形状が望ましいことがわかる。
On the other hand, in the shunt resistor 1000 having a large number of cuts in the resistor, the resistance increases by several to 20% as the current increases, and the resistance changes greatly when a large current flows. This is because the current path is not stable if there is a cut. From this, it can be seen that in order to reduce the change in the resistance value of the shunt resistor when a large current flows, a shape without a cut is desirable.

【0046】以上説明したように、本実施形態によれ
ば、シャント抵抗器を作製する際に貴金属合金などの低
抵抗材料を抵抗体として用い、抵抗体中にさらに抵抗調
整用の切り込みを入れないでシャント抵抗器を作製する
ことにより、低抵抗で高電流の測定に適した電流経路を
有する抵抗変化率の小さなシャント抵抗器が提供ができ
る。
As described above, according to the present embodiment, when fabricating a shunt resistor, a low-resistance material such as a noble metal alloy is used as a resistor, and no further cut is made in the resistor for adjusting the resistance. By producing a shunt resistor by using the above method, a shunt resistor having a low resistance and a small resistance change rate and having a current path suitable for measuring a high current can be provided.

【0047】[0047]

【発明の効果】以上説明したように、本発明により特性
の良好な大電流測定用のシャント抵抗器およびその製造
方法を提供することができる。
As described above, according to the present invention, it is possible to provide a shunt resistor for measuring a large current having good characteristics and a method of manufacturing the shunt resistor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態であるシャント抵抗器の概
略構造図である。
FIG. 1 is a schematic structural view of a shunt resistor according to an embodiment of the present invention.

【図2】シャント抵抗器の作製方法を示す図である。FIG. 2 is a diagram illustrating a method for manufacturing a shunt resistor.

【図3】シャント抵抗器の各製造工程における接合体の
形状を示す図である。
FIG. 3 is a view showing a shape of a joined body in each manufacturing process of the shunt resistor.

【図4】抵抗体の種類を示す図である。FIG. 4 is a diagram showing types of resistors.

【図5】シャント抵抗器のTCR値及び寿命試験後の抵
抗値変化を比較した図である。
FIG. 5 is a diagram comparing a TCR value of a shunt resistor and a change in a resistance value after a life test.

【図6】シャント抵抗器のV−I特性を比較した図であ
る。
FIG. 6 is a diagram comparing VI characteristics of shunt resistors.

【図7】従来の切れ込みが入ったシャント抵抗器の概略
構造図である。
FIG. 7 is a schematic structural view of a conventional notched shunt resistor.

【符号の説明】[Explanation of symbols]

100 シャント抵抗器 110 抵抗体 121 電極 122 電極 131 溶融はんだ材 132 溶融はんだ材 140 基板 REFERENCE SIGNS LIST 100 shunt resistor 110 resistor 121 electrode 122 electrode 131 molten solder material 132 molten solder material 140 substrate

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 抵抗用合金からなる抵抗体と、高導電率
の金属からなる電極とを有する抵抗器の製造方法であっ
て、 略板状の前記抵抗用合金と略板状の前記高導電率の金属
とを積層し、前記抵抗用合金と前記金属との接触界面を
接合して接合体を形成する接合工程と、 前記接合体の金属面の所定範囲を、前記金属面から前記
接触界面まで除去して前記金属を少なくとも2分割して
前記電極を形成する除去工程と、 前記接合体を分割して複数の抵抗器を形成する分割工程
と、を有することを特徴とする抵抗器の製造方法。
1. A method for manufacturing a resistor comprising a resistor made of a resistance alloy and an electrode made of a metal having a high conductivity, comprising: a substantially plate-shaped resistance alloy and a substantially plate-shaped high conductivity. A metal layer having a predetermined ratio of the metal surface of the bonded body to the contact interface by forming a bonded body by forming a bonded body by bonding a contact interface between the alloy for resistance and the metal; A step of removing the metal and dividing the metal into at least two parts to form the electrode; and a step of dividing the joined body to form a plurality of resistors. Method.
【請求項2】 さらに、前記電極にはんだ層を形成す
る工程を有することを特徴とする請求項1に記載の抵抗
器の製造方法。
2. The method according to claim 1, further comprising the step of forming a solder layer on the electrode.
【請求項3】 さらに、形成された抵抗器の抵抗値を
調整する工程を有することを特徴とする請求項1または
請求項2に記載の抵抗器の製造方法。
3. The method for manufacturing a resistor according to claim 1, further comprising a step of adjusting a resistance value of the formed resistor.
【請求項4】 前記抵抗用合金は、銅・ニッケル合金、
ニッケル・クロム合金、鉄・クロム合金、マンガン・銅
・ニッケル合金、白金・パラジウム・銀合金、金・銀合
金、金・白金・銀合金、のいずれかであることを特徴と
する請求項1乃至請求項3のいずれか1項に記載の抵抗
器の製造方法。
4. The resistance alloy is a copper / nickel alloy,
4. A nickel-chromium alloy, an iron-chromium alloy, a manganese-copper-nickel alloy, a platinum-palladium-silver alloy, a gold-silver alloy, or a gold-platinum-silver alloy. A method for manufacturing the resistor according to claim 3.
【請求項5】 前記電極は、銅または銅を含む合金であ
ることを特徴とする請求項1乃至請求項4のいずれか1
項に記載の抵抗器の製造方法。
5. The semiconductor device according to claim 1, wherein the electrode is made of copper or an alloy containing copper.
Item 13. The method for manufacturing a resistor according to item 1.
【請求項6】 高導電率の金属によりなる互いに分離し
た少なくとも2つの電極と、 前記電極に電気的かつ機械的に結合された、略板状の抵
抗用合金からなる抵抗部と、を有する抵抗器。
6. A resistor having at least two electrodes made of a metal having high conductivity and separated from each other, and a resistor portion made of a substantially plate-shaped resistor alloy electrically and mechanically coupled to the electrodes. vessel.
【請求項7】 前記抵抗用合金は、銅・ニッケル合金、
ニッケル・クロム合金、鉄・クロム合金、マンガン・銅
・ニッケル合金、白金・パラジウム・銀合金、金・銀合
金、金・白金・銀合金、のいずれかであることを特徴と
する請求項6に記載の抵抗器。
7. The resistance alloy is a copper / nickel alloy,
7. A nickel-chromium alloy, iron-chromium alloy, manganese-copper-nickel alloy, platinum-palladium-silver alloy, gold-silver alloy, gold-platinum-silver alloy, The resistor as described.
【請求項8】 前記電極は、銅または銅を含む合金であ
ることを特徴とする請求項6または請求項7に記載の抵
抗器。
8. The resistor according to claim 6, wherein the electrode is made of copper or an alloy containing copper.
JP2000239076A 2000-08-07 2000-08-07 Manufacturing method of chip resistor Expired - Fee Related JP4138215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000239076A JP4138215B2 (en) 2000-08-07 2000-08-07 Manufacturing method of chip resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000239076A JP4138215B2 (en) 2000-08-07 2000-08-07 Manufacturing method of chip resistor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007010798A Division JP4189005B2 (en) 2007-01-19 2007-01-19 Chip resistor

Publications (3)

Publication Number Publication Date
JP2002057009A true JP2002057009A (en) 2002-02-22
JP2002057009A5 JP2002057009A5 (en) 2007-03-15
JP4138215B2 JP4138215B2 (en) 2008-08-27

Family

ID=18730674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000239076A Expired - Fee Related JP4138215B2 (en) 2000-08-07 2000-08-07 Manufacturing method of chip resistor

Country Status (1)

Country Link
JP (1) JP4138215B2 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100501A (en) * 2001-09-20 2003-04-04 Hokuriku Electric Ind Co Ltd Surface-mounting resistor and its manufacturing method
WO2004010440A1 (en) * 2002-07-24 2004-01-29 Rohm Co., Ltd. Chip resistor and method for producing the same
WO2004090915A1 (en) * 2003-04-08 2004-10-21 Rohm Co. Ltd. Chip resistor and method for manufacturing same
US7129814B2 (en) 2003-04-28 2006-10-31 Rohm Co., Ltd. Chip resistor and method of making the same
JP2006332413A (en) * 2005-05-27 2006-12-07 Rohm Co Ltd Chip resistor and its manufacturing method
JP2007049071A (en) * 2005-08-12 2007-02-22 Rohm Co Ltd Chip resistor and manufacturing method thereof
JP2007049070A (en) * 2005-08-12 2007-02-22 Rohm Co Ltd Method of manufacturing chip resistor
US7193499B2 (en) 2003-04-28 2007-03-20 Rohm Co., Ltd. Chip resistor and method of making the same
JP2008010895A (en) * 2007-09-27 2008-01-17 Rohm Co Ltd Method of manufacturing chip resistor having low resistance value
US7326999B2 (en) 2003-04-16 2008-02-05 Rohm Co., Ltd. Chip resistor and method for manufacturing same
US7342480B2 (en) 2002-06-13 2008-03-11 Rohm Co., Ltd. Chip resistor and method of making same
JP2009130977A (en) * 2007-11-20 2009-06-11 Mitsubishi Electric Corp Servo motor controller
JP2009194316A (en) * 2008-02-18 2009-08-27 Kamaya Denki Kk Low-resistance chip resistor composed of resistor metal plate and method of manufacturing the same
US7612429B2 (en) 2002-10-31 2009-11-03 Rohm Co., Ltd. Chip resistor, process for producing the same, and frame for use therein
WO2009145133A1 (en) * 2008-05-27 2009-12-03 コーア株式会社 Resistor
US7667568B2 (en) 2004-03-24 2010-02-23 Rohm Co., Ltd. Chip resistor and manufacturing method thereof
JP2010135522A (en) * 2008-12-04 2010-06-17 Koa Corp Mounting board of current detection resistor
US8044765B2 (en) 2007-12-17 2011-10-25 Rohm Co., Ltd. Chip resistor and method of making the same
DE102012004110A1 (en) 2011-03-03 2012-09-06 Koa Corp. Method of making a resistor
JP2012227360A (en) * 2011-04-20 2012-11-15 Panasonic Corp Chip type resistor and manufacturing method therefor
JP2013030795A (en) * 2012-10-01 2013-02-07 Rohm Co Ltd Chip resistor and method for manufacturing the same
JP2014078538A (en) * 2012-10-08 2014-05-01 Denso Corp Shunt resistor and method of mounting the same
WO2014155841A1 (en) * 2013-03-28 2014-10-02 コーア株式会社 Method for manufacturing resistor, and resistor
US9305685B2 (en) 2013-07-17 2016-04-05 Rohm Co. Ltd. Chip resistor and mounting structure thereof
US9437352B2 (en) 2012-03-26 2016-09-06 Koa Corporation Resistor and structure for mounting same
US9625494B2 (en) 2012-09-07 2017-04-18 Koa Corporation Current detection resistor
DE112020006622T5 (en) 2020-01-27 2022-11-10 Koa Corporation RESISTANCE
DE112020006627T5 (en) 2020-01-27 2022-12-01 Koa Corporation MANUFACTURING PROCESS FOR A RESISTANCE AND RESISTANCE
DE112022001712T5 (en) 2021-03-25 2024-01-11 Koa Corporation RESISTANCE AND METHOD FOR PRODUCING THE RESISTANCE

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100501A (en) * 2001-09-20 2003-04-04 Hokuriku Electric Ind Co Ltd Surface-mounting resistor and its manufacturing method
US7342480B2 (en) 2002-06-13 2008-03-11 Rohm Co., Ltd. Chip resistor and method of making same
WO2004010440A1 (en) * 2002-07-24 2004-01-29 Rohm Co., Ltd. Chip resistor and method for producing the same
US7755468B2 (en) 2002-07-24 2010-07-13 Rohm Co., Ltd. Chip resistor and manufacturing method therefor
US7330099B2 (en) 2002-07-24 2008-02-12 Rohm Co., Ltd. Chip resistor and manufacturing method therefor
KR100764617B1 (en) * 2002-07-24 2007-10-08 롬 가부시키가이샤 Chip resistor and method for producing the same
US7612429B2 (en) 2002-10-31 2009-11-03 Rohm Co., Ltd. Chip resistor, process for producing the same, and frame for use therein
WO2004090915A1 (en) * 2003-04-08 2004-10-21 Rohm Co. Ltd. Chip resistor and method for manufacturing same
US7326999B2 (en) 2003-04-16 2008-02-05 Rohm Co., Ltd. Chip resistor and method for manufacturing same
US7193499B2 (en) 2003-04-28 2007-03-20 Rohm Co., Ltd. Chip resistor and method of making the same
US7327214B2 (en) 2003-04-28 2008-02-05 Rohm Co., Ltd. Chip resistor and method of making the same
CN100350518C (en) * 2003-04-28 2007-11-21 罗姆股份有限公司 Chip resistor and method of manufacturing the same
US7378937B2 (en) 2003-04-28 2008-05-27 Rohm Co., Ltd. Chip resistor and method of making the same
US7129814B2 (en) 2003-04-28 2006-10-31 Rohm Co., Ltd. Chip resistor and method of making the same
US7667568B2 (en) 2004-03-24 2010-02-23 Rohm Co., Ltd. Chip resistor and manufacturing method thereof
US8081059B2 (en) * 2004-03-24 2011-12-20 Rohm Co., Ltd. Chip resistor and manufacturing method thereof
JP4640952B2 (en) * 2005-05-27 2011-03-02 ローム株式会社 Chip resistor and manufacturing method thereof
JP2006332413A (en) * 2005-05-27 2006-12-07 Rohm Co Ltd Chip resistor and its manufacturing method
JP2007049070A (en) * 2005-08-12 2007-02-22 Rohm Co Ltd Method of manufacturing chip resistor
JP2007049071A (en) * 2005-08-12 2007-02-22 Rohm Co Ltd Chip resistor and manufacturing method thereof
JP4542967B2 (en) * 2005-08-12 2010-09-15 ローム株式会社 Manufacturing method of chip resistor
JP2008010895A (en) * 2007-09-27 2008-01-17 Rohm Co Ltd Method of manufacturing chip resistor having low resistance value
JP2009130977A (en) * 2007-11-20 2009-06-11 Mitsubishi Electric Corp Servo motor controller
US8044765B2 (en) 2007-12-17 2011-10-25 Rohm Co., Ltd. Chip resistor and method of making the same
JP2009194316A (en) * 2008-02-18 2009-08-27 Kamaya Denki Kk Low-resistance chip resistor composed of resistor metal plate and method of manufacturing the same
JP4537465B2 (en) * 2008-02-18 2010-09-01 釜屋電機株式会社 Resistance metal plate low resistance chip resistor manufacturing method
WO2009145133A1 (en) * 2008-05-27 2009-12-03 コーア株式会社 Resistor
JP2009289770A (en) * 2008-05-27 2009-12-10 Koa Corp Resistor
DE112009001287T5 (en) 2008-05-27 2011-04-14 Koa Corp., Ina-shi resistance
JP2010135522A (en) * 2008-12-04 2010-06-17 Koa Corp Mounting board of current detection resistor
DE102012004110A1 (en) 2011-03-03 2012-09-06 Koa Corp. Method of making a resistor
JP2012227360A (en) * 2011-04-20 2012-11-15 Panasonic Corp Chip type resistor and manufacturing method therefor
US9437352B2 (en) 2012-03-26 2016-09-06 Koa Corporation Resistor and structure for mounting same
US9625494B2 (en) 2012-09-07 2017-04-18 Koa Corporation Current detection resistor
JP2013030795A (en) * 2012-10-01 2013-02-07 Rohm Co Ltd Chip resistor and method for manufacturing the same
JP2014078538A (en) * 2012-10-08 2014-05-01 Denso Corp Shunt resistor and method of mounting the same
WO2014155841A1 (en) * 2013-03-28 2014-10-02 コーア株式会社 Method for manufacturing resistor, and resistor
JP2014194961A (en) * 2013-03-28 2014-10-09 Koa Corp Method of manufacturing resistor, and resistor
US9305685B2 (en) 2013-07-17 2016-04-05 Rohm Co. Ltd. Chip resistor and mounting structure thereof
US9870849B2 (en) 2013-07-17 2018-01-16 Rohm Co., Ltd. Chip resistor and mounting structure thereof
US10083779B2 (en) 2013-07-17 2018-09-25 Rohm Co., Ltd. Chip resistor and mounting structure thereof
DE112020006622T5 (en) 2020-01-27 2022-11-10 Koa Corporation RESISTANCE
DE112020006627T5 (en) 2020-01-27 2022-12-01 Koa Corporation MANUFACTURING PROCESS FOR A RESISTANCE AND RESISTANCE
DE112022001712T5 (en) 2021-03-25 2024-01-11 Koa Corporation RESISTANCE AND METHOD FOR PRODUCING THE RESISTANCE

Also Published As

Publication number Publication date
JP4138215B2 (en) 2008-08-27

Similar Documents

Publication Publication Date Title
JP4138215B2 (en) Manufacturing method of chip resistor
US7089652B2 (en) Method of manufacturing flip chip resistor
USRE39660E1 (en) Surface mounted four terminal resistor
US5896081A (en) Resistance temperature detector (RTD) formed with a surface-mount-device (SMD) structure
JP5237299B2 (en) Resistor (especially SMD resistor) and manufacturing method thereof
US5548269A (en) Chip resistor and method of adjusting resistance of the same
US10181367B2 (en) Resistor element, method of manufacturing the same, and resistor element assembly
JP2004311747A (en) Chip resistor and its manufacturing method
JP4189005B2 (en) Chip resistor
US11842830B2 (en) Current detection resistor
US20210257174A1 (en) Chip-type fuse with a metal wire type fusible element and manufacturing method for the same
JP4712943B2 (en) Method for manufacturing resistor and resistor
JP2002184601A (en) Resistor unit
JP6652393B2 (en) Shunt resistor and current detection device using shunt resistor
JP3670593B2 (en) Electronic component using resistor and method of using the same
CN113884718A (en) Current detection resistor and circuit board
JPH07122406A (en) Chip-shaped fuse resistor and manufacture thereof
JP2001176701A (en) Resistor and manufacturing method therefor
JP7216603B2 (en) Mounting structure of current detection resistor and current detection resistor
JP2005108900A5 (en)
JP2005108900A (en) Low resistor and its manufacturing method
US20230333143A1 (en) Jumper element, shunt resistor apparatus, and method of adjusting characteristic of shunt resistor apparatus for current detection
JP3215648B2 (en) Manufacturing method of chip resistor
KR20170073400A (en) Resistor element and board having the same mounted thereon
JP2003197403A (en) Low-resistance resistor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070119

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080509

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4138215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313632

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees