JP2002016046A - Microwave plasma processing apparatus - Google Patents

Microwave plasma processing apparatus

Info

Publication number
JP2002016046A
JP2002016046A JP2000195201A JP2000195201A JP2002016046A JP 2002016046 A JP2002016046 A JP 2002016046A JP 2000195201 A JP2000195201 A JP 2000195201A JP 2000195201 A JP2000195201 A JP 2000195201A JP 2002016046 A JP2002016046 A JP 2002016046A
Authority
JP
Japan
Prior art keywords
microwave
dielectric member
plasma
sample
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000195201A
Other languages
Japanese (ja)
Other versions
JP2002016046A5 (en
JP4514291B2 (en
Inventor
Toshio Nakanishi
敏雄 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2000195201A priority Critical patent/JP4514291B2/en
Publication of JP2002016046A publication Critical patent/JP2002016046A/en
Publication of JP2002016046A5 publication Critical patent/JP2002016046A5/ja
Application granted granted Critical
Publication of JP4514291B2 publication Critical patent/JP4514291B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a microwave plasma processing apparatus which is high in plasma processing uniformity. SOLUTION: A conductor member 12 is provided at the center of a dielectric member 11 of a nearly circular shape, through which microwaves are propagated so as to pass therethrough in the thickness direction. Installation of the conductor member 12 causes presence of strong electric-field regions in a plurality of radial directions of the dielectric member 11, which is distributed nearly symmetrically, with respect to an axis on its diameter. In response to these strong field regions, plasmas are generated in a processing chamber 2 of a reaction vessel 1, and dispersed to provided a uniform plasma. A sample W on a sample base 3 is processed by the plasma, having a uniform density.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、マイクロ波を用い
て生成したプラズマによって、半導体基板,液晶ディス
プレイ用ガラス基板等の試料にエッチング,アッシング
等の処理を施すマイクロ波プラズマ処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microwave plasma processing apparatus for performing processing such as etching and ashing on a sample such as a semiconductor substrate or a glass substrate for a liquid crystal display by plasma generated by using a microwave.

【0002】[0002]

【従来の技術】反応ガスに外部からエネルギを与えて生
じるプラズマは、LSI,LCD等の製造プロセスにお
いて広く用いられており、特に、ドライエッチングプロ
セスにおいて、プラズマの利用は不可欠の基本技術とな
っている。一般にプラズマを生成させる励起手法には、
2.45GHzのマイクロ波を用いる場合と、13.5
6MHzのRF(Radio Frequency)を用いる場合とがあ
る。前者は後者に比べて高密度のプラズマが得られると
共に、プラズマ発生のために電極を必要とせず、従って
電極からのコンタミネーションを防止できるという利点
がある。
2. Description of the Related Art Plasma generated by externally applying energy to a reaction gas is widely used in manufacturing processes of LSIs, LCDs, etc. In particular, use of plasma is an essential basic technology in a dry etching process. I have. Generally, the excitation method to generate plasma includes:
The case where a microwave of 2.45 GHz is used;
In some cases, 6 MHz RF (Radio Frequency) is used. The former has the advantage that a higher-density plasma can be obtained than the latter, and that no electrodes are required for plasma generation, so that contamination from the electrodes can be prevented.

【0003】マイクロ波プラズマ処理装置の基本構成に
あっては、マイクロ波発振器にて発振したマイクロ波を
導波管を介して略円形板状の誘電体部材に伝播させ、そ
の誘電体部材の表面に生じる表面波からマイクロ波を、
処理対象の試料を載置する試料台を内部に有し、封止板
にて真空に封止されている反応容器へ導入することによ
り、反応容器内でプラズマを生成させて試料に処理を施
すようにしている。
In the basic configuration of a microwave plasma processing apparatus, a microwave oscillated by a microwave oscillator is propagated through a waveguide to a substantially circular plate-shaped dielectric member, and the surface of the dielectric member is exposed. Microwave from surface waves generated in
A sample stage on which a sample to be processed is placed is provided inside, and the sample is introduced into a reaction vessel sealed in a vacuum with a sealing plate, thereby generating plasma in the reaction vessel and processing the sample. Like that.

【0004】[0004]

【発明が解決しようとする課題】このようなマイクロ波
プラズマ処理装置にあっては、特にプラズマ生成領域の
面積を広くした場合に、密度が均一になるようにプラズ
マを生成させることが難しく、プラズマ処理の均一性を
向上させることが困難であるという問題がある。
In such a microwave plasma processing apparatus, it is difficult to generate plasma so that the density becomes uniform, particularly when the area of the plasma generation region is widened. There is a problem that it is difficult to improve the uniformity of processing.

【0005】そこで、本願出願人は、密度が均一になる
ようにプラズマを生成させることができて、プラズマ処
理の均一性を向上させ得るマイクロ波プラズマ処理装置
を提案している(特開平11−329789号公報)。
この提案では、マイクロ波が略円形板状の誘電体部材を
伝播して生じる定在波による電界の強度が相対的に強い
複数の領域が、その誘電体部材の中心と略同心円上であ
って、その誘電体部材の直径上の軸に対して略軸対称に
分布するように、誘電体部材の直径を設定することを開
示している。
Therefore, the applicant of the present application has proposed a microwave plasma processing apparatus capable of generating plasma so as to have a uniform density and improving the uniformity of the plasma processing (Japanese Patent Laid-Open No. 11-1999). 329789).
In this proposal, the plurality of regions where the strength of the electric field due to the standing wave generated by the microwave propagating through the substantially circular plate-shaped dielectric member is relatively concentric with the center of the dielectric member are Discloses that the diameter of the dielectric member is set so as to be distributed substantially symmetrically with respect to the axis on the diameter of the dielectric member.

【0006】しかしながら、このマイクロ波プラズマ処
理装置にあっては、誘電体部材の直径も含めた反応ガス
圧,反応ガス種,マイクロ波パワー等の諸条件を最適に
した場合には確かに密度が均一なプラズマを生成できる
が、それらの条件が変わったときには均一な密度でプラ
ズマを生成できないことになるという課題が残ってお
り、改善の余地がある。
However, in this microwave plasma processing apparatus, when various conditions such as the reaction gas pressure including the diameter of the dielectric member, the reaction gas type, the microwave power, and the like are optimized, the density is certainly increased. Although uniform plasma can be generated, there remains a problem that when those conditions are changed, plasma cannot be generated at a uniform density, and there is room for improvement.

【0007】本発明は斯かる事情に鑑みてなされたもの
であり、マイクロ波が伝播される略円形板状の誘電体部
材の中央に導体部材を設けておくことにより、広い範囲
の条件において、均一なプラズマを生成できて、プラズ
マ処理の均一性を向上させることができるマイクロ波プ
ラズマ処理装置を提供することを目的とする。
The present invention has been made in view of such circumstances, and by providing a conductor member at the center of a substantially circular plate-shaped dielectric member through which microwaves are propagated, it is possible to achieve a wide range of conditions. An object of the present invention is to provide a microwave plasma processing apparatus capable of generating uniform plasma and improving the uniformity of plasma processing.

【0008】本発明の他の目的は、プラズマの着火性を
向上できるマイクロ波プラズマ処理装置を提供すること
にある。
Another object of the present invention is to provide a microwave plasma processing apparatus capable of improving the ignitability of plasma.

【0009】[0009]

【課題を解決するための手段】第1発明に係るマイクロ
波プラズマ処理装置は、マイクロ波を用いて生成したプ
ラズマによって試料に処理を行うマイクロ波プラズマ処
理装置において、前記マイクロ波を発振するマイクロ波
発振器と、該マイクロ波発振器にて発振されたマイクロ
波を伝播させる略円形板状の誘電体部材と、該誘電体部
材の中央にその厚さ方向に貫通する態様で設けられた導
体部材と、前記誘電体部材の一主面に対向して配設され
ており、前記試料を載置する試料台を内部に有する反応
容器とを備えることを特徴とする。
According to a first aspect of the present invention, there is provided a microwave plasma processing apparatus for processing a sample with plasma generated by using a microwave. An oscillator, a substantially circular plate-shaped dielectric member that propagates microwaves oscillated by the microwave oscillator, and a conductor member provided at a center of the dielectric member so as to penetrate in the thickness direction thereof, A reaction vessel disposed opposite to one main surface of the dielectric member and having a sample stage on which the sample is placed.

【0010】第2発明に係るマイクロ波プラズマ処理装
置は、マイクロ波を用いて生成したプラズマによって試
料に処理を行うマイクロ波プラズマ処理装置において、
前記マイクロ波を発振するマイクロ波発振器と、該マイ
クロ波発振器にて発振されたマイクロ波を伝播させる導
波管と、該導波管がその外周部の一部に接続されてお
り、その接続部分を除く外周部及び上部が導体板で覆わ
れている略円形板状の誘電体部材と、該誘電体部材の中
央にその厚さ方向に貫通する態様で設けられた導体部材
と、前記誘電体部材の下表面に対向して配設されてお
り、前記試料を載置する試料台と、該試料台を内部に有
する反応容器と、前記誘電体部材と前記試料台との間に
設けられており、前記反応容器を真空に封止する誘電体
からなる封止板とを備えることを特徴とする。
[0010] A microwave plasma processing apparatus according to a second aspect of the present invention is a microwave plasma processing apparatus for processing a sample with plasma generated using microwaves.
A microwave oscillator that oscillates the microwave, a waveguide that propagates the microwave oscillated by the microwave oscillator, and the waveguide is connected to a part of an outer peripheral portion thereof, and a connection portion thereof A substantially circular plate-shaped dielectric member having an outer peripheral portion and an upper portion covered by a conductor plate, a conductor member provided at a center of the dielectric member so as to penetrate in the thickness direction thereof, A sample stage, which is disposed to face the lower surface of the member and on which the sample is mounted, a reaction vessel having the sample stage therein, and is provided between the dielectric member and the sample stage. And a sealing plate made of a dielectric for sealing the reaction vessel in a vacuum.

【0011】本発明のマイクロ波プラズマ処理装置にあ
っては、マイクロ波が伝播される略円形板状の誘電体部
材の中央に導体部材が設けられているため、マイクロ波
が誘電体部材を伝播して生じる定在波による電界強度が
相対的に強い複数の領域が均一に分布し、これに応じて
反応容器内で生成されるプラズマの密度が均一となり、
試料に対するプラズマ処理の均一性は向上する。また、
導体部材の設置により、誘電体部材の中央付近の電界密
度が高くなり、プラズマの着火安定性は向上する。
In the microwave plasma processing apparatus of the present invention, since the conductor member is provided at the center of the substantially circular plate-shaped dielectric member through which the microwave propagates, the microwave propagates through the dielectric member. A plurality of regions in which the electric field strength due to the standing wave generated is relatively strong are uniformly distributed, and accordingly, the density of the plasma generated in the reaction vessel becomes uniform,
The uniformity of the plasma treatment on the sample is improved. Also,
By providing the conductor member, the electric field density near the center of the dielectric member is increased, and the ignition stability of the plasma is improved.

【0012】第3発明に係るマイクロ波プラズマ処理装
置は、第1または第2発明において、前記導体部材の直
径dは、以下の条件(A)を満たすことを特徴とする。 10≦d<D−1.3λg (単位:mm) …(A) 但し、D:前記誘電体部材の直径 λg :マイクロ波の管内波長
A microwave plasma processing apparatus according to a third invention is characterized in that, in the first or second invention, the diameter d of the conductor member satisfies the following condition (A). 10 ≦ d <D-1.3λ g (unit: mm) (A) where D: diameter of the dielectric member λ g : microwave wavelength in the tube

【0013】導体部材の直径を10mmより小さくした
場合には、電界密度の集中が少なくなり、プラズマの着
火安定性はあまり向上しない。一方、導体部材の直径を
誘電体部材の直径からマイクロ波の管内波長の1.3倍
を引いたもの以上とした場合には、電界強度が相対的に
強い領域が一方向にしか生じないので、導波管付近の電
界密度が高くなって、プラズマの均一性が悪化する。よ
って、導体部材の直径を上記(A)の条件を満たすよう
にして、導体部材の設置に伴う効果を確実なものにす
る。
When the diameter of the conductor member is smaller than 10 mm, the concentration of the electric field density decreases, and the ignition stability of the plasma does not improve much. On the other hand, when the diameter of the conductor member is equal to or greater than the diameter of the dielectric member minus 1.3 times the guide wavelength of the microwave, a region where the electric field intensity is relatively strong occurs only in one direction. In addition, the electric field density near the waveguide is increased, and the uniformity of the plasma is deteriorated. Therefore, the diameter of the conductor member is made to satisfy the above condition (A), and the effect accompanying the installation of the conductor member is ensured.

【0014】[0014]

【発明の実施の形態】以下、本発明をその実施の形態を
示す図面に基づいて具体的に説明する。図1は本発明に
係るマイクロ波プラズマ処理装置の構造を示す側断面
図、図2は後述する誘電体部材11及び導体部材12の
平面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings showing the embodiments. FIG. 1 is a side sectional view showing a structure of a microwave plasma processing apparatus according to the present invention, and FIG. 2 is a plan view of a dielectric member 11 and a conductor member 12 described later.

【0015】図1において、有底円筒状の反応容器1
は、その全体がアルミニウムで形成されている。反応容
器1の上部にはマイクロ波導入窓が開設してあり、マイ
クロ波導入窓は封止板4で気密状態に封止されている。
この封止板4は、耐熱性及びマイクロ波透過性を有する
と共に誘電損失が小さい、石英ガラスまたはアルミナ等
の誘電体で形成されている。
In FIG. 1, a cylindrical bottomed reaction vessel 1 is shown.
Is formed entirely of aluminum. A microwave introduction window is opened at the upper part of the reaction vessel 1, and the microwave introduction window is sealed in an airtight state by a sealing plate 4.
The sealing plate 4 is made of a dielectric material such as quartz glass or alumina, which has heat resistance and microwave permeability and has small dielectric loss.

【0016】反応容器1には、反応容器1の上部を覆う
箱状の導電性のカバー部材10が連結してある。このカ
バー部材10内の天井部分には誘電体部材11が取り付
けてあり、誘電体部材11と封止板4との間にはエアギ
ャップ9が形成されている。誘電体部材11は、テフロ
ン(登録商標)といったポリフッ化エチレン樹脂,ポリ
エチレン樹脂またはポリスチレン樹脂等の誘電体を、所
定直径の円板状の本体11aの周面に略矩形の入射ポー
ト部11bを設けた形状に成形してなり、入射ポート部
11bをカバー部材10の周面に連結した断面矩形の導
波管21に内嵌させてある。誘電体部材11の中心部に
は、その厚さ方向に貫通する態様でアルミニウム製の導
体部材12が設けられている。この導体部材12の直径
(d)は、誘電体部材11の直径(D)を510mmと
した場合に、10mm以上365mm未満である。
A box-shaped conductive cover member 10 for covering the upper portion of the reaction vessel 1 is connected to the reaction vessel 1. A dielectric member 11 is attached to a ceiling portion in the cover member 10, and an air gap 9 is formed between the dielectric member 11 and the sealing plate 4. The dielectric member 11 is made of a dielectric material such as polyfluoroethylene resin, polyethylene resin, or polystyrene resin such as Teflon (registered trademark), and a substantially rectangular incident port portion 11b is provided on a peripheral surface of a disk-shaped main body 11a having a predetermined diameter. The incident port portion 11b is fitted inside a waveguide 21 having a rectangular cross section connected to the peripheral surface of the cover member 10. A conductor member 12 made of aluminum is provided at the center of the dielectric member 11 so as to penetrate in the thickness direction thereof. The diameter (d) of the conductor member 12 is 10 mm or more and less than 365 mm when the diameter (D) of the dielectric member 11 is 510 mm.

【0017】導波管21にはマイクロ波発振器20が連
結してあり、マイクロ波発振器20が発振したマイクロ
波は、導波管21によって誘電体部材11の入射ポート
部11bに入射される。このマイクロ波は、誘電体部材
11の形状及び寸法等によって定まる伝搬モードにより
本体11aの全領域に伝搬し、所定分布の電界が形成さ
れる。
A microwave oscillator 20 is connected to the waveguide 21, and the microwave oscillated by the microwave oscillator 20 is incident on the incident port 11 b of the dielectric member 11 by the waveguide 21. The microwave propagates through the entire region of the main body 11a in a propagation mode determined by the shape and size of the dielectric member 11, and the like, and an electric field having a predetermined distribution is formed.

【0018】反応容器1には処理室2の周囲壁を貫通す
る複数の貫通穴が開設してあり、貫通穴に嵌合させたガ
ス導入管5から処理室2内に所要の反応ガスが導入され
る。処理室2の底部壁中央には、試料Wを載置する試料
台3が設けてあり、試料台3にはマッチングボックス6
を介して高周波電源7が接続されている。また、反応容
器1の底部壁には排気口8が開設してあり、排気口8か
ら処理室2の内気を排出するようになしてある。
The reaction vessel 1 has a plurality of through-holes penetrating the peripheral wall of the processing chamber 2. A required reaction gas is introduced into the processing chamber 2 from a gas introduction pipe 5 fitted into the through-hole. Is done. At the center of the bottom wall of the processing chamber 2, a sample table 3 on which the sample W is placed is provided.
The high frequency power supply 7 is connected via the. An exhaust port 8 is provided in the bottom wall of the reaction vessel 1 so that the inside of the processing chamber 2 is exhausted from the exhaust port 8.

【0019】このようなマイクロ波プラズマ処理装置を
用いて試料Wの表面にエッチング処理を施すには、排気
口8から排気して処理室2内を所望の圧力まで減圧した
後、ガス導入管5から処理室2内に反応ガスを供給す
る。次いで、マイクロ波発振器20から2.45GHz
のマイクロ波を発振させ、これを導波管21を介して誘
電体部材11に導入し、そこに定在波を形成させること
によって所定分布の漏れ電界を発生させる。この漏れ電
界がエアギャップ9及び封止板4を透過して処理室2内
へ導入され、これにより、処理室2内にプラズマが生成
され、そのプラズマによって試料Wの表面をエッチング
する。その後、封止板4表面とプラズマとの間(プラズ
マシース)には表面波が形成されるので、プラズマは安
定する。
In order to perform an etching process on the surface of the sample W using such a microwave plasma processing apparatus, the inside of the processing chamber 2 is evacuated to a desired pressure by exhausting from the exhaust port 8 and then the gas introduction pipe 5 To supply the reaction gas into the processing chamber 2. Then, the microwave oscillator 20 outputs 2.45 GHz.
Is oscillated, introduced into the dielectric member 11 through the waveguide 21, and a standing wave is formed therein to generate a leakage electric field having a predetermined distribution. This leaked electric field penetrates through the air gap 9 and the sealing plate 4 and is introduced into the processing chamber 2, thereby generating plasma in the processing chamber 2 and etching the surface of the sample W with the plasma. Thereafter, a surface wave is formed between the surface of the sealing plate 4 and the plasma (plasma sheath), so that the plasma is stabilized.

【0020】次に、誘電体部材11の中央部に導体部材
12を設けた本発明例と、誘電体部材にそのような導体
部材を設けない従来例とにおけるイオン電流分布の測定
実験の結果について説明する。
Next, the results of measurement experiments of the ion current distribution in the present invention example in which the conductor member 12 is provided at the center of the dielectric member 11 and in the conventional example in which such a conductor member is not provided in the dielectric member will be described. explain.

【0021】図3は本発明例(直径510mmの誘電体
部材11の中央部に直径10mmの導体部材12を設
置)における測定結果を示し、図4は従来例における測
定結果を示している。何れの例においても、処理室内に
供給する反応ガスをC4 8 (流量30SCCM)/O
2 (流量20SCCM)/Ar(流量1000SCC
M)として、内部の圧力を40mTorrとした。ま
た、マイクロ波発振器の出力を2kW,3kW,4kW
の3段階とした夫々の場合について、測定を行った。
FIG. 3 shows a measurement result in the example of the present invention (a conductor member 12 having a diameter of 10 mm is provided at the center of a dielectric member 11 having a diameter of 510 mm), and FIG. 4 shows a measurement result in a conventional example. In any of the examples, the reaction gas supplied into the processing chamber is C 4 F 8 (flow rate 30 SCCM) / O
2 (flow rate 20 SCCM) / Ar (flow rate 1000 SCC)
M), the internal pressure was 40 mTorr. Further, the output of the microwave oscillator is set to 2 kW, 3 kW, 4 kW.
The measurement was performed for each of the three stages.

【0022】図3,図4において、横軸は誘電体部材の
中心からX方向またはY方向の変位量(mm)を表し、
縦軸はイオン電流密度(任意単位)を表している。ま
た、図3,図4において、●,○は2kWの場合のX方
向,Y方向のイオン電流分布を示し、★,☆は3kWの
場合のX方向,Y方向のイオン電流分布を示し、◆,◇
は4kWの場合のX方向,Y方向のイオン電流分布を示
している。測定は封止板より60mm下方に離れた位置
で行った。
3 and 4, the horizontal axis represents the displacement (mm) in the X or Y direction from the center of the dielectric member.
The vertical axis represents the ion current density (arbitrary unit). In FIGS. 3 and 4, ● and ○ indicate ion current distributions in the X and Y directions at 2 kW, and ★ and ☆ indicate ion current distributions in the X and Y directions at 3 kW. , ◇
Indicates the ion current distribution in the X and Y directions at 4 kW. The measurement was performed at a position 60 mm below the sealing plate.

【0023】図3,図4を比較することにより、本発明
例では従来例より、中央付近での電流密度が高くなり、
中央付近の広い範囲において電流密度の分布が均一であ
ることが分かる。
By comparing FIGS. 3 and 4, the current density in the vicinity of the center is higher in the example of the present invention than in the conventional example.
It can be seen that the current density distribution is uniform over a wide range near the center.

【0024】次に、誘電体部材11の中央部に導体部材
12を設けた本発明例と、誘電体部材にそのような導体
部材を設けない従来例とにおけるプラズマの発光強度の
観察結果について説明する。
Next, the results of observation of the plasma emission intensity in the present invention example in which the conductor member 12 is provided at the center of the dielectric member 11 and in the conventional example in which such a conductor member is not provided in the dielectric member will be described. I do.

【0025】反応室内に設けた石英上に、本発明例(直
径510mmの誘電体部材11の中央部に直径10mm
の導体部材12を設置),従来例を夫々載置し、マイク
ロ波を導入して、処理室内でプラズマを生成させて、石
英表面上でのプラズマの発光状態をCCDカメラにて撮
影した。この際のプラズマ生成における反応ガスの条件
は上述したイオン電流分布の測定実験の場合と同様であ
り、マイクロ波発振器の出力は2kWとした。
On the quartz provided in the reaction chamber, an example of the present invention (the center of the dielectric member 11 having a diameter of 510 mm
Of the conventional example), a microwave was introduced, plasma was generated in the processing chamber, and the light emission state of the plasma on the quartz surface was photographed by a CCD camera. The conditions of the reaction gas in the plasma generation at this time were the same as those in the above-described ion current distribution measurement experiment, and the output of the microwave oscillator was 2 kW.

【0026】このようにして得られた観察結果を、図5
に模式的に示す。図5(a)は本発明例での観察結果を
示し、図5(b)は従来例での観察結果を示している。
図5において、黒い点が発光点を表している。図5
(a),(b)を比較することにより、本発明例では従
来例より、プラズマの発光状態が均一化していることが
分かる。このプラズマの発光強度はプラズマ密度に相関
するので、本発明例では、均一なプラズマ密度が得られ
ていることが分かる。
The observation results obtained in this manner are shown in FIG.
Is shown schematically in FIG. FIG. 5A shows the observation result in the example of the present invention, and FIG. 5B shows the observation result in the conventional example.
In FIG. 5, black dots represent light emitting points. FIG.
By comparing (a) and (b), it can be seen that in the example of the present invention, the light emission state of the plasma is more uniform than in the conventional example. Since the emission intensity of the plasma correlates with the plasma density, it can be seen that a uniform plasma density is obtained in the example of the present invention.

【0027】また、本発明例(直径510mmの誘電体
部材11の中央部に直径10mmの導体部材12を設
置)と、従来例(導体部材12を設けない)とについ
て、プラズマの着火性を調べた。従来例では着火に3k
W以上のマイクロ波発振器出力を必要としたが、本発明
例では、中央部での電界密度が高いため、1.2kWで
のマイクロ波発振器出力にて着火が可能であった。
Further, the plasma ignitability of the example of the present invention (the conductor member 12 having a diameter of 10 mm was installed at the center of the dielectric member 11 having a diameter of 510 mm) and the conventional example (the conductor member 12 was not provided) were examined. Was. 3k for ignition in the conventional example
Although a microwave oscillator output of W or more was required, in the example of the present invention, ignition was possible with a microwave oscillator output of 1.2 kW because of the high electric field density at the center.

【0028】次に、本発明において誘電体部材11の中
央部に設ける導体部材12の直径について考察する。導
体部材12の直径d(mm)を、以下の条件(1)を満
たすようにする。但し、Dは誘電体部材11の直径(m
m)、λg は管内波長(導波管21内でのマイクロ波の
波長)(mm)である。 10≦d<D−1.3λg …(1)
Next, the diameter of the conductor member 12 provided at the center of the dielectric member 11 in the present invention will be considered. The diameter d (mm) of the conductor member 12 is set so as to satisfy the following condition (1). Here, D is the diameter of the dielectric member 11 (m
m) and λ g are the guide wavelength (wavelength of the microwave in the waveguide 21) (mm). 10 ≦ d <D-1.3λ g (1)

【0029】導体部材12の直径dが10mmより小さ
い場合には、中央部への電界密度の集中が少なく、プラ
ズマの着火安定性が悪く、プラズマ密度の均一化も実現
できない。よって、その直径dの値は10mm以上にす
ることが必要である。
When the diameter d of the conductor member 12 is smaller than 10 mm, the concentration of the electric field density at the central portion is small, the ignition stability of the plasma is poor, and the uniform plasma density cannot be realized. Therefore, the value of the diameter d needs to be 10 mm or more.

【0030】ところで、ドーナツ型の誘電体において、
内周径と外周径との差が1.3λg以下である場合に
は、その隙間に腹が1個しか存在しない定在波モードが
形成される。内周と外周との隙間に定在波の腹が1個し
か存在しない場合、誘電体の導波管接続部近傍での電界
強度が大きくなりすぎて、誘電体での電界強度分布が不
均一になる。よって、その隙間に1個より大きい数の腹
が形成されるように、内周と外周との隙間を1.3λg
より大きく取る必要があることがシミュレーションによ
り見出された。本発明の場合、その隙間はD−dで表さ
れるので、D−d>1.3λg 、変形してd<D−1.
3λg を満たす必要がある。
By the way, in the donut type dielectric,
If the difference between the inner circumference and the outer diameter is less than 1.3Ramuda g is the standing wave mode antinode into the gap has only one is formed. If there is only one antinode of the standing wave in the gap between the inner and outer circumferences, the electric field intensity near the waveguide connection portion of the dielectric becomes too large, and the electric field intensity distribution in the dielectric becomes uneven. become. Therefore, the gap between the inner circumference and the outer circumference is set to 1.3λ g so that more than one antinode is formed in the gap.
It has been found by simulation that it is necessary to take more. In the case of the present invention, the gap is represented by D−d, so that D−d> 1.3λ g , and after deformation, d <D−1.
It is necessary to satisfy 3λ g .

【0031】次に、本発明における導体部材12の直径
dの具体的な数値例について説明する。管内波長λ
g は、下記(2)によって求められる。また、(2)に
おけるλ c は下記(3)で示される。
Next, the diameter of the conductor member 12 in the present invention will be described.
A specific numerical example of d will be described. Tube wavelength λ
gIs determined by the following (2). Also, in (2)
Λ cIs shown by the following (3).

【0032】[0032]

【数1】 (Equation 1)

【0033】但し、λ:真空自由空間内の波長 (122mm(=光速÷マイクロ波の周波数)) ε:誘電体部材11の比誘電率 a:導波管21断面の長辺の長さ b:導波管21断面の短辺の長さ m:長辺方向のモード数 n:短辺方向のモード数Where λ: wavelength in vacuum free space (122 mm (= velocity of light ÷ frequency of microwave)) ε: relative permittivity of dielectric member 11 a: length of long side of waveguide 21 cross section b: Length of short side of waveguide 21 cross section m: number of modes in long side direction n: number of modes in short side direction

【0034】ここで、テフロン(ε=2)で満たされた
a=96mm,b=27mmの導波管21にて、TE10
モード(m=1,n=0)のマイクロ波を伝播した場
合、上記(2)よりλc =192mmとなり、管内波長
λg は、具体的に下記(4)のように112mmとな
る。
Here, TE10 is filled in a waveguide 21 of a = 96 mm and b = 27 mm filled with Teflon (ε = 2).
When a microwave in the mode (m = 1, n = 0) is propagated, λ c = 192 mm from the above (2), and the guide wavelength λ g is specifically 112 mm as shown in the following (4).

【0035】[0035]

【数2】 (Equation 2)

【0036】よって、1.3λg =1.3×112=1
45.6(mm)であり、誘電体部材11の直径D=5
10mmとした場合、dの上限は510−145.6=
364.4(mm)となる。従って、導体部材12の直
径が365mm以上である場合には、誘電体部材11の
電界分布が不均一になる。この場合の導体部材12の直
径dの具体的な条件は、下記(5)となる。10≦d<
365 …(5)
Therefore, 1.3λ g = 1.3 × 112 = 1
45.6 (mm), and the diameter D of the dielectric member 11 is 5
When it is 10 mm, the upper limit of d is 510-145.6 =
364.4 (mm). Therefore, when the diameter of the conductor member 12 is 365 mm or more, the electric field distribution of the dielectric member 11 becomes non-uniform. The specific condition of the diameter d of the conductor member 12 in this case is as follows (5). 10 ≦ d <
365… (5)

【0037】次に、導体部材12の直径dを変化させ
て、封止板下面における電界をシミュレーションした結
果について説明する。その結果を図6〜図10に示す。
図6〜図10は、テフロンを成形してなる誘電体部材1
1に2.45GHz(真空自由空間内の波長:122m
m)のマイクロ波を導入し、マイクロ波の伝播によって
形成される電界の強度をシミュレーションによって求
め、同じ電界強度の地点を線で結んだものを示す。図6
はd=0mmの場合(従来例)を示し、図7,図8,図
9,図10は夫々、d=30mm,d=100mm,d
=200m,d=370mmとした場合を示す。
Next, the result of simulating the electric field on the lower surface of the sealing plate by changing the diameter d of the conductor member 12 will be described. The results are shown in FIGS.
6 to 10 show a dielectric member 1 formed by molding Teflon.
1.45 GHz (wavelength in vacuum free space: 122 m)
m) is introduced, a strength of an electric field formed by the propagation of the microwave is obtained by simulation, and points connecting the same electric field strength are shown by lines. FIG.
Shows the case of d = 0 mm (conventional example), and FIGS. 7, 8, 9 and 10 show d = 30 mm, d = 100 mm, and d, respectively.
= 200 m, d = 370 mm.

【0038】導体部材12を設けない従来例の場合(図
6)には、マイクロ波の進行方向(導波管21との接続
部分とその反対側とを結ぶ方向)にのみ電界が強い領域
が存在しており、電界が強い領域が直線状に分布してい
るため、電界分布は均一化していない。これに対して、
導体部材12を設けた本発明例の場合(図7,図8,図
9)には、複数の径方向について電界が強い領域が存在
しており、電界が強い領域が直径上の軸に対して略軸対
称に分布しているため、電界分布は均一化している。但
し、導体部材12の直径d=370mmの場合(図1
0)には、従来例と同様に、マイクロ波の進行方向にの
み電界が強い領域が存在しており、電界分布は均一化し
ていない。このようなシミュレーションの結果は、上記
(5)の条件と合致している。
In the case of the conventional example in which the conductor member 12 is not provided (FIG. 6), a region where the electric field is strong only in the traveling direction of the microwave (the direction connecting the connection portion with the waveguide 21 and the opposite side) is provided. The electric field distribution is not uniform because the region exists and the region where the electric field is strong is linearly distributed. On the contrary,
In the case of the present invention in which the conductor member 12 is provided (FIGS. 7, 8, and 9), there are regions where the electric field is strong in a plurality of radial directions, and the region where the electric field is strong is located with respect to the axis on the diameter. , The electric field distribution is uniform. However, when the diameter d of the conductor member 12 is 370 mm (FIG. 1)
In (0), as in the conventional example, there is a region where the electric field is strong only in the traveling direction of the microwave, and the electric field distribution is not uniform. The result of such a simulation matches the condition of the above (5).

【0039】よって、上記(1),(5)の条件を満た
すような導体部材12を設けることにより、誘電体部材
11の複数の径方向について電界が強い領域が存在し、
それらが直径上の軸に対して略軸対称に分布するので、
これらの強電界領域に対応する部分に夫々プラズマが生
成され、それらが拡散して均一なプラズマが得られる。
Therefore, by providing the conductor member 12 that satisfies the above conditions (1) and (5), there are regions where the electric field is strong in a plurality of radial directions of the dielectric member 11,
Since they are distributed almost axisymmetrically with respect to the axis on the diameter,
Plasma is generated in portions corresponding to these strong electric field regions, respectively, and these are diffused to obtain uniform plasma.

