JP2002022561A - Flexible piezoelectric element - Google Patents
Flexible piezoelectric elementInfo
- Publication number
- JP2002022561A JP2002022561A JP2000204629A JP2000204629A JP2002022561A JP 2002022561 A JP2002022561 A JP 2002022561A JP 2000204629 A JP2000204629 A JP 2000204629A JP 2000204629 A JP2000204629 A JP 2000204629A JP 2002022561 A JP2002022561 A JP 2002022561A
- Authority
- JP
- Japan
- Prior art keywords
- flexible
- piezoelectric element
- temperature
- electrode
- piezoelectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000002131 composite material Substances 0.000 claims abstract description 56
- 239000000463 material Substances 0.000 claims abstract description 41
- 229920000642 polymer Polymers 0.000 claims abstract description 39
- 239000000919 ceramic Substances 0.000 claims abstract description 27
- 239000000843 powder Substances 0.000 claims abstract description 27
- 239000002245 particle Substances 0.000 claims abstract description 20
- 239000004709 Chlorinated polyethylene Substances 0.000 claims description 14
- 239000004020 conductor Substances 0.000 claims description 14
- NKZSPGSOXYXWQA-UHFFFAOYSA-N dioxido(oxo)titanium;lead(2+) Chemical compound [Pb+2].[O-][Ti]([O-])=O NKZSPGSOXYXWQA-UHFFFAOYSA-N 0.000 claims description 14
- 239000006104 solid solution Substances 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 239000002861 polymer material Substances 0.000 claims description 3
- 239000006229 carbon black Substances 0.000 claims description 2
- 238000001514 detection method Methods 0.000 abstract description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 6
- 239000011888 foil Substances 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 4
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- YACLQRRMGMJLJV-UHFFFAOYSA-N chloroprene Chemical compound ClC(=C)C=C YACLQRRMGMJLJV-UHFFFAOYSA-N 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 2
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920013716 polyethylene resin Polymers 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000004073 vulcanization Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Transducers For Ultrasonic Waves (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、可撓性圧電素子に
関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flexible piezoelectric element.
【0002】[0002]
【従来の技術】従来、可撓性圧電素子としては、図4に
示すように高分子母材1と圧電セラミック粉体2とを混
合しシート状に成形後、この複合圧電シート3表面に電
極12を設ける。この際に、電極としては分極処理によ
って付与された圧電特性や高分子母材1の耐熱性等を考
慮して一般に銅、アルミニウム、金等の金属蒸着あるい
は接着剤により貼付した金属の箔電極が用いられてい
る。2. Description of the Related Art Conventionally, as a flexible piezoelectric element, as shown in FIG. 4, a polymer base material 1 and a piezoelectric ceramic powder 2 are mixed and formed into a sheet. 12 are provided. At this time, in consideration of the piezoelectric characteristics imparted by the polarization treatment and the heat resistance of the polymer base material 1, a metal foil electrode generally adhered by vapor deposition of metal such as copper, aluminum, or gold or an adhesive is used as the electrode. Used.
【0003】また、特開平5−102548号公報で
は、平板状複合圧電体3に金属を溶射した溶射電極を用
いた可撓性圧電素子が提案されている。Further, Japanese Patent Application Laid-Open No. 5-102548 proposes a flexible piezoelectric element using a sprayed electrode obtained by spraying a metal on the flat composite piezoelectric body 3.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、前記の
可撓性圧電素子は信頼性や感度及び複雑な製造工程を有
するという課題を有していた。すなわち、蒸着電極では
一般に設けられる電極の厚みが0.02〜0.1μmと
程度と非常に薄いため平板状複合圧電体が撓んだ場合に
電極内に亀裂が生じてしまい感度が低下したり、あるい
は出力が得られないという課題があった。However, the above-mentioned flexible piezoelectric element has a problem that it has reliability, sensitivity, and complicated manufacturing steps. That is, in the case of a vapor-deposited electrode, the thickness of the generally provided electrode is very thin, such as about 0.02 to 0.1 μm. Or no output can be obtained.
【0005】また、金属箔電極は、一般に6〜100μ
m程度の厚さの金属箔を、ポリエステル系樹脂、ウレタ
ン系樹脂、エポキシ系樹脂等からなる5〜40μm程度
の接着剤を介して、平板状複合圧電体に貼付される。し
かし、この金属箔電極は、特に平板状複合圧電体両面に
設けた場合、複合圧電体の可撓性という重量な長所を損
ない、感度が低いという課題があった。The metal foil electrode is generally 6 to 100 μm.
A metal foil having a thickness of about m is attached to the flat composite piezoelectric body via an adhesive of about 5 to 40 μm made of a polyester resin, a urethane resin, an epoxy resin, or the like. However, when the metal foil electrode is provided on both surfaces of the flat composite piezoelectric material, there is a problem that the flexibility of the composite piezoelectric material is lost and the sensitivity is low.
【0006】また、溶射電極の場合は複合圧電体の耐熱
性のため、容易に溶射成形できるのは低沸点の金属のみ
であり、用いられる電極材料が制限されるという課題が
あると同時に、溶射時に平板状複合圧電体にエアー圧等
の負荷が印加されるため、平板状複合圧電体の信頼性に
課題があった。[0006] Further, in the case of a sprayed electrode, only a low boiling point metal can be easily sprayed due to the heat resistance of the composite piezoelectric material, and there is a problem that the electrode material used is limited. Since a load such as air pressure is sometimes applied to the flat composite piezoelectric body, there has been a problem in the reliability of the flat composite piezoelectric body.
【0007】さらに、従来の平板状の可撓性圧電素子で
は時間的に変化する圧力を検出できるが、温度を検出で
きないという課題を有していた。前記平板状複合圧電体
3をもちいた場合でも、その最高使用温度は80〜12
0℃程度である。この平板状可撓性圧電体3が最高使用
温度以上に放置される環境になった場合、その圧電性能
が劣化する。従って、平板状複合圧電体3の使用にあた
っては十分な温度管理画筆用である。この点、従来の可
撓性圧電素子では、温度センサを別途に準備する必要が
ある。しかし、構成が複雑になる、温度センサで検出さ
れる温度は必ずしも可撓性複合圧電体3の温度と一致し
ないという課題があった。Further, the conventional flat-plate-shaped flexible piezoelectric element has a problem that it can detect time-varying pressure but cannot detect temperature. Even when the flat composite piezoelectric body 3 is used, its maximum operating temperature is 80 to 12
It is about 0 ° C. In an environment where the flat flexible piezoelectric member 3 is left at a temperature higher than the maximum operating temperature, its piezoelectric performance is degraded. Therefore, when the flat composite piezoelectric body 3 is used, it is a sufficient temperature control brush. In this regard, the conventional flexible piezoelectric element requires a separate temperature sensor. However, there has been a problem that the configuration is complicated and the temperature detected by the temperature sensor does not always match the temperature of the flexible composite piezoelectric body 3.
【0008】[0008]
【課題を解決するための手段】本発明は、上記課題を解
決するために、高分子中母材に圧電セラミック粉体を混
入した平板状複合圧電体と、前記平板状複合圧電体の両
面に密着して配置された可撓性電極とからなり、前記両
可撓性電極に接続された振動電圧検出手段と、前記可撓
性電極の少なくとも一方のに接続された静電容量検出手
段とからなる可撓性圧電素子である。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a plate-shaped composite piezoelectric body in which a piezoelectric ceramic powder is mixed into a base material of a polymer; A flexible electrode arranged in close contact with the flexible electrode; and a vibration voltage detecting means connected to the two flexible electrodes; and a capacitance detecting means connected to at least one of the flexible electrodes. Flexible piezoelectric element.
【0009】上記発明によれば、平板状複合圧電体に圧
力が印加されたとき、前記平板状複合圧電体両面に配置
された可撓性電極間に発生する平板状複合圧電体の振動
電圧を検出することにより圧力検知をする。According to the above invention, when a pressure is applied to the flat composite piezoelectric body, the vibration voltage of the flat composite piezoelectric body generated between the flexible electrodes disposed on both surfaces of the flat composite piezoelectric body is reduced. Pressure is detected by detecting.
【0010】また、2つの可撓性電極の少なくとも一方
に接続された静電容量検出手段で、可撓性電極の静電容
量の温度特性に基づいて静電容量値の温度依存性を測定
して可撓性複合圧電体の温度を検出することができる。
従って、温度センサを特別に準備する必要がない。この
ため、温度検出も可能な可撓性圧電素子を簡単な構成で
実現できる。[0010] In addition, the capacitance detection means connected to at least one of the two flexible electrodes measures the temperature dependence of the capacitance value based on the temperature characteristics of the capacitance of the flexible electrode. Thus, the temperature of the flexible composite piezoelectric body can be detected.
Therefore, there is no need to prepare a special temperature sensor. Therefore, a flexible piezoelectric element capable of detecting temperature can be realized with a simple configuration.
【0011】[0011]
【発明の実施の形態】上記課題を解決するために請求項
1記載の発明は、高分子母材中に圧電セラミック粉体を
混入した平板状複合圧電体と、前記平板状複合圧電体の
両面に密着して配置された可撓性電極とからなり、前記
両可撓性電極に接続された振動電圧検出手段と、可撓性
電極の少なくともどちらか一方に接続された静電容量検
出手段とからなる可撓性圧電素子である。前記可撓性電
極と前記平板状複合圧電体が密着する構成であるので可
撓性が向上すると同時に、静電容量検出手段により可撓
性電極の静電容量が検出できるので、可撓性電極で挟持
されている平板状複合圧電体の平均温度を可撓性電極の
静電容量の温度依存性に基づいて検出できる。従って、
温度センサを別に準備する必要がないので簡素な構成で
圧力と温度の両者を検知できる可撓性圧電素子を提供で
きる。DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to solve the above-mentioned problems, the present invention is directed to a flat composite piezoelectric body in which a piezoelectric ceramic powder is mixed in a polymer matrix, and both surfaces of the flat composite piezoelectric body. A vibration electrode detecting means connected to both of the flexible electrodes, and a capacitance detecting means connected to at least one of the flexible electrodes. A flexible piezoelectric element made of Since the flexible electrode and the flat composite piezoelectric body are in close contact with each other, the flexibility is improved, and at the same time, the capacitance of the flexible electrode can be detected by the capacitance detecting means. The average temperature of the plate-like composite piezoelectric material sandwiched between the electrodes can be detected based on the temperature dependence of the capacitance of the flexible electrode. Therefore,
Since there is no need to separately prepare a temperature sensor, a flexible piezoelectric element that can detect both pressure and temperature with a simple configuration can be provided.
【0012】請求項2記載の発明は、静電容量検出手段
に可撓性電極の静電容量の温度特性に基づいて静電容量
値を温度に換算する温度換算手段を接続してなる可撓性
圧電素子である。静電容量検出手段により検出された静
電容量値は、温度換算手段により温度に換算されるので
容易に温度を直読できる。According to a second aspect of the present invention, there is provided a flexible device comprising a capacitance detecting means connected to a temperature conversion means for converting a capacitance value into a temperature based on a temperature characteristic of the capacitance of the flexible electrode. A piezoelectric element. Since the capacitance value detected by the capacitance detecting means is converted into the temperature by the temperature converting means, the temperature can be easily read directly.
【0013】請求項3記載の発明は、高分子母材を塩素
化ポリエチレンで構成した可撓性圧電素子である。塩素
化ポリエチレンは優れた耐熱性と優れた可撓性を有する
のでこれらの特性を兼ね備えた平板状複合圧電体が得ら
れる。According to a third aspect of the present invention, there is provided a flexible piezoelectric element comprising a polymer base material made of chlorinated polyethylene. Since chlorinated polyethylene has excellent heat resistance and excellent flexibility, a flat composite piezoelectric material having these characteristics can be obtained.
【0014】請求項4記載の発明は、圧電セラミック粉
体をチタン酸鉛とジルコン酸鉛の固溶体で構成した可撓
性圧電素子である。チタン酸鉛とジルコン酸鉛の固溶体
の圧電セラミック粉体は工業的に多量に利用されている
ので、安価であり、入手も容易であるため、高感度で安
価な可撓性圧電素子が提供できる。According to a fourth aspect of the present invention, there is provided a flexible piezoelectric element comprising a piezoelectric ceramic powder formed of a solid solution of lead titanate and lead zirconate. Since the piezoelectric ceramic powder of the solid solution of lead titanate and lead zirconate is used in large quantities in industry, it is inexpensive and easily available, so that a highly sensitive and inexpensive flexible piezoelectric element can be provided. .
【0015】請求項5記載の発明は、圧電セラミック粉
体をチタン酸鉛で構成した可撓性圧電素子である。チタ
ン酸鉛の誘電率は、チタン酸鉛とジルコン酸鉛の固溶体
の誘電率よりも小さいので、圧電セラミック粉体の誘電
率を小さくできるため、分極処理が容易になり、簡単に
高感度な可撓性圧電素子が提供できる。According to a fifth aspect of the present invention, there is provided a flexible piezoelectric element comprising piezoelectric ceramic powder made of lead titanate. Since the dielectric constant of lead titanate is smaller than that of a solid solution of lead titanate and lead zirconate, the dielectric constant of the piezoelectric ceramic powder can be reduced. A flexible piezoelectric element can be provided.
【0016】請求項6記載の発明は、可撓性電極が電極
用高分子材と導電性粒子とからなる複合導電体で構成し
た可撓性圧電素子である。導電性粒子の接触を通して複
合導電体の導電性が確保される。また、電極用高分子自
身の可撓性を通して複合導電体の可撓性が確保される。
また、複合導電体電極の電極用高分子と、平板状複合圧
電体中の高分子母材の軟化温度を適切に選択することに
より、容易に熱圧着で接着できる。According to a sixth aspect of the present invention, there is provided a flexible piezoelectric element in which the flexible electrode is composed of a composite conductor comprising a polymer material for an electrode and conductive particles. Through the contact of the conductive particles, the conductivity of the composite conductor is ensured. Further, the flexibility of the composite conductor is ensured through the flexibility of the electrode polymer itself.
Further, by appropriately selecting the softening temperature of the polymer for electrode of the composite conductor electrode and the polymer base material in the plate-shaped composite piezoelectric material, bonding can be easily performed by thermocompression bonding.
【0017】請求項7記載の発明は、電極用高分子が高
分子母材と同質材料で構成した可撓性圧電素子である。
電極用高分子が高分子母材と同質材料であるので、電極
を平板状複合圧電体に容易に強固接着でき、信頼性が向
上する。The invention according to claim 7 is a flexible piezoelectric element in which the polymer for an electrode is made of the same material as the polymer base material.
Since the polymer for the electrode is the same material as the polymer base material, the electrode can be easily and firmly adhered to the plate-shaped composite piezoelectric body, and the reliability is improved.
【0018】請求項8記載の発明は、導電性粒子がカー
ボンブラックで構成された可撓性圧電素子である。カー
ボン粒子は工業的に多量に利用されているので、安価で
あり、入手も容易である。The invention according to claim 8 is a flexible piezoelectric element in which the conductive particles are made of carbon black. Since carbon particles are industrially used in large quantities, they are inexpensive and easily available.
【0019】[0019]
【実施例】以下、本説明の実施例について図面を用いて
説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0020】(実施例1)図1は本発明の実施例1にお
ける可撓性圧電素子の断面図である。この可撓性圧電素
子は高分子母材1中に圧電セラミック粉体2を、オープ
ンロール装置で混合して均一に分散させた後、熱プレス
装置により平板金型で厚さ0.5mmのシートに成形し
て、複合圧電体3を得た。この平板状複合圧電体3の両
面に平板状金型を使用して熱プレスにより、平板状複合
圧電体3と可撓性電極4と可撓性電極5をそれぞれ熱圧
着した。Embodiment 1 FIG. 1 is a sectional view of a flexible piezoelectric element according to Embodiment 1 of the present invention. This flexible piezoelectric element is prepared by mixing a piezoelectric ceramic powder 2 in a polymer base material 1 with an open roll device and uniformly dispersing the mixture, and then using a hot press device to form a sheet having a thickness of 0.5 mm in a flat plate mold. Thus, a composite piezoelectric body 3 was obtained. The flat composite piezoelectric member 3, the flexible electrode 4 and the flexible electrode 5 were thermocompression-bonded to both surfaces of the flat composite piezoelectric member 3 by hot pressing using a flat die.
【0021】次に圧電特性を付与するために、可撓性電
極4と5の間に直流高電圧を印加して圧電セラミック粉
体2を分極し、可撓性圧電素子を構成した。Next, in order to impart piezoelectric characteristics, a DC high voltage was applied between the flexible electrodes 4 and 5 to polarize the piezoelectric ceramic powder 2 to form a flexible piezoelectric element.
【0022】以上の可撓性圧電素子構成の中で、高分子
母材1に塩素化ポリエチレン、圧電セラミック粉体2に
チタン酸ジルコン酸鉛を用いた。高分子母材1としてエ
ポキシ樹脂、ウレタン樹脂、クロロプレン樹脂、塩素化
ポリエチレン樹脂などが用いられるが、エポキシ樹脂、
ウレタン樹脂の耐熱性は(60〜80℃)程度であるの
に対し、塩素化ポリエチレンは、120℃の高耐熱を有
する点で優れている。In the above flexible piezoelectric element configuration, chlorinated polyethylene was used for the polymer base material 1 and lead zirconate titanate was used for the piezoelectric ceramic powder 2. Epoxy resin, urethane resin, chloroprene resin, chlorinated polyethylene resin and the like are used as the polymer base material 1.
The heat resistance of the urethane resin is about (60 to 80 ° C.), whereas the chlorinated polyethylene is excellent in that it has a high heat resistance of 120 ° C.
【0023】また、塩素化ポリエチレンは分子量や結晶
化度等を適切に選ぶことにより、加硫無しでも上記高耐
熱性を実現できる点で有効である。また、塩素化ポリエ
チレンは可撓性に優れるため、外力による電極剥離等が
抑制され、信頼性及び感度が高い。また、圧電セラミッ
ク粉体2の材質は、チタン酸鉛とジルコン酸鉛の固溶体
であることが望ましい。この組成の圧電セラミックは電
子部品用セラミックとして工業的に多量に実用されてい
るので、安価であり入手も容易である。The chlorinated polyethylene is effective in that the above high heat resistance can be realized without vulcanization by appropriately selecting the molecular weight, the crystallinity and the like. Further, since chlorinated polyethylene is excellent in flexibility, electrode peeling or the like due to external force is suppressed, and reliability and sensitivity are high. The material of the piezoelectric ceramic powder 2 is preferably a solid solution of lead titanate and lead zirconate. Piezoelectric ceramics of this composition are industrially used in large quantities as ceramics for electronic components, and are inexpensive and easily available.
【0024】また、チタン酸鉛とジルコン酸鉛の固溶体
以外にも圧電セラミック粉体2の材質としてチタン酸鉛
も好ましい。チタン酸鉛とジルコン酸鉛の固溶体の比誘
電率はおよそ(800〜3000)程度の大きな値であ
るが、チタン酸鉛の比誘電率は(200〜300)程度
の小さな値である。この場合、圧電セラミック粉体2と
可撓性電極4、5の間に高分子母材1に起因する静電容
量は、圧電セラミック粉体2に起因する静電容量と同程
度にできる。従って、圧電セラミック粉体の分極が容易
にできる。In addition to the solid solution of lead titanate and lead zirconate, lead titanate is also preferable as the material of the piezoelectric ceramic powder 2. The relative permittivity of the solid solution of lead titanate and lead zirconate is a large value of about (800 to 3000), but the relative permittivity of lead titanate is a small value of about (200 to 300). In this case, the capacitance caused by the polymer base material 1 between the piezoelectric ceramic powder 2 and the flexible electrodes 4 and 5 can be substantially equal to the capacitance caused by the piezoelectric ceramic powder 2. Therefore, the polarization of the piezoelectric ceramic powder can be easily performed.
【0025】可撓性圧電素子の一部あるいは全面に時間
的に変化する圧力が印加されたときその部分の圧電素子
に生じる加速度に応じた振動電圧が可撓性電極4及び5
間に誘起される。この振動電圧は振動電圧検出手段6に
より検出される。この振動電圧を用いて、時間的に変化
する圧力を検知する。When a time-varying pressure is applied to a part or the entire surface of the flexible piezoelectric element, an oscillating voltage corresponding to the acceleration generated in the piezoelectric element in that part is generated by the flexible electrodes 4 and 5.
Is induced in between. This oscillating voltage is detected by the oscillating voltage detecting means 6. Using this oscillating voltage, a time-varying pressure is detected.
【0026】他方、可撓性電極4及び5は、平板状複合
圧電体3に密着して構成されているので、可撓性電極4
及び5の温度は殆ど平板状複合圧電体3の温度に等し
い。可撓性電極4、5は、その構成材料特有の静電容量
の温度特性を示すので、検出された静電容量から温度を
求めることができる。検出された静電容量から温度を求
めるには、静電容量の温度特性を参照する必要がある。
しかし、その都度参照する事は煩雑な作業であるので、
図1に示すように静電容量の温度特性に基づき静電容量
を温度に換算する温度換算手段8を静電容量検出手段7
に接続することが望ましい。これにより温度を直読でき
る。On the other hand, since the flexible electrodes 4 and 5 are formed in close contact with the plate-shaped composite piezoelectric body 3, the flexible electrodes 4 and 5
And 5 are almost equal to the temperature of the flat composite piezoelectric element 3. Since the flexible electrodes 4 and 5 show temperature characteristics of capacitance specific to the constituent material, the temperature can be obtained from the detected capacitance. To determine the temperature from the detected capacitance, it is necessary to refer to the temperature characteristics of the capacitance.
However, referencing each time is a complicated task,
As shown in FIG. 1, a temperature converting means 8 for converting the capacitance into a temperature based on the temperature characteristic of the capacitance is provided by a capacitance detecting means 7.
It is desirable to connect to This allows the temperature to be read directly.
【0027】このように図1に示した実施例1の構成
は、温度と圧力を同時に検出することができる。As described above, the configuration of the first embodiment shown in FIG. 1 can simultaneously detect the temperature and the pressure.
【0028】(実施例2)図2は本発明実施例2の可撓
性圧電素子の構成図である。(Embodiment 2) FIG. 2 is a structural view of a flexible piezoelectric element according to Embodiment 2 of the present invention.
【0029】可撓性電極4および可撓性電極5の構成材
料として、複合導電体11を用いた。The composite conductor 11 was used as a constituent material of the flexible electrodes 4 and 5.
【0030】この複合導電体11は、電極用高分子9と
導電性粒子10とから構成される。The composite conductor 11 is composed of the electrode polymer 9 and the conductive particles 10.
【0031】このとき、導電性粒子10は電極用高分子
9中に網目状に相互に接触して配列され、これらの接触
を通して複合導電体11の導電性が確保される。また、
電極用高分子9により、それ自身の可撓性を通して複合
導電体11の可撓性が確保される。このため、電極に金
属箔電極を張り付けた構成の圧電素子よりも高い可撓性
が得られる。電極用高分子9として、高分子母材1と同
様、エポキシ樹脂、ウレタン樹脂、クロロプレン樹脂、
塩素化ポリエチレン樹脂などが用いられる。また、導電
性粒子10として、カーボン粒子や銀粒子が用いられ
る。銀粒子を用いた場合、複合導電体電極7の比抵抗は
5×10ー3Ω・cm程度の小さな値を示すが、カーボン
粒子を用いた場合、同比抵抗値は約1桁以上の大きな値
を示す。この圧電素子を人体検知に用いた場合の周波数
範囲は約5Hz程度であるので、この時の平板状複合圧
電体3のインピーダンスは約100kΩ以上であり、両
可撓性電極4、5の比抵抗値は1kΩ以下程度で充分で
あるので、導電性粒子10として低価格のカーボン粒子
を用いることが有効である。ここでは、カーボン粒子と
して導電性カーボンブラック粉体(商品名:ケッチェン
ブラックEC製造元:ケッチェン・ブラック・インター
ナショナル株式会社)を用いた。At this time, the conductive particles 10 are arranged in a mesh-like manner in the polymer for electrode 9 so as to be in contact with each other, and the conductivity of the composite conductor 11 is secured through these contacts. Also,
The flexibility of the composite conductor 11 is ensured by the electrode polymer 9 through its own flexibility. Therefore, higher flexibility can be obtained than a piezoelectric element having a configuration in which a metal foil electrode is attached to an electrode. As the polymer for electrode 9, similarly to the polymer base material 1, an epoxy resin, a urethane resin, a chloroprene resin,
Chlorinated polyethylene resin is used. Further, carbon particles or silver particles are used as the conductive particles 10. When silver particles are used, the specific resistance of the composite conductor electrode 7 shows a small value of about 5 × 10 −3 Ω · cm, but when carbon particles are used, the specific resistance value is about one digit or more. Is shown. Since the frequency range when this piezoelectric element is used for human body detection is about 5 Hz, the impedance of the flat composite piezoelectric body 3 at this time is about 100 kΩ or more, and the specific resistance of both flexible electrodes 4, 5. Since a value of about 1 kΩ or less is sufficient, it is effective to use inexpensive carbon particles as the conductive particles 10. Here, conductive carbon black powder (trade name: Ketjen Black EC manufacturer: Ketjen Black International Co., Ltd.) was used as the carbon particles.
【0032】高分子母材1と電極用高分子9は同質材料
で形成することが望ましい。The polymer matrix 1 and the electrode polymer 9 are desirably formed of the same material.
【0033】これは、熱によって接着する場合、同質材
料同志が容易に接着しやすいため、接着強度が高く接着
剤等を使用しないため信頼性も高い。この時、高分子母
材1と電極用高分子9に塩素化ポリエチレンを使用する
ことが望ましい。これは、平板状複合圧電体3の高分子
母材1で述べたように、塩素化ポリエチレンは可撓性に
優れるため、感度も高い上、耐熱性も優れているため、
信頼性も高い。In the case of bonding by heat, the same material is easily bonded to each other, so that the bonding strength is high and the reliability is high because no adhesive or the like is used. At this time, it is desirable to use chlorinated polyethylene for the polymer base material 1 and the electrode polymer 9. This is because, as described in the polymer base material 1 of the flat composite piezoelectric body 3, chlorinated polyethylene has excellent flexibility, high sensitivity, and excellent heat resistance.
High reliability.
【0034】図2に示す実施例2の平板状複合圧電体3
は高分子母材1に塩素化ポリエチレンを用い、圧電セラ
ミック粉体2にチタン酸ジルコン酸鉛粉体を用いて、オ
ープンロール装置で混練り後、熱圧縮装置で幅10mm×
長さ75mm×厚み0.5mmの大きさに成形した。また、
可撓性電極4及び5の複合導電体11(は塩素化ポリエ
チレンに対してケッチェンブラックECを10重量%添
加してオープンロール装置で混練り後、熱圧縮装置で幅
10mm×長さ75mm×厚み0.3mmの大きさに成形し、
前記作成の平板状複合圧電体3両面に熱圧着して可撓性
圧電素子を得た。The flat composite piezoelectric body 3 of the second embodiment shown in FIG.
Using chlorinated polyethylene for the polymer base material 1 and lead zirconate titanate powder for the piezoelectric ceramic powder 2, kneading with an open roll device, followed by a 10 mm width by a hot compression device.
It was formed into a size of 75 mm long × 0.5 mm thick. Also,
The composite conductor 11 of the flexible electrodes 4 and 5 was added with 10% by weight of Ketjen Black EC with respect to chlorinated polyethylene, kneaded with an open roll device, and then heated with a hot compression device to be 10 mm wide by 75 mm long. Molded to a size of 0.3 mm thick,
A flexible piezoelectric element was obtained by thermocompression bonding on both surfaces of the flat composite piezoelectric body 3 prepared above.
【0035】複合導電体11からなる可撓性電極4また
は5の静電容量の温度特性を図3に示す。図3から明ら
かなように、室温から約90℃の温度範囲で約ー158
0ppm/℃の大きな負の温度係数を示し、それ以上の
温度ではやや小さな負の温度係数を示す。FIG. 3 shows the temperature characteristic of the capacitance of the flexible electrode 4 or 5 made of the composite conductor 11. As apparent from FIG. 3, the temperature range from room temperature to about 90 ° C.
It shows a large negative temperature coefficient of 0 ppm / ° C., and a slightly higher negative temperature coefficient at a temperature higher than 0 ppm / ° C.
【0036】従って、可撓性電極4または5に接続され
た静電容量検出手段7による静電容量検出と、この静電
容量検出手段7に接続された静電容量の温度特性に基づ
いて温度換算する温度換算手段8によって、可撓性電極
4または5に挟持された平板状複合圧電体3の温度を検
出することが容易である。このことから実用状態で、可
撓性圧電素子が一定の温度以上になった場合に素子を保
護するために、警報手段で知らせるということが可能で
ある。Accordingly, the capacitance is detected by the capacitance detecting means 7 connected to the flexible electrode 4 or 5, and the temperature is determined based on the temperature characteristics of the capacitance connected to the capacitance detecting means 7. The temperature of the flat composite piezoelectric body 3 sandwiched between the flexible electrodes 4 or 5 can be easily detected by the converting temperature converting means 8. From this, in a practical state, it is possible to notify by an alarm means in order to protect the flexible piezoelectric element when the temperature of the flexible piezoelectric element becomes higher than a certain temperature.
【0037】[0037]
【発明の効果】上記実施例から明らかなように、請求項
1記載の発明によれば、可撓性電極と前記平板状複合圧
電体が密着する構成であるので可撓性が向上すると同時
に、静電容量検出手段により可撓性電極の静電容量が検
出できるので、可撓性電極で挟持されている平板状複合
圧電体の平均温度を可撓性電極の静電容量の温度依存性
に基づいて検出できる。従って、温度センサを別に準備
する必要がないので簡素な構成で圧力と温度の両者を検
知できる可撓性圧電素子を提供できる。As is apparent from the above embodiment, according to the first aspect of the present invention, since the flexible electrode and the flat composite piezoelectric body are in close contact with each other, the flexibility is improved and Since the capacitance of the flexible electrode can be detected by the capacitance detecting means, the average temperature of the flat composite piezoelectric body sandwiched between the flexible electrodes is determined by the temperature dependency of the capacitance of the flexible electrode. Can be detected based on Therefore, there is no need to separately prepare a temperature sensor, so that a flexible piezoelectric element that can detect both pressure and temperature with a simple configuration can be provided.
【0038】また、請求項2記載の発明によれば、静電
容量検出手段に可撓性電極の静電容量の温度特性に基づ
いて静電容量値を温度に換算する温度換算手段を接続し
てなる可撓性圧電素子であるので、静電容量検出手段に
より検出された静電容量値は、温度換算手段により温度
に換算されて容易に温度を直読できる。According to the second aspect of the present invention, the capacitance detecting means is connected to the temperature conversion means for converting the capacitance value into a temperature based on the temperature characteristics of the capacitance of the flexible electrode. Since the flexible piezoelectric element is formed of a flexible piezoelectric element, the capacitance value detected by the capacitance detecting means is converted into a temperature by the temperature converting means, so that the temperature can be easily read directly.
【0039】また、請求項3記載の発明によれば、高分
子母材を塩素化ポリエチレンで構成したので、優れた耐
熱性と優れた可撓性を兼ね備えた平板状複合圧電体が得
られる。According to the third aspect of the present invention, since the polymer base material is composed of chlorinated polyethylene, a flat composite piezoelectric material having both excellent heat resistance and excellent flexibility can be obtained.
【0040】また、請求項4記載の発明によれば、圧電
セラミック粉体としてチタン酸鉛とジルコン酸鉛の固溶
体を用いているので、安価であり、入手も容易であるた
め、高感度で安価な可撓性圧電素子が提供できる。According to the fourth aspect of the present invention, since a solid solution of lead titanate and lead zirconate is used as the piezoelectric ceramic powder, the piezoelectric ceramic powder is inexpensive and easily available, so that it is highly sensitive and inexpensive. A flexible piezoelectric element can be provided.
【0041】また、請求項5記載の発明によれば、圧電
セラミック粉体としてをチタン酸鉛を用いているので、
圧電セラミック粉体の誘電率を小さくできるため、分極
処理が容易になる。According to the fifth aspect of the present invention, since lead titanate is used as the piezoelectric ceramic powder,
Since the dielectric constant of the piezoelectric ceramic powder can be reduced, the polarization process is facilitated.
【0042】また、請求項6記載の発明によれば、可撓
性圧電素子の電極を電極用高分子と導電性粒子とからな
る複合導電体で構成したため、電極用高分子自身の可撓
性を通して複合導電体の可撓性が確保されるとともに、
容易に熱プレス等の熱溶着により接着できる。According to the sixth aspect of the present invention, since the electrodes of the flexible piezoelectric element are composed of the composite conductor composed of the polymer for the electrode and the conductive particles, the flexibility of the polymer for the electrode itself is reduced. Through which the flexibility of the composite conductor is ensured,
It can be easily bonded by heat welding such as hot press.
【0043】また、請求項7記載の発明によれば、電極
用高分子と高分子母材とを同質材料で構成したので、電
極を平板状複合圧電体に容易に強固接着でき、信頼性が
向上する。According to the seventh aspect of the present invention, since the polymer for the electrode and the polymer base material are made of the same material, the electrode can be easily and firmly adhered to the plate-shaped composite piezoelectric material, and the reliability is improved. improves.
【0044】また、請求項8記載の発明によれば、導電
性粒子をカーボンで構成したので、安価であり、入手も
容易である。According to the eighth aspect of the present invention, since the conductive particles are made of carbon, they are inexpensive and easily available.
【図1】本発明の実施例1における振動電圧検出検出と
温度検出手段に接続された可撓性圧電素子の断面図FIG. 1 is a cross-sectional view of a flexible piezoelectric element connected to an oscillating voltage detection and temperature detection unit according to a first embodiment of the present invention.
【図2】本発明の実施例2における可撓性電極の断面図FIG. 2 is a sectional view of a flexible electrode according to a second embodiment of the present invention.
【図3】本発明の静電容量ー温度特性の一例を示す特性
図FIG. 3 is a characteristic diagram showing an example of a capacitance-temperature characteristic of the present invention.
【図4】従来の可撓性圧電素子の断面図FIG. 4 is a sectional view of a conventional flexible piezoelectric element.
1 高分子母材 2 圧電セラミック粉体 3 平板状複合圧電体 4、5 可撓性電極 6 振動電圧検出手段 7 静電容量検出手段 8 温度換算手段 9 電極用高分子 10 導電性粒子 11 複合導電体 DESCRIPTION OF SYMBOLS 1 Polymer base material 2 Piezoelectric ceramic powder 3 Flat composite piezoelectric material 4, 5 Flexible electrode 6 Vibration voltage detecting means 7 Capacitance detecting means 8 Temperature conversion means 9 Electrode polymer 10 Conductive particles 11 Composite conductive body
───────────────────────────────────────────────────── フロントページの続き (72)発明者 金澤 成寿 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 藤井 優子 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 中谷 直史 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 荻野 弘之 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 吉野 浩二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 原 由美子 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5D019 AA24 BB05 BB28 BB30 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Naruhisa Kanazawa 1006 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Yuko Fujii 1006 Odaka Kadoma Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. 72) Inventor Naofumi Nakatani 1006 Kadoma, Kazuma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (72) Inventor Hiroyuki Ogino 1006 Odoma Kadoma, Kadoma City, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (72) Koji Yoshino Osaka 1006 Kadoma Kadoma Matsushita Electric Industrial Co., Ltd. (72) Inventor Yumiko Hara 1006 Okadoma Kadoma City, Osaka Pref. Matsushita Electric Industrial Co., Ltd.F-term (reference) 5D019 AA24 BB05 BB28 BB30
Claims (8)
入した平板状複合圧電体と、前記平板状複合圧電体の両
面に密着して配置された可撓性電極と、前記両可撓性電
極に接続された振動電圧検出手段と、前記可撓性電極の
少なくともどちらか一方に接続された静電容量検出手段
とからなる可撓性圧電素子。1. A flat composite piezoelectric body in which a piezoelectric ceramic powder is mixed in a polymer base material, a flexible electrode disposed in close contact with both sides of the flat composite piezoelectric body, A flexible piezoelectric element comprising: an oscillating voltage detecting means connected to the flexible electrode; and a capacitance detecting means connected to at least one of the flexible electrodes.
量の温度特性に基づいて静電容量を温度に換算する温度
換算手段を接続してなる請求項1記載の可撓性圧電素
子。2. A flexible piezoelectric device according to claim 1, wherein said capacitance detecting means is connected to a temperature conversion means for converting the capacitance into a temperature based on the temperature characteristics of the capacitance of the flexible electrode. element.
請求項1記載の可撓性圧電素子。3. The flexible piezoelectric element according to claim 1, wherein the polymer base material is chlorinated polyethylene.
コン酸鉛の固溶体である請求項1記載の可撓性圧電素
子。4. The flexible piezoelectric element according to claim 1, wherein the piezoelectric ceramic powder is a solid solution of lead titanate and lead zirconate.
請求項1記載の可撓性圧電素子。5. The flexible piezoelectric element according to claim 1, wherein the piezoelectric ceramic powder is lead titanate.
電性粒子とからなる複合導電体である請求項1記載の可
撓性圧電素子。6. The flexible piezoelectric element according to claim 1, wherein the flat flexible electrode is a composite conductor comprising a polymer material for an electrode and conductive particles.
である請求項6記載の可撓性圧電素子。7. The flexible piezoelectric element according to claim 6, wherein the polymer material for an electrode is the same material as the polymer base material.
求項6記載の可撓性圧電素子。8. The flexible piezoelectric element according to claim 6, wherein the conductive particles are carbon black.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000204629A JP2002022561A (en) | 2000-07-06 | 2000-07-06 | Flexible piezoelectric element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000204629A JP2002022561A (en) | 2000-07-06 | 2000-07-06 | Flexible piezoelectric element |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002022561A true JP2002022561A (en) | 2002-01-23 |
JP2002022561A5 JP2002022561A5 (en) | 2007-08-16 |
Family
ID=18701864
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000204629A Withdrawn JP2002022561A (en) | 2000-07-06 | 2000-07-06 | Flexible piezoelectric element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002022561A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007017421A (en) * | 2004-10-28 | 2007-01-25 | Matsushita Electric Ind Co Ltd | Cable-like piezo-electric element and its manufacturing method |
JP2007017420A (en) * | 2004-10-28 | 2007-01-25 | Matsushita Electric Ind Co Ltd | Piezo-electric element and its manufacturing method |
JP2008096186A (en) * | 2006-10-10 | 2008-04-24 | Honda Motor Co Ltd | Deformation detecting sensor |
US7538476B2 (en) * | 2007-03-30 | 2009-05-26 | Intel Corporation | Multi-layer piezoelectric actuators with conductive polymer electrodes |
KR20160082839A (en) * | 2014-12-29 | 2016-07-11 | 경북대학교 산학협력단 | A guide device for CardioPulmonaryResuscitation with force sensors |
JP2018532985A (en) * | 2015-08-31 | 2018-11-08 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Electroactive polymer sensor and detection method |
CN108807341A (en) * | 2017-05-02 | 2018-11-13 | Tcl集团股份有限公司 | A kind of temperature measuring equipment, luminescent device and array of display |
CN109212328A (en) * | 2018-10-24 | 2019-01-15 | 清华大学 | High-precision high field intensity capacitance type minitype electric field measurement senser element based on piezoelectric effect |
-
2000
- 2000-07-06 JP JP2000204629A patent/JP2002022561A/en not_active Withdrawn
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007017421A (en) * | 2004-10-28 | 2007-01-25 | Matsushita Electric Ind Co Ltd | Cable-like piezo-electric element and its manufacturing method |
JP2007017420A (en) * | 2004-10-28 | 2007-01-25 | Matsushita Electric Ind Co Ltd | Piezo-electric element and its manufacturing method |
JP2008096186A (en) * | 2006-10-10 | 2008-04-24 | Honda Motor Co Ltd | Deformation detecting sensor |
US7538476B2 (en) * | 2007-03-30 | 2009-05-26 | Intel Corporation | Multi-layer piezoelectric actuators with conductive polymer electrodes |
KR20160082839A (en) * | 2014-12-29 | 2016-07-11 | 경북대학교 산학협력단 | A guide device for CardioPulmonaryResuscitation with force sensors |
KR102123817B1 (en) * | 2014-12-29 | 2020-06-19 | 경북대학교 산학협력단 | A guide device for CardioPulmonaryResuscitation with force sensors |
JP2018532985A (en) * | 2015-08-31 | 2018-11-08 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Electroactive polymer sensor and detection method |
US10905334B2 (en) | 2015-08-31 | 2021-02-02 | Koninklijke Philips N.V. | Electroactive polymer sensors and sensing methods |
CN108807341A (en) * | 2017-05-02 | 2018-11-13 | Tcl集团股份有限公司 | A kind of temperature measuring equipment, luminescent device and array of display |
CN109212328A (en) * | 2018-10-24 | 2019-01-15 | 清华大学 | High-precision high field intensity capacitance type minitype electric field measurement senser element based on piezoelectric effect |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5044196B2 (en) | Piezoelectric sensor and manufacturing method thereof | |
JP2002022560A (en) | Flexible piezoelectric element | |
JP2002022561A (en) | Flexible piezoelectric element | |
JP2002022560A5 (en) | ||
JP2002022561A5 (en) | ||
JP2001291906A (en) | Flexible piezoelectric element | |
US11914777B2 (en) | Integrated systems with force or strain sensing and haptic feedback | |
JP2002185053A (en) | Flexible piezoelectric element | |
JP2002026409A (en) | Flexible piezoelectric element | |
KR101612456B1 (en) | Piezo-electric fiber composite structure and piezo-electric film speaker using thereof | |
JP2004226294A (en) | Static and dynamic pressure detection sensor | |
JP2001085757A (en) | Flexible piezoelectric element and manufacturing method thereof | |
JP2001085754A (en) | Flexible piezoelectric element | |
JPS6366980A (en) | Laminated piezoelectric element | |
JP2001250992A (en) | Flexible piezoelectric element | |
WO2019240111A1 (en) | Piezoelectric element, oscillation waveform sensor, and oscillation waveform sensor module | |
JP2001217475A (en) | Flexible piezoelectric element | |
JPH0543197B2 (en) | ||
JP2002016301A (en) | Flexible piezoelectric element and abnormality monitor using the same | |
JP2001291907A (en) | Flexible piezoelectric element | |
JP2004132882A (en) | Static and kinetic pressure detecting sensor | |
JP2003046156A (en) | Laminated electro-mechanical energy transducer and oscillatory wave drive device | |
JP2001217473A (en) | Flexible piezoelectric element and its manufacturing method | |
JPH0459793B2 (en) | ||
JP2001289718A (en) | Thin pressure sensitive sensor and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070703 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070703 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20070820 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20090220 |