JPH11329789A - Microwave plasma processor - Google Patents

Microwave plasma processor

Info

Publication number
JPH11329789A
JPH11329789A JP10127895A JP12789598A JPH11329789A JP H11329789 A JPH11329789 A JP H11329789A JP 10127895 A JP10127895 A JP 10127895A JP 12789598 A JP12789598 A JP 12789598A JP H11329789 A JPH11329789 A JP H11329789A
Authority
JP
Japan
Prior art keywords
dielectric line
diameter
electric field
microwave
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10127895A
Other languages
Japanese (ja)
Inventor
Naoki Matsumoto
直樹 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP10127895A priority Critical patent/JPH11329789A/en
Publication of JPH11329789A publication Critical patent/JPH11329789A/en
Pending legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a microwave processor having a high uniformity of plasma processing. SOLUTION: In this plasma processor, a main body 11a has plural regions of strong electric field strength on the approximately concentric circles of the main body 11a's center, and the main body 11a's diameter of a dielectric line 11 is determined so that the plural regions of strong electric field strength are distributed nearly axisymmetrically to the axis on the body 11a's diameter. Plasma is generated on each spot corresponding to the regions of strong electric field strength in this distribution pattern, which diffuses and processes an object to be processed by plasma with a uniform density. Accordingly, the uniformity of plasma processing is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、マイクロ波を用い
て生成したプラズマによって、半導体基板又は液晶ディ
スプレイ用ガラス基板等にエッチング又はアッシング等
の処理を施す装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for performing processing such as etching or ashing on a semiconductor substrate, a glass substrate for a liquid crystal display, or the like by using plasma generated by using microwaves.

【0002】[0002]

【従来の技術】反応ガスに外部からエネルギを与えて生
じるプラズマは、LSI又はLCD等の製造プロセスに
おいて広く用いられている。特に、ドライエッチングプ
ロセスにおいて、プラズマの利用は不可欠の基本技術と
なっている。一般にプラズマを生成させる励起手段には
2.45GHzのマイクロ波を用いる場合と、13.5
6MHzのRF(Radio Frequency )を用いる場合とが
ある。前者は後者に比べて高密度のプラズマが得られる
とともに、プラズマ発生のために電極を必要とせず、従
って電極からのコンタミネーションを防止できるという
利点がある。ところが、マイクロ波を用いたプラズマ処
理装置にあっては、プラズマ生成領域の面積を広くし、
且つ密度が均一になるようにプラズマを発生させること
が困難であった。しかしながら、マイクロ波プラズマ処
理装置には前述した如く種々の利点があるため、該装置
によって大きな寸法の半導体基板,LCD用ガラス基板
等の処理を実現することが要求されていた。この要求を
満たすため、本願出願人は、特開平 7−142194号公報に
おいて次のような装置を提案している。
2. Description of the Related Art Plasma generated by giving energy to a reaction gas from the outside is widely used in a manufacturing process of an LSI or an LCD. In particular, the use of plasma has become an indispensable basic technology in the dry etching process. In general, a microwave of 2.45 GHz is used as an excitation means for generating plasma,
In some cases, 6 MHz RF (Radio Frequency) is used. The former has the advantage that a higher-density plasma can be obtained than the latter, and that no electrodes are required for plasma generation, and thus contamination from the electrodes can be prevented. However, in a plasma processing apparatus using microwaves, the area of the plasma generation region is increased,
In addition, it has been difficult to generate plasma so that the density becomes uniform. However, since the microwave plasma processing apparatus has various advantages as described above, it has been required to realize processing of a semiconductor substrate having a large size, a glass substrate for an LCD, and the like by the apparatus. In order to satisfy this demand, the present applicant has proposed the following apparatus in Japanese Patent Application Laid-Open No. Hei 7-142194.

【0003】図19は、特開平 7−142194号公報に開示し
た装置の構成を示す側断面図であり、図中、31は有底円
筒状の反応器である。反応器31は、その全体がアルミニ
ウムで形成されている。反応器31の上部にはマイクロ波
導入窓が開設してあり、該マイクロ波導入窓は封止板34
で気密状態に封止されている。この封止板34は、耐熱性
及びマイクロ波透過性を有すると共に誘電損失が小さ
い、石英ガラス又はアルミナ等の誘電体で形成されてい
る。
FIG. 19 is a side sectional view showing the structure of an apparatus disclosed in Japanese Patent Application Laid-Open No. 7-142194, in which 31 is a cylindrical reactor having a bottom. The reactor 31 is entirely formed of aluminum. A microwave introduction window is opened at the upper part of the reactor 31, and the microwave introduction window is provided with a sealing plate 34.
And sealed in an airtight state. The sealing plate 34 is formed of a dielectric material such as quartz glass or alumina, which has heat resistance and microwave permeability and has small dielectric loss.

【0004】反応器31には、該反応器31の上部を覆う長
方形箱状のカバー部材40が連結してある。このカバー部
材40内の天井部分には誘電体線路41が取り付けてあり、
該誘電体線路41と封止板34との間にはエアギャップ43が
形成されている。誘電体線路41は、テフロン(登録商
標)といったポリフッ化エチレン樹脂,ポリエチレン樹
脂又はポリスチレン樹脂等の誘電体を、マイクロ波を入
射する略矩形の入射ポート部を円板の周面に設けた形状
に成形してなり、前記入射ポート部をカバー部材40の周
面に連結した導波管21に内嵌させてある。導波管21には
マイクロ波発振器20が連結してあり、マイクロ波発振器
20が発振したマイクロ波は、導波管21によって誘電体線
路41の入射ポート部に入射され、誘電体線路41の全体に
伝播する。このマイクロ波はカバー部材40の内周面で反
射し、入射波と反射波とが重ね合わされて誘電体線路41
に定在波が形成される。
[0004] A rectangular box-shaped cover member 40 for covering the upper part of the reactor 31 is connected to the reactor 31. A dielectric line 41 is attached to a ceiling portion in the cover member 40,
An air gap 43 is formed between the dielectric line 41 and the sealing plate. The dielectric line 41 is made of a dielectric such as Teflon (registered trademark) such as a polyfluoroethylene resin, a polyethylene resin, or a polystyrene resin in a shape in which a substantially rectangular incident port portion for receiving microwaves is provided on the peripheral surface of the disk. The incident port portion is molded and fitted inside the waveguide 21 connected to the peripheral surface of the cover member 40. A microwave oscillator 20 is connected to the waveguide 21,
The microwave oscillated by 20 is incident on the incident port of the dielectric line 41 by the waveguide 21 and propagates through the entire dielectric line 41. This microwave is reflected on the inner peripheral surface of the cover member 40, and the incident wave and the reflected wave are superimposed to form a dielectric line 41.
, A standing wave is formed.

【0005】反応器31の内部は処理室32になっており、
処理室32の周囲壁を貫通する貫通穴に嵌合させたガス導
入管35から処理室32内に所要のガスが導入される。処理
室32の底部壁中央には、試料Wを載置する載置台33が設
けてあり、載置台33にはマッチングボックス36を介して
高周波電源37が接続されている。また、反応器31の底部
壁には排気口38が開設してあり、排気口38から処理室32
の内気を排出するようになしてある。
[0005] The interior of the reactor 31 is a processing chamber 32,
A required gas is introduced into the processing chamber 32 from a gas introduction pipe 35 fitted in a through hole penetrating the peripheral wall of the processing chamber 32. At the center of the bottom wall of the processing chamber 32, a mounting table 33 for mounting the sample W is provided, and a high frequency power supply 37 is connected to the mounting table 33 via a matching box. An exhaust port 38 is provided on the bottom wall of the reactor 31, and the processing chamber 32 is connected to the exhaust port 38.
It is designed to exhaust shy air.

【0006】このようなマイクロ波プラズマ処理装置を
用いて試料Wの表面にエッチング処理を施すには、排気
口38から排気して処理室32内を所望の圧力まで減圧した
後、ガス導入管35から処理室32内に反応ガスを供給す
る。次いで、マイクロ波発振器20からマイクロ波を発振
させ、これを導波管21を介して誘電体線路41に導入して
誘電体線路41内に定在波を形成する。この定在波によっ
て、誘電体線路41の下方に漏れ電界が形成され、それが
エアギャップ43及び封止板34を透過して処理室32内へ導
入される。このようにして、マイクロ波が処理室32内へ
伝播する。これにより、処理室32内にプラズマが生成さ
れ、そのプラズマによって試料Wの表面をエッチングす
る。これによって、大きな寸法の試料Wを処理すべく反
応器31の直径を大きくしても、その反応器31の全領域へ
マイクロ波を導入して試料Wをプラズマ処理することが
できる。
In order to perform an etching process on the surface of the sample W using such a microwave plasma processing apparatus, the inside of the processing chamber 32 is evacuated to a desired pressure by exhausting the gas through an exhaust port 38, and then a gas introduction pipe 35 is formed. To supply the reaction gas into the processing chamber 32. Next, a microwave is oscillated from the microwave oscillator 20 and introduced into the dielectric line 41 via the waveguide 21 to form a standing wave in the dielectric line 41. Due to the standing wave, a leakage electric field is formed below the dielectric line 41, and the electric field is introduced into the processing chamber 32 through the air gap 43 and the sealing plate. In this way, the microwave propagates into the processing chamber 32. As a result, plasma is generated in the processing chamber 32, and the surface of the sample W is etched by the plasma. Accordingly, even if the diameter of the reactor 31 is increased to process a large-sized sample W, the microwave can be introduced into the entire region of the reactor 31 to perform the plasma processing on the sample W.

【0007】[0007]

【発明が解決しようとする課題】しかしながら従来のマ
イクロ波プラズマ処理装置にあっては、試料の最大寸法
に基づいて反応器の直径を定め、その反応器の直径に応
じてカバー部材及び誘電体線路の寸法を定めていたた
め、試料の各位置でプラズマによる処理速度を略等しく
して、プラズマ処理の均一性を向上させることが困難で
あった。
However, in the conventional microwave plasma processing apparatus, the diameter of the reactor is determined based on the maximum size of the sample, and the cover member and the dielectric line are determined according to the diameter of the reactor. Therefore, it is difficult to improve the uniformity of the plasma processing by making the processing speed by the plasma substantially equal at each position of the sample.

【0008】本発明はかかる事情に鑑みてなされたもの
であって、その目的とするところは円形状の誘電体線路
を、マイクロ波が誘電体線路を伝播して生じる定在波に
よる電界の強度が相対的に強い複数の領域が、誘電体線
路の中心と略同心円上であって、誘電体線路の直径上の
軸に対して略軸対称に分布する直径になすことによっ
て、プラズマ処理の均一性が高いマイクロ波プラズマ処
理装置を提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a circular dielectric line and a strength of an electric field due to a standing wave generated by microwaves propagating through the dielectric line. Are relatively concentric with the center of the dielectric line, and have a diameter that is distributed substantially axisymmetrically with respect to the axis on the diameter of the dielectric line, thereby achieving uniform plasma processing. Another object of the present invention is to provide a microwave plasma processing apparatus having high performance.

【0009】[0009]

【課題を解決するための手段】第1発明に係るマイクロ
波プラズマ処理装置は、有底円筒状の容器の開口を封止
する封止部材と、該封止部材を覆うカバー部材と、該カ
バー部材の前記封止部材に対向する部分に設けた円形状
の誘電体線路と、該誘電体線路へマイクロ波を発振する
マイクロ波発振器とを備え、前記誘電体線路を伝搬した
マイクロ波を容器内へ導入してプラズマを生成し、その
プラズマによって被処理物を処理する装置において、前
記誘電体線路は、マイクロ波が誘電体線路を伝播して生
じる定在波による電界の強度が相対的に強い複数の領域
が、前記誘電体線路の中心と略同心円上であって、前記
誘電体線路の直径上の軸に対して略軸対称に分布する直
径になしてあることを特徴とする。
According to a first aspect of the present invention, there is provided a microwave plasma processing apparatus comprising: a sealing member for sealing an opening of a bottomed cylindrical container; a cover member for covering the sealing member; A circular dielectric line provided at a portion of the member facing the sealing member; and a microwave oscillator that oscillates microwaves to the dielectric line. In the apparatus for generating plasma by introducing plasma into the object and processing an object to be processed by the plasma, the dielectric line has a relatively strong electric field intensity due to a standing wave generated by propagation of the microwave through the dielectric line. The plurality of regions are substantially concentric with the center of the dielectric line, and have a diameter distributed substantially axially symmetric with respect to an axis on the diameter of the dielectric line.

【0010】第2発明に係るマイクロ波プラズマ処理装
置は、第1発明において、前記誘電体線路の直径は次式
に基づいて定めてあることを特徴とする。 N=D・√(εr)/√{(χ(mn)/π)2 +(s・D
/2L)2 } 但し、N :誘電体線路の比誘電率に応じて定まる定
数 D :誘電体線路の直径(mm) εr :誘電体線路の比誘電率 χ(mn):ベッセル関数Jm(χ)=0のn番目の根 π :円周率 s :誘電体線路の厚さ方向の定在波の数 L :誘電体線路の厚さ(mm)
In a microwave plasma processing apparatus according to a second aspect of the present invention, in the first aspect, the diameter of the dielectric line is determined based on the following equation. N = D√ (εr) / √ {(χ (mn) / π) 2 + (s ・ D
/ 2L) 2 } where N: constant determined according to the relative permittivity of the dielectric line D: diameter of the dielectric line (mm) εr: relative permittivity of the dielectric line χ (mn) : Bessel function Jm (χ) ) = 0 n-th root π: pi: number of standing waves in the thickness direction of the dielectric line L: thickness of the dielectric line (mm)

【0011】第3発明に係るマイクロ波プラズマ処理装
置は、第1又は第2発明において、前記誘電体線路はポ
リフッ化エチレン系樹脂を円形状に成形してなり、その
直径は、略100mm,略130mm,略160mm,
略190mm,略220mm,略310mm,略330
mm,略360mm,略410mm,略430mm,略
480mm又は略490mmになしてあることを特徴と
する。
According to a third aspect of the present invention, in the microwave plasma processing apparatus according to the first or second aspect, the dielectric line is formed by molding a polyfluoroethylene resin into a circular shape, and has a diameter of about 100 mm and a diameter of about 100 mm. 130mm, approximately 160mm,
About 190mm, about 220mm, about 310mm, about 330
mm, approximately 360 mm, approximately 410 mm, approximately 430 mm, approximately 480 mm, or approximately 490 mm.

【0012】本発明者が鋭意検討したところ、後述する
如く、円形状の誘電体線路を所定の直径になすことによ
って、誘電体線路にマイクロ波を入射して形成される強
電界強度の領域を所要の分布パターンになすことができ
るという結果を得、それによって前述した問題を解決す
るに到った。
The inventor of the present invention has made intensive studies and found that, as will be described later, by forming a circular dielectric line to a predetermined diameter, a region having a strong electric field strength formed by microwave incidence on the dielectric line is formed. The result was that the required distribution pattern could be achieved, which led to the solution of the above-mentioned problem.

【0013】図2〜図6は、誘電体線路に分布した電界
の強度をシミュレーションによって求めた結果を説明す
る説明図である。円板状の本体の周面に長方形状の入射
ポート部を突設した形状にテフロン(登録商標)を成形
してなる誘電体線路に、前記入射ポート部から2.45
GHzのマイクロ波を導入し、マイクロ波の伝播によっ
て形成される電界の強度をシミュレーションによって求
め、同じ電界強度の地点を線で結んだ。各誘電体線路の
本体の直径はそれぞれ、図2に示した本体が476mm
であり、図3に示した本体が478mmであり、図4に
示した本体が480mmであり、図5に示した本体が4
82mmであり、図6に示した本体が484mmであ
る。
FIGS. 2 to 6 are explanatory diagrams for explaining the results obtained by simulation of the intensity of the electric field distributed on the dielectric line. A dielectric line formed by molding Teflon (registered trademark) into a shape in which a rectangular input port portion protrudes from a peripheral surface of a disk-shaped main body is placed at 2.45 from the input port portion.
A microwave of GHz was introduced, the strength of an electric field formed by the propagation of the microwave was obtained by simulation, and points of the same electric field strength were connected by a line. The diameter of the main body of each dielectric line is 476 mm, as shown in FIG.
The main body shown in FIG. 3 is 478 mm, the main body shown in FIG. 4 is 480 mm, and the main body shown in FIG.
82 mm, and the main body shown in FIG. 6 is 484 mm.

【0014】図3,図4及び図5から明らかな如く、本
体の直径が480mm±2mm(±0.42%)の範囲
である場合、誘電体線路の本体には、図中に矢符で示し
た如く、その周囲より電界強度が強い強電界強度の複数
の領域が、誘電体線路の本体の中心と略同心円上であっ
て、前記誘電体線路の直径上の軸に対して略軸対称に分
布している。このような分布パターンの電界が誘電体線
路の本体から容器内へ漏出する。これによって、容器内
の前記強電界強度領域に対応する部分にプラズマがそれ
ぞれ生成され、それらが拡散して均一な密度になったプ
ラズマによって被処理物が処理されるため、プラズマ処
理の均一性が向上する。
As is apparent from FIGS. 3, 4 and 5, when the diameter of the main body is in the range of 480 mm ± 2 mm (± 0.42%), the main body of the dielectric line is indicated by an arrow in the drawing. As shown, a plurality of regions of high electric field strength having a higher electric field strength than the surroundings are substantially concentric with the center of the main body of the dielectric line, and are substantially axially symmetric with respect to the axis on the diameter of the dielectric line. Are distributed. The electric field having such a distribution pattern leaks from the main body of the dielectric line into the container. As a result, plasmas are respectively generated in portions corresponding to the strong electric field intensity regions in the container, and the objects to be processed are processed by the plasmas which are diffused and have a uniform density, so that the uniformity of the plasma processing is improved. improves.

【0015】一方、図2及び図6から明らかな如く、本
体の直径が480mm±2mmの範囲から外れた場合、
強電界強度の領域は、前述した如き分布パターンではな
いため、被処理物には不均一な密度のプラズマが供給さ
れ、プラズマ処理の均一性が低い。
On the other hand, as is apparent from FIGS. 2 and 6, when the diameter of the main body is out of the range of 480 mm ± 2 mm,
Since the region having the strong electric field strength does not have the distribution pattern as described above, plasma having an uneven density is supplied to the object to be processed, and the uniformity of the plasma processing is low.

【0016】強電界強度の複数の領域が、誘電体線路の
本体の中心と略同心円上であって、前記誘電体線路の直
径上の軸に対して略軸対称に位置する分布パターンの電
界を形成させるためには、次式で求まる値Nが所定の値
になるように誘電体線路の直径D(mm)を定める。 N=D・√(εr)/√{(χ(mn)/π)2 +(s・D
/2L)2 } 但し、εr :誘電体線路の比誘電率 χ(mn):ベッセル関数Jm(χ)=0のn番目の根 π :円周率 s :誘電体線路の厚さ方向の定在波の数 L :誘電体線路の厚さ(mm)
A plurality of regions having a strong electric field strength are substantially concentric with the center of the main body of the dielectric line, and the electric field of the distribution pattern which is positioned substantially axially symmetric with respect to the axis on the diameter of the dielectric line. In order to form the dielectric line, the diameter D (mm) of the dielectric line is determined so that the value N obtained by the following equation becomes a predetermined value. N = D√ (εr) / √ {(χ (mn) / π) 2 + (s ・ D
/ 2L) 2 } where εr: relative permittivity of the dielectric line χ (mn) : n-th root of Bessel function Jm (χ) = 0 π: circular constant s: constant in the thickness direction of the dielectric line Number of waves L: Thickness of dielectric line (mm)

【0017】ポリフッ化エチレン系樹脂であるテフロン
(登録商標、比誘電率εr=2.1)を円形状に成形し
てなる誘電体線路にあっては、上記式から、その直径
を、略100mm,略130mm,略160mm,略1
90mm,略220mm,略310mm,略330m
m,略360mm,略410mm,略430mm,略4
80mm又は略490mmになす。これによって、前述
した如き分布パターンの電界を形成することができ、プ
ラズマ処理の均一性が向上する。
In the dielectric line formed by molding Teflon (registered trademark, relative permittivity εr = 2.1), which is a polyfluoroethylene resin, into a circular shape, the diameter is approximately 100 mm from the above equation. , About 130mm, about 160mm, about 1
90mm, approximately 220mm, approximately 310mm, approximately 330m
m, about 360mm, about 410mm, about 430mm, about 4
Make 80 mm or approximately 490 mm. Thereby, the electric field having the distribution pattern as described above can be formed, and the uniformity of the plasma processing is improved.

【0018】なお、図2及び図6に示した如く、シミュ
レーションの結果では、本体の直径が、例えば480m
m±2mmの範囲から外れた場合、所要の分布パターン
の電界が形成されていないが、封止部材及び容器へ導入
されたマイクロ波が誘電体線路を伝播するマイクロ波に
与える影響によって、誘電体線路の直径が前記範囲外で
あっても所要の分布パターンの電界を形成する場合があ
る。従って、第4発明に係る誘電体線路の直径は、10
0mm,130mm,160mm,190mm,220
mm,310mm,330mm,360mm,410m
m,430mm,480mm又は490mmの各寸法か
ら前述した如き分布パターンの電界が形成される寸法ま
での範囲を含んでいる。
As shown in FIGS. 2 and 6, simulation results show that the diameter of the main body is 480 m, for example.
When the distance deviates from the range of m ± 2 mm, the electric field of the required distribution pattern is not formed, but the influence of the microwave introduced into the sealing member and the container on the microwave propagating through the dielectric line causes Even when the diameter of the line is outside the above range, an electric field having a required distribution pattern may be formed. Therefore, the diameter of the dielectric line according to the fourth invention is 10
0 mm, 130 mm, 160 mm, 190 mm, 220
mm, 310mm, 330mm, 360mm, 410m
m, 430 mm, 480 mm, or 490 mm, to the size at which the electric field of the distribution pattern as described above is formed.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて具体的に説明する。図1は本発明に係るマイ
クロ波プラズマ処理装置の構造を示す側断面図であり、
図中1は有底円筒状の反応器である。反応器1は、その
全体がアルミニウムで形成されている。反応器1の上部
にはマイクロ波導入窓が開設してあり、該マイクロ波導
入窓は封止板4で気密状態に封止されている。この封止
板4は、耐熱性及びマイクロ波透過性を有すると共に誘
電損失が小さい、石英ガラス又はアルミナ等の誘電体で
形成されている。
Embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 1 is a side sectional view showing a structure of a microwave plasma processing apparatus according to the present invention,
In the figure, reference numeral 1 denotes a bottomed cylindrical reactor. The reactor 1 is entirely formed of aluminum. A microwave introduction window is opened at the upper part of the reactor 1, and the microwave introduction window is sealed in an airtight state by a sealing plate 4. The sealing plate 4 is formed of a dielectric material such as quartz glass or alumina, which has heat resistance and microwave permeability and has small dielectric loss.

【0020】反応器1には、該反応器1の上部を覆う箱
状のカバー部材10が連結してある。このカバー部材10内
の天井部分には誘電体線路11が取り付けてあり、該誘電
体線路11と封止板4との間にはエアギャップ9が形成さ
れている。誘電体線路11は、テフロン(登録商標)とい
ったポリフッ化エチレン樹脂,ポリエチレン樹脂又はポ
リスチレン樹脂等の誘電体を、所定直径の円板状の本体
11a の周面に略矩形の入射ポート部11b を設けた形状に
成形してなり、前記入射ポート部11b をカバー部材10の
周面に連結した矩形の導波管21に内嵌させてある。
A box-shaped cover member 10 for covering the upper part of the reactor 1 is connected to the reactor 1. A dielectric line 11 is attached to a ceiling portion in the cover member 10, and an air gap 9 is formed between the dielectric line 11 and the sealing plate 4. The dielectric line 11 is made of a dielectric body such as polyfluoroethylene resin such as Teflon (registered trademark), polyethylene resin, or polystyrene resin, and a disc-shaped main body having a predetermined diameter.
A substantially rectangular entrance port 11b is formed on the peripheral surface of 11a, and the entrance port 11b is fitted inside a rectangular waveguide 21 connected to the peripheral surface of the cover member 10.

【0021】導波管21にはマイクロ波発振器20が連結し
てあり、マイクロ波発振器20が発振したマイクロ波は、
導波管21によって誘電体線路11の入射ポート部11b に入
射される。このマイクロ波は、誘電体線路11の形状及び
寸法等によって定まる伝搬モードにより本体11a の全領
域に伝搬し、所定分布の電界が形成される。
A microwave oscillator 20 is connected to the waveguide 21, and the microwave oscillated by the microwave oscillator 20 is:
The light enters the incident port portion 11b of the dielectric line 11 by the waveguide 21. The microwave propagates through the entire region of the main body 11a in a propagation mode determined by the shape and size of the dielectric line 11, and an electric field having a predetermined distribution is formed.

【0022】反応器1には処理室2の周囲壁を貫通する
貫通穴が開設してあり、該貫通穴に嵌合させたガス導入
管5から処理室2内に所要のガスが導入される。処理室
2の底部壁中央には、試料Wを載置する載置台3が前記
電極部材24に対向するように設けてあり、載置台3には
マッチングボックス6を介して高周波電源7が接続され
ている。また、反応器1の底部壁には排気口8が開設し
てあり、排気口8から処理室2の内気を排出するように
なしてある。
The reactor 1 is provided with a through hole penetrating the peripheral wall of the processing chamber 2, and a required gas is introduced into the processing chamber 2 from a gas introduction pipe 5 fitted in the through hole. . At the center of the bottom wall of the processing chamber 2, a mounting table 3 for mounting the sample W is provided so as to face the electrode member 24, and a high-frequency power source 7 is connected to the mounting table 3 via a matching box 6. ing. An exhaust port 8 is provided on the bottom wall of the reactor 1 so that the inside air of the processing chamber 2 is discharged from the exhaust port 8.

【0023】このようなマイクロ波プラズマ処理装置を
用いて試料Wの表面にエッチング処理を施すには、排気
口8から排気して処理室2内を所望の圧力まで減圧した
後、ガス導入管5から処理室2内に反応ガスを供給す
る。次いで、マイクロ波発振器20から2.45GHzの
マイクロ波を発振させ、これを導波管21を介して誘電体
線路11に導入し、そこに定在波を形成させることによっ
て所定分布の漏れ電界を発生させる。この漏れ電界がエ
アギャップ9及び封止板4を透過して処理室2内へ導入
され、これにより、処理室2内にプラズマが生成され、
そのプラズマによって試料Wの表面をエッチングする。
In order to perform an etching process on the surface of the sample W using such a microwave plasma processing apparatus, the inside of the processing chamber 2 is evacuated to a desired pressure by exhausting from the exhaust port 8, and then the gas introducing pipe 5 is formed. To supply the reaction gas into the processing chamber 2. Next, a microwave of 2.45 GHz is oscillated from the microwave oscillator 20 and introduced into the dielectric line 11 through the waveguide 21, where a standing wave is formed. generate. This leaked electric field penetrates through the air gap 9 and the sealing plate 4 and is introduced into the processing chamber 2, whereby plasma is generated in the processing chamber 2,
The surface of the sample W is etched by the plasma.

【0024】前述した誘電体線路11の本体11a の直径D
は、本体11a を伝播するマイクロ波の定在波による電界
の強度が相対的に強い複数の領域が、本体11a の中心と
略同心円上であって、本体11a の直径上の軸に対して略
軸対称に分布するように、例えば次式に基づいて定めて
ある。 N=D・√(εr)/√{(χ(mn)/π)2 +(s・D
/2L)2 } 但し、N :比誘電率に応じて定まる定数 εr :誘電体線路の比誘電率 χ(mn):ベッセル関数Jm(χ)=0のn番目の根 π :円周率 s :誘電体線路の厚さ方向の定在波の数 L :誘電体線路の厚さ(mm)
The diameter D of the main body 11a of the dielectric line 11 described above.
The plurality of regions where the strength of the electric field due to the standing wave of the microwave propagating through the main body 11a is relatively concentric with the center of the main body 11a and substantially with respect to the axis on the diameter of the main body 11a. It is determined based on, for example, the following equation so as to be distributed axially symmetrically. N = D√ (εr) / √ {(χ (mn) / π) 2 + (s ・ D
/ 2L) 2 } where N is a constant determined according to the relative permittivity εr is the relative permittivity of the dielectric line χ (mn) is the n-th root of the Bessel function Jm (χ) = 0 π is the circular constant s : Number of standing waves in the thickness direction of the dielectric line L: Thickness of the dielectric line (mm)

【0025】従って、ポリフッ化エチレン樹脂であるテ
フロン(登録商標、比誘電率εr=2.1)を用いた場
合、定数Nは略64.5であり、誘電体線路11の本体11
a の直径は上式より、略100mm、略130mm、略
160mm、略190mm、略220mm、略310m
m、略330mm、略360mm、略410mm、略4
30mm、略480mm、又は略490mmの何れかに
定められる。
Therefore, when Teflon (registered trademark, relative permittivity εr = 2.1) which is a polyfluoroethylene resin is used, the constant N is approximately 64.5, and the body 11 of the dielectric line 11 is
From the above formula, the diameter of a is approximately 100 mm, approximately 130 mm, approximately 160 mm, approximately 190 mm, approximately 220 mm, approximately 310 m
m, about 330 mm, about 360 mm, about 410 mm, about 4
It is determined to be any of 30 mm, approximately 480 mm, or approximately 490 mm.

【0026】これによって、本体11a に前述した分布パ
ターンの強電界強度の複数の領域が形成され各強電界強
度領域に対応する部分にプラズマがそれぞれ生成される
ため、それらが拡散して均一な密度になったプラズマに
よって被処理物が均一に処理される。
As a result, a plurality of regions having the strong electric field strength of the distribution pattern described above are formed in the main body 11a, and plasma is generated in portions corresponding to the respective strong electric field strength regions. The object to be processed is uniformly processed by the turned plasma.

【0027】[0027]

【実施例】次に、本発明に係る誘電体線路について試験
を行った結果について説明する。図7〜図18は、本発明
に係る誘電体線路に分布する電界の強度をシミュレーシ
ョンによって求めた結果を説明する説明図である。円板
状の本体の周面に長方形状の入射ポート部を突設した形
状にテフロン(登録商標)を成形してなる誘電体線路
に、前記入射ポート部から2.45GHzのマイクロ波
を導入し、マイクロ波の伝播によって形成される電界の
強度をシミュレーションによって求め、同じ電界強度の
地点を線で結んだ。
Next, the results of tests conducted on the dielectric line according to the present invention will be described. FIGS. 7 to 18 are explanatory diagrams illustrating the results obtained by simulation of the intensity of the electric field distributed on the dielectric line according to the present invention. Microwaves of 2.45 GHz are introduced from the entrance port into a dielectric line formed by molding Teflon (registered trademark) into a shape in which a rectangular entrance port protrudes from the peripheral surface of the disk-shaped main body. Then, the strength of the electric field formed by the propagation of the microwave was obtained by simulation, and points having the same electric field strength were connected by a line.

【0028】各誘電体線路の本体の直径はそれぞれ、図
7にあっては100mmであり、図8にあっては130
mmであり、図9にあっては160mmであり、図10に
あっては190mmであり、図11にあっては220mm
であり、図12にあっては310mmであり、図13にあっ
ては330mmであり、図14にあっては360mmであ
り、図15にあっては410mmであり、図16にあっては
430mmであり、図17にあっては480mmであり、
図18にあっては490mmである。
The main body of each dielectric line has a diameter of 100 mm in FIG. 7 and a diameter of 130 mm in FIG.
9, 160 mm in FIG. 9, 190 mm in FIG. 10, and 220 mm in FIG.
It is 310 mm in FIG. 12, 330 mm in FIG. 13, 360 mm in FIG. 14, 410 mm in FIG. 15, and 430 mm in FIG. In FIG. 17, it is 480 mm,
In FIG. 18, it is 490 mm.

【0029】図7〜図18から明らかな如く、本体の直径
を前述した各寸法になした場合、誘電体線路の本体に
は、図中に矢符で示した強電界強度の複数の領域が、誘
電体線路の本体の中心と略同心円上であって、前記誘電
体線路の直径上の軸に対して略軸対称に分布している。
これによって、容器内の前記強電界強度領域に対応する
部分にプラズマがそれぞれ生成され、それらが拡散して
均一な密度になったプラズマによって被処理物が処理さ
れるため、プラズマ処理の均一性が向上する。
As is apparent from FIGS. 7 to 18, when the diameter of the main body is set to each of the above-described dimensions, a plurality of regions of the strong electric field strength indicated by arrows in the figure are formed in the main body of the dielectric line. Are substantially concentric with the center of the main body of the dielectric line, and are distributed substantially symmetrically with respect to an axis on the diameter of the dielectric line.
As a result, plasmas are respectively generated in portions corresponding to the strong electric field intensity regions in the container, and the objects to be processed are processed by the plasmas which are diffused and have a uniform density, so that the uniformity of the plasma processing is improved. improves.

【0030】[0030]

【発明の効果】以上詳述した如く、本発明に係るマイク
ロ波プラズマ処理装置にあっては、誘電体線路には、該
誘電体線路を伝播するマイクロ波の定在波による電界の
強度が相対的に強い複数の領域が、誘電体線路の中心と
略同心円上であって、誘電体線路の直径上の軸に対して
略軸対称に分布しており、この分布パターンの電界が誘
電体線路の本体から容器内へ漏出するため、均一な密度
になったプラズマによって被処理物が処理され、プラズ
マ処理の均一性が向上する等、本発明は優れた効果を奏
する。
As described in detail above, in the microwave plasma processing apparatus according to the present invention, the strength of the electric field due to the standing wave of the microwave propagating through the dielectric line is relatively small. Are substantially concentric with the center of the dielectric line, and are distributed substantially axially symmetrically with respect to the axis on the diameter of the dielectric line. The present invention has excellent effects, for example, the object to be processed is treated by the plasma having a uniform density because the substance leaks from the main body into the container, and the uniformity of the plasma processing is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るマイクロ波プラズマ処理装置の構
造を示す側断面図である。
FIG. 1 is a side sectional view showing a structure of a microwave plasma processing apparatus according to the present invention.

【図2】誘電体線路に分布した電界の強度をシミュレー
ションによって求めた結果を説明する説明図である。
FIG. 2 is an explanatory diagram illustrating a result obtained by simulating the intensity of an electric field distributed on a dielectric line.

【図3】誘電体線路に分布した電界の強度をシミュレー
ションによって求めた結果を説明する説明図である。
FIG. 3 is an explanatory diagram illustrating a result obtained by simulating the intensity of an electric field distributed on a dielectric line.

【図4】誘電体線路に分布した電界の強度をシミュレー
ションによって求めた結果を説明する説明図である。
FIG. 4 is an explanatory diagram illustrating a result obtained by simulating the intensity of an electric field distributed on a dielectric line.

【図5】誘電体線路に分布した電界の強度をシミュレー
ションによって求めた結果を説明する説明図である。
FIG. 5 is an explanatory diagram illustrating a result obtained by simulating the intensity of an electric field distributed on a dielectric line.

【図6】誘電体線路に分布した電界の強度をシミュレー
ションによって求めた結果を説明する説明図である。
FIG. 6 is an explanatory diagram illustrating a result obtained by simulating the intensity of an electric field distributed on a dielectric line.

【図7】本発明に係る誘電体線路に分布する電界の強度
をシミュレーションによって求めた結果を説明する説明
図である。
FIG. 7 is an explanatory diagram illustrating a result obtained by simulating the intensity of an electric field distributed on a dielectric line according to the present invention.

【図8】本発明に係る誘電体線路に分布する電界の強度
をシミュレーションによって求めた結果を説明する説明
図である。
FIG. 8 is an explanatory diagram illustrating a result obtained by simulating the intensity of an electric field distributed on a dielectric line according to the present invention.

【図9】本発明に係る誘電体線路に分布する電界の強度
をシミュレーションによって求めた結果を説明する説明
図である。
FIG. 9 is an explanatory diagram for explaining a result obtained by simulating the intensity of an electric field distributed on a dielectric line according to the present invention.

【図10】本発明に係る誘電体線路に分布する電界の強
度をシミュレーションによって求めた結果を説明する説
明図である。
FIG. 10 is an explanatory diagram illustrating a result obtained by simulating the intensity of an electric field distributed on a dielectric line according to the present invention.

【図11】本発明に係る誘電体線路に分布する電界の強
度をシミュレーションによって求めた結果を説明する説
明図である。
FIG. 11 is an explanatory diagram illustrating a result obtained by simulation of the intensity of an electric field distributed on a dielectric line according to the present invention.

【図12】本発明に係る誘電体線路に分布する電界の強
度をシミュレーションによって求めた結果を説明する説
明図である。
FIG. 12 is an explanatory diagram illustrating a result obtained by simulation of the intensity of an electric field distributed on a dielectric line according to the present invention.

【図13】本発明に係る誘電体線路に分布する電界の強
度をシミュレーションによって求めた結果を説明する説
明図である。
FIG. 13 is an explanatory diagram illustrating a result obtained by simulation of the intensity of an electric field distributed on a dielectric line according to the present invention.

【図14】本発明に係る誘電体線路に分布する電界の強
度をシミュレーションによって求めた結果を説明する説
明図である。
FIG. 14 is an explanatory diagram illustrating a result obtained by simulation of the intensity of an electric field distributed on a dielectric line according to the present invention.

【図15】本発明に係る誘電体線路に分布する電界の強
度をシミュレーションによって求めた結果を説明する説
明図である。
FIG. 15 is an explanatory diagram illustrating a result obtained by simulation of the intensity of an electric field distributed on a dielectric line according to the present invention.

【図16】本発明に係る誘電体線路に分布する電界の強
度をシミュレーションによって求めた結果を説明する説
明図である。
FIG. 16 is an explanatory diagram illustrating a result obtained by simulation of the intensity of an electric field distributed on a dielectric line according to the present invention.

【図17】本発明に係る誘電体線路に分布する電界の強
度をシミュレーションによって求めた結果を説明する説
明図である。
FIG. 17 is an explanatory diagram illustrating a result obtained by simulating the intensity of an electric field distributed on a dielectric line according to the present invention.

【図18】本発明に係る誘電体線路に分布する電界の強
度をシミュレーションによって求めた結果を説明する説
明図である。
FIG. 18 is an explanatory diagram illustrating a result obtained by simulation of the intensity of an electric field distributed on a dielectric line according to the present invention.

【図19】特開平 7−142194号公報に開示した装置の構
成を示す側断面図である。
FIG. 19 is a side sectional view showing a configuration of an apparatus disclosed in Japanese Patent Application Laid-Open No. 7-142194.

【符号の説明】[Explanation of symbols]

1 反応器 2 処理室 3 載置台 4 封止板 10 カバー部材 11 誘電体線路 11a 本体 11b 入射ポート部 21 導波管 W 試料 DESCRIPTION OF SYMBOLS 1 Reactor 2 Processing chamber 3 Mounting table 4 Sealing plate 10 Cover member 11 Dielectric line 11a Main body 11b Incident port 21 Waveguide W Sample

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 有底円筒状の容器の開口を封止する封止
部材と、該封止部材を覆うカバー部材と、該カバー部材
の前記封止部材に対向する部分に設けた円形状の誘電体
線路と、該誘電体線路へマイクロ波を発振するマイクロ
波発振器とを備え、前記誘電体線路を伝搬したマイクロ
波を容器内へ導入してプラズマを生成し、そのプラズマ
によって被処理物を処理する装置において、 前記誘電体線路は、マイクロ波が誘電体線路を伝播して
生じる定在波による電界の強度が相対的に強い複数の領
域が、前記誘電体線路の中心と略同心円上であって、前
記誘電体線路の直径上の軸に対して略軸対称に分布する
直径になしてあることを特徴とするマイクロ波プラズマ
処理装置。
1. A sealing member for sealing an opening of a bottomed cylindrical container, a cover member for covering the sealing member, and a circular member provided on a portion of the cover member facing the sealing member. A dielectric line, and a microwave oscillator that oscillates microwaves to the dielectric line. The microwave that has propagated through the dielectric line is introduced into a container to generate plasma, and the workpiece is processed by the plasma. In the processing apparatus, in the dielectric line, a plurality of regions in which the strength of an electric field due to a standing wave generated by microwaves propagating through the dielectric line is relatively strong, are substantially concentric with the center of the dielectric line. A microwave plasma processing apparatus characterized in that the diameter is distributed substantially symmetrically with respect to an axis on the diameter of the dielectric line.
【請求項2】 前記誘電体線路の直径は次式に基づいて
定めてある請求項1記載のマイクロ波プラズマ処理装
置。 N=D・√(εr)/√{(χ(mn)/π)2 +(s・D
/2L)2 } 但し、N :誘電体線路の比誘電率に応じて定まる定
数 D :誘電体線路の直径(mm) εr :誘電体線路の比誘電率 χ(mn):ベッセル関数Jm(χ)=0のn番目の根 π :円周率 s :誘電体線路の厚さ方向の定在波の数 L :誘電体線路の厚さ(mm)
2. The microwave plasma processing apparatus according to claim 1, wherein the diameter of said dielectric line is determined based on the following equation. N = D√ (εr) / √ {(χ (mn) / π) 2 + (s ・ D
/ 2L) 2 } where N: constant determined according to the relative permittivity of the dielectric line D: diameter of the dielectric line (mm) εr: relative permittivity of the dielectric line χ (mn) : Bessel function Jm (χ) ) = 0 n-th root π: pi: number of standing waves in the thickness direction of the dielectric line L: thickness of the dielectric line (mm)
【請求項3】 前記誘電体線路はポリフッ化エチレン樹
脂を円形状に成形してなり、その直径は、略100m
m,略130mm,略160mm,略190mm,略2
20mm,略310mm,略330mm,略360m
m,略410mm,略430mm,略480mm又は略
490mmになしてある請求項1又は2記載のマイクロ
波プラズマ処理装置。
3. The dielectric line is formed by molding a polyfluoroethylene resin into a circular shape and has a diameter of about 100 m.
m, about 130 mm, about 160 mm, about 190 mm, about 2
20mm, 310mm, 330mm, 360m
3. The microwave plasma processing apparatus according to claim 1, wherein the length is about 410 mm, about 430 mm, about 480 mm, or about 490 mm.
JP10127895A 1998-05-11 1998-05-11 Microwave plasma processor Pending JPH11329789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10127895A JPH11329789A (en) 1998-05-11 1998-05-11 Microwave plasma processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10127895A JPH11329789A (en) 1998-05-11 1998-05-11 Microwave plasma processor

Publications (1)

Publication Number Publication Date
JPH11329789A true JPH11329789A (en) 1999-11-30

Family

ID=14971327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10127895A Pending JPH11329789A (en) 1998-05-11 1998-05-11 Microwave plasma processor

Country Status (1)

Country Link
JP (1) JPH11329789A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005122939A (en) * 2003-10-14 2005-05-12 Japan Science & Technology Agency Method and device for treating plasma

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005122939A (en) * 2003-10-14 2005-05-12 Japan Science & Technology Agency Method and device for treating plasma
JP4537032B2 (en) * 2003-10-14 2010-09-01 独立行政法人科学技術振興機構 Plasma processing apparatus and plasma processing method

Similar Documents

Publication Publication Date Title
JP2000012292A (en) Plasma treatment device
JP5036092B2 (en) Microwave plasma processing equipment
KR100311104B1 (en) Microwave plasma processing apparatus and method
JP3979453B2 (en) Microwave plasma processing equipment
JP4165946B2 (en) Microwave plasma processing equipment
JPH08316198A (en) Plasma apparatus
JPH11329789A (en) Microwave plasma processor
JP4024389B2 (en) Plasma processing equipment
JP2000173797A (en) Microwave plasma treating device
JP4488551B2 (en) Microwave plasma processing apparatus and sealing member
JP3491190B2 (en) Plasma processing equipment
WO1996003019A1 (en) Plasma processing device
JP4165944B2 (en) Microwave plasma processing equipment
JP4514291B2 (en) Microwave plasma processing apparatus and plasma processing method
JP4039479B2 (en) Microwave plasma processing equipment
JP2000277296A (en) Method and apparatus for plasma treatment
JPH10294199A (en) Microwave plasma processing device
JP4401400B2 (en) Microwave plasma processing equipment
JP2001110781A (en) Plasma-processing device
JPH11204295A (en) Microwave plasma treating apparatus
JP3042347B2 (en) Plasma equipment
JP4052735B2 (en) Plasma processing equipment
JPH11111696A (en) Plasma processor
JP4076645B2 (en) Microwave plasma processing apparatus and processing method thereof
JP2000173989A (en) Plasma treating apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061121