【0040】[0040]

【発明の効果】以上詳述した如く、本発明に係るマイク
ロ波プラズマ処理装置では、誘電体部材の中央部にその
厚さ方向に貫通する態様で導体部材を設けるようにした
ので、誘電体部材を伝播するマイクロ波の定在波による
電界の強度が相対的に強い複数の領域が、複数の径方向
について存在し、それらが直径上の軸に対して略軸対称
に分布するため、これに応じて生成されるプラズマの密
度を均一化でき、均一な密度になったプラズマによって
試料を処理でき、プラズマ処理の均一性を向上すること
が可能である。
As described above in detail, in the microwave plasma processing apparatus according to the present invention, the conductor member is provided at the center of the dielectric member so as to penetrate in the thickness direction thereof. There are a plurality of regions where the strength of the electric field due to the standing wave of the microwave propagating through is present in a plurality of radial directions, and these are distributed substantially axisymmetrically with respect to the axis on the diameter. Accordingly, the density of the plasma generated can be made uniform, the sample can be processed by the plasma having the uniform density, and the uniformity of the plasma processing can be improved.

【0041】また、設置する導体部材の直径を上記
(A)の条件を満たすようにしたので、誘電体部材にお
いて軸対称で均一な電界分布を常に得ることができる。
Also, since the diameter of the conductor member to be installed is made to satisfy the above condition (A), it is possible to always obtain an axially symmetric and uniform electric field distribution in the dielectric member.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るマイクロ波プラズマ処理装置の構
造を示す側断面図である。
FIG. 1 is a side sectional view showing a structure of a microwave plasma processing apparatus according to the present invention.

【図2】本発明のマイクロ波プラズマ処理装置における
誘電体部材及び導体部材の平面図である。
FIG. 2 is a plan view of a dielectric member and a conductor member in the microwave plasma processing apparatus of the present invention.

【図3】本発明例におけるイオン電流分布の測定実験の
結果を示すグラフである。
FIG. 3 is a graph showing a result of an experiment for measuring an ion current distribution in an example of the present invention.

【図4】従来例におけるイオン電流分布の測定実験の結
果を示すグラフである。
FIG. 4 is a graph showing a result of an experiment for measuring an ion current distribution in a conventional example.

【図5】本発明例と従来例とにおけるプラズマ発光の観
察結果を模式的に示す図である。
FIG. 5 is a view schematically showing observation results of plasma emission in the present invention example and the conventional example.

【図6】従来例(導体部材の直径d=0mm)における
封止板下面での電界分布のシミュレーション結果を示す
図である。
FIG. 6 is a view showing a simulation result of an electric field distribution on a lower surface of a sealing plate in a conventional example (diameter d of a conductive member = 0 mm).

【図7】本発明例(導体部材の直径d=30mm)にお
ける封止板下面での電界分布のシミュレーション結果を
示す図である。
FIG. 7 is a diagram showing a simulation result of an electric field distribution on a lower surface of a sealing plate in an example of the present invention (diameter d of a conductive member = 30 mm).

【図8】本発明例(導体部材の直径d=100mm)に
おける封止板下面での電界分布のシミュレーション結果
を示す図である。
FIG. 8 is a diagram showing a simulation result of an electric field distribution on a lower surface of a sealing plate in an example of the present invention (diameter d of a conductive member = 100 mm).

【図9】本発明例(導体部材の直径d=200mm)に
おける封止板下面での電界分布のシミュレーション結果
を示す図である。
FIG. 9 is a diagram showing a simulation result of an electric field distribution on the lower surface of the sealing plate in the example of the present invention (the diameter d of the conductor member is 200 mm).

【図10】比較例(導体部材の直径d=370mm)に
おける封止板下面での電界分布のシミュレーション結果
を示す図である。
FIG. 10 is a diagram showing a simulation result of an electric field distribution on a lower surface of a sealing plate in a comparative example (diameter d of a conductor member = 370 mm).

【符号の説明】[Explanation of symbols]

1 反応容器 3 試料台 4 封止板 10 カバー部材 11 誘電体部材 11a 本体 11b 入射ポート部 12 導体部材 20 マイクロ波発振器 21 導波管 W 試料 DESCRIPTION OF SYMBOLS 1 Reaction container 3 Sample stand 4 Sealing plate 10 Cover member 11 Dielectric member 11a Main body 11b Incident port part 12 Conductor member 20 Microwave oscillator 21 Waveguide W Sample

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 マイクロ波を用いて生成したプラズマに
よって試料に処理を行うマイクロ波プラズマ処理装置に
おいて、前記マイクロ波を発振するマイクロ波発振器
と、該マイクロ波発振器にて発振されたマイクロ波を伝
播させる略円形板状の誘電体部材と、該誘電体部材の中
央にその厚さ方向に貫通する態様で設けられた導体部材
と、前記誘電体部材の一主面に対向して配設されてお
り、前記試料を載置する試料台を内部に有する反応容器
とを備えることを特徴とするマイクロ波プラズマ処理装
置。
1. A microwave plasma processing apparatus for processing a sample with plasma generated using microwaves, wherein the microwave oscillator oscillates the microwave, and the microwave oscillated by the microwave oscillator propagates. A substantially circular plate-shaped dielectric member to be formed, a conductor member provided at a center of the dielectric member so as to penetrate in the thickness direction thereof, and a dielectric member disposed so as to face one main surface of the dielectric member. And a reaction vessel having a sample stage in which the sample is placed.
【請求項2】 マイクロ波を用いて生成したプラズマに
よって試料に処理を行うマイクロ波プラズマ処理装置に
おいて、前記マイクロ波を発振するマイクロ波発振器
と、該マイクロ波発振器にて発振されたマイクロ波を伝
播させる導波管と、該導波管がその外周部の一部に接続
されており、その接続部分を除く外周部及び上部が導体
板で覆われている略円形板状の誘電体部材と、該誘電体
部材の中央にその厚さ方向に貫通する態様で設けられた
導体部材と、前記誘電体部材の下表面に対向して配設さ
れており、前記試料を載置する試料台と、該試料台を内
部に有する反応容器と、前記誘電体部材と前記試料台と
の間に設けられており、前記反応容器を真空に封止する
誘電体からなる封止板とを備えることを特徴とするマイ
クロ波プラズマ処理装置。
2. A microwave plasma processing apparatus for processing a sample with plasma generated by using a microwave, wherein the microwave oscillator oscillates the microwave, and the microwave oscillated by the microwave oscillator propagates. A waveguide member to be connected, the waveguide is connected to a part of the outer peripheral portion thereof, and a substantially circular plate-shaped dielectric member whose outer peripheral portion and upper portion excluding the connection portion are covered with a conductive plate; A conductor member provided at a center of the dielectric member so as to penetrate in a thickness direction thereof, and a sample table which is disposed to face a lower surface of the dielectric member and mounts the sample, A reaction container having the sample stage therein, and a sealing plate provided between the dielectric member and the sample stage and made of a dielectric for sealing the reaction container to a vacuum. Microwave plasma processing equipment Place.
【請求項3】 前記導体部材の直径dは、以下の条件
(A)を満たす請求項1または2記載のマイクロ波プラ
ズマ処理装置。 10≦d<D−1.3λg (単位:mm) …(A) 但し、D:前記誘電体部材の直径 λg :マイクロ波の管内波長
3. The microwave plasma processing apparatus according to claim 1, wherein the diameter d of the conductor member satisfies the following condition (A). 10 ≦ d <D-1.3λ g (unit: mm) (A) where D: diameter of the dielectric member λ g : microwave wavelength in the tube
JP2000195201A 2000-06-28 2000-06-28 Microwave plasma processing apparatus and plasma processing method Expired - Fee Related JP4514291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000195201A JP4514291B2 (en) 2000-06-28 2000-06-28 Microwave plasma processing apparatus and plasma processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000195201A JP4514291B2 (en) 2000-06-28 2000-06-28 Microwave plasma processing apparatus and plasma processing method

Publications (3)

Publication Number Publication Date
JP2002016046A true JP2002016046A (en) 2002-01-18
JP2002016046A5 JP2002016046A5 (en) 2007-08-23
JP4514291B2 JP4514291B2 (en) 2010-07-28

Family

ID=18693895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000195201A Expired - Fee Related JP4514291B2 (en) 2000-06-28 2000-06-28 Microwave plasma processing apparatus and plasma processing method

Country Status (1)

Country Link
JP (1) JP4514291B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140397A (en) * 1997-05-22 1999-02-12 Canon Inc Microwave feeder having annular waveguide and plasma processing device provided with the microwave feeder and processing method
JPH11204296A (en) * 1998-01-14 1999-07-30 Sumitomo Metal Ind Ltd Microwave plasma treating apparatus
JP2000133495A (en) * 1998-10-20 2000-05-12 Sumitomo Metal Ind Ltd Plasma processing device
JP2000173797A (en) * 1998-12-01 2000-06-23 Sumitomo Metal Ind Ltd Microwave plasma treating device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140397A (en) * 1997-05-22 1999-02-12 Canon Inc Microwave feeder having annular waveguide and plasma processing device provided with the microwave feeder and processing method
JPH11204296A (en) * 1998-01-14 1999-07-30 Sumitomo Metal Ind Ltd Microwave plasma treating apparatus
JP2000133495A (en) * 1998-10-20 2000-05-12 Sumitomo Metal Ind Ltd Plasma processing device
JP2000173797A (en) * 1998-12-01 2000-06-23 Sumitomo Metal Ind Ltd Microwave plasma treating device

Also Published As

Publication number Publication date
JP4514291B2 (en) 2010-07-28

Similar Documents

Publication Publication Date Title
KR100770630B1 (en) Plasma processing apparatus
KR100363820B1 (en) Plasma processor
JP5036092B2 (en) Microwave plasma processing equipment
KR100311104B1 (en) Microwave plasma processing apparatus and method
KR100311433B1 (en) Microwave plasma processing apparatus and process
JPH1167492A (en) Plasma treatment equipment and plasma treatment method
JPH11204296A (en) Microwave plasma treating apparatus
JPH0544798B2 (en)
JP4165946B2 (en) Microwave plasma processing equipment
JP4514291B2 (en) Microwave plasma processing apparatus and plasma processing method
JP2000173797A (en) Microwave plasma treating device
JP3491190B2 (en) Plasma processing equipment
JP2001223171A (en) Plasma processing apparatus
JP4165944B2 (en) Microwave plasma processing equipment
JP4132313B2 (en) Microwave plasma processing equipment
JP4107738B2 (en) Microwave plasma processing equipment
JPH11204295A (en) Microwave plasma treating apparatus
JP2000277296A (en) Method and apparatus for plasma treatment
JP4076645B2 (en) Microwave plasma processing apparatus and processing method thereof
JP4039479B2 (en) Microwave plasma processing equipment
JP4107723B2 (en) Microwave plasma processing equipment
JPH11329789A (en) Microwave plasma processor
JP4052735B2 (en) Plasma processing equipment
JP3085155B2 (en) Plasma processing equipment
JP2001156004A (en) Plasma treatment device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070531

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100511

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4514291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees