JPH11204296A - Microwave plasma treating apparatus - Google Patents

Microwave plasma treating apparatus

Info

Publication number
JPH11204296A
JPH11204296A JP10006088A JP608898A JPH11204296A JP H11204296 A JPH11204296 A JP H11204296A JP 10006088 A JP10006088 A JP 10006088A JP 608898 A JP608898 A JP 608898A JP H11204296 A JPH11204296 A JP H11204296A
Authority
JP
Japan
Prior art keywords
dielectric line
microwave
cover member
plasma
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10006088A
Other languages
Japanese (ja)
Other versions
JP3979453B2 (en
Inventor
Naoki Matsumoto
直樹 松本
Toshio Nakanishi
敏雄 中西
Shinya Nishimoto
伸也 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP00608898A priority Critical patent/JP3979453B2/en
Publication of JPH11204296A publication Critical patent/JPH11204296A/en
Application granted granted Critical
Publication of JP3979453B2 publication Critical patent/JP3979453B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To adjust the intensity of the electric field distributed in a container and to improve the homogeneity of plasma treating. SOLUTION: Multiple through holes 12, 12... penetrating a cover member 10 and a dielectric line 11 are bored at the prescribed intervals on concentric circles at a proper distance from the center of the cover member 10, and multiple insulating support members 15, 15... reciprocatably supporting tuners 16, 16... are fixed around the through holes 12, 12... respectively. The tuners 16, 16... connected with head sections 18, 18... molded with an insulating material into a pin shape are inserted into one-end sections of main bodies 17, 17... molded with a conductive material into a cylinder having the outer diameter nearly equal to the diameter of the portions of the through holes 12, 12... penetrating the cover member 10 with the main bodies 17, 17... kept below, and the main bodies 17, 17... are kept in contact with the cover member 10 respectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、マイクロ波を用い
て生成したプラズマによって、半導体基板又は液晶ディ
スプレイ用ガラス基板等にエッチング又はアッシング等
の処理を施す装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for performing processing such as etching or ashing on a semiconductor substrate, a glass substrate for a liquid crystal display, or the like by using plasma generated by using microwaves.

【0002】[0002]

【従来の技術】反応ガスに外部からエネルギを与えて生
じるプラズマは、LSI又はLCD等の製造プロセスに
おいて広く用いられている。特に、ドライエッチングプ
ロセスにおいて、プラズマの利用は不可欠の基本技術と
なっている。一般にプラズマを生成させる励起手段には
2.45GHzのマイクロ波を用いる場合と、13.5
6MHzのRF(Radio Frequency )を用いる場合とが
ある。前者は後者に比べて高密度のプラズマが得られる
とともに、プラズマ発生のために電極を必要とせず、従
って電極からのコンタミネーションを防止できるという
利点がある。ところが、マイクロ波を用いたプラズマ処
理装置にあっては、プラズマ生成領域の面積を広くし、
且つ密度が均一になるようにプラズマを発生させること
が困難であった。しかしながら、マイクロ波プラズマ処
理装置には前述した如く種々の利点があるため、該装置
によって大口径の半導体基板,LCD用ガラス基板等の
処理を実現することが要求されていた。この要求を満た
すため、本願出願人は、特開昭62−5600号公報、特開昭
62−99481 号公報等において次のような装置を提案して
いる。
2. Description of the Related Art Plasma generated by giving energy to a reaction gas from the outside is widely used in a manufacturing process of an LSI or an LCD. In particular, the use of plasma has become an indispensable basic technology in the dry etching process. In general, a microwave of 2.45 GHz is used as an excitation means for generating plasma,
In some cases, 6 MHz RF (Radio Frequency) is used. The former has the advantage that a higher-density plasma can be obtained than the latter, and that no electrodes are required for plasma generation, and thus contamination from the electrodes can be prevented. However, in a plasma processing apparatus using microwaves, the area of the plasma generation region is increased,
In addition, it has been difficult to generate plasma so that the density becomes uniform. However, since the microwave plasma processing apparatus has various advantages as described above, it has been required to realize processing of a large-diameter semiconductor substrate, an LCD glass substrate, and the like by the apparatus. To satisfy this demand, the applicant of the present application has disclosed Japanese Patent Application Laid-Open No. 62-5600,
JP-A-62-99481 proposes the following apparatus.

【0003】図6は、特開昭62−5600号公報及び特開昭
62−99481 号公報に開示した装置と同タイプのマイクロ
波プラズマ処理装置を示す側断面図であり、図7は図6
に示したプラズマ処理装置の平面図である。矩形箱状の
反応器31は、その全体がアルミニウムで形成されてい
る。反応器31の上部にはマイクロ波導入窓が開設してあ
り、該マイクロ波導入窓は封止板34で気密状態に封止さ
れている。この封止板34は、耐熱性及びマイクロ波透過
性を有すると共に誘電損失が小さい、石英ガラス又はア
ルミナ等の誘電体で形成されている。
[0003] FIG. 6 is a Japanese Patent Application Laid-Open No. 62-5600 and
FIG. 7 is a side sectional view showing a microwave plasma processing apparatus of the same type as the apparatus disclosed in JP-A-62-99481, and FIG.
FIG. 2 is a plan view of the plasma processing apparatus shown in FIG. The entire rectangular box-shaped reactor 31 is formed of aluminum. A microwave introduction window is opened in the upper part of the reactor 31, and the microwave introduction window is hermetically sealed by a sealing plate 34. The sealing plate 34 is formed of a dielectric material such as quartz glass or alumina, which has heat resistance and microwave permeability and has small dielectric loss.

【0004】反応器31には、該反応器31の上部を覆う長
方形箱状のカバー部材40が連結してある。このカバー部
材40内の天井部分には誘電体線路41が取り付けてあり、
該誘電体線路41と封止板34との間にはエアギャップ43が
形成されている。誘電体線路41は、テフロン(登録商
標)といったフッ素樹脂,ポリエチレン樹脂又はポリス
チレン樹脂等の誘電体を、矩形と三角形とを組み合わせ
た略五角形の頂点に凸部を設けた板形状に成形してな
り、前記凸部をカバー部材40の周面に連結した導波管21
に内嵌させてある。導波管21にはマイクロ波発振器20が
連結してあり、マイクロ波発振器20が発振したマイクロ
波は、導波管21によって誘電体線路41の凸部に入射され
る。
[0004] A rectangular box-shaped cover member 40 for covering the upper part of the reactor 31 is connected to the reactor 31. A dielectric line 41 is attached to a ceiling portion in the cover member 40,
An air gap 43 is formed between the dielectric line 41 and the sealing plate. The dielectric line 41 is formed by molding a dielectric such as a fluororesin such as Teflon (registered trademark), a polyethylene resin, or a polystyrene resin into a plate shape having a protrusion at a vertex of a substantially pentagon formed by combining a rectangle and a triangle. A waveguide 21 in which the convex portion is connected to the peripheral surface of the cover member 40.
It is fitted inside. A microwave oscillator 20 is connected to the waveguide 21, and the microwave oscillated by the microwave oscillator 20 is incident on the projection of the dielectric line 41 by the waveguide 21.

【0005】前述した如く、誘電体線路41の凸部の基端
側は、平面視が略三角形状のテーパ部41a になしてあ
り、前記凸部に入射されたマイクロ波はテーパ部41a に
倣ってその幅方向に拡げられ誘電体線路41の全体に伝播
する。このマイクロ波はカバー部材40の導波管21に対向
する端面で反射し、入射波と反射波とが重ね合わされて
誘電体線路41に定在波が形成される。
As described above, the base end side of the convex portion of the dielectric line 41 is formed into a tapered portion 41a having a substantially triangular shape in plan view, and the microwave incident on the convex portion follows the tapered portion 41a. And is spread in the width direction thereof and propagates throughout the dielectric line 41. The microwave is reflected on the end face of the cover member 40 facing the waveguide 21, and the incident wave and the reflected wave are superimposed to form a standing wave on the dielectric line 41.

【0006】反応器31の内部は処理室32になっており、
処理室32の周囲壁を貫通する貫通穴に嵌合させたガス導
入管35から処理室32内に所要のガスが導入される。処理
室32の底部壁中央には、試料Wを載置する載置台33が設
けてあり、載置台33にはマッチングボックス36を介して
高周波電源37が接続されている。また、反応器31の底部
壁には排気口38が開設してあり、排気口38から処理室32
の内気を排出するようになしてある。
[0006] The interior of the reactor 31 is a processing chamber 32,
A required gas is introduced into the processing chamber 32 from a gas introduction pipe 35 fitted in a through hole penetrating the peripheral wall of the processing chamber 32. At the center of the bottom wall of the processing chamber 32, a mounting table 33 for mounting the sample W is provided, and a high frequency power supply 37 is connected to the mounting table 33 via a matching box. An exhaust port 38 is provided on the bottom wall of the reactor 31, and the processing chamber 32 is connected to the exhaust port 38.
It is designed to exhaust shy air.

【0007】このようなマイクロ波プラズマ処理装置を
用いて試料Wの表面にエッチング処理を施すには、排気
口38から排気して処理室32内を所望の圧力まで減圧した
後、ガス導入管35から処理室32内に反応ガスを供給す
る。次いで、マイクロ波発振器20からマイクロ波を発振
させ、これを導波管21を介して誘電体線路41に導入す
る。このとき、テーパ部41a によってマイクロ波は誘電
体線路41内で均一に拡がり、誘電体線路41内に定在波を
形成する。この定在波によって、誘電体線路41の下方に
漏れ電界が形成され、それがエアギャップ43及び封止板
34を透過して処理室32内へ導入される。このようにし
て、マイクロ波が処理室32内へ伝播する。これにより、
処理室32内にプラズマが生成され、そのプラズマによっ
て試料Wの表面をエッチングする。これによって、大口
径の試料Wを処理すべく反応器31の直径を大きくして
も、その反応器31の全領域へマイクロ波を均一に導入す
ることができ、大口径の試料Wを均一にプラズマ処理す
ることができる。
In order to perform an etching process on the surface of the sample W using such a microwave plasma processing apparatus, the inside of the processing chamber 32 is evacuated to a desired pressure by exhausting the gas through an exhaust port 38, and then a gas introduction pipe 35 is formed. To supply the reaction gas into the processing chamber 32. Next, a microwave is oscillated from the microwave oscillator 20 and introduced into the dielectric line 41 via the waveguide 21. At this time, the microwave is uniformly spread in the dielectric line 41 by the tapered portion 41a, and a standing wave is formed in the dielectric line 41. Due to this standing wave, a leakage electric field is formed below the dielectric line 41, and this is caused by the air gap 43 and the sealing plate.
The light passes through 34 and is introduced into the processing chamber 32. In this way, the microwave propagates into the processing chamber 32. This allows
Plasma is generated in the processing chamber 32, and the surface of the sample W is etched by the plasma. Thereby, even if the diameter of the reactor 31 is increased in order to process the large-diameter sample W, the microwave can be uniformly introduced to the entire region of the reactor 31 and the large-diameter sample W can be uniformly distributed. Plasma treatment can be performed.

【0008】[0008]

【発明が解決しようとする課題】このようなマイクロ波
プラズマ処理装置では、誘電体線路41に導入したマイク
ロ波によって形成される電界が所要の分布になるよう
に、テーパ部41a の長さ及び誘電体線路41の幅等の寸法
並びに誘電体線路41の材質等を設定してある。しかし、
誘電体線路41に分布した電界の強度が位置によって異な
ることがあり、そのような場合、試料Wの各位置でプラ
ズマによる処理速度が異なり、プラズマ処理の均一性が
低下するという問題があった。
In such a microwave plasma processing apparatus, the length of the tapered portion 41a and the dielectric constant are controlled so that the electric field formed by the microwave introduced into the dielectric line 41 has a required distribution. The dimensions such as the width of the body line 41 and the material of the dielectric line 41 are set. But,
In some cases, the intensity of the electric field distributed on the dielectric line 41 varies depending on the position. In such a case, the processing speed of the plasma at each position of the sample W is different, and the uniformity of the plasma processing is reduced.

【0009】本発明はかかる事情に鑑みてなされたもの
であり、その目的とするところはプラズマを生成させる
容器の一部を封止する封止部材に臨ませて、該封止部材
を覆う導電性のカバー部材及び該カバー部材の内面に設
けた誘電体線路を貫通する貫通穴が開設してあり、該貫
通穴に、前記カバー部材と短絡してある導電性の棒部材
が、該棒部材の周面と誘電体線路との間に適宜の距離を
隔てて、進退自在に挿入してある構成にすることによっ
て、容器内に分布する電界の強度を調整して、プラズマ
処理の均一性を向上させることができるマイクロ波プラ
ズマ処理装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to face a sealing member for sealing a part of a container for generating plasma and to form a conductive member for covering the sealing member. A through-hole is formed through the conductive cover member and the dielectric line provided on the inner surface of the cover member, and the conductive rod member short-circuited with the cover member is provided in the through-hole. The structure is inserted at an appropriate distance between the peripheral surface of the dielectric line and the dielectric line so as to be able to move forward and backward, thereby adjusting the intensity of the electric field distributed in the container and improving the uniformity of the plasma processing. An object of the present invention is to provide a microwave plasma processing apparatus that can be improved.

【0010】[0010]

【課題を解決するための手段】第1発明に係るマイクロ
波プラズマ処理装置は、容器の一部を封止する封止部材
と、該封止部材を覆う導電性のカバー部材と、該カバー
部材の前記封止部材に対向する部分に封止部材から距離
を隔てて設けた誘電体線路と、該誘電体線路へマイクロ
波を発振するマイクロ波発振器とを備え、前記誘電体線
路を伝搬したマイクロ波を容器内へ導入してプラズマを
生成し、そのプラズマによって被処理物を処理する装置
において、前記封止部材に臨ませて、前記カバー部材及
び誘電体線路を貫通する貫通穴が開設してあり、該貫通
穴に、前記カバー部材と短絡してある導電性の棒部材
が、該棒部材の周面と誘電体線路との間に適宜の距離を
隔てて、進退自在に挿入してあることを特徴とする。
According to a first aspect of the present invention, there is provided a microwave plasma processing apparatus comprising: a sealing member for sealing a part of a container; a conductive cover member for covering the sealing member; A dielectric line provided at a portion facing the sealing member at a distance from the sealing member, and a microwave oscillator that oscillates microwaves to the dielectric line; In an apparatus for generating a plasma by introducing a wave into a container and processing an object to be processed by the plasma, a through-hole is formed through the cover member and the dielectric line, facing the sealing member. A conductive rod member short-circuited to the cover member is inserted into the through hole so as to be able to advance and retreat at an appropriate distance between the peripheral surface of the rod member and the dielectric line. It is characterized by the following.

【0011】第2発明に係るマイクロ波プラズマ処理装
置は、第1発明において、前記棒部材の前記封止部材に
対向する端部の前記封止部材と平行をなす平面による断
面面積は、棒部材の他の部分の前記平面による断面面積
より大きくなしてあることを特徴とする。
The microwave plasma processing apparatus according to a second aspect of the present invention is the microwave plasma processing apparatus according to the first aspect, wherein a cross-sectional area of an end of the rod member facing the sealing member is defined by a plane parallel to the sealing member. The cross-sectional area of the other portion is larger than that of the plane.

【0012】第3発明に係るマイクロ波プラズマ処理装
置は、第1又は第2発明において、前記貫通穴は、前記
誘電体線路を伝搬するマイクロ波によって形成される電
界の強度が相対的に高い領域に開設してあることを特徴
とする。
[0012] In a microwave plasma processing apparatus according to a third aspect of the present invention, in the first or second aspect, the through hole has a region where the intensity of an electric field formed by the microwave propagating through the dielectric line is relatively high. It is characterized by being established in.

【0013】図4は、誘電体線路に分布した電界の強度
をシミュレーションした結果を説明する説明図であり、
略円板形の誘電体線路を用いた結果を示してある。直径
が360mmである円板の周面に略矩形の凸部を設けた
形状にテフロン(登録商標)を成形してなる誘電体線路
に、前記凸部から2.45GHzのマイクロ波を導入
し、マイクロ波の伝播によって形成される電界の強度を
シミュレーションし、同じ電界強度の地点を線で結ん
だ。その結果、図4中に矢符で示した如く、誘電体線路
に強電界強度の複数の領域が、誘電体線路の円板の中心
及び凸部の中央を通る軸に対称になるように形成されて
いる。
FIG. 4 is an explanatory diagram for explaining the result of simulating the intensity of the electric field distributed on the dielectric line.
The result using a substantially disk-shaped dielectric line is shown. Microwaves of 2.45 GHz are introduced from the convex portion into a dielectric line formed by molding Teflon (registered trademark) into a shape in which a substantially rectangular convex portion is provided on the peripheral surface of a disk having a diameter of 360 mm, The strength of the electric field formed by the propagation of the microwave was simulated, and points having the same electric field strength were connected by a line. As a result, as shown by arrows in FIG. 4, a plurality of regions having a strong electric field strength are formed in the dielectric line so as to be symmetric with respect to an axis passing through the center of the disk and the center of the protrusion of the dielectric line. Have been.

【0014】このような分布の電界が誘電体線路から漏
出し、封止部材を透過して容器内へ導入される。この電
界によって容器内にプラズマが生成され、該プラズマが
拡散しつつ容器内に配置された被処理物に供給され、該
被処理物をプラズマ処理する。容器内に生成されたプラ
ズマの密度は、それと結合する電界の強度と相関するた
め、プラズマによる処理速度が遅い、即ちプラズマ密度
が低い領域がある場合、その領域の電界強度を強くする
ことによって、プラズマ密度を高くして、処理速度を均
一にすることができる。
The electric field having such a distribution leaks from the dielectric line, passes through the sealing member, and is introduced into the container. Plasma is generated in the container by the electric field, and the plasma is diffused and supplied to the object disposed in the container while being diffused, and the object is subjected to plasma processing. Since the density of the plasma generated in the container is correlated with the strength of the electric field coupled thereto, the processing speed by the plasma is slow, that is, if there is a region where the plasma density is low, by increasing the electric field strength in that region, By increasing the plasma density, the processing speed can be made uniform.

【0015】第1発明にあっては、カバー部材及び誘電
体線路を貫通する貫通穴内に挿入された導電性の棒部材
は、その周面が誘電体線路と接触することがなく導電性
のカバー部材と短絡してあるため、棒部材の先端の電位
は、誘電体線路に分布した電界のカバー部材における電
位と等しい。そのため、棒部材を封止部材の方へ前進さ
せて、棒部材と封止部材との間の距離を短くすると、容
器内の棒部材に対応する領域の電界強度を強くすること
ができる。これによって、前記領域に生成されるプラズ
マ密度を増大して、プラズマ処理の速度を速くすること
ができる。従って、容器内において、他の領域よりプラ
ズマによる処理速度が遅い領域が存在する場合、その領
域を予め特定しておき、該領域に対応する位置に貫通穴
を開設し、該貫通穴に挿入した棒部材を進退させて容器
内の電界強度を調整することによって、処理速度を略一
定にしてプラズマ処理の均一性を向上させることができ
る。
According to the first aspect of the present invention, the conductive rod member inserted into the through-hole penetrating the cover member and the dielectric line has a conductive cover whose peripheral surface does not contact the dielectric line. Since it is short-circuited with the member, the potential at the tip of the rod member is equal to the potential of the electric field distributed on the dielectric line in the cover member. Therefore, when the rod member is advanced toward the sealing member and the distance between the rod member and the sealing member is reduced, the electric field intensity in a region corresponding to the rod member in the container can be increased. Accordingly, the density of the plasma generated in the region can be increased, and the speed of the plasma processing can be increased. Therefore, in the container, when there is a region where the processing speed by the plasma is slower than other regions, the region is specified in advance, a through-hole is opened at a position corresponding to the region, and inserted into the through-hole. By adjusting the electric field intensity in the container by moving the rod member back and forth, the processing speed can be made substantially constant and the uniformity of the plasma processing can be improved.

【0016】第2発明にあっては、棒部材の封止部材に
対向する端部の封止部材と平行をなす平面による断面面
積は、棒部材の他の部分の前記平面による断面面積より
大きくなしてあるため、プラズマとの結合が強く、容器
内の電界強度の制御性が高い。
According to the second aspect of the present invention, the cross-sectional area of the end of the rod member facing the sealing member, which is formed by a plane parallel to the sealing member, is larger than the cross-sectional area of another portion of the rod member by the plane. Because of this, the bond with the plasma is strong, and the controllability of the electric field intensity in the container is high.

【0017】第3発明にあっては、貫通穴は、誘電体線
路を伝搬するマイクロ波によって形成される電界の強度
が相対的に高い領域、好ましくは電界の強度が極大の領
域に開設してあるため、容器内の電界強度の制御性が高
い。また、電界の強度が相対的に高い複数の領域に、容
器の平断面の中心点を中心に均等に貫通穴を開設してお
き、各貫通穴に棒部材を均等に挿入することによって、
小さなパワーで所要の密度のプラズマを略均一に生成す
ることができ、これによってマイクロ波プラズマ処理装
置のランニングコストを低減することができる。
In the third invention, the through hole is formed in a region where the intensity of an electric field formed by the microwave propagating through the dielectric line is relatively high, preferably in a region where the intensity of the electric field is maximum. Therefore, the controllability of the electric field intensity in the container is high. Also, in a plurality of regions where the strength of the electric field is relatively high, through holes are opened evenly around the center point of the plane cross section of the container, and a rod member is inserted into each through hole evenly,
Plasma with a required density can be generated substantially uniformly with a small power, and thus the running cost of the microwave plasma processing apparatus can be reduced.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて具体的に説明する。 (実施の形態1)図1は本発明に係るマイクロ波プラズ
マ処理装置の構造を示す側断面図であり、図2は図1に
示したマイクロ波プラズマ処理装置の平面図である。有
底円筒形状の反応器1は、その全体がアルミニウムで形
成されている。反応器1の上部にはマイクロ波導入窓が
開設してあり、該マイクロ波導入窓は封止板4で気密状
態に封止されている。この封止板4は、耐熱性及びマイ
クロ波透過性を有すると共に誘電損失が小さい、石英ガ
ラス又はアルミナ等の誘電体で形成されている。
Embodiments of the present invention will be specifically described below with reference to the drawings. (Embodiment 1) FIG. 1 is a side sectional view showing the structure of a microwave plasma processing apparatus according to the present invention, and FIG. 2 is a plan view of the microwave plasma processing apparatus shown in FIG. The entire bottomed cylindrical reactor 1 is made of aluminum. A microwave introduction window is opened at the upper part of the reactor 1, and the microwave introduction window is sealed in an airtight state by a sealing plate 4. The sealing plate 4 is formed of a dielectric material such as quartz glass or alumina, which has heat resistance and microwave permeability and has small dielectric loss.

【0019】反応器1には、該反応器1の上部を覆う箱
状のカバー部材10が連結してある。カバー部材10はアル
ミニウムといった導電性部材で形成されている。このカ
バー部材10内の天井部分には誘電体線路11が取り付けて
あり、該誘電体線路11と封止板4との間にはエアギャッ
プ9が形成されている。誘電体線路11は、テフロン(登
録商標)といったフッ素樹脂,ポリエチレン樹脂又はポ
リスチレン樹脂等の誘電体を、円板の周面に略矩形の凸
部を設けた形状に成形してなり、前記凸部をカバー部材
10の周面に連結した導波管21に内嵌させてある。導波管
21にはマイクロ波発振器20が連結してあり、マイクロ波
発振器20が発振したマイクロ波は、導波管21によって誘
電体線路11の凸部11a に入射される。このマイクロ波
は、誘電体線路11の形状及び寸法等によって定まる伝搬
モードにより誘電体線路11の全領域に伝搬し、所定分布
の電界が形成される。
The reactor 1 is connected with a box-shaped cover member 10 for covering the upper part of the reactor 1. The cover member 10 is formed of a conductive member such as aluminum. A dielectric line 11 is attached to a ceiling portion in the cover member 10, and an air gap 9 is formed between the dielectric line 11 and the sealing plate 4. The dielectric line 11 is formed by molding a dielectric such as a fluororesin such as Teflon (registered trademark), a polyethylene resin, or a polystyrene resin into a shape in which a substantially rectangular convex portion is provided on a peripheral surface of a disk. The cover member
It is fitted inside a waveguide 21 connected to the peripheral surface of the cable 10. Waveguide
A microwave oscillator 20 is connected to 21, and the microwave oscillated by the microwave oscillator 20 is incident on the projection 11 a of the dielectric line 11 by the waveguide 21. The microwave propagates through the entire area of the dielectric line 11 in a propagation mode determined by the shape and size of the dielectric line 11, and an electric field having a predetermined distribution is formed.

【0020】カバー部材10の中心から適宜距離を隔てた
同心円の線上には、カバー部材10及び誘電体線路11を貫
通する複数の貫通穴12,12,…が所定の間隔で開設して
あり、各貫通穴12,12,…の直径は、カバー部材10を貫
通する部分より誘電体線路11を貫通する部分の方が大き
い。各貫通穴12,12,…の位置は、例えば図4に示した
複数の強電界強度領域の内の、誘電体線路の中心に最も
近い位置で環状に配列した各強電界強度領域の中心に略
一致させてある。
A plurality of through holes 12, 12,... Penetrating through the cover member 10 and the dielectric line 11 are formed at predetermined intervals on a concentric line which is appropriately separated from the center of the cover member 10. The diameter of each of the through holes 12, 12,... Is larger at the portion penetrating the dielectric line 11 than at the portion penetrating the cover member 10. The positions of the through holes 12, 12,... Are, for example, at the center of each of the strong electric field intensity regions arranged in a ring at the position closest to the center of the dielectric line among the plurality of strong electric field intensity regions shown in FIG. Approximately matched.

【0021】カバー部材10の上面の各貫通穴12,12,…
の周囲には、後述するチューナ16,16,…をそれぞれ進
退自在に支持する複数の支持部材15,15,…がそれぞれ
固定してある。支持部材15,15,…は、絶縁材を側面視
が凸状に成形してなり、一段高い中央部分は所定高さだ
け高くしてある。また、支持部材15,15,…には、その
中心軸に沿って該支持部材15,15,…を貫通する細孔が
開設してあり、支持部材15,15,…は、その中心軸と貫
通穴12,12,…の中心軸とが同軸になるように設けてあ
る。そして、支持部材15,15,…の各細孔にチューナ1
6,16,…を挿入して、該チューナ16,16,…を支持す
るようになしてある。
Each of the through holes 12, 12,.
Are fixed to the periphery of each of the plurality of tuners 16, 16,. The supporting members 15, 15,... Are formed by molding an insulating material into a convex shape when viewed from the side, and the central portion that is one step higher is raised by a predetermined height. The supporting members 15, 15,... Are provided with pores extending through the supporting members 15, 15,... Along the central axes thereof, and the supporting members 15, 15,. The through holes 12, 12,... Are provided so as to be coaxial with the central axis. The tuner 1 is inserted into each of the pores of the support members 15, 15,.
6, 16,... Are inserted to support the tuners 16, 16,.

【0022】チューナ16は、貫通穴12のカバー部材10を
貫通する部分の直径と略同じ外径の円柱に導電材を成形
してなる本体17の一端に、絶縁材をピン形状に成形して
なる頭部18が連結してあり、本体17を下にして支持部材
15内に挿入し、本体17とカバー部材10とを接触させてあ
る。従って、各チューナ16,16,…の先端の電位は、誘
電体線路11に分布した電界の支持部材15,15,…の位置
における電位と等しい。一方、誘電体線路11及びチュー
ナ16,16,…の先端から漏出し、封止板4を透過して反
応器1内へ導入される電界の強度は指数関数的に減衰す
る。そのため、チューナ16,16,…を進退させて、チュ
ーナ16,16,…の先端から封止板4までの距離を調整す
ることによって、反応器1内に導入される局所的な電界
強度を調節することができ、これによって、反応器1内
に生成されるプラズマ密度を局所的に制御することがで
きる。
The tuner 16 is formed by molding an insulating material into a pin shape at one end of a main body 17 formed by molding a conductive material into a column having an outer diameter substantially the same as the diameter of a portion of the through hole 12 penetrating the cover member 10. Head 18 is connected, the support member with the main body 17 down
The main body 17 and the cover member 10 are brought into contact with each other. Therefore, the potential at the tip of each of the tuners 16, 16,... Is equal to the potential of the electric field distributed on the dielectric line 11 at the position of the support members 15, 15,. On the other hand, the intensity of the electric field leaking from the dielectric line 11 and the tips of the tuners 16, 16,... And passing through the sealing plate 4 and being introduced into the reactor 1 attenuates exponentially. Therefore, the local electric field intensity introduced into the reactor 1 is adjusted by moving the tuners 16, 16,... Back and forth and adjusting the distance from the tip of the tuners 16, 16,. This allows local control of the plasma density generated in the reactor 1.

【0023】ところで、支持部材15,15,…の高さ寸法
は、チューナ16,16,…の本体17,17,…の長さ寸法と
略同じになしてあり、これによって、チューナ16,16,
…からカバー部材10の外側へ電界が漏れることが防止さ
れる。
The height of the support members 15, 15,... Is substantially the same as the length of the main bodies 17, 17,... Of the tuners 16, 16,. ,
.. Are prevented from leaking to the outside of the cover member 10.

【0024】反応器1には処理室2の周囲壁を貫通する
貫通穴が開設してあり、該貫通穴に嵌合させたガス導入
管5から処理室2内に所要のガスが導入される。処理室
2の底部壁中央には、試料Wを載置する載置台3が前記
電極部材24に対向するように設けてあり、載置台3には
マッチングボックス6を介して高周波電源7が接続され
ている。また、反応器1の底部壁には排気口8が開設し
てあり、排気口8から処理室2の内気を排出するように
なしてある。
The reactor 1 is provided with a through hole penetrating the peripheral wall of the processing chamber 2, and a required gas is introduced into the processing chamber 2 from a gas introduction pipe 5 fitted in the through hole. . At the center of the bottom wall of the processing chamber 2, a mounting table 3 for mounting the sample W is provided so as to face the electrode member 24, and a high-frequency power source 7 is connected to the mounting table 3 via a matching box 6. ing. An exhaust port 8 is provided on the bottom wall of the reactor 1 so that the inside air of the processing chamber 2 is discharged from the exhaust port 8.

【0025】このようなマイクロ波プラズマ処理装置を
用いて試料Wの表面にエッチング処理を施すには、排気
口8から排気して処理室2内を所望の圧力まで減圧した
後、ガス導入管5から処理室2内に反応ガスを供給す
る。次いで、マイクロ波発振器20から2.45GHzの
マイクロ波を発振させ、これを導波管21を介して誘電体
線路11に導入し、そこに定在波を形成させることによっ
て所定分布の漏れ電界を発生させる。この漏れ電界がエ
アギャップ9及び封止板4を透過して処理室2内へ導入
され、これにより、処理室2内にプラズマが生成され、
そのプラズマによって試料Wの表面をエッチングする。
In order to perform an etching process on the surface of the sample W using such a microwave plasma processing apparatus, the interior of the processing chamber 2 is evacuated from the exhaust port 8 to a desired pressure, and then the gas introduction pipe 5 To supply the reaction gas into the processing chamber 2 Next, a microwave of 2.45 GHz is oscillated from the microwave oscillator 20 and introduced into the dielectric line 11 through the waveguide 21, where a standing wave is formed. generate. This leaked electric field penetrates through the air gap 9 and the sealing plate 4 and is introduced into the processing chamber 2, whereby plasma is generated in the processing chamber 2,
The surface of the sample W is etched by the plasma.

【0026】このようにして試料Wの表面をエッチング
するに当たって、試料Wと同じ材料の試験材の表面を、
試料Wの表面をエッチングする場合と同じ条件でエッチ
ングし、試験材表面の複数の部分でエッチングレートを
測定する。そして、得られた複数のエッチングレートが
均一でない場合、各測定部分とそのエッチングレートに
基づいて、エッチングレートが低い部分に対応するチュ
ーナ16を前進させて、処理室2内の局所的なプラズマ密
度を調節した後、別の試験材をエッチングし、再び複数
の部分でエッチングレートを測定する。そのような操作
を、均一なエッチングレートが得られるまで繰り返すこ
とによって、各チューナ16,16,…の位置を予め調整し
ておく。これによって、プラズマ処理の均一性を向上さ
せることができる。
In etching the surface of the sample W in this manner, the surface of the test material of the same material as the sample W is
Etching is performed under the same conditions as when etching the surface of the sample W, and the etching rates are measured at a plurality of portions on the surface of the test material. If the plurality of obtained etching rates are not uniform, the tuner 16 corresponding to the low etching rate portion is advanced based on each measurement portion and the etching rate, and the local plasma density in the processing chamber 2 is increased. After adjusting, another test material is etched, and the etching rate is measured again at a plurality of portions. By repeating such an operation until a uniform etching rate is obtained, the positions of the tuners 16, 16,... Are adjusted in advance. Thereby, the uniformity of the plasma processing can be improved.

【0027】また、前述した如く、各チューナ16,16,
…は、誘電体線路11内に形成された複数の強電界強度領
域の内、誘電体線路11の中心に最も近い位置で環状に配
列した各強電界強度領域の中心に略一致させてあるた
め、各チューナ16,16,…を均一に貫通穴12,12,…内
に進入させることによって、小さなパワーで処理室2内
に所要の密度のプラズマを略均一に生成することがで
き、これによってマイクロ波プラズマ処理装置のランニ
ングコストを低減することができる。
As described above, each of the tuners 16, 16,
.. Are substantially coincident with the centers of the annularly arranged strong electric field intensity regions at the position closest to the center of the dielectric line 11 among the plurality of strong electric field intensity regions formed in the dielectric line 11. By uniformly entering the tuners 16, 16,... Into the through holes 12, 12,..., Plasma of a required density can be generated substantially uniformly in the processing chamber 2 with a small power. The running cost of the microwave plasma processing apparatus can be reduced.

【0028】(実施の形態2)図3は、実施の形態2を
示す側断面図であり、チューナ16,16,…の先端の直径
を他の部分より大きくなした場合を示している。なお、
図中、図1に対応する部分には同じ番号を付してその説
明を省略する。図3に示した如く、チューナ16,16,…
の先端には、本体17,17,…の直径より大きく、貫通穴
12,12,…の誘電体線路11を貫通する部分の直径より小
さい直径の円板に導電性金属を成形した板部材19,19,
…が、本体17,17,…の中心軸と板部材19,19,…の中
心とが一致するように固定してある。これによって、板
部材19,19,…が設けてない場合に比べて、漏れ電界と
プラズマとの結合が強くなり、従って処理室2内の電界
強度の制御性が向上する。
(Embodiment 2) FIG. 3 is a side sectional view showing Embodiment 2 and shows a case where the diameters of the tips of the tuners 16, 16,... In addition,
In the figure, portions corresponding to those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted. As shown in FIG. 3, tuners 16, 16,.
At the tip of, the diameter of the main body 17, 17, ...
Plate members 19, 19, 19, 19, 19, 19,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ING, HUN,,,,,, 板, 導電 し た 板 部 材 部 材 部 材 板 板 板 板 板 板 板.
Are fixed so that the center axis of the main bodies 17, 17 and the center of the plate members 19, 19,. Thereby, the coupling between the leaked electric field and the plasma is increased as compared with the case where the plate members 19 are not provided, so that the controllability of the electric field intensity in the processing chamber 2 is improved.

【0029】なお、本実施の形態では、板部材19,19,
…の直径を、本体17,17,…の直径より大きく、貫通穴
12,12,…の誘電体線路11を貫通する部分の直径より小
さくすることによって、板部材19,19,…を貫通穴12,
12,…内へ挿入自在になしてあるが、本発明はこれに限
らず、板部材19,19,…の直径を、貫通穴12,12,…の
誘電体線路11を貫通する部分の直径より大きくしてもよ
い。この場合、全てのチューナ16,16,…の先端が、エ
アギャップ9内に突出しているため、前述した如く電界
とプラズマとの結合が強い。加えて、チューナ16,16,
…の先端の面積が大きいため、電界とプラズマとの結合
が更に強く、より小さなパワーで処理室2内に所要密度
のプラズマを生成することができる。
In this embodiment, the plate members 19, 19,
The diameter of ... is larger than the diameter of the main body 17, 17, ...
By making the plate members 19, 19,... Smaller than the diameter of the portion penetrating the dielectric line 11 of 12, 12,.
The present invention is not limited to this, and the diameter of the plate members 19, 19,... May be changed to the diameter of the portion of the through-holes 12, 12,. It may be larger. In this case, since the tips of all the tuners 16, 16,... Protrude into the air gap 9, the coupling between the electric field and the plasma is strong as described above. In addition, tuners 16, 16,
Are large, the coupling between the electric field and the plasma is further enhanced, and a plasma having a required density can be generated in the processing chamber 2 with a smaller power.

【0030】なお、上述した実施の形態は、略円板状の
誘電体線路を用いた場合について説明したが、本発明は
これに限らず、図5に示した如く、矩形と三角形とを組
み合わせた略五角形の誘電体線路11a を用いた場合にも
適用できる。この場合、矩形箱状のカバー部材10a 及び
誘電体線路11a に、該誘電体線路11a の中心軸上に所定
距離を隔てて例えば3つの貫通穴を開設し、各貫通穴の
前記中心軸の両側にそれぞれ他の貫通穴を開設する。こ
のようにマトリクス状に開設した貫通穴に対応して、カ
バー部材10a の上面に支持部材15,15,…を固定し、各
支持部材15,15,…にチューナ16,16,…を挿入し、該
チューナ16,16,…をを進退させることによって、反応
器1a内に略均一な密度のプラズマを生成させる。
Although the above-described embodiment has been described with reference to the case where a substantially disk-shaped dielectric line is used, the present invention is not limited to this, and as shown in FIG. The present invention is also applicable to the case where a substantially pentagonal dielectric line 11a is used. In this case, for example, three through holes are formed in the rectangular box-shaped cover member 10a and the dielectric line 11a at a predetermined distance from the center axis of the dielectric line 11a, and both sides of the center axis of each through hole are formed. Each other through hole is opened. The support members 15, 15,... Are fixed to the upper surface of the cover member 10a corresponding to the through holes formed in a matrix, and the tuners 16, 16,. By moving the tuners 16, 16,... Forward and backward, plasma having a substantially uniform density is generated in the reactor 1a.

【0031】[0031]

【発明の効果】以上詳述した如く、第1発明に係るマイ
クロ波プラズマ処理装置にあっては、貫通穴に挿入した
棒部材を進退させて容器内の電界強度を調整することに
よって、処理速度を略一定にしてプラズマ処理の均一性
を向上させることができる。
As described above in detail, in the microwave plasma processing apparatus according to the first invention, the processing speed can be improved by moving the rod member inserted into the through hole to adjust the electric field intensity in the container. Is made substantially constant, and the uniformity of the plasma processing can be improved.

【0032】第2発明に係るマイクロ波プラズマ処理装
置にあっては、棒部材の封止部材に対向する端部の前記
封止部材と平行をなす平面による断面面積は、棒部材の
他の部分の前記平面による断面面積より大きくなしてあ
るため、プラズマとの結合が強く、容器内の電界強度の
制御性が高い。
[0032] In the microwave plasma processing apparatus according to the second aspect of the present invention, the cross-sectional area of the end of the bar member facing the sealing member by a plane parallel to the sealing member may be other portions. Since the cross-sectional area is larger than that of the above-mentioned plane, the coupling with the plasma is strong, and the controllability of the electric field intensity in the container is high.

【0033】第3発明に係るマイクロ波プラズマ処理装
置にあっては、容器内の電界強度の制御性が向上すると
共に、小さなパワーで所要の密度のプラズマを略均一に
生成することができ、ランニングコストを低減すること
ができる等、本発明は優れた効果を奏する。
In the microwave plasma processing apparatus according to the third aspect of the present invention, the controllability of the electric field intensity in the container is improved, and a plasma having a required density can be generated substantially uniformly with a small power. The present invention has excellent effects such as a reduction in cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るマイクロ波プラズマ処理装置の構
造を示す側断面図である。
FIG. 1 is a side sectional view showing a structure of a microwave plasma processing apparatus according to the present invention.

【図2】図1に示したマイクロ波プラズマ処理装置の平
面図である。
FIG. 2 is a plan view of the microwave plasma processing apparatus shown in FIG.

【図3】実施の形態2を示す側断面図である。FIG. 3 is a side sectional view showing a second embodiment.

【図4】誘電体線路に分布した電界の強度をシミュレー
ションした結果を説明する説明図である。
FIG. 4 is an explanatory diagram illustrating a result of simulating the intensity of an electric field distributed on a dielectric line.

【図5】他の実施の形態を示す平面図である。FIG. 5 is a plan view showing another embodiment.

【図6】従来の装置と同タイプのマイクロ波プラズマ処
理装置を示す側断面図である。
FIG. 6 is a side sectional view showing a microwave plasma processing apparatus of the same type as a conventional apparatus.

【図7】図6に示したプラズマ処理装置の平面図であ
る。
FIG. 7 is a plan view of the plasma processing apparatus shown in FIG.

【符号の説明】[Explanation of symbols]

1 反応器 2 処理室 3 載置台 4 封止板 9 エアギャップ 10 カバー部材 11 誘電体線路 12 貫通穴 15 支持部材 16 チューナ 17 本体 18 頭部 W 試料 REFERENCE SIGNS LIST 1 reactor 2 processing chamber 3 mounting table 4 sealing plate 9 air gap 10 cover member 11 dielectric line 12 through hole 15 support member 16 tuner 17 main body 18 head W sample

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 容器の一部を封止する封止部材と、該封
止部材を覆う導電性のカバー部材と、該カバー部材の前
記封止部材に対向する部分に封止部材から距離を隔てて
設けた誘電体線路と、該誘電体線路へマイクロ波を発振
するマイクロ波発振器とを備え、前記誘電体線路を伝搬
したマイクロ波を容器内へ導入してプラズマを生成し、
そのプラズマによって被処理物を処理する装置におい
て、 前記封止部材に臨ませて、前記カバー部材及び誘電体線
路を貫通する貫通穴が開設してあり、該貫通穴に、前記
カバー部材と短絡してある導電性の棒部材が、該棒部材
の周面と誘電体線路との間に適宜の距離を隔てて、進退
自在に挿入してあることを特徴とするマイクロ波プラズ
マ処理装置。
1. A sealing member for sealing a part of a container, a conductive cover member for covering the sealing member, and a distance from the sealing member to a portion of the cover member facing the sealing member. A dielectric line provided at a distance and a microwave oscillator that oscillates microwaves to the dielectric line, generating a plasma by introducing the microwave propagated through the dielectric line into a container,
In an apparatus for processing an object to be processed by the plasma, a through hole is formed through the cover member and the dielectric line, facing the sealing member, and the through hole is short-circuited with the cover member. A microwave plasma processing apparatus characterized in that a conductive rod member is inserted between the peripheral surface of the rod member and the dielectric line so as to be able to advance and retreat at an appropriate distance.
【請求項2】 前記棒部材の前記封止部材に対向する端
部の前記封止部材と平行をなす平面による断面面積は、
棒部材の他の部分の前記平面による断面面積より大きく
なしてある請求項1記載のマイクロ波プラズマ処理装
置。
2. A cross-sectional area of a plane parallel to the sealing member at an end of the rod member facing the sealing member,
2. The microwave plasma processing apparatus according to claim 1, wherein a cross-sectional area of the other portion of the bar member by the plane is larger than that of the other portion.
【請求項3】 前記貫通穴は、前記誘電体線路を伝搬す
るマイクロ波によって形成される電界の強度が相対的に
高い領域に開設してある請求項1又は2記載のマイクロ
波プラズマ処理装置。
3. The microwave plasma processing apparatus according to claim 1, wherein the through hole is formed in a region where the intensity of an electric field formed by the microwave propagating through the dielectric line is relatively high.
JP00608898A 1998-01-14 1998-01-14 Microwave plasma processing equipment Expired - Fee Related JP3979453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00608898A JP3979453B2 (en) 1998-01-14 1998-01-14 Microwave plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00608898A JP3979453B2 (en) 1998-01-14 1998-01-14 Microwave plasma processing equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007139389A Division JP4401400B2 (en) 2007-05-25 2007-05-25 Microwave plasma processing equipment

Publications (2)

Publication Number Publication Date
JPH11204296A true JPH11204296A (en) 1999-07-30
JP3979453B2 JP3979453B2 (en) 2007-09-19

Family

ID=11628788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00608898A Expired - Fee Related JP3979453B2 (en) 1998-01-14 1998-01-14 Microwave plasma processing equipment

Country Status (1)

Country Link
JP (1) JP3979453B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002016046A (en) * 2000-06-28 2002-01-18 Tokyo Electron Ltd Microwave plasma processing apparatus
WO2003067939A1 (en) * 2002-02-06 2003-08-14 Tokyo Electron Limited Plasma processing equipment
KR100589703B1 (en) * 2004-09-21 2006-06-19 (주)아이씨디 Plasma treatment apparatus
KR100774888B1 (en) * 2001-09-06 2007-11-08 엘지이노텍 주식회사 Mold structure for fixing pin of tuner
JP2008305736A (en) * 2007-06-11 2008-12-18 Tokyo Electron Ltd Plasma processing apparatus, method for using plasma processing apparatus, and method for cleaning plasma processing apparatus
JP2011192912A (en) * 2010-03-16 2011-09-29 Tokyo Electron Ltd Plasma processing apparatus
WO2012008525A1 (en) * 2010-07-15 2012-01-19 国立大学法人東北大学 Plasma processing device and plasma processing method
WO2012008521A1 (en) * 2010-07-15 2012-01-19 国立大学法人東北大学 Plasma processing apparatus and plasma processing method
JP2013511807A (en) * 2009-11-18 2013-04-04 アクセリス テクノロジーズ, インコーポレイテッド Tuning hardware for plasma ashing apparatus and method of use thereof
TWI568317B (en) * 2013-03-15 2017-01-21 東京威力科創股份有限公司 Plasma tuning rods in microwave resonator processing systems

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4514291B2 (en) * 2000-06-28 2010-07-28 東京エレクトロン株式会社 Microwave plasma processing apparatus and plasma processing method
JP2002016046A (en) * 2000-06-28 2002-01-18 Tokyo Electron Ltd Microwave plasma processing apparatus
KR100774888B1 (en) * 2001-09-06 2007-11-08 엘지이노텍 주식회사 Mold structure for fixing pin of tuner
WO2003067939A1 (en) * 2002-02-06 2003-08-14 Tokyo Electron Limited Plasma processing equipment
CN1309280C (en) * 2002-02-06 2007-04-04 东京毅力科创株式会社 Plasma processing equipment
US7430985B2 (en) 2002-02-06 2008-10-07 Tokyo Electron Limited Plasma processing equipment
KR100589703B1 (en) * 2004-09-21 2006-06-19 (주)아이씨디 Plasma treatment apparatus
JP2008305736A (en) * 2007-06-11 2008-12-18 Tokyo Electron Ltd Plasma processing apparatus, method for using plasma processing apparatus, and method for cleaning plasma processing apparatus
JP2013511807A (en) * 2009-11-18 2013-04-04 アクセリス テクノロジーズ, インコーポレイテッド Tuning hardware for plasma ashing apparatus and method of use thereof
JP2011192912A (en) * 2010-03-16 2011-09-29 Tokyo Electron Ltd Plasma processing apparatus
US8968513B2 (en) 2010-03-16 2015-03-03 Tokyo Electron Limited Plasma processing apparatus
WO2012008521A1 (en) * 2010-07-15 2012-01-19 国立大学法人東北大学 Plasma processing apparatus and plasma processing method
JP2012022917A (en) * 2010-07-15 2012-02-02 Tohoku Univ Plasma processing apparatus and plasma processing method
JP2012022916A (en) * 2010-07-15 2012-02-02 Tohoku Univ Plasma processing apparatus and plasma processing method
WO2012008525A1 (en) * 2010-07-15 2012-01-19 国立大学法人東北大学 Plasma processing device and plasma processing method
US9095039B2 (en) 2010-07-15 2015-07-28 Tohoku University Plasma processing apparatus and plasma processing method
TWI568317B (en) * 2013-03-15 2017-01-21 東京威力科創股份有限公司 Plasma tuning rods in microwave resonator processing systems

Also Published As

Publication number Publication date
JP3979453B2 (en) 2007-09-19

Similar Documents

Publication Publication Date Title
US6783628B2 (en) Plasma processing apparatus
KR100363820B1 (en) Plasma processor
JPH11204296A (en) Microwave plasma treating apparatus
JP5036092B2 (en) Microwave plasma processing equipment
KR100311104B1 (en) Microwave plasma processing apparatus and method
KR100311433B1 (en) Microwave plasma processing apparatus and process
JPH1167492A (en) Plasma treatment equipment and plasma treatment method
JP4165946B2 (en) Microwave plasma processing equipment
JP4401400B2 (en) Microwave plasma processing equipment
JPH08316198A (en) Plasma apparatus
JP3085019B2 (en) Plasma processing method and apparatus
JP4298876B2 (en) Plasma processing equipment
JPH10294199A (en) Microwave plasma processing device
WO1996003019A1 (en) Plasma processing device
JP3491190B2 (en) Plasma processing equipment
JP4165944B2 (en) Microwave plasma processing equipment
JPH11204295A (en) Microwave plasma treating apparatus
JPH11121196A (en) Microwave plasma treatment device
JP4514291B2 (en) Microwave plasma processing apparatus and plasma processing method
JP4039479B2 (en) Microwave plasma processing equipment
JP2001110781A (en) Plasma-processing device
JPH11329789A (en) Microwave plasma processor
JP4052735B2 (en) Plasma processing equipment
JP2002033307A (en) Plasma generator and plasma treatment equipment provided with the generator
JP2000048997A (en) Microwave plasma processing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070619

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees