JPH0544798B2 - - Google Patents
Info
- Publication number
- JPH0544798B2 JPH0544798B2 JP14303685A JP14303685A JPH0544798B2 JP H0544798 B2 JPH0544798 B2 JP H0544798B2 JP 14303685 A JP14303685 A JP 14303685A JP 14303685 A JP14303685 A JP 14303685A JP H0544798 B2 JPH0544798 B2 JP H0544798B2
- Authority
- JP
- Japan
- Prior art keywords
- microwave
- dielectric layer
- waveguide
- plasma
- upper chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002184 metal Substances 0.000 claims description 16
- 238000012545 processing Methods 0.000 claims description 13
- 238000004891 communication Methods 0.000 claims description 5
- 239000000463 material Substances 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 230000005684 electric field Effects 0.000 description 5
- -1 polyethylene fluoride Polymers 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052755 nonmetal Inorganic materials 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000009774 resonance method Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Landscapes
- Drying Of Semiconductors (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Control Of High-Frequency Heating Circuits (AREA)
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、マイクロ波プラズマ処理装置の改良
に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement in a microwave plasma processing apparatus.
(従来の技術およびその問題点)
低圧ガスの放電によつて生成した低温プラズマ
は、系全体が低温でありながら化学反応を促進す
るため、無機材料と有機材料のいずれにも適用で
き、極めて応用範囲が広い。しかして、このプラ
ズマを発生させるために、従来の研究開発・実用
機では主にラジオ波(13.56MHz)が用いられて
いたが、マイクロ波を用いる方が効率・装置の点
で有利であることが指摘されている(広瀬:マイ
クロ波放電プラズマとその装置、塗装技術、19、
1、(1980)、100〜105頁)。(Prior art and its problems) Low-temperature plasma generated by low-pressure gas discharge promotes chemical reactions even though the entire system is at a low temperature, so it can be applied to both inorganic and organic materials, making it extremely applicable. Wide range. In order to generate this plasma, conventional research and development/practical equipment mainly used radio waves (13.56MHz), but it has become clear that using microwaves is more advantageous in terms of efficiency and equipment. has been pointed out (Hirose: Microwave discharge plasma and its equipment, coating technology, 19,
1, (1980), pp. 100-105).
有利な点を以下に示す。 The advantages are shown below.
電子温度Teとガス温度Tgの比Te/Tgが大
きく、より低温のプラズマが得られる。 The ratio Te/Tg between the electron temperature Te and the gas temperature Tg is large, and a lower temperature plasma can be obtained.
電極を必要としないので、電極からの汚染を
防ぐことができる。 Since no electrodes are required, contamination from the electrodes can be prevented.
マイクロ波の電力を局所的に注入でき、外部
空間への不用な放射損失がなく、高密度のプラ
ズマが生成できる。 Microwave power can be locally injected, there is no unnecessary radiation loss to the outside space, and high-density plasma can be generated.
発振器が簡単である。 The oscillator is simple.
導波管でマイクロ波を伝送するため放射損失
がなく、整合が簡単な構造でできる。 Since microwaves are transmitted through a waveguide, there is no radiation loss, and matching can be done with a simple structure.
ところで、従来のマイクロ波プラズマ発生装置
のうち、導波管に対して石英管を貫通させた生成
部・処理室分離方式(前記文献)や、マイクロ波
の伝搬方向に磁場を形成し共鳴を利用した電子サ
イクロトロン共鳴方式(松尾、木内、高橋:
ECRプラズマCVD、電気学会電子デバイス研究
会、EDD−84−55、(1984)、17〜23頁、特公昭
58−37680)については高周波を用いた装置に比
べて処理面積が小さいという問題がある。 By the way, among the conventional microwave plasma generators, there is a generation section/processing chamber separation method (see the above-mentioned document) in which a quartz tube is passed through the waveguide, and a method that uses resonance by forming a magnetic field in the direction of propagation of microwaves. Electron cyclotron resonance method (Matsuo, Kiuchi, Takahashi:
ECR Plasma CVD, IEEJ Electronic Device Study Group, EDD-84-55, (1984), pp. 17-23, Tokkosho
58-37680), there is a problem in that the processing area is smaller compared to devices using high frequencies.
また、比較的広い処理面積をもつ装置として
は、マイクロ波をアンテナを用いて広いプラズ
マ発生室に導入する装置(特公昭57−53858、特
開昭57−9868、特開昭56−41382)や、周期構
造を利用した装置(R.G.Bosisio、C.F.
Weissfloch、M.R.Wertheimer:The Large
Volume Microwave Plasma Generator、J.
Microwave Power、7(4)、1972)がある。 In addition, devices with a relatively large processing area include devices that introduce microwaves into a large plasma generation chamber using an antenna (Japanese Patent Publications No. 57-53858, No. 57-9868, No. 56-41382); , devices using periodic structures (RGBosisio, CF
Weissfloch, MR Wertheimer: The Large
Volume Microwave Plasma Generator, J.
Microwave Power, 7(4), 1972).
しかしながら、前記についてはアンテナとの
整合がむずかしく、プラズマが不均一になりやす
い為、その改善のための装置が複雑になる。ま
た、については細長いプラズマしか発生できな
い(前記文献によれば外径19mmの石英ガラス管内
でプラズマを発生させている)という問題があ
る。 However, in the above case, matching with the antenna is difficult and the plasma tends to become non-uniform, so the equipment for improving the problem becomes complicated. Furthermore, there is a problem in that only elongated plasma can be generated (according to the above-mentioned document, plasma is generated in a quartz glass tube with an outer diameter of 19 mm).
本発明は前記問題点に鑑みて成されたものであ
り、マイクロ波を用いて大面積かつ均一なプラズ
マを比較的簡単な構造で安定して発生できるマイ
クロ波プラズマ処理装置を提供せんとするもので
ある。 The present invention has been made in view of the above-mentioned problems, and it is an object of the present invention to provide a microwave plasma processing apparatus that can stably generate large-area, uniform plasma using microwaves with a relatively simple structure. It is.
(問題点を解決するための手段)
本発明は、マイクロ波発振器と、該マイクロ波
発振器からのマイクロ波を伝送する導波管と、該
導波管に連通され排気装置およびガス導入装置を
夫々備えた金属製容器を具備して成り、前記金属
製容器は誘電損失の小さい耐熱性板によつて上部
室と下部室とに気密に仕切られていると共に、前
記導波管に連通する金属製容器の上部室の天井壁
内面および連通部にはマイクロ波導波路を形成す
べく誘電体層が設置されていることを要旨とする
マイクロ波プラズマ処理装置である。(Means for Solving the Problems) The present invention provides a microwave oscillator, a waveguide for transmitting microwaves from the microwave oscillator, and an exhaust device and a gas introduction device connected to the waveguide, respectively. The metal container is airtightly partitioned into an upper chamber and a lower chamber by a heat-resistant plate with low dielectric loss, and a metal container communicating with the waveguide. This microwave plasma processing apparatus is characterized in that a dielectric layer is provided on the inner surface of the ceiling wall of the upper chamber of the container and on the communication portion to form a microwave waveguide.
(作用)
一般にマイクロ波は誘電体層に対して均一に広
がる性質がある。また、金属には反射される。(Function) Generally, microwaves have the property of spreading uniformly across a dielectric layer. It is also reflected by metal.
本発明装置にあつては、マイクロ波は誘電体層
に均一に広がるとともに、誘電体層の上面側には
金属製容器の金属部があるので、この金属部によ
つて反射される。したがつて、マイクロ波の作用
による電界は、誘電体層の下面側、すなわち上部
室及び下部室側に均一に形成される。 In the device of the present invention, the microwave spreads uniformly over the dielectric layer, and since there is a metal part of the metal container on the upper surface side of the dielectric layer, it is reflected by this metal part. Therefore, an electric field due to the action of the microwave is uniformly formed on the lower surface side of the dielectric layer, that is, on the upper chamber side and the lower chamber side.
マクロ的には、上記の電界強度はほぼ均一であ
るので、真空状態に保たれた前記下部室にプラズ
マ生成用ガスを導入すると、上記電界の作用によ
つて下部室内にはほぼ均一な分布のプラズマが形
成される。 Macroscopically, the above electric field strength is almost uniform, so when plasma generating gas is introduced into the lower chamber kept in a vacuum state, a substantially uniform distribution is created in the lower chamber by the action of the electric field. A plasma is formed.
厳密には、マイクロ波は、マイクロ波進行方向
の誘電体層前面の金属製容器の金属部によつても
反射されるので、誘電体層のマイクロ波進行方向
には定在波が発生する。したがつて、電界強度
は、マイクロ波の進行方向では強弱の波を持つこ
とになるが、発生したプラズマの拡散が速いた
め、結果的に下部室内のプラズマの分布は均一と
なる。 Strictly speaking, the microwave is also reflected by the metal part of the metal container in front of the dielectric layer in the microwave propagation direction, so a standing wave is generated in the microwave propagation direction of the dielectric layer. Therefore, the electric field strength has waves of strength and weakness in the direction of propagation of the microwave, but since the generated plasma diffuses quickly, the distribution of plasma in the lower chamber becomes uniform as a result.
このように、本発明の装置においては、広い面
積にわたつてプラズマを均一に発生させることが
可能なため、処理面積が広い装置を得ることがで
きる。 In this way, in the apparatus of the present invention, it is possible to generate plasma uniformly over a wide area, so that an apparatus with a wide processing area can be obtained.
本装置は、このような特徴を生かし、単一の処
理材、小型の処理材はもとより、複数の処理材ま
たは面積の広い処理材を対象にした、表面への化
学気相成長、表面のエツチング等にも適用でき
る。 Taking advantage of these features, this device can perform chemical vapor deposition and surface etching on the surface of not only a single treated material, small-sized treated material, but also multiple treated materials or large-area treated materials. It can also be applied to
(実施例) 以下本発明を添付図面に基づいて説明する。(Example) The present invention will be explained below based on the accompanying drawings.
図面において、1はマイクロ波発振器であり、
ここから例えば245GHzのマイクロ波が発生され、
導波管2(WRI−22、109.22mm×54.61mm)によ
り伝送される。 In the drawing, 1 is a microwave oscillator,
For example, 245GHz microwave is generated from here,
Transmitted by waveguide 2 (WRI-22, 109.22mm x 54.61mm).
3は前記導波管2とその上部において連通され
た金属製容器であり、例えば石英ガラス板4のよ
うな誘電損失の小さい耐熱性板によつて上下に気
密に仕切られ、図示例では下部室7は高真空を保
持できるように密閉構成されている。そして前記
石英ガラス板4によつて仕切られた上部室5の天
井壁内面およびこの上部室5と前記導波管2との
連通部にはマイクロ波導波路を形成すべく例えば
ポリ−4フツ化エチレン(比誘電率208)を用い
て誘電体層6が設けられている。 Reference numeral 3 denotes a metal container that communicates with the waveguide 2 at its upper part, and is airtightly partitioned vertically by a heat-resistant plate with low dielectric loss, such as a quartz glass plate 4, and in the illustrated example, the lower chamber is 7 has a sealed structure so as to maintain a high vacuum. The inner surface of the ceiling wall of the upper chamber 5 partitioned by the quartz glass plate 4 and the communication portion between the upper chamber 5 and the waveguide 2 are made of polyethylene fluoride, for example, to form a microwave waveguide. A dielectric layer 6 is provided using (relative permittivity: 208).
ところで、前記誘電体層6のマイクロ波の進行
方向の長さは、本実施例では誘電体層6の表面波
の波長λのm/2倍(m:整数)とし、金属製容
器3を共振器構造としたものを示している。例え
ば長さ1075mm、幅200mm、厚さ20mmとする等の如
くである。ここで、誘電体層6の各種寸法のう
ち、厚さが問題となる。すなわち、誘電体層6の
厚さをどのような値に決定するかは、均一なプラ
ズマを発生するために重大な影響を与えるからで
ある。つまり、この誘電体層6の厚さは、マイク
ロ波の周波数と大きな関連を有し、マイクロ波周
波数が2.45GHzの場合には20mm以下とするのがよ
い。なお、前記周波数と誘電体層6の各寸法は反
比例の関係にあるため、例えば10GHzのマイクロ
波を使用した場合には厚さは5mm以下とする。 Incidentally, in this embodiment, the length of the dielectric layer 6 in the direction of propagation of the microwave is set to m/2 times (m: integer) the wavelength λ of the surface wave of the dielectric layer 6, and the length of the dielectric layer 6 is set to m/2 times (m: an integer) the wavelength λ of the surface wave of the dielectric layer 6. It shows the vessel structure. For example, the length is 1075 mm, the width is 200 mm, and the thickness is 20 mm. Here, among the various dimensions of the dielectric layer 6, the thickness becomes an issue. That is, the value to which the thickness of the dielectric layer 6 is determined has a significant influence on the generation of uniform plasma. In other words, the thickness of the dielectric layer 6 has a large relationship with the microwave frequency, and is preferably 20 mm or less when the microwave frequency is 2.45 GHz. Note that since the frequency and each dimension of the dielectric layer 6 are in an inversely proportional relationship, for example, when using a 10 GHz microwave, the thickness should be 5 mm or less.
前記誘電体層6として本実施例はポリ−4フツ
化エチレンを用いたものを示したが、これに限ら
れるわけではなく、ポリスチレン(比誘電率
2.56)、ポリエチレン(比誘電率2.35)等を用い
てもよいことは勿論である。この場合には、共振
器の長さ(前記実施例では1075mm)が変わるだけ
である。 Although this embodiment uses polytetrafluoroethylene as the dielectric layer 6, it is not limited to this, and polystyrene (relative dielectric constant
2.56), polyethylene (relative dielectric constant 2.35), etc. may of course be used. In this case, only the length of the resonator (1075 mm in the example above) changes.
本実施例では前記誘電体層6におけるマイクロ
波の反射を小さくするために、前記導波管2と上
部室5の連通部における誘電体層6の形状を、第
3図に示すようなテーパをもつた形状としてい
る。例えば該部分の誘電体層6の長さはテーパ
部、直方体部とも管内波長λgの1/4とし、上部室
5側のテーパ部の長さはλ/4とする等の如くで
ある。しかし、この連通部における形状も前記と
同様何等限定されるものでないことは勿論であ
る。 In this embodiment, in order to reduce the reflection of microwaves in the dielectric layer 6, the shape of the dielectric layer 6 at the communication portion between the waveguide 2 and the upper chamber 5 is tapered as shown in FIG. It has a tangled shape. For example, the length of the dielectric layer 6 in this portion is set to 1/4 of the tube wavelength λg in both the tapered part and the rectangular parallelepiped part, and the length of the tapered part on the upper chamber 5 side is set to λ/4. However, it goes without saying that the shape of this communication portion is not limited in any way as described above.
更に、前記石英ガラス板4によつて仕切られた
下部室(本実施例では、上部室5と略同幅のもの
を示したが、誘電体層6の幅と同軸のほうがより
望ましい)7、すなわち、プラズマ発生室(長さ
1000mm、幅200mm、高さ500mm、なお、石英ガラス
板4と誘電体層6表面間の距離は15mm)内部には
石英ガラス容器8が挿入され、プラズマによる内
部損傷や処理材9の汚染を回避できるようになつ
ている。また、前記石英ガラス容器8を挿入する
代わりに、下部室7の側壁を外部より水冷する方
法によつても内部損傷、汚染を防止できる。すな
わち、これによつて電子材料関係の処理(アモル
フアスSi作製、Siウエハーの窒化、酸化等)を高
品質に行なうことができるのである。 Furthermore, a lower chamber partitioned by the quartz glass plate 4 (in this embodiment, a chamber with approximately the same width as the upper chamber 5 is shown, but it is more preferable that it is coaxial with the width of the dielectric layer 6); That is, the plasma generation chamber (length
(1000 mm, width 200 mm, height 500 mm; the distance between the quartz glass plate 4 and the surface of the dielectric layer 6 is 15 mm) A quartz glass container 8 is inserted inside to avoid internal damage due to plasma and contamination of the processing material 9. I'm starting to be able to do it. Furthermore, instead of inserting the quartz glass container 8, internal damage and contamination can also be prevented by cooling the side wall of the lower chamber 7 with water from the outside. In other words, this makes it possible to perform electronic material-related processes (amorphous Si production, nitridation and oxidation of Si wafers, etc.) with high quality.
なお、図中10は前記処理材9に化学気相成長
を施す場合等処理材を所要温度に加熱する際に用
いるべく下部室7の底部に配設されたヒータ、1
1はガスボンベ12および流量計13を備えたガ
ス導入装置、14は排気装置である。また前記金
属製容器3は、マイクロ波が透過しないものであ
れば金属製に限るものではなく、金属製の他導電
性膜をコーテイングした非金属製、或いは外壁に
水の層を設けた非金属製等でもよい。第4図及び
第5図は、誘電体層を設けている上部室5の天井
壁の幅を誘電体層の幅よりも大きくし、且つ、側
壁を設けない他の実施例を示したものであつて、
このようにすることによりポリ−4フツ化エチレ
ン上の電界が均一化される。本実施例では、上部
室5と下部室7を一体構成したものを示したが、
これらを分離しても何等支障はない。 In the figure, reference numeral 10 denotes a heater disposed at the bottom of the lower chamber 7 for use in heating the treated material 9 to a required temperature, such as when subjecting the treated material 9 to chemical vapor deposition.
1 is a gas introduction device equipped with a gas cylinder 12 and a flow meter 13, and 14 is an exhaust device. Further, the metal container 3 is not limited to metal as long as it does not transmit microwaves, and may be made of metal, non-metal coated with a conductive film, or non-metal with a water layer on the outer wall. It may be manufactured by other manufacturers. FIGS. 4 and 5 show another embodiment in which the width of the ceiling wall of the upper chamber 5 provided with the dielectric layer is larger than the width of the dielectric layer, and no side wall is provided. It's hot,
By doing so, the electric field on the polytetrafluoroethylene is made uniform. In this embodiment, the upper chamber 5 and the lower chamber 7 are integrally configured, but
There is no problem in separating these.
(発明の効果)
以上説明した如く本発明に係るマイクロ波プラ
ズマ処理装置は、誘電体層の作用によつてプラズ
マを広い面積にわたつて均一に発生させることが
できる為、大量の処理材を一度に処理したり、ま
た、大型の処理材を処理することができる。更に
本発明装置は整合も簡単にとれる為、装置の構造
を簡単にできる等益するところ大なる効果を有す
る。(Effects of the Invention) As explained above, the microwave plasma processing apparatus according to the present invention can uniformly generate plasma over a wide area by the action of the dielectric layer, so a large amount of processing material can be processed at once. It is also possible to process large-sized materials. Furthermore, since the device of the present invention can be easily matched, it has great effects such as simplifying the structure of the device.
図面は本発明に係るマイクロ波プラズマ処理装
置の一実施例を示すもので、第1図は正面図中央
縦断面図、第2図は第1図におけるI−I断面
図、第3図は導波管と上部室間における連通部の
誘電体層の形状の一実施例図、第4図は他の実施
例を示す断面図、第5図は第4図の−断面図
である。
1はマイクロ波発振器、2は導波管、3は金属
製容器、4は石英ガラス板、5は上部室、6は誘
電体層、9は処理材、10はヒータ、11はガス
導入装置、14は排気装置。
The drawings show an embodiment of the microwave plasma processing apparatus according to the present invention, in which FIG. 1 is a front view and center vertical sectional view, FIG. 2 is a cross-sectional view taken along line II in FIG. 1, and FIG. FIG. 4 is a cross-sectional view showing another example, and FIG. 5 is a cross-sectional view taken from FIG. 4. 1 is a microwave oscillator, 2 is a waveguide, 3 is a metal container, 4 is a quartz glass plate, 5 is an upper chamber, 6 is a dielectric layer, 9 is a processing material, 10 is a heater, 11 is a gas introduction device, 14 is an exhaust system.
Claims (1)
のマイクロ波を伝送する導波管と、該導波管に連
通され排気装置およびガス導入装置を夫々備えた
金属製容器を具備し、前記金属製容器は誘電損失
の小さい耐熱性板によつて上部室と下部室とに気
密に仕切られていると共に、前記導波管に連通す
る金属製容器の上部室の天井壁内面及び連通部に
はマイクロ波導波路を形成すべく誘電体層が設置
されていることを特徴とするマイクロ波プラズマ
処理装置。1 A microwave oscillator, a waveguide for transmitting the microwave from the microwave oscillator, and a metal container connected to the waveguide and equipped with an exhaust device and a gas introduction device, respectively, the metal container The upper chamber and the lower chamber are airtightly partitioned by a heat-resistant plate with low dielectric loss, and a microwave waveguide is provided on the inner surface of the ceiling wall of the upper chamber of the metal container that communicates with the waveguide and in the communication section. A microwave plasma processing apparatus characterized in that a dielectric layer is provided to form a dielectric layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14303685A JPS625600A (en) | 1985-06-28 | 1985-06-28 | Microwave plasma processor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14303685A JPS625600A (en) | 1985-06-28 | 1985-06-28 | Microwave plasma processor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS625600A JPS625600A (en) | 1987-01-12 |
JPH0544798B2 true JPH0544798B2 (en) | 1993-07-07 |
Family
ID=15329410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14303685A Granted JPS625600A (en) | 1985-06-28 | 1985-06-28 | Microwave plasma processor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS625600A (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5611864A (en) * | 1994-03-24 | 1997-03-18 | Matsushita Electric Industrial Co., Ltd. | Microwave plasma processing apparatus and processing method using the same |
WO1996003019A1 (en) * | 1994-07-14 | 1996-02-01 | Sumitomo Metal Industries, Ltd. | Plasma processing device |
US5645644A (en) * | 1995-10-20 | 1997-07-08 | Sumitomo Metal Industries, Ltd. | Plasma processing apparatus |
EP0771017A1 (en) | 1995-10-27 | 1997-05-02 | Sumitomo Metal Industries, Ltd. | Plasma processing apparatus |
US5951887A (en) * | 1996-03-28 | 1999-09-14 | Sumitomo Metal Industries, Ltd. | Plasma processing apparatus and plasma processing method |
TW409487B (en) | 1998-04-10 | 2000-10-21 | Sumitomo Metal Ind | Microwave plasma treatment apparatus and microwave plasma treatment method |
JP4014300B2 (en) | 1998-06-19 | 2007-11-28 | 東京エレクトロン株式会社 | Plasma processing equipment |
JP6453727B2 (en) * | 2015-07-31 | 2019-01-16 | 株式会社Kokusai Electric | Substrate processing apparatus and semiconductor device manufacturing method using the same |
-
1985
- 1985-06-28 JP JP14303685A patent/JPS625600A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS625600A (en) | 1987-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20050205016A1 (en) | Plasma treatment apparatus and plasma treatment method | |
JP2004055614A (en) | Plasma processing apparatus | |
JPH04362091A (en) | Plasma chemical vapor deposition apparatus | |
JP2000012292A (en) | Plasma treatment device | |
US7478609B2 (en) | Plasma process apparatus and its processor | |
JP2001338918A (en) | Apparatus for plasma treatment | |
JP5036092B2 (en) | Microwave plasma processing equipment | |
JP2722070B2 (en) | Plasma processing apparatus and plasma processing method | |
JPH0544798B2 (en) | ||
EP0949656A2 (en) | Apparatus and method for microwave plasma process | |
TW497370B (en) | Plasma processing apparatus | |
JP2000173797A (en) | Microwave plasma treating device | |
JPS62294181A (en) | Method and device for forming functional deposited film by microwave plasma cvd (chemical vapor deopsition) | |
JP2791770B2 (en) | Apparatus for forming functional deposited film by microwave plasma CVD | |
JP3491190B2 (en) | Plasma processing equipment | |
JP4165944B2 (en) | Microwave plasma processing equipment | |
JP2000164392A (en) | Microwave plasma treating device | |
JP2005089814A (en) | Apparatus for forming thin film on three-dimensional hollow container | |
JP2000277296A (en) | Method and apparatus for plasma treatment | |
JP4514291B2 (en) | Microwave plasma processing apparatus and plasma processing method | |
JPH0695479B2 (en) | Microwave plasma generator | |
JP4076645B2 (en) | Microwave plasma processing apparatus and processing method thereof | |
JPH06101442B2 (en) | ECR plasma reactor | |
JP4107738B2 (en) | Microwave plasma processing equipment | |
JPH0673320B2 (en) | Microwave plasma generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |