JP2002022561A5 - - Google Patents

Download PDF

Info

Publication number
JP2002022561A5
JP2002022561A5 JP2000204629A JP2000204629A JP2002022561A5 JP 2002022561 A5 JP2002022561 A5 JP 2002022561A5 JP 2000204629 A JP2000204629 A JP 2000204629A JP 2000204629 A JP2000204629 A JP 2000204629A JP 2002022561 A5 JP2002022561 A5 JP 2002022561A5
Authority
JP
Japan
Prior art keywords
flexible
electrode
temperature
capacitance
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000204629A
Other languages
Japanese (ja)
Other versions
JP2002022561A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2000204629A priority Critical patent/JP2002022561A/en
Priority claimed from JP2000204629A external-priority patent/JP2002022561A/en
Publication of JP2002022561A publication Critical patent/JP2002022561A/en
Publication of JP2002022561A5 publication Critical patent/JP2002022561A5/ja
Withdrawn legal-status Critical Current

Links

Description

【書類名】 明細書
【発明の名称】 可撓性圧電素子
【特許請求の範囲】
【請求項1】 高分子母材中に圧電セラミック粉体を混入した平板状複合圧電体と、前記平板状複合圧電体の両面に密着して配置された可撓性電極と、前記両可撓性電極に接続された振動電圧検出手段と、前記可撓性電極の少なくともどちらか一方に接続された静電容量検出手段とからなる可撓性圧電素子。
【請求項2】 静電容量検出手段に可撓性電極の静電容量の温度特性に基づいて静電容量を温度に換算する温度換算手段を接続してなる請求項1記載の可撓性圧電素子。
【請求項3】 高分子母材が塩素化ポリエチレンである請求項1記載の可撓性圧電素子。
【請求項4】 圧電セラミック粉体がチタン酸鉛とジルコン酸鉛の固溶体である請求項1記載の可撓性圧電素子。
【請求項5】 圧電セラミック粉体がチタン酸鉛である請求項1記載の可撓性圧電素子。
【請求項6】 平板状可撓性電極が電極用高分子材と導電性粒子とからなる複合導電体である請求項1記載の可撓性圧電素子。
【請求項7】 電極用高分子材が高分子母材と同質材料である請求項6記載の可撓性圧電素子。
【発明の詳細な説明】
【0001】
【発明の属する技術分野】
本発明は、可撓性圧電素子に関するものである。
【0002】
【従来の技術】
従来、可撓性圧電素子としては、図4に示すように高分子母材1と圧電セラミック粉体2とを混合しシート状に成形後、この複合圧電シート3表面に電極12を設ける。この際に、電極としては分極処理によって付与された圧電特性や高分子母材1の耐熱性等を考慮して一般に銅、アルミニウム、金等の金属蒸着あるいは接着剤により貼付した金属の箔電極が用いられている。
【0003】
また、特開平5−102548号公報では、平板状複合圧電体3に金属を溶射した溶射電極を用いた可撓性圧電素子が提案されている。
【0004】
【発明が解決しようとする課題】
しかしながら、前記の可撓性圧電素子は信頼性や感度及び複雑な製造工程を有するという課題を有していた。すなわち、蒸着電極では一般に設けられる電極の厚みが0.02〜0.1μmと程度と非常に薄いため平板状複合圧電体が撓んだ場合に電極内に亀裂が生じてしまい感度が低下したり、あるいは出力が得られないという課題があった。
【0005】
また、金属箔電極は、一般に6〜100μm程度の厚さの金属箔を、ポリエステル系樹脂、ウレタン系樹脂、エポキシ系樹脂等からなる5〜40μm程度の接着剤を介して、平板状複合圧電体に貼付される。しかし、この金属箔電極は、特に平板状複合圧電体両面に設けた場合、複合圧電体の可撓性という重量な長所を損ない、感度が低いという課題があった。
【0006】
また、溶射電極の場合は複合圧電体の耐熱性のため、容易に溶射成形できるのは低沸点の金属のみであり、用いられる電極材料が制限されるという課題があると同時に、溶射時に平板状複合圧電体にエアー圧等の負荷が印加されるため、平板状複合圧電体の信頼性に課題があった。
【0007】
さらに、従来の平板状の可撓性圧電素子では時間的に変化する圧力を検出できるが、温度を検出できないという課題を有していた。前記平板状複合圧電体3をもちいた場合でも、その最高使用温度は80〜120℃程度である。この平板状可撓性圧電体3が最高使用温度以上に放置される環境になった場合、その圧電性能が劣化する。従って、平板状複合圧電体3の使用にあたっては十分な温度管理画筆用である。この点、従来の可撓性圧電素子では、温度センサを別途に準備する必要がある。しかし、構成が複雑になる、温度センサで検出される温度は必ずしも可撓性複合圧電体3の温度と一致しないという課題があった。
【0008】
【課題を解決するための手段】
本発明は、上記課題を解決するために、高分子中母材に圧電セラミック粉体を混入した平板状複合圧電体と、前記平板状複合圧電体の両面に密着して配置された可撓性電極とからなり、前記両可撓性電極に接続された振動電圧検出手段と、前記可撓性電極の少なくとも一方のに接続された静電容量検出手段とからなる可撓性圧電素子である。
【0009】
上記発明によれば、平板状複合圧電体に圧力が印加されたとき、前記平板状複合圧電体両面に配置された可撓性電極間に発生する平板状複合圧電体の振動電圧を検出することにより圧力検知をする。
【0010】
また、2つの可撓性電極の少なくとも一方に接続された静電容量検出手段で、可撓性電極の静電容量の温度特性に基づいて静電容量値の温度依存性を測定して可撓性複合圧電体の温度を検出することができる。従って、温度センサを特別に準備する必要がない。このため、温度検出も可能な可撓性圧電素子を簡単な構成で実現できる。
【0011】
【発明の実施の形態】
上記課題を解決するために請求項1記載の発明は、高分子母材中に圧電セラミック粉体を混入した平板状複合圧電体と、前記平板状複合圧電体の両面に密着して配置された可撓性電極とからなり、前記両可撓性電極に接続された振動電圧検出手段と、可撓性電極の少なくともどちらか一方に接続された静電容量検出手段とからなる可撓性圧電素子である。前記可撓性電極と前記平板状複合圧電体が密着する構成であるので可撓性が向上すると同時に、静電容量検出手段により可撓性電極の静電容量が検出できるので、可撓性電極で挟持されている平板状複合圧電体の平均温度を可撓性電極の静電容量の温度依存性に基づいて検出できる。従って、温度センサを別に準備する必要がないので簡素な構成で圧力と温度の両者を検知できる可撓性圧電素子を提供できる。
【0012】
請求項2記載の発明は、静電容量検出手段に可撓性電極の静電容量の温度特性に基づいて静電容量値を温度に換算する温度換算手段を接続してなる可撓性圧電素子である。静電容量検出手段により検出された静電容量値は、温度換算手段により温度に換算されるので容易に温度を直読できる。
【0013】
請求項3記載の発明は、高分子母材を塩素化ポリエチレンで構成した可撓性圧電素子である。塩素化ポリエチレンは優れた耐熱性と優れた可撓性を有するのでこれらの特性を兼ね備えた平板状複合圧電体が得られる。
【0014】
請求項4記載の発明は、圧電セラミック粉体をチタン酸鉛とジルコン酸鉛の固溶体で構成した可撓性圧電素子である。チタン酸鉛とジルコン酸鉛の固溶体の圧電セラミック粉体は工業的に多量に利用されているので、安価であり、入手も容易であるため、高感度で安価な可撓性圧電素子が提供できる。
【0015】
請求項5記載の発明は、圧電セラミック粉体をチタン酸鉛で構成した可撓性圧電素子である。チタン酸鉛の誘電率は、チタン酸鉛とジルコン酸鉛の固溶体の誘電率よりも小さいので、圧電セラミック粉体の誘電率を小さくできるため、分極処理が容易になり、簡単に高感度な可撓性圧電素子が提供できる。
【0016】
請求項6記載の発明は、可撓性電極が電極用高分子材と導電性粒子とからなる複合導電体で構成した可撓性圧電素子である。導電性粒子の接触を通して複合導電体の導電性が確保される。また、電極用高分子自身の可撓性を通して複合導電体の可撓性が確保される。また、複合導電体電極の電極用高分子と、平板状複合圧電体中の高分子母材の軟化温度を適切に選択することにより、容易に熱圧着で接着できる。
【0017】
請求項7記載の発明は、電極用高分子が高分子母材と同質材料で構成した可撓性圧電素子である。電極用高分子が高分子母材と同質材料であるので、電極を平板状複合圧電体に容易に強固接着でき、信頼性が向上する。
【0018】
【実施例】
以下、本説明の実施例について図面を用いて説明する。
【0019】
(実施例1)
図1は本発明の実施例1における可撓性圧電素子の断面図である。この可撓性圧電素子は高分子母材1中に圧電セラミック粉体2を、オープンロール装置で混合して均一に分散させた後、熱プレス装置により平板金型で厚さ0.5mmのシートに成形して、複合圧電体3を得た。この平板状複合圧電体3の両面に平板状金型を使用して熱プレスにより、平板状複合圧電体3と可撓性電極4と可撓性電極5をそれぞれ熱圧着した。
【0020】
次に圧電特性を付与するために、可撓性電極4と5の間に直流高電圧を印加して圧電セラミック粉体2を分極し、可撓性圧電素子を構成した。
【0021】
以上の可撓性圧電素子構成の中で、高分子母材1に塩素化ポリエチレン、圧電セラミック粉体2にチタン酸ジルコン酸鉛を用いた。高分子母材1としてエポキシ樹脂、ウレタン樹脂、クロロプレン樹脂、塩素化ポリエチレン樹脂などが用いられるが、エポキシ樹脂、ウレタン樹脂の耐熱性は(60〜80℃)程度であるのに対し、塩素化ポリエチレンは、120℃の高耐熱を有する点で優れている。
【0022】
また、塩素化ポリエチレンは分子量や結晶化度等を適切に選ぶことにより、加硫無しでも上記高耐熱性を実現できる点で有効である。また、塩素化ポリエチレンは可撓性に優れるため、外力による電極剥離等が抑制され、信頼性及び感度が高い。また、圧電セラミック粉体2の材質は、チタン酸鉛とジルコン酸鉛の固溶体であることが望ましい。この組成の圧電セラミックは電子部品用セラミックとして工業的に多量に実用されているので、安価であり入手も容易である。
【0023】
また、チタン酸鉛とジルコン酸鉛の固溶体以外にも圧電セラミック粉体2の材質としてチタン酸鉛も好ましい。チタン酸鉛とジルコン酸鉛の固溶体の比誘電率はおよそ(800〜3000)程度の大きな値であるが、チタン酸鉛の比誘電率は(200〜300)程度の小さな値である。この場合、圧電セラミック粉体2と可撓性電極4、5の間に高分子母材1に起因する静電容量は、圧電セラミック粉体2に起因する静電容量と同程度にできる。従って、圧電セラミック粉体の分極が容易にできる。
【0024】
可撓性圧電素子の一部あるいは全面に時間的に変化する圧力が印加されたときその部分の圧電素子に生じる加速度に応じた振動電圧が可撓性電極4及び5間に誘起される。この振動電圧は振動電圧検出手段6により検出される。この振動電圧を用いて、時間的に変化する圧力を検知する。
【0025】
他方、可撓性電極4及び5は、平板状複合圧電体3に密着して構成されているので、可撓性電極4及び5の温度は殆ど平板状複合圧電体3の温度に等しい。可撓性電極4、5は、その構成材料特有の静電容量の温度特性を示すので、検出された静電容量から温度を求めることができる。検出された静電容量から温度を求めるには、静電容量の温度特性を参照する必要がある。しかし、その都度参照する事は煩雑な作業であるので、図1に示すように静電容量の温度特性に基づき静電容量を温度に換算する温度換算手段8を静電容量検出手段7に接続することが望ましい。これにより温度を直読できる。
【0026】
このように図1に示した実施例1の構成は、温度と圧力を同時に検出することができる。
【0027】
(実施例2)
図2は本発明実施例2の可撓性圧電素子の構成図である。
【0028】
可撓性電極4および可撓性電極5の構成材料として、複合導電体11を用いた。
【0029】
この複合導電体11は、電極用高分子9と導電性粒子10とから構成される。
【0030】
このとき、導電性粒子10は電極用高分子9中に網目状に相互に接触して配列され、これらの接触を通して複合導電体11の導電性が確保される。また、電極用高分子9により、それ自身の可撓性を通して複合導電体11の可撓性が確保される。このため、電極に金属箔電極を張り付けた構成の圧電素子よりも高い可撓性が得られる。電極用高分子9として、高分子母材1と同様、エポキシ樹脂、ウレタン樹脂、クロロプレン樹脂、塩素化ポリエチレン樹脂などが用いられる。また、導電性粒子10として、カーボン粒子や銀粒子が用いられる。銀粒子を用いた場合、複合導電体電極7の比抵抗は5×10−3Ω・cm程度の小さな値を示すが、カーボン粒子を用いた場合、同比抵抗値は約1桁以上の大きな値を示す。この圧電素子を人体検知に用いた場合の周波数範囲は約5Hz程度であるので、この時の平板状複合圧電体3のインピーダンスは約100kΩ以上であり、両可撓性電極4、5の比抵抗値は1kΩ以下程度で充分であるので、導電性粒子10として低価格のカーボン粒子を用いることが有効である。ここでは、カーボン粒子として導電性カーボンブラック粉体(商品名:ケッチェンブラックEC製造元:ケッチェン・ブラック・インターナショナル株式会社)を用いた。
【0031】
高分子母材1と電極用高分子9は同質材料で形成することが望ましい。
【0032】
これは、熱によって接着する場合、同質材料同志が容易に接着しやすいため、接着強度が高く接着剤等を使用しないため信頼性も高い。この時、高分子母材1と電極用高分子9に塩素化ポリエチレンを使用することが望ましい。これは、平板状複合圧電体3の高分子母材1で述べたように、塩素化ポリエチレンは可撓性に優れるため、感度も高い上、耐熱性も優れているため、信頼性も高い。
【0033】
図2に示す実施例2の平板状複合圧電体3は高分子母材1に塩素化ポリエチレンを用い、圧電セラミック粉体2にチタン酸ジルコン酸鉛粉体を用いて、オープンロール装置で混練り後、熱圧縮装置で幅10mm×長さ75mm×厚み0.5mmの大きさに成形した。また、可撓性電極4及び5の複合導電体11は塩素化ポリエチレンに対してケッチェンブラックECを10重量%添加してオープンロール装置で混練り後、熱圧縮装置で幅10mm×長さ75mm×厚み0.3mmの大きさに成形し、前記作成の平板状複合圧電体3両面に熱圧着して可撓性圧電素子を得た。
【0034】
複合導電体11からなる可撓性電極4または5の静電容量の温度特性を図3に示す。図3から明らかなように、室温から約90℃の温度範囲で約−1580ppm/の大きな負の温度係数を示し、それ以上の温度ではやや小さな負の温度係数を示す。
【0035】
従って、可撓性電極4または5に接続された静電容量検出手段7による静電容量検出と、この静電容量検出手段7に接続された静電容量の温度特性に基づいて温度換算する温度換算手段8によって、可撓性電極4または5に挟持された平板状複合圧電体3の温度を検出することが容易である。このことから実用状態で、可撓性圧電素子が一定の温度以上になった場合に素子を保護するために、警報手段で知らせるということが可能である。
【0036】
【発明の効果】
上記実施例から明らかなように、請求項1記載の発明によれば、可撓性電極と前記平板状複合圧電体が密着する構成であるので可撓性が向上すると同時に、静電容量検出手段により可撓性電極の静電容量が検出できるので、可撓性電極で挟持されている平板状複合圧電体の平均温度を可撓性電極の静電容量の温度依存性に基づいて検出できる。従って、温度センサを別に準備する必要がないので簡素な構成で圧力と温度の両者を検知できる可撓性圧電素子を提供できる。
【0037】
また、請求項2記載の発明によれば、静電容量検出手段に可撓性電極の静電容量の温度特性に基づいて静電容量値を温度に換算する温度換算手段を接続してなる可撓性圧電素子であるので、静電容量検出手段により検出された静電容量値は、温度換算手段により温度に換算されて容易に温度を直読できる。
【0038】
また、請求項3記載の発明によれば、高分子母材を塩素化ポリエチレンで構成したので、優れた耐熱性と優れた可撓性を兼ね備えた平板状複合圧電体が得られる。
【0039】
また、請求項4記載の発明によれば、圧電セラミック粉体としてチタン酸鉛とジルコン酸鉛の固溶体を用いているので、安価であり、入手も容易であるため、高感度で安価な可撓性圧電素子が提供できる。
【0040】
また、請求項5記載の発明によれば、圧電セラミック粉体としてをチタン酸鉛を用いているので、圧電セラミック粉体の誘電率を小さくできるため、分極処理が容易になる。
【0041】
また、請求項6記載の発明によれば、可撓性圧電素子の電極を電極用高分子と導電性粒子とからなる複合導電体で構成したため、電極用高分子自身の可撓性を通して複合導電体の可撓性が確保されるとともに、容易に熱プレス等の熱溶着により接着できる。
【0042】
また、請求項7記載の発明によれば、電極用高分子と高分子母材とを同質材料で構成したので、電極を平板状複合圧電体に容易に強固接着でき、信頼性が向上する。
【図面の簡単な説明】
【図1】
本発明の実施例1における振動電圧検出検出と温度検出手段に接続された可撓性圧電素子の断面図
【図2】
本発明の実施例2における可撓性電極の断面図
【図3】
本発明の静電容量ー温度特性の一例を示す特性図
【図4】
従来の可撓性圧電素子の断面図
【符号の説明】
1 高分子母材
2 圧電セラミック粉体
3 平板状複合圧電体
4、5 可撓性電極
6 振動電圧検出手段
7 静電容量検出手段
8 温度換算手段
9 電極用高分子
10 導電性粒子
11 複合導電体
[Document name] Specification [Title of invention] Flexible piezoelectric element [Claims]
1. A flat-plate composite piezoelectric body in which a piezoelectric ceramic powder is mixed in a polymer base material, flexible electrodes arranged in close contact with both sides of the flat-plate composite piezoelectric body, and both flexible electrodes. A flexible piezoelectric element comprising a vibration voltage detecting means connected to a sex electrode and a capacitance detecting means connected to at least one of the flexible electrodes.
2. The flexible piezoelectric device according to claim 1, wherein a temperature converting means for converting the capacitance into a temperature is connected to the capacitance detecting means based on the temperature characteristics of the capacitance of the flexible electrode. element.
3. The flexible piezoelectric element according to claim 1, wherein the polymer base material is chlorinated polyethylene.
4. The flexible piezoelectric element according to claim 1, wherein the piezoelectric ceramic powder is a solid solution of lead titanate and lead zirconate.
5. The flexible piezoelectric element according to claim 1, wherein the piezoelectric ceramic powder is lead titanate.
6. The flexible piezoelectric element according to claim 1, wherein the flat plate-shaped flexible electrode is a composite conductor composed of a polymer material for electrodes and conductive particles.
7. The flexible piezoelectric element according to claim 6, wherein the polymer material for the electrode is the same material as the polymer base material.
Description: TECHNICAL FIELD [Detailed description of the invention]
[0001]
[Technical field to which the invention belongs]
The present invention relates to a flexible piezoelectric element.
0002.
[Conventional technology]
Conventionally, as a flexible piezoelectric element, as shown in FIG. 4, a polymer base material 1 and a piezoelectric ceramic powder 2 are mixed and formed into a sheet, and then an electrode 12 is provided on the surface of the composite piezoelectric sheet 3. At this time, as the electrode, a metal foil electrode attached by metal deposition of copper, aluminum, gold or the like or an adhesive is generally used in consideration of the piezoelectric characteristics imparted by the polarization treatment and the heat resistance of the polymer base material 1. It is used.
0003
Further, Japanese Patent Application Laid-Open No. 5-102548 proposes a flexible piezoelectric element using a thermal spray electrode obtained by spraying a metal onto a flat plate-shaped composite piezoelectric body 3.
0004
[Problems to be Solved by the Invention]
However, the flexible piezoelectric element has problems such as reliability, sensitivity, and a complicated manufacturing process. That is, since the thickness of the electrode generally provided for the vapor-deposited electrode is as thin as 0.02 to 0.1 μm, when the flat plate-shaped composite piezoelectric body bends, a crack may occur in the electrode and the sensitivity may decrease. Or, there was a problem that the output could not be obtained.
0005
The metal foil electrode is generally a flat composite piezoelectric material obtained by using a metal foil having a thickness of about 6 to 100 μm and using an adhesive of about 5 to 40 μm made of a polyester resin, a urethane resin, an epoxy resin, or the like. It is affixed to. However, when the metal leaf electrode is provided on both sides of the flat plate-shaped composite piezoelectric body, there is a problem that the flexibility of the composite piezoelectric body is impaired and the sensitivity is low.
0006
Further, in the case of a thermal spray electrode, due to the heat resistance of the composite piezoelectric body, only a metal having a low boiling point can be easily spray-molded, which has a problem that the electrode material used is limited, and at the same time, it has a flat plate shape at the time of thermal spraying. Since a load such as air pressure is applied to the composite piezoelectric body, there is a problem in the reliability of the flat plate-shaped composite piezoelectric body.
0007
Further, the conventional flat plate-shaped flexible piezoelectric element can detect the pressure changing with time, but has a problem that the temperature cannot be detected. Even when the flat plate-shaped composite piezoelectric body 3 is used, the maximum operating temperature thereof is about 80 to 120 ° C. When the flat plate-shaped flexible piezoelectric body 3 is left at the maximum operating temperature or higher, its piezoelectric performance deteriorates. Therefore, it is suitable for a temperature-controlled paintbrush when the flat plate-shaped composite piezoelectric body 3 is used. In this respect, in the conventional flexible piezoelectric element, it is necessary to separately prepare a temperature sensor. However, there is a problem that the temperature detected by the temperature sensor does not always match the temperature of the flexible composite piezoelectric body 3, which complicates the configuration.
0008
[Means for solving problems]
In order to solve the above problems, the present invention has a flexible plate-shaped composite piezoelectric body in which a piezoelectric ceramic powder is mixed in a polymer medium base material, and a flexible plate-shaped composite piezoelectric body arranged in close contact with both sides of the flat-plate composite piezoelectric body. It is a flexible piezoelectric element including electrodes, a vibration voltage detecting means connected to both flexible electrodes, and a capacitance detecting means connected to at least one of the flexible electrodes.
0009
According to the above invention, when a pressure is applied to the flat plate-shaped composite piezoelectric body, the vibration voltage of the flat plate-shaped composite piezoelectric body generated between the flexible electrodes arranged on both sides of the flat plate-shaped composite piezoelectric body is detected. Pressure is detected by.
0010
Further, a capacitance detecting means connected to at least one of the two flexible electrodes is flexible by measuring the temperature dependence of the capacitance value based on the temperature characteristics of the capacitance of the flexible electrode. The temperature of the sex composite piezoelectric material can be detected. Therefore, it is not necessary to prepare a temperature sensor specially. Therefore, a flexible piezoelectric element capable of temperature detection can be realized with a simple configuration.
0011
BEST MODE FOR CARRYING OUT THE INVENTION
In order to solve the above problems, the invention according to claim 1 is arranged in close contact with both sides of a flat-plate composite piezoelectric body in which a piezoelectric ceramic powder is mixed in a polymer base material and the flat-plate composite piezoelectric body. A flexible piezoelectric element composed of a flexible electrode and consisting of a vibration voltage detecting means connected to both flexible electrodes and a capacitance detecting means connected to at least one of the flexible electrodes. Is. Since the flexible electrode and the flat composite piezoelectric body are in close contact with each other, the flexibility is improved, and at the same time, the capacitance of the flexible electrode can be detected by the capacitance detecting means, so that the flexible electrode is flexible. The average temperature of the flat-plate composite piezoelectric material sandwiched between the two can be detected based on the temperature dependence of the capacitance of the flexible electrode. Therefore, since it is not necessary to separately prepare a temperature sensor, it is possible to provide a flexible piezoelectric element capable of detecting both pressure and temperature with a simple configuration.
0012
The invention according to claim 2 is a flexible piezoelectric element in which a capacitance detecting means is connected to a temperature converting means for converting a capacitance value into a temperature based on the temperature characteristics of the capacitance of a flexible electrode. Is. Since the capacitance value detected by the capacitance detecting means is converted into the temperature by the temperature converting means, the temperature can be easily read directly.
0013
The invention according to claim 3 is a flexible piezoelectric element in which a polymer base material is made of chlorinated polyethylene. Since chlorinated polyethylene has excellent heat resistance and excellent flexibility, a flat plate-shaped composite piezoelectric material having these characteristics can be obtained.
0014.
The invention according to claim 4 is a flexible piezoelectric element in which a piezoelectric ceramic powder is composed of a solid solution of lead titanate and lead zirconate. Since the piezoelectric ceramic powder of the solid solution of lead titanate and lead zirconate is widely used industrially, it is inexpensive and easily available, so that a highly sensitive and inexpensive flexible piezoelectric element can be provided. ..
0015.
The invention according to claim 5 is a flexible piezoelectric element in which a piezoelectric ceramic powder is composed of lead titanate. Since the dielectric constant of lead titanate is smaller than the dielectric constant of the solid solution of lead titanate and lead zirconate, the dielectric constant of the piezoelectric ceramic powder can be reduced, which facilitates the polarization treatment and allows easy high sensitivity. Flexible piezoelectric elements can be provided.
0016.
The invention according to claim 6 is a flexible piezoelectric element in which the flexible electrode is composed of a composite conductor composed of a polymer material for electrodes and conductive particles. The conductivity of the composite conductor is ensured through the contact of the conductive particles. Further, the flexibility of the composite conductor is ensured through the flexibility of the electrode polymer itself. Further, by appropriately selecting the softening temperature of the electrode polymer of the composite conductor electrode and the polymer base material in the flat plate composite piezoelectric body, the polymer can be easily bonded by thermocompression bonding.
[0017]
The invention according to claim 7 is a flexible piezoelectric element in which the polymer for electrodes is made of a material of the same quality as the polymer base material. Since the polymer for the electrode is made of the same material as the polymer base material, the electrode can be easily and firmly adhered to the flat composite piezoelectric body, and the reliability is improved.
0018
【Example】
Hereinafter, examples of this description will be described with reference to the drawings.
0019
(Example 1)
FIG. 1 is a cross-sectional view of the flexible piezoelectric element according to the first embodiment of the present invention. In this flexible piezoelectric element, the piezoelectric ceramic powder 2 is mixed in the polymer base material 1 by an open roll device and uniformly dispersed, and then a sheet having a thickness of 0.5 mm in a flat plate die by a hot press device. The composite piezoelectric body 3 was obtained. The flat plate-shaped composite piezoelectric body 3, the flexible electrode 4, and the flexible electrode 5 were thermocompression-bonded to both sides of the flat plate-shaped composite piezoelectric body 3 by hot pressing using a flat plate mold.
0020
Next, in order to impart piezoelectric characteristics, a high DC voltage was applied between the flexible electrodes 4 and 5 to polarize the piezoelectric ceramic powder 2 to form a flexible piezoelectric element.
0021.
In the above flexible piezoelectric element configuration, chlorinated polyethylene was used as the polymer base material 1, and lead zirconate titanate was used as the piezoelectric ceramic powder 2. Epoxy resin, urethane resin, chloroprene resin, chlorinated polyethylene resin and the like are used as the polymer base material 1, but the heat resistance of the epoxy resin and urethane resin is about (60 to 80 ° C.), whereas chlorinated polyethylene is used. Is excellent in that it has a high heat resistance of 120 ° C.
0022.
Further, chlorinated polyethylene is effective in that the above-mentioned high heat resistance can be realized without vulcanization by appropriately selecting the molecular weight, crystallinity and the like. Further, since chlorinated polyethylene is excellent in flexibility, electrode peeling due to an external force is suppressed, and reliability and sensitivity are high. Further, it is desirable that the material of the piezoelectric ceramic powder 2 is a solid solution of lead titanate and lead zirconate. Piezoelectric ceramics having this composition are industrially used in large quantities as ceramics for electronic components, and are therefore inexpensive and easily available.
[0023]
In addition to the solid solution of lead titanate and lead zirconate, lead titanate is also preferable as the material of the piezoelectric ceramic powder 2. The relative permittivity of the solid solution of lead titanate and lead zirconate is a large value of about (800 to 3000), while the relative permittivity of lead titanate is a small value of about (200 to 300). In this case, the capacitance caused by the polymer base material 1 between the piezoelectric ceramic powder 2 and the flexible electrodes 4 and 5 can be made to be about the same as the capacitance caused by the piezoelectric ceramic powder 2. Therefore, the piezoelectric ceramic powder can be easily polarized.
0024
When a time-varying pressure is applied to a part or the entire surface of the flexible piezoelectric element, a vibration voltage corresponding to the acceleration generated in the piezoelectric element in that portion is induced between the flexible electrodes 4 and 5. This vibration voltage is detected by the vibration voltage detecting means 6. This vibration voltage is used to detect a pressure that changes over time.
0025
On the other hand, since the flexible electrodes 4 and 5 are configured in close contact with the flat plate-shaped composite piezoelectric body 3, the temperature of the flexible electrodes 4 and 5 is almost equal to the temperature of the flat plate-shaped composite piezoelectric body 3. Since the flexible electrodes 4 and 5 show the temperature characteristics of the capacitance peculiar to the constituent materials, the temperature can be obtained from the detected capacitance. In order to obtain the temperature from the detected capacitance, it is necessary to refer to the temperature characteristics of the capacitance. However, since it is a complicated task to refer to each time, as shown in FIG. 1, a temperature converting means 8 for converting the capacitance into a temperature based on the temperature characteristics of the capacitance is connected to the capacitance detecting means 7. It is desirable to do. This makes it possible to read the temperature directly.
0026
As described above, the configuration of the first embodiment shown in FIG. 1 can detect the temperature and the pressure at the same time.
[0027]
(Example 2)
FIG. 2 is a block diagram of the flexible piezoelectric element according to the second embodiment of the present invention.
[0028]
A composite conductor 11 was used as a constituent material of the flexible electrode 4 and the flexible electrode 5.
[0029]
The composite conductor 11 is composed of an electrode polymer 9 and conductive particles 10.
[0030]
At this time, the conductive particles 10 are arranged in contact with each other in a mesh shape in the electrode polymer 9, and the conductivity of the composite conductor 11 is ensured through these contacts. In addition, the electrode polymer 9 ensures the flexibility of the composite conductor 11 through its own flexibility. Therefore, higher flexibility can be obtained than that of the piezoelectric element having the structure in which the metal foil electrode is attached to the electrode. As the electrode polymer 9, an epoxy resin, a urethane resin, a chloroprene resin, a chlorinated polyethylene resin, or the like is used as in the polymer base material 1. Further, carbon particles and silver particles are used as the conductive particles 10. When silver particles are used, the specific resistance of the composite conductor electrode 7 shows a small value of about 5 × 10 -3 Ω · cm, but when carbon particles are used, the specific resistance value is a large value of about one digit or more. Is shown. Since the frequency range when this piezoelectric element is used for detecting a human body is about 5 Hz, the impedance of the flat plate-shaped composite piezoelectric body 3 at this time is about 100 kΩ or more, and the specific resistance of both flexible electrodes 4 and 5. Since a value of about 1 kΩ or less is sufficient, it is effective to use low-priced carbon particles as the conductive particles 10. Here, conductive carbon black powder (trade name: Ketjen Black EC manufacturer: Ketjen Black International Co., Ltd.) was used as the carbon particles.
0031
It is desirable that the polymer base material 1 and the electrode polymer 9 are made of a homogeneous material.
[0032]
This is because when the same materials are easily bonded to each other by heat, the bonding strength is high and no adhesive or the like is used, so that the reliability is high. At this time, it is desirable to use chlorinated polyethylene for the polymer base material 1 and the electrode polymer 9. This is because, as described in the polymer base material 1 of the flat plate-shaped composite piezoelectric body 3, chlorinated polyethylene has excellent flexibility, so that it has high sensitivity and heat resistance, so that it has high reliability.
0033
The flat composite piezoelectric material 3 of Example 2 shown in FIG. 2 is kneaded with an open roll device using chlorinated polyethylene as the polymer base material 1 and lead zirconate titanate powder as the piezoelectric ceramic powder 2. After that, it was molded into a size of width 10 mm × length 75 mm × thickness 0.5 mm by a heat compression device. Further, after the composite conductor 1 first flexible electrode 4 and 5 are kneaded by an open roll apparatus by adding 10 wt% Ketjenblack EC against chlorinated polyethylene, width 10 mm × a thermal compression device length A flexible piezoelectric element was obtained by molding into a size of 75 mm × thickness of 0.3 mm and thermocompression bonding to both sides of the prepared flat plate-shaped composite piezoelectric body 3.
0034
FIG. 3 shows the temperature characteristics of the capacitance of the flexible electrode 4 or 5 made of the composite conductor 11. As is clear from FIG. 3, it shows a large negative temperature coefficient of about -1580 ppm / degree in the temperature range from room temperature to about 90 ° C., and a slightly smaller negative temperature coefficient at higher temperatures.
0035.
Therefore, the temperature converted into temperature based on the capacitance detection by the capacitance detecting means 7 connected to the flexible electrode 4 or 5 and the temperature characteristics of the capacitance connected to the capacitance detecting means 7. It is easy to detect the temperature of the flat plate-shaped composite piezoelectric body 3 sandwiched between the flexible electrodes 4 or 5 by the conversion means 8. From this, it is possible to notify by an alarm means in order to protect the flexible piezoelectric element when the temperature exceeds a certain level in a practical state.
0036
【Effect of the invention】
As is clear from the above embodiment, according to the invention of claim 1, since the flexible electrode and the flat plate-shaped composite piezoelectric body are in close contact with each other, the flexibility is improved and at the same time, the capacitance detecting means. Since the capacitance of the flexible electrode can be detected, the average temperature of the flat plate-shaped composite piezoelectric material sandwiched between the flexible electrodes can be detected based on the temperature dependence of the capacitance of the flexible electrode. Therefore, since it is not necessary to separately prepare a temperature sensor, it is possible to provide a flexible piezoelectric element capable of detecting both pressure and temperature with a simple configuration.
0037
Further, according to the invention of claim 2, the capacitance detecting means may be connected to a temperature converting means for converting a capacitance value into a temperature based on the temperature characteristics of the capacitance of the flexible electrode. Since it is a flexible piezoelectric element, the capacitance value detected by the capacitance detecting means is converted into temperature by the temperature converting means, and the temperature can be easily read directly.
[0038]
Further, according to the invention of claim 3, since the polymer base material is made of chlorinated polyethylene, a flat plate-shaped composite piezoelectric material having both excellent heat resistance and excellent flexibility can be obtained.
[0039]
Further, according to the invention of claim 4, since a solid solution of lead titanate and lead zirconate is used as the piezoelectric ceramic powder, it is inexpensive and easily available, so that it is highly sensitive and inexpensively flexible. Sexual piezoelectric elements can be provided.
0040
Further, according to the invention of claim 5, since lead titanate is used as the piezoelectric ceramic powder, the dielectric constant of the piezoelectric ceramic powder can be reduced, so that the polarization treatment becomes easy.
[0041]
Further, according to the invention of claim 6, since the electrode of the flexible piezoelectric element is composed of a composite conductor composed of an electrode polymer and conductive particles, the composite conductivity is passed through the flexibility of the electrode polymer itself. The flexibility of the body is ensured, and it can be easily bonded by heat welding such as a hot press.
[0042]
Further, according to the invention of claim 7, since the polymer for the electrode and the polymer base material are made of the same material, the electrode can be easily and firmly adhered to the flat plate-shaped composite piezoelectric body, and the reliability is improved.
[Simple explanation of drawings]
FIG. 1
FIG. 2 is a cross-sectional view of a flexible piezoelectric element connected to the vibration voltage detection detection and temperature detection means according to the first embodiment of the present invention.
FIG. 3 is a cross-sectional view of a flexible electrode according to a second embodiment of the present invention.
FIG. 4 is a characteristic diagram showing an example of capacitance-temperature characteristics of the present invention.
Cross-sectional view of a conventional flexible piezoelectric element [Explanation of reference numerals]
1 Polymer base material 2 Piezoelectric ceramic powder 3 Flat plate composite piezoelectric material 4, 5 Flexible electrode 6 Vibration voltage detection means 7 Capacitance detection means 8 Temperature conversion means 9 Electrode polymer 10 Conductive particles 11 Composite conductivity body

JP2000204629A 2000-07-06 2000-07-06 Flexible piezoelectric element Withdrawn JP2002022561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000204629A JP2002022561A (en) 2000-07-06 2000-07-06 Flexible piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000204629A JP2002022561A (en) 2000-07-06 2000-07-06 Flexible piezoelectric element

Publications (2)

Publication Number Publication Date
JP2002022561A JP2002022561A (en) 2002-01-23
JP2002022561A5 true JP2002022561A5 (en) 2007-08-16

Family

ID=18701864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000204629A Withdrawn JP2002022561A (en) 2000-07-06 2000-07-06 Flexible piezoelectric element

Country Status (1)

Country Link
JP (1) JP2002022561A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017421A (en) * 2004-10-28 2007-01-25 Matsushita Electric Ind Co Ltd Cable-like piezo-electric element and its manufacturing method
JP2007017420A (en) * 2004-10-28 2007-01-25 Matsushita Electric Ind Co Ltd Piezo-electric element and its manufacturing method
JP4786494B2 (en) * 2006-10-10 2011-10-05 本田技研工業株式会社 Deformation detection sensor
US7538476B2 (en) * 2007-03-30 2009-05-26 Intel Corporation Multi-layer piezoelectric actuators with conductive polymer electrodes
KR102123817B1 (en) * 2014-12-29 2020-06-19 경북대학교 산학협력단 A guide device for CardioPulmonaryResuscitation with force sensors
CN107923811B (en) * 2015-08-31 2020-10-30 皇家飞利浦有限公司 Electroactive polymer sensor and sensing method
CN108807341B (en) * 2017-05-02 2020-05-26 Tcl科技集团股份有限公司 Temperature measuring device, light emitting device and display array
CN109212328A (en) * 2018-10-24 2019-01-15 清华大学 High-precision high field intensity capacitance type minitype electric field measurement senser element based on piezoelectric effect

Similar Documents

Publication Publication Date Title
CN109068477B (en) A kind of sensitive member of pliable pressure temperature integrated thin-film sensor array and preparation method
US10605678B2 (en) Piezoelectric film sensor and holding state detecting device
US20170144428A1 (en) Methods for Making an Electroactive Device Fabricated with a Nanotube Film Electrode
CN109429534A (en) Generator and its manufacturing method including magnetoelastic transducer
US10309844B2 (en) Press detecting sensor
TWI680395B (en) Sensing film, method for making same, and electronic device
JP2002022560A5 (en)
JP2002022561A5 (en)
JP2002022560A (en) Flexible piezoelectric element
JP2002022561A (en) Flexible piezoelectric element
JP2001291906A (en) Flexible piezoelectric element
JP2017196211A (en) Vibration waveform sensor
CN115700063A (en) Piezoelectric element
JP2012009768A (en) Piezoelectric electronic component
JP2001074569A (en) Planar capacitance type twist strain sensor
JP2002185053A (en) Flexible piezoelectric element
CN112262483A (en) Piezoelectric element, vibration waveform sensor, and vibration waveform sensor module
JP2001085757A (en) Flexible piezoelectric element and manufacturing method thereof
JP4141061B2 (en) Load transducer
KR102410162B1 (en) Flexible piezoelectric speaker and manufacturing method thereof
JP2001085754A (en) Flexible piezoelectric element
JP2001217473A (en) Flexible piezoelectric element and its manufacturing method
JPH0543197B2 (en)
JP2001086593A (en) Flexible piezoelectric element and its manufacturing method
JP2001086594A (en) Flexible piezoelectric element and its manufacturing method