JP4189005B2 - Chip resistor - Google Patents

Chip resistor

Info

Publication number
JP4189005B2
JP4189005B2 JP2007010798A JP2007010798A JP4189005B2 JP 4189005 B2 JP4189005 B2 JP 4189005B2 JP 2007010798 A JP2007010798 A JP 2007010798A JP 2007010798 A JP2007010798 A JP 2007010798A JP 4189005 B2 JP4189005 B2 JP 4189005B2
Authority
JP
Japan
Prior art keywords
resistor
shunt resistor
electrode
electrodes
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2007010798A
Other languages
Japanese (ja)
Other versions
JP2007103976A (en
JP2007103976A5 (en
Inventor
圭史 仲村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koa Corp
Original Assignee
Koa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa Corp filed Critical Koa Corp
Priority to JP2007010798A priority Critical patent/JP4189005B2/en
Publication of JP2007103976A publication Critical patent/JP2007103976A/en
Publication of JP2007103976A5 publication Critical patent/JP2007103976A5/ja
Application granted granted Critical
Publication of JP4189005B2 publication Critical patent/JP4189005B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Details Of Resistors (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Description

本発明は、電流検出用のチップ抵抗器に関する。   The present invention relates to a chip resistor for current detection.

大電流の検出用にミリオーム程度の極めて抵抗値が小さい抵抗器(以下、シャント抵抗器)を用いることは良く知られている。このシャント抵抗器を用いた大電流I(A)の検出では、既知の低抵抗値を有し、抵抗値の変動が小さいシャント抵抗器R(Ω)に、高電流I(A)を流した時のシャント抵抗器の両端における電圧降下V(V)を測定し、I=V/Rを用いて電流値I(A)を算出する。   It is well known to use a resistor (hereinafter referred to as a shunt resistor) having a very small resistance value of about milliohm for detecting a large current. In the detection of the large current I (A) using this shunt resistor, the high current I (A) is passed through the shunt resistor R (Ω) having a known low resistance value and a small variation in resistance value. The voltage drop V (V) across the shunt resistor at the time is measured, and the current value I (A) is calculated using I = V / R.

シャント抵抗器の一例を図7に示す。シャント抵抗器1000は、金属製の抵抗部1400および2つの電極部1100から構成されている。抵抗部1400は、例えば、Cu−Ni合金(例えば、CN49R)などの金属合金が用いられる。電極1100には、はんだ付け性を考慮してはんだめっき1200が施されている。   An example of a shunt resistor is shown in FIG. The shunt resistor 1000 includes a metal resistance portion 1400 and two electrode portions 1100. For the resistance portion 1400, for example, a metal alloy such as a Cu—Ni alloy (for example, CN49R) is used. The electrode 1100 is subjected to solder plating 1200 in consideration of solderability.

ここで、シャント抵抗器の特性は、抵抗の温度係数(TCR:Temperature Coefficient of Resistance)やシャント抵抗器を所定条件下で長時間使用した場合(例えば、1000時間)の使用前後における抵抗値変化(寿命試験)などを用いて評価される。   Here, the characteristics of the shunt resistor include a temperature coefficient of resistance (TCR: Temperature Coefficient of Resistance) and a change in resistance value before and after use when the shunt resistor is used for a long time under a predetermined condition (for example, 1000 hours) ( Life test).

ここで、抵抗の温度係数(TCR)は、(1)式で求められ、1000時間の寿命試験前後の抵抗値変化ΔR/Rは、(2)式を用いて評価される。   Here, the temperature coefficient of resistance (TCR) is obtained by the equation (1), and the resistance value change ΔR / R before and after the 1000 hour life test is evaluated by using the equation (2).

TCR=((R−R)/R)×(1/(T−T)) (1)
R1:測定温度Tにおける抵抗値(Ω)、T:測定温度
R0:基準温度Tにおける抵抗値(Ω)、T:基準温度
ΔR/R=(R1000−R)/R (2)
1000:1000時間の寿命試験後の抵抗値(Ω)
:寿命試験前の抵抗値(Ω)
また、シャント抵抗器をプリント配線板などに実装するためには、シャント抵抗器を小型化し、高密度実装に適した構造にすることが必要である。
TCR = ((R 1 −R 0 ) / R 0 ) × (1 / (T 1 −T 0 )) (1)
R1: resistance value at the measurement temperature T 1 (Ω), T 1 : Measurement temperature R0: the resistance value at the reference temperature T 0 (Ω), T 0 : a reference temperature ΔR / R = (R 1000 -R 0) / R 0 (2)
R 1000 : Resistance value after a life test of 1000 hours (Ω)
R 0 : resistance value before life test (Ω)
Further, in order to mount the shunt resistor on a printed wiring board or the like, it is necessary to make the shunt resistor smaller and to have a structure suitable for high-density mounting.

ところで、シャント抵抗器を用いて大電流を精度よく測定するためには、シャント抵抗器の特性である設定した抵抗の温度係数に限りなく近づけたり、使用時の抵抗の経時変化を小さくする必要がある。また、大電流を流したときの電流に対する抵抗値変化を小さくして電圧(V)−電流(I)特性を良くする必要がある。   By the way, in order to accurately measure a large current using a shunt resistor, it is necessary to make it as close as possible to the set temperature coefficient of resistance, which is a characteristic of the shunt resistor, or to reduce the temporal change in resistance during use. is there. Further, it is necessary to improve the voltage (V) -current (I) characteristics by reducing a change in resistance value with respect to the current when a large current is passed.

図7に示すシャント抵抗器1000では、所定の抵抗値とするためにレーザ加工機などを用いて1300で示される切り込みが抵抗部1400中に数カ所入れられている。この切り込み1300は、抵抗調整には必要であるが、シャント抵抗器1000の特性を劣化させる原因となっている。   In the shunt resistor 1000 shown in FIG. 7, in order to obtain a predetermined resistance value, several notches indicated by 1300 are made in the resistance portion 1400 using a laser processing machine or the like. This notch 1300 is necessary for resistance adjustment, but causes the characteristics of the shunt resistor 1000 to deteriorate.

本発明の目的は、電流の測定精度が高くかつ小型で高密度実装に適したチップ抵抗器を提供することである。 An object of the present invention is that the measurement accuracy of the current to provide a chip resistor which is suitable for high-density mounting coincide with high small.

上記目的を達成するための本発明のチップ抵抗器は、以下の構成を有する。すなわち、前記抵抗体には側方からの切り込みが無く、前記一対の電極は、前記抵抗体よりも電気抵抗が小さい金属の厚板であって、前記一対の電極の各電極は、それぞれ基板に接合される基板接合面と反対側の前記抵抗体と接合される面の全面が前記抵抗体の同一面上にかつ前記同一面から外にはみ出さないように積層配置されてクラッド接合されるとともに前記抵抗体の接合面より前記金属の厚板の厚み分だけチップ抵抗器を実装する前記基板の側に突き出ており、 前記一対の電極の各電極の面は、前記抵抗体と前記電極との接合面および前記電極の前記はんだ膜が形成されている前記基板接合面を除き前記各電極の面が露出されたまま残るように前記一対の電極の各基板接合面にのみ溶融はんだ材によるはんだ膜が形成されていることを特徴とする。 In order to achieve the above object, a chip resistor of the present invention has the following configuration. That is, the resistor has no side notch, and the pair of electrodes is a thick metal plate having an electric resistance smaller than that of the resistor , and each electrode of the pair of electrodes is formed on the substrate , respectively . The entire surface of the surface to be bonded to the resistor opposite to the substrate bonding surface to be bonded is laminated and clad bonded so that the entire surface of the resistor does not protrude from the same surface of the resistor. The bonding surface of the resistor protrudes toward the substrate on which the chip resistor is mounted by the thickness of the thick metal plate, and the surface of each electrode of the pair of electrodes is formed between the resistor and the electrode. solder layer by bonding surface and the only the substrate bonding surfaces of said pair of electrodes so that the surface of each electrode, except the substrate bonding surfaces of the solder film is formed remains exposed molten solder material of the electrode Is formed It is characterized by.

また例えば、前記チップ抵抗器の、前記抵抗体の少なくとも一面が露出していることを特徴とする。   For example, at least one surface of the resistor of the chip resistor is exposed.

本発明によれば、電流の測定精度が高く小型で高密度実装に適したチップ抵抗器を提供することができる。 According to the present invention, it is possible to provide a chip resistor which is suitable for high-density mounting with a small measurement accuracy of the current is rather high.

以下に、図面を参照して、本発明の好適な実施の形態であるシャント抵抗器100およびシャント抵抗器100の作製方法を詳細に説明する。   Hereinafter, a shunt resistor 100 and a method for manufacturing the shunt resistor 100 according to a preferred embodiment of the present invention will be described in detail with reference to the drawings.

なお、本実施の形態に記載されているシャント抵抗器の抵抗体として用いられる合金組成は、一例であり、特に特定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではなく、作製するシャント抵抗器の必要特性や仕様に応じて決定されるものである。   Note that the alloy composition used as the resistor of the shunt resistor described in this embodiment is an example, and unless otherwise specified, the scope of the present invention is limited only to them. Instead, it is determined according to the required characteristics and specifications of the shunt resistor to be manufactured.

[シャント抵抗器の構造]
図1に、基板140の導体パターン上にはんだ付けされた本実施の形態であるシャント抵抗器100を示す。シャント抵抗器100は、110の金属製の抵抗体、接続端子である電極121および122から構成されている。
[Structure of shunt resistor]
FIG. 1 shows a shunt resistor 100 according to the present embodiment soldered onto a conductor pattern of a substrate 140. The shunt resistor 100 includes 110 metal resistors and electrodes 121 and 122 which are connection terminals.

シャント抵抗器100は、1つの直方体形状を有する抵抗体110に2つの直方体形状の電極121と122を図1に示すように接合した構造である。抵抗体の厚さは、約100〜1000μmである。また、各電極の厚さは、約10〜300μmである。また、各電極の表面には、約2〜10μmのはんだ膜が形成されている。   The shunt resistor 100 has a structure in which two rectangular parallelepiped electrodes 121 and 122 are joined to a resistor 110 having one rectangular parallelepiped shape as shown in FIG. The thickness of the resistor is about 100 to 1000 μm. Moreover, the thickness of each electrode is about 10-300 micrometers. Further, a solder film of about 2 to 10 μm is formed on the surface of each electrode.

シャント抵抗器100は、放熱しやすいように設計されており、プリント配線板などに実装する際の基板140としては、例えばアルミ基板などが用いられ、その基板140もヒートシンクなどに接続された構造となっている。   The shunt resistor 100 is designed to easily dissipate heat. For example, an aluminum substrate is used as the substrate 140 for mounting on a printed wiring board or the like, and the substrate 140 is also connected to a heat sink or the like. It has become.

すなわち、高電流を測定したときにシャント抵抗器100に発生する熱は、基板140方向に伝達されるために、シャント抵抗器100と基板140との接合面が重要であり、シャント抵抗器100は、基板140との接合面である電極121、122に熱伝導の良い銅の厚板を用い、接合面積を大きく取ることを特徴としている。   That is, since heat generated in the shunt resistor 100 when high current is measured is transmitted in the direction of the substrate 140, the junction surface between the shunt resistor 100 and the substrate 140 is important. The electrodes 121 and 122 which are the joint surfaces with the substrate 140 are made of copper thick plates having good heat conduction, and have a large joint area.

また、高電流を測定するときの電流は、基板140のパターンよりシャント抵抗器100の一方の電極121を介して抵抗体110に流れ、さらに抵抗体110から他の1つの電極122へと流れる。また、高電流を流したときの電極121と電極122間、すなわちシャント抵抗器100の両端における電圧降下を測定する。このため図1の構造を有するシャント抵抗器100は、大電流での使用が可能である。   Further, a current when measuring a high current flows from the pattern of the substrate 140 to the resistor 110 via one electrode 121 of the shunt resistor 100 and further flows from the resistor 110 to another one electrode 122. Further, the voltage drop between the electrode 121 and the electrode 122 when a high current is passed, that is, across the shunt resistor 100 is measured. Therefore, the shunt resistor 100 having the structure of FIG. 1 can be used with a large current.

抵抗体110用材料としては、例えば、Cu−Ni合金(CN49Rなど)や図4に示す各種金属合金および各種貴金属合金が用いられ、仕様に応じて決定される比抵抗、TCR、抵抗値変化などの各種特性に適合する金属合金や貴金属合金などが図4より適宜選択されて使用される。また図4以外にも、例えば、マンガン・銅・ニッケル合金などを使用しても良い。   As the material for the resistor 110, for example, a Cu—Ni alloy (CN49R, etc.), various metal alloys shown in FIG. 4 and various noble metal alloys are used, and specific resistance, TCR, change in resistance value, etc. determined according to specifications are used. A metal alloy or a noble metal alloy suitable for the various characteristics is appropriately selected from FIG. 4 and used. In addition to FIG. 4, for example, manganese / copper / nickel alloy may be used.

また、図4に示すように、貴金属合金を使用する場合には、約2〜約7μΩ・cmと極めて低い電気抵抗を有する抵抗体110が得られ、例えば、これらの貴金属合金を抵抗体110として使用する場合には、図1に示す構造のシャント抵抗器100の抵抗値は、約0.04〜0.15mΩとなる。   In addition, as shown in FIG. 4, when a noble metal alloy is used, a resistor 110 having an extremely low electric resistance of about 2 to about 7 μΩ · cm is obtained. For example, these noble metal alloys are used as the resistor 110. When used, the resistance value of the shunt resistor 100 having the structure shown in FIG. 1 is about 0.04 to 0.15 mΩ.

また電極121および122の材料としては、電気抵抗が抵抗体110に比べて小さい銅材料(例えば、1.5μΩ・cm程度)が用いられ、抵抗体110と電極121あるい抵抗体110と電極122とはクラッド接合により接合される。2つの電極121および122の電極面は、高電流を測定する際に発生する熱を放熱しやすくするため、基板140方向に熱が伝達されやすいように電極面積を広くとるように設計されており、熱伝導性の良い銅の厚板を用い、接合面積を大きく取ることを特徴としている。   As a material for the electrodes 121 and 122, a copper material (for example, about 1.5 μΩ · cm) whose electrical resistance is smaller than that of the resistor 110 is used, and the resistor 110 and the electrode 121 or the resistor 110 and the electrode 122 are used. Are joined by clad joining. The electrode surfaces of the two electrodes 121 and 122 are designed to have a large electrode area so that heat is easily transferred in the direction of the substrate 140 in order to easily dissipate heat generated when measuring a high current. It is characterized by using a copper plate with good thermal conductivity and a large bonding area.

また電極121および122の表面には、基板の導体パターンへのはんだ付け性を向上するために、例えば、溶融はんだ材(Sn:Pb=9:1)または鉛フリーはんだ材の膜131および132が形成されている。溶融はんだ材は、銅材の電極121または122との間に拡散層を有するため、電極の接合強度および電気的信頼性は、向上する。   In addition, on the surfaces of the electrodes 121 and 122, in order to improve the solderability to the conductor pattern of the substrate, for example, films 131 and 132 of a molten solder material (Sn: Pb = 9: 1) or a lead-free solder material are provided. Is formed. Since the molten solder material has a diffusion layer between the copper electrode 121 or 122, the bonding strength and electrical reliability of the electrode are improved.

なお、シャント抵抗器100の特徴は、抵抗体110が平板からなる単純構造となっており、従来のシャント抵抗器1000に見られるような切れ込み1300が無い点である。このように抵抗体110中に切れ込みがないため、大電流を流したときの電流経路が安定し、抵抗値変化(ΔR/R)は、約0.1%以下に抑えることができ、切れ込みがある場合の抵抗値変化(ΔR/R)数〜20%に比べて抵抗値変化を1/数10〜1/200程度に低減できる。   The feature of the shunt resistor 100 is that the resistor 110 has a simple structure consisting of a flat plate, and there is no notch 1300 as seen in the conventional shunt resistor 1000. Since there is no cut in the resistor 110 in this way, the current path when a large current flows is stabilized, and the resistance value change (ΔR / R) can be suppressed to about 0.1% or less, and the cut is not generated. The change in resistance value can be reduced to about 1 / several 10 to 1/200 compared to the change in resistance value (ΔR / R) in a certain case to 20%.

また、抵抗体110に約2〜7μΩ・cmの極めて低い電気抵抗を有する貴金属合金を使用すると、シャント抵抗器100の抵抗値は、約0.04〜0.15mΩとなるため、高電流の測定に適したシャント抵抗器が得られる。   Further, when a noble metal alloy having an extremely low electric resistance of about 2 to 7 μΩ · cm is used for the resistor 110, the resistance value of the shunt resistor 100 is about 0.04 to 0.15 mΩ, so that a high current measurement is performed. A shunt resistor suitable for the above can be obtained.

[シャント抵抗器の作製方法]
次に、図2および図3を用いて、シャント抵抗器100の作製方法について以下に説明する。図2は、シャント抵抗器100の作製方法の一例を示すものであり、図3は、図2の各作製工程で用いられる各素材や作製されるシャント抵抗器100の形状を示したものである。
[Production method of shunt resistor]
Next, a manufacturing method of the shunt resistor 100 will be described below with reference to FIGS. FIG. 2 shows an example of a manufacturing method of the shunt resistor 100, and FIG. 3 shows each material used in each manufacturing process of FIG. 2 and the shape of the shunt resistor 100 to be manufactured. .

図2において、電極材の銅合金230としては、例えば、比抵抗約1.5μΩ・cmの銅材が選択され、素材加工240工程において、所定の寸法に加工される。   In FIG. 2, for example, a copper material having a specific resistance of about 1.5 μΩ · cm is selected as the copper alloy 230 of the electrode material, and is processed into a predetermined dimension in the material processing 240 step.

また、抵抗材の合金210としては、例えば、図4に示す所定の比抵抗を有する各種金属合金や各種貴金属合金の中から用途や仕様に応じて選択され、素材加工220工程において、所定の寸法に加工される。   Further, as the resistance material alloy 210, for example, selected from various metal alloys and various precious metal alloys having a predetermined specific resistance shown in FIG. To be processed.

次に、図3の120に示す銅材と110に示す抵抗体、例えば、貴金属合金とが接合250工程にてクラッド接合される。この接合体310における抵抗体110と電極120の界面は、拡散層により強固に結合されているため、抵抗体110と電極120との接合強度および電気的信頼性は向上する。   Next, the copper material 120 shown in FIG. 3 and the resistor 110 shown in FIG. Since the interface between the resistor 110 and the electrode 120 in the bonded body 310 is firmly bonded by the diffusion layer, the bonding strength and electrical reliability between the resistor 110 and the electrode 120 are improved.

次に、接合体310は、電極加工260工程にて、図3の320に示す所定の形状の接合体となるように電極120の一部が除去される。例えば、切削装置を用いて、図3の320に示す電極120の中央部分123が抵抗体110が露出するまで除去され、電極120は、121と122に分割される。電極121と電極122の厚さは、約10〜300μmである。また、抵抗体110の厚さは、約100〜1000μmである。   Next, part of the electrode 120 is removed so that the joined body 310 becomes a joined body having a predetermined shape indicated by 320 in FIG. For example, using a cutting device, the central portion 123 of the electrode 120 shown by 320 in FIG. 3 is removed until the resistor 110 is exposed, and the electrode 120 is divided into 121 and 122. The thickness of the electrode 121 and the electrode 122 is about 10 to 300 μm. The thickness of the resistor 110 is about 100 to 1000 μm.

次に、接合体320は、溶融はんだ加工270工程にて、電極121と電極122の表面に131と132で示す約2〜10μmのはんだ膜が形成され、接合体330を得る。この時使用されるはんだとしては、例えば、溶融はんだ材(Sn:Pb=9:1)あるいは、鉛フリーはんだ材などが用いられる。   Next, in the joined body 320, a solder film of about 2 to 10 μm indicated by 131 and 132 is formed on the surfaces of the electrode 121 and the electrode 122 in the molten solder processing 270 step, and the joined body 330 is obtained. As the solder used at this time, for example, a molten solder material (Sn: Pb = 9: 1) or a lead-free solder material is used.

この溶融はんだ材と銅材の電極120との間には、拡散層が形成されるため、溶融はんだ材131と電極121および溶融はんだ材132と電極122とは強固に接合される。そのためそれらの界面の接合強度は高く電気的信頼性も向上し、さらに、溶融はんだ材131および132を介してシャント抵抗器100をアルミ基板140の導体パターンにはんだ付けすることが可能となる。   Since a diffusion layer is formed between the molten solder material and the copper electrode 120, the molten solder material 131 and the electrode 121, and the molten solder material 132 and the electrode 122 are firmly bonded. Therefore, the bonding strength at these interfaces is high and the electrical reliability is improved, and further, the shunt resistor 100 can be soldered to the conductor pattern of the aluminum substrate 140 via the molten solder materials 131 and 132.

次に、接合体330は、切断加工280工程にて、レーザ加工機、プレス加工機、ワイヤー放電加工機、円盤切削機などを用いて、所定の長さに切断され、340に示す所定の寸法を有する接合体、例えば、厚さ約0.1〜20mmを得る。   Next, the joined body 330 is cut into a predetermined length using a laser processing machine, a press processing machine, a wire electric discharge machine, a disk cutting machine, or the like in a cutting process 280 step, and has a predetermined dimension indicated by 340. For example, a thickness of about 0.1 to 20 mm is obtained.

次に、接合体340は、抵抗調整290工程にて、所定の抵抗値を有するように調整される。すなわち接合体350の抵抗値を測定しながら、サンドブラスト法など、またはレーザー加工機などの各種切断機を用いて、接合体350の側面部や表面部の一部を除去する。その結果、所定の抵抗値を有すシャント抵抗器100が得られる。   Next, the bonded body 340 is adjusted to have a predetermined resistance value in the resistance adjustment 290 step. That is, while measuring the resistance value of the bonded body 350, a part of the side surface portion or the surface portion of the bonded body 350 is removed by using a sandblasting method or various cutting machines such as a laser processing machine. As a result, the shunt resistor 100 having a predetermined resistance value is obtained.

[シャント抵抗器の諸特性]
図4の各種金属合金および各種貴金属合金を用いて作製したシャント抵抗器の抵抗値の一例を以下に説明する。例えば、図4に示す約2〜約7μΩcmの低抵抗の貴金属合金を使用した場合の図1に示す構造のシャント抵抗器の抵抗値は、約0.05〜0.14mΩ程度であり、低抵抗値を有するシャント抵抗器が得られる。
[Characteristics of shunt resistor]
An example of the resistance value of the shunt resistor manufactured using the various metal alloys and the various noble metal alloys shown in FIG. 4 will be described below. For example, when the noble metal alloy having a low resistance of about 2 to about 7 μΩcm shown in FIG. 4 is used, the resistance value of the shunt resistor having the structure shown in FIG. 1 is about 0.05 to 0.14 mΩ. A shunt resistor having a value is obtained.

図5に、Cu−Ni系合金であるCN49を抵抗体110として用い図2の本作製方法で作製されたシャント抵抗器100のTCR値および1000時間の寿命試験後の抵抗値変化を一例として示す。また、図5には、比較として図7に示す従来の方法で作製されたシャント抵抗器1000のTCR値および1000時間の寿命試験後の抵抗値変化を合わせて示す。図5より、本作製方法で作製されたシャント抵抗器100は、従来品に比べてTCR値が約1/3以下に、抵抗値変化が1/20〜1/30以下に低下し、各々の特性が向上していることがわかる。   FIG. 5 shows, as an example, the TCR value of the shunt resistor 100 manufactured by the present manufacturing method of FIG. 2 using CN49, which is a Cu—Ni-based alloy, as the resistor 110 and the change in resistance value after a life test of 1000 hours. . FIG. 5 also shows the TCR value of the shunt resistor 1000 manufactured by the conventional method shown in FIG. 7 and the change in resistance value after a 1000 hour life test as a comparison. As shown in FIG. 5, the shunt resistor 100 manufactured by this manufacturing method has a TCR value of about 1/3 or less and a change in resistance value of 1/20 to 1/30 or less compared to the conventional product. It can be seen that the characteristics are improved.

ここで、Cu−Ni系合金であるCN49のTCR値は、約50ppm/℃であり、シャント抵抗器110のTCR値に極めて近い。このことから、本製造方法で製造されるシャント抵抗器110は、Cu−Ni系合金(CN49)がもつ本来のTCR値をほぼ再現できる製造方法といえる。また、従来の製造方法で製造されたシャント抵抗器1000は、抵抗調整用の切り込み1400がCu−Ni系合金(CN49)の本来のTCR値を発現できない阻害要因として働いているといえる。   Here, the TCR value of CN49, which is a Cu—Ni alloy, is about 50 ppm / ° C., which is very close to the TCR value of the shunt resistor 110. From this, it can be said that the shunt resistor 110 manufactured by this manufacturing method is a manufacturing method that can substantially reproduce the original TCR value of the Cu—Ni-based alloy (CN49). In addition, it can be said that the shunt resistor 1000 manufactured by the conventional manufacturing method works as an inhibiting factor that the resistance adjusting cut 1400 cannot express the original TCR value of the Cu—Ni alloy (CN49).

なお、図5には示さなかったが、シャント抵抗器100の抵抗体として図4に示す各金属合金または各基金属合金を抵抗体110として用いてTCR値および1000時間の寿命試験後の抵抗値変化を行った。その結果も図5とほぼ同様のTCR値や抵抗値変化値が得られた。これらのことから、図4に示す各金属合金または各基金属合金を抵抗体110として用い、図2の作製方法によって作製されたたシャント抵抗器100は優れたTCR値や抵抗値変化値が得られることがわかる。   Although not shown in FIG. 5, each of the metal alloys or base metal alloys shown in FIG. 4 is used as the resistor 110 of the shunt resistor 100 as the resistor 110, and the resistance value after a life test of 1000 hours. Made a change. As a result, the same TCR value and resistance value change value as those in FIG. 5 were obtained. From these facts, the shunt resistor 100 manufactured by the manufacturing method of FIG. 2 using each metal alloy or each base metal alloy shown in FIG. 4 as the resistor 110 has an excellent TCR value and resistance value change value. I understand that

また、図6に、図5で示した本実施の形態であるシャント抵抗器100と従来例のシャント抵抗器1000との電圧(V)−電流(I)特性を測定した結果を示す。図6の結果より、抵抗体110に切り込みが無いシャント抵抗器100の電流値の増加に伴う抵抗値の変化は、0.1%以下に抑えることができ、優れた電圧(V)−電流(I)特性が得られた。   FIG. 6 shows the results of measuring the voltage (V) -current (I) characteristics of the shunt resistor 100 according to the present embodiment shown in FIG. 5 and the conventional shunt resistor 1000. From the result of FIG. 6, the change in the resistance value accompanying the increase in the current value of the shunt resistor 100 in which the resistor 110 is not cut can be suppressed to 0.1% or less, and excellent voltage (V) −current ( I) Characteristics were obtained.

一方、抵抗体に切り込みが多数あるシャント抵抗器1000では、電流値の増加に伴い抵抗値が数%から20%も増加し、大電流を流したときの抵抗値の変化が大きい。これは、切り込みがあると電流経路が安定しないためである。このことから、大電流を流したときのシャント抵抗器の抵抗値変化を小さくするためには、切り込みの無い形状が望ましいことがわかる。   On the other hand, in the shunt resistor 1000 having many notches in the resistor, the resistance value increases by several percent to 20% as the current value increases, and the resistance value changes greatly when a large current is passed. This is because the current path is not stable when there is a cut. From this, it can be seen that in order to reduce the change in the resistance value of the shunt resistor when a large current is passed, a shape without a cut is desirable.

以上説明したように、本実施形態によれば、シャント抵抗器を作製する際に貴金属合金などの低抵抗材料を抵抗体として用い、抵抗体中にさらに抵抗調整用の切り込みを入れないでシャント抵抗器を作製することにより、低抵抗で高電流の測定に適した電流経路を有する抵抗変化率の小さなシャント抵抗器が提供ができる。   As described above, according to the present embodiment, when a shunt resistor is manufactured, a low resistance material such as a noble metal alloy is used as a resistor, and a shunt resistor is not further cut into the resistor without making a resistance adjustment cut. By manufacturing the capacitor, a shunt resistor having a low resistance change rate and a current path suitable for high current measurement can be provided.

本発明の一実施形態であるシャント抵抗器の概略構造図である。It is a schematic structure figure of the shunt resistor which is one embodiment of the present invention. シャント抵抗器の作製方法を示す図である。It is a figure which shows the preparation methods of a shunt resistor. シャント抵抗器の各製造工程における接合体の形状を示す図である。It is a figure which shows the shape of the joined body in each manufacturing process of a shunt resistor. 抵抗体の種類を示す図である。It is a figure which shows the kind of resistor. シャント抵抗器のTCR値及び寿命試験後の抵抗値変化を比較した図である。It is the figure which compared the TCR value of a shunt resistor, and the resistance value change after a lifetime test. シャント抵抗器のV−I特性を比較した図である。It is the figure which compared the VI characteristic of a shunt resistor. 従来の切れ込みが入ったシャント抵抗器の概略構造図である。It is a schematic structural diagram of a conventional shunt resistor with a notch.

符号の説明Explanation of symbols

100 シャント抵抗器
110 抵抗体
121 電極
122 電極
131 溶融はんだ材
132 溶融はんだ材
140 基板
100 Shunt Resistor 110 Resistor 121 Electrode 122 Electrode 131 Molten Solder Material 132 Molten Solder Material 140 Substrate

Claims (2)

板状の抵抗用合金からなる抵抗体と、
一対の電極と、を備え、
前記抵抗体には側方からの切り込みが無く、
前記一対の電極は、前記抵抗体よりも電気抵抗が小さい金属の厚板であって、前記一対の電極の各電極は、それぞれ基板に接合される基板接合面と反対側の前記抵抗体と接合される面の全面が前記抵抗体の同一面上にかつ前記同一面から外にはみ出さないように積層配置されてクラッド接合されるとともに前記抵抗体の接合面より前記金属の厚板の厚み分だけチップ抵抗器を実装する前記基板の側に突き出ており、
前記一対の電極の各電極の面は、前記抵抗体と前記電極との接合面および前記電極の前記はんだ膜が形成されている前記基板接合面を除き前記各電極の面が露出されたまま残るように前記一対の電極の各基板接合面にのみ溶融はんだ材によるはんだ膜が形成されていることを特徴とするチップ抵抗器。
A resistor made of a plate-like resistance alloy;
A pair of electrodes;
The resistor has no cut from the side,
Said pair of electrodes is a thick plate of metal electrical resistance is smaller than the resistor, the electrodes of the pair of electrodes is bonded substrate bonding surface to be bonded to the substrate, respectively and the resistor opposite are stacked so as not to protrude out from and the same plane on the same surface of the entire said resistor surface being planks thickness of the said metal from the joint surface of the resistor with the cladding bonded Only protrudes on the side of the substrate mounting the chip resistor,
Surface of each electrode of the pair of electrodes, remains the surface of the respective electrode except for the substrate bonding surfaces of the solder layer is formed of the bonding surface and the electrode of the electrode and the resistor is exposed As described above , the chip resistor is characterized in that a solder film made of a molten solder material is formed only on each substrate bonding surface of the pair of electrodes .
前記抵抗体の少なくとも一面が露出していることを特徴とする請求項1に記載のチップ抵抗器。   The chip resistor according to claim 1, wherein at least one surface of the resistor is exposed.
JP2007010798A 2007-01-19 2007-01-19 Chip resistor Expired - Lifetime JP4189005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007010798A JP4189005B2 (en) 2007-01-19 2007-01-19 Chip resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007010798A JP4189005B2 (en) 2007-01-19 2007-01-19 Chip resistor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000239076A Division JP4138215B2 (en) 2000-08-07 2000-08-07 Manufacturing method of chip resistor

Publications (3)

Publication Number Publication Date
JP2007103976A JP2007103976A (en) 2007-04-19
JP2007103976A5 JP2007103976A5 (en) 2008-02-07
JP4189005B2 true JP4189005B2 (en) 2008-12-03

Family

ID=38030532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007010798A Expired - Lifetime JP4189005B2 (en) 2007-01-19 2007-01-19 Chip resistor

Country Status (1)

Country Link
JP (1) JP4189005B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4906100B2 (en) * 2007-05-09 2012-03-28 コーア株式会社 Circuit board having a resistor for current detection
US20100236054A1 (en) 2007-08-30 2010-09-23 Kamaya Electric Co., Ltd. Method and apparatus for manufacturing metal plate chip resistors
JP2013055130A (en) * 2011-09-01 2013-03-21 Rohm Co Ltd Jumper resistor
JP7089555B2 (en) * 2020-07-03 2022-06-22 大同特殊鋼株式会社 Manufacturing method of current detection resistor, circuit board and current detection resistor

Also Published As

Publication number Publication date
JP2007103976A (en) 2007-04-19

Similar Documents

Publication Publication Date Title
JP4138215B2 (en) Manufacturing method of chip resistor
JP5970695B2 (en) Current detection resistor and its mounting structure
JP2010514171A (en) Resistor (especially SMD resistor) and manufacturing method thereof
JP4503122B2 (en) Low resistor for current detection and method for manufacturing the same
US10181367B2 (en) Resistor element, method of manufacturing the same, and resistor element assembly
JP4189005B2 (en) Chip resistor
JP2018074143A (en) Resistive element and resistive element assembly
JP2004311747A (en) Chip resistor and its manufacturing method
WO2003107361A1 (en) Chip resistor having low resistance and its producing method
US11842830B2 (en) Current detection resistor
JP4712943B2 (en) Method for manufacturing resistor and resistor
JP2002184601A (en) Resistor unit
JP6652393B2 (en) Shunt resistor and current detection device using shunt resistor
US11742115B2 (en) Resistor
JP3848245B2 (en) Chip resistor
JP3670593B2 (en) Electronic component using resistor and method of using the same
JP4867487B2 (en) Manufacturing method of chip resistor
JP5143353B2 (en) Resistor manufacturing method
JP2005108900A5 (en)
JP7216603B2 (en) Mounting structure of current detection resistor and current detection resistor
JP2007141908A (en) Method of manufacturing resistor
US20230333143A1 (en) Jumper element, shunt resistor apparatus, and method of adjusting characteristic of shunt resistor apparatus for current detection
JP2007335488A5 (en)
JP2017181477A (en) Contact probe device
JP2006019669A (en) Resistor of low resistance using cladding material, and manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071217

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20071217

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20071226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080911

R150 Certificate of patent or registration of utility model

Ref document number: 4189005

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term