JP2002011555A - Method for continuously casting steel - Google Patents

Method for continuously casting steel

Info

Publication number
JP2002011555A
JP2002011555A JP2000197671A JP2000197671A JP2002011555A JP 2002011555 A JP2002011555 A JP 2002011555A JP 2000197671 A JP2000197671 A JP 2000197671A JP 2000197671 A JP2000197671 A JP 2000197671A JP 2002011555 A JP2002011555 A JP 2002011555A
Authority
JP
Japan
Prior art keywords
molten steel
tundish
gas
flow
ladle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000197671A
Other languages
Japanese (ja)
Inventor
Kenji Hamaogi
健司 濱荻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000197671A priority Critical patent/JP2002011555A/en
Publication of JP2002011555A publication Critical patent/JP2002011555A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a continuous casting method of steel by which even fine oxide inclusions is molten steel can be removed and a cast slab having excellent cleanliness is obtained. SOLUTION: A plurality of gas blowing holes 4 are disposed in the width direction of a tundish bottom part which is vertical to the direction connecting a molten steel receiving position at the bottom part of the tundish 3 for receiving the molten steel 16 from the ladle 1 with a hole 5 for supplying the received molten steel into a mold 7. The ratio A/B of the distance A between the gas blowing position having a plurality of gas blowing holes and the molten steel receiving position at the tundish bottom part for receiving the molten steel from the ladle to the distance B between the gas blowing position and the supplying hole of the received molten steel into the mold is regulated within the range of 4/6-6/4. Then, the gas is blown into the molten steel in the tundish under condition of regulating the gas blowing quantity to 5.0-15.0N liter per ton of the molten steel passing through the tundish.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非金属介在物が少
なく清浄性に優れた鋳片を得る鋼の連続鋳造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of continuously casting steel to obtain a slab excellent in cleanliness with few nonmetallic inclusions.

【0002】[0002]

【従来の技術】鋼の連続鋳造では、取鍋内の溶鋼は、い
ったんタンディッシュに注入された後に浸漬ノズルを介
して鋳型内に供給される。このタンディッシュ内で、鋼
の清浄性を高めるために、溶鋼中のAlの酸化物など
が、さまざまな方法により除去される。近年では、とく
に鋼材の性能向上に対する要望が強まっており、溶鋼中
の微小な酸化物まで除去することが要求されている。
2. Description of the Related Art In continuous casting of steel, molten steel in a ladle is once injected into a tundish and then fed into a mold through an immersion nozzle. In this tundish, oxides of Al and the like in molten steel are removed by various methods in order to enhance the cleanliness of the steel. In recent years, there has been a growing demand for improving the performance of steel materials in particular, and it has been required to remove even minute oxides in molten steel.

【0003】タンディッシュ内での溶鋼中の微小な酸化
物の除去方法として、タンディッシュ内の溶鋼に電磁力
を作用させ、溶鋼を旋回させて微小な酸化物を旋回する
溶鋼の中心部に凝集させ、肥大化させる方法がある。肥
大化した溶鋼中の酸化物は溶鋼中を浮上しやすいことを
利用する方法である。しかし、これらの方法では、電磁
力発生装置などの過大な設備が必要なこと、製造コスト
が高くなることなどの問題がある。
[0003] As a method of removing minute oxides in molten steel in a tundish, an electromagnetic force is applied to the molten steel in the tundish to swirl the molten steel, and the fine oxides are condensed at the center of the swirling molten steel. There is a way to make it bloat. This method utilizes the fact that the oxide in the enlarged molten steel easily floats in the molten steel. However, these methods have problems such as the necessity of excessive facilities such as an electromagnetic force generator and an increase in manufacturing cost.

【0004】一方、安価な方法として、Arなどの不活
性ガスをタンディッシュ内の溶鋼中に吹き込み、溶鋼中
のAlの酸化物などを不活性ガスの気泡に捕捉させるこ
とで、これら酸化物を除去する方法がある。
On the other hand, as an inexpensive method, an inert gas such as Ar is blown into molten steel in a tundish, and oxides of Al and the like in the molten steel are trapped by bubbles of the inert gas to remove these oxides. There is a way to remove it.

【0005】たとえば、特開平9−164455号公報
には、タンディッシュの受湯部の底部に備えた多孔質耐
火物(ポーラスプラグ)製のガス吹き込み口から、溶鋼
中に不活性ガスを吹き込む方法が提案されている。しか
し、溶鋼と多孔質耐火物との濡れ性が悪く、生成する不
活性ガスの気泡が大きくなりやすい。また、タンディッ
シュ内に溶鋼が滞在する時間が短い。したがって、溶鋼
中の微小な酸化物まで除去するのは困難である。
For example, Japanese Unexamined Patent Publication No. 9-164455 discloses a method of blowing an inert gas into molten steel from a gas inlet made of a porous refractory (porous plug) provided at the bottom of a tundish hot water receiving portion. Has been proposed. However, the wettability between the molten steel and the porous refractory is poor, and bubbles of the generated inert gas tend to be large. In addition, the time during which molten steel stays in the tundish is short. Therefore, it is difficult to remove even minute oxides in molten steel.

【0006】特開平8−117939号公報には、タン
ディッシュ底部近傍において、取鍋からの溶鋼の落下位
置と浸漬ノズルとの間の位置に、流れの方向に凸凹を有
する断面の小さな溶鋼の流通路を設け、この流通路内の
凸部分から不活性ガスを溶鋼中に吹き込む方法が提案さ
れている。凸凹部分が存在することにより、溶鋼の流れ
の境界層の厚さが薄くなるので、不活性ガスの気泡が微
細化されるとしている。しかし、鋳造時間が長くなるに
つれて、流通路の凹部分に溶鋼中の酸化物などが付着す
る。そのため、凸凹部分の厚さの差が小さくなり、時間
の経過とともに気泡が大きくなって、溶鋼中の微小な酸
化物を除去しにくくなる。
Japanese Unexamined Patent Publication No. Hei 8-117939 discloses a flow of molten steel having a small cross section having irregularities in a flow direction at a position between a falling position of a molten steel from a ladle and a dipping nozzle near a bottom of a tundish. A method has been proposed in which a passage is provided and an inert gas is blown into molten steel from a convex portion in the flow passage. It is stated that the presence of the concave and convex portions reduces the thickness of the boundary layer of the flow of the molten steel, so that the bubbles of the inert gas are miniaturized. However, as the casting time becomes longer, oxides and the like in the molten steel adhere to the concave portion of the flow passage. Therefore, the difference in thickness between the convex and concave portions is reduced, and the bubbles increase with time, making it difficult to remove minute oxides in the molten steel.

【0007】[0007]

【発明が解決しようとする課題】本発明は、安価な設備
費および製造コストで溶鋼中の微小な酸化物まで除去で
き、清浄性に優れた鋳片を得ることができる鋼の連続鋳
造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention is directed to a continuous casting method for steel capable of removing minute oxides in molten steel at low equipment cost and manufacturing cost and obtaining a cast having excellent cleanliness. The purpose is to provide.

【0008】[0008]

【課題を解決するための手段】本発明の要旨は、取鍋か
ら溶鋼を受けるタンディッシュ底部の受湯位置と受湯し
た溶鋼の鋳型への給湯孔とを結ぶ方向に垂直な方向であ
るタンディッシュ底部の幅方向にガス吹き込み口を複数
配置し、これらガス吹き込み口を複数配置したガス吹き
込み位置と上記タンディッシュ底部の受湯位置との間の
距離Aと、上記ガス吹き込み位置と上記鋳型への給湯孔
との間の距離Bとの比A/Bを4/6〜6/4の範囲の
値とし、かつガスの吹き込み量をタンディッシュを通過
する溶鋼t当たり5.0〜15.0Nリットルとする条
件で、タンディッシュ内の溶鋼中にガスを吹き込む鋼の
連続鋳造方法にある。
SUMMARY OF THE INVENTION The gist of the present invention is to provide a tank which is perpendicular to a direction connecting a hot water receiving position at the bottom of a tundish for receiving molten steel from a ladle and a hot water supply hole to a casting mold of the molten steel. A plurality of gas injection ports are arranged in the width direction of the dish bottom, a distance A between a gas injection position where the plurality of gas injection ports are arranged and a hot water receiving position of the tundish bottom, the gas injection position and the mold. The ratio A / B to the distance B from the hot water supply hole is set to a value in the range of 4/6 to 6/4, and the amount of gas blown is 5.0 to 15.0 N per molten steel t passing through the tundish. It is a method of continuously casting steel in which gas is blown into molten steel in a tundish under the condition of liter.

【0009】本発明が対象とする溶鋼中の微小な酸化物
とは、直径が10μm程度以下の酸化物を意味する。ま
た、取鍋から溶鋼を受けるタンディッシュ底部の受湯位
置とは、取鍋下部に備えるロングノズルなどのノズルを
下方に延長した線がタンディッシュの底部と交わる部分
を意味する。後述する図1(a)中に示す符号Cの位置
を意味する。さらに、取鍋からの溶鋼の受湯位置と受湯
した溶鋼の鋳型への給湯孔とを結ぶ方向をタンディッシ
ュの長手方向とし、その長手方向に直角な方向をタンデ
ィッシュの幅方向とする。
[0009] The fine oxides in molten steel, which are the object of the present invention, mean oxides having a diameter of about 10 µm or less. The hot water receiving position at the bottom of the tundish which receives molten steel from the ladle means a portion where a line extending downward from a nozzle such as a long nozzle provided at the lower portion of the ladle intersects the bottom of the tundish. This means the position of the symbol C shown in FIG. Further, the direction connecting the molten steel receiving position from the ladle to the molten steel supply hole to the casting mold is defined as the longitudinal direction of the tundish, and the direction perpendicular to the longitudinal direction is defined as the width direction of the tundish.

【0010】安価な設備費および製造コストで、溶鋼中
の微小な酸化物を浮上、除去するため、本発明の方法で
は、タンディッシュ底部の幅方向の適正な領域に複数配
置したガス吹き込み口から、適正なガス吹き込み量でガ
スを溶鋼中に吹き込む。これにより、取鍋からの溶鋼の
受湯位置近傍とガス吹き込み位置近傍との間、およびガ
ス吹き込み位置近傍と溶鋼の鋳型への給湯孔近傍との間
で、2つの溶鋼の循環流が形成される。タンディッシュ
内にこのような2つの溶鋼の循環流が形成されることに
より、微小な酸化物が互いに接触する機会が増え、肥大
化することなどにより浮上しやすくなり、溶鋼系外に除
去されやすくなる。また、溶鋼中の微小な酸化物が気泡
と接触する機会も増大し、これによる酸化物の除去効果
も大きくなる。以下に、図を用いて説明する。
[0010] In order to float and remove minute oxides in molten steel at low equipment and production costs, the method of the present invention employs a plurality of gas injection ports arranged in appropriate regions in the width direction of the bottom of the tundish. Gas is blown into molten steel at an appropriate gas blow rate. Thereby, a circulation flow of two molten steels is formed between the vicinity of the molten steel receiving position from the ladle and the vicinity of the gas injection position, and between the vicinity of the gas injection position and the vicinity of the molten steel supply hole to the mold. You. By forming such a circulating flow of the two molten steels in the tundish, the chances of contact of the minute oxides with each other increase, and it becomes easy to float due to enlargement, and it is easy to be removed outside the molten steel system. Become. In addition, the chance that minute oxides in the molten steel come into contact with bubbles increases, and the effect of removing the oxides thereby increases. This will be described below with reference to the drawings.

【0011】図1は、本発明の方法を適用し、タンディ
ッシュ内に2つの溶鋼の循環流が形成される場合を示す
模式図である。図1(a)はタンディッシュ長手方向の
垂直方向の縦断面を示し、図1(b)および図1(c)
は、タンディッシュ底部の幅方向に配置したガス吹き込
み口の配置状況を示す模式図で、図1(a)中のA1−
A2線の断面図である。後述するように、図1(b)は
タンディッシュの全幅に、また図1(c)は幅の一部
に、それぞれガス吹き込み口を複数配置する例を示す。
FIG. 1 is a schematic view showing a case where a circulating flow of two molten steels is formed in a tundish by applying the method of the present invention. FIG. 1A shows a vertical section in the vertical direction of the tundish longitudinal direction, and FIG. 1B and FIG. 1C.
Is a schematic diagram showing the arrangement of gas inlets arranged in the width direction of the bottom of the tundish, and A1- in FIG.
It is sectional drawing of A2 line. As described later, FIG. 1B shows an example in which a plurality of gas blowing ports are arranged in the entire width of the tundish, and FIG. 1C shows a part of the width.

【0012】図1では、ガス吹き込み口4をタンディッ
シュ3底部の幅方向に複数配置したガス吹き込み位置と
取鍋1から溶鋼16を受けるタンディッシュ底部の受湯
位置との間の距離Aと、ガス吹き込み位置と受湯した溶
鋼の鋳型7への給湯孔5との間の距離Bとの比A/Bを
5/5とし、取鍋からの溶鋼の受湯位置と溶鋼の鋳型7
への給湯孔5の中間位置にガス吹き込み口4を備える場
合の例を示す。ここで、距離Aは、取鍋から溶鋼を受け
るタンディッシュ底部の受湯位置とガス吹き込み位置と
の中心間距離を意味し、また距離Bは、溶鋼の鋳型への
給湯孔とガス吹き込み位置との中心間距離を意味する。
In FIG. 1, a distance A between a gas blowing position where a plurality of gas blowing ports 4 are arranged in the width direction of the bottom of the tundish 3 and a hot water receiving position at the bottom of the tundish which receives the molten steel 16 from the ladle 1 is shown in FIG. The ratio A / B between the gas injection position and the distance B between the molten steel received from the ladle and the hot water supply hole 5 into the mold 7 is set to 5/5, and the molten steel receiving position from the ladle and the molten steel mold 7 are set.
An example in which a gas blow-in port 4 is provided at an intermediate position of a hot-water supply hole 5 is shown. Here, the distance A means the center-to-center distance between the hot water receiving position of the bottom of the tundish receiving the molten steel from the ladle and the gas blowing position, and the distance B is the hot water supply hole to the molten steel mold and the gas blowing position. Means the distance between centers.

【0013】さらに、これら図1には、後述する下堰を
配置する例を示す。すなわち、取鍋からの溶鋼の受湯位
置とガス吹き込み位置との間で受湯位置近傍に、および
ガス吹き込み位置と溶鋼の鋳型への給湯孔との間で給湯
孔近傍に、それぞれ下堰8、9を配置する例を示す。
FIG. 1 shows an example in which a lower weir described later is arranged. That is, the lower weir 8 is located near the hot water receiving position between the molten steel receiving position from the ladle and the gas blowing position and near the hot water supplying hole between the gas blowing position and the molten steel casting hole. , 9 are arranged.

【0014】本発明の方法では、取鍋1の下部に備えた
ロングノズル2などを介してタンディッシュ3内に供給
された溶鋼は、タンディッシュ底部の幅方向に複数配置
したガス吹き込み口4から吹き込まれたガスの気泡15
の浮上する力により、ガス吹き込み口近傍から上方に向
かう上昇流10を生じる。タンディッシュの幅方向にガ
ス吹き込み口を複数配置しているので、溶鋼の上昇流は
タンディッシュのほぼ全幅で形成される。
In the method of the present invention, molten steel supplied into the tundish 3 via the long nozzle 2 provided at the lower part of the ladle 1 is supplied from a plurality of gas blowing ports 4 arranged in the width direction of the bottom of the tundish. Injected gas bubbles 15
Generates a rising flow 10 that rises from the vicinity of the gas blowing port. Since a plurality of gas blowing ports are arranged in the width direction of the tundish, the upward flow of molten steel is formed over substantially the entire width of the tundish.

【0015】その際、ガスの吹き込み量をタンディッシ
ュを通過する溶鋼t当たり5.0〜15.0Nリットル
とする条件で溶鋼中にガスを吹き込むと、発生するガス
の気泡の量が適正になり、気泡が浮上する力も適正とな
り、溶鋼の上昇流の上昇速度が適宜速くなる。溶鋼の上
昇流の上昇速度が適正な範囲で速いと、上昇流10は、
溶鋼表面近傍に達した後、取鍋方向への溶鋼流11とそ
の反対側の溶鋼流12とに分かれる。取鍋方向に向かう
溶鋼流11は、受湯位置近傍に配置した下堰8近傍で下
方に向きを変え、1つの溶鋼の循環流13が形成され
る。さらに、取鍋の反対側方向に向かう溶鋼流12は、
浸漬ノズル6の上方の給湯孔5近傍に配置した下堰9近
傍で下方に向かう流れとなり、その一部は下堰9を越え
て給湯孔から鋳型内に流れる。ただし、下堰9の手前で
下方に向かう溶鋼の量が多いので、1つの溶鋼の循環流
14が形成される。ガスの吹き込み量が少ないと、溶鋼
の上昇流10の速度が遅くなり、2つの循環流13、1
4が得られにくくなる。
At this time, if gas is blown into the molten steel under the condition that the amount of gas blown is 5.0 to 15.0 Nl per molten steel t passing through the tundish, the amount of gas bubbles generated becomes appropriate. Also, the force at which the air bubbles float is also appropriate, and the rising speed of the ascending flow of the molten steel is appropriately increased. If the rising speed of the rising flow of molten steel is high within an appropriate range, the rising flow 10
After reaching the vicinity of the molten steel surface, it is divided into a molten steel flow 11 in the ladle direction and a molten steel flow 12 on the opposite side. The molten steel flow 11 toward the ladle changes its direction downward near the lower weir 8 arranged near the hot water receiving position, and a circulation flow 13 of one molten steel is formed. Furthermore, the molten steel flow 12 heading in the opposite direction of the ladle is
The flow becomes downward in the vicinity of the lower weir 9 disposed near the hot water supply hole 5 above the immersion nozzle 6, and a part of the flow flows from the hot water supply hole into the mold through the lower weir 9. However, since the amount of the molten steel going downward before the lower weir 9 is large, one circulation flow 14 of the molten steel is formed. If the amount of gas blown is small, the speed of the ascending flow 10 of the molten steel decreases, and the two circulating flows 13, 1
4 becomes difficult to obtain.

【0016】さらに本発明の方法では、前述の距離Aと
距離Bとの比A/Bを4/6〜6/4の範囲とするの
で、2つの循環流が形成されやすい。比A/Bを4/6
〜6/4の範囲から外した値とすると、循環流が形成さ
れにくい。たとえば、比A/Bを4/6より小さい値と
して、ガス吹き込み位置が取鍋からの溶鋼の受湯位置に
近すぎる場合には、溶鋼の上昇流10は、溶鋼表面近傍
に達すると、取鍋の反対方向の溶鋼流12になる。しか
し、上昇流が取鍋の反対方向の溶鋼流12になる位置か
ら給湯孔近傍に配置した下堰9近傍までの距離が長くな
るので、取鍋の反対方向の溶鋼流12が下堰9に達する
前に、その流れが弱くなり、下堰9で下方に向かう循環
流が形成されにくい。詳細は後述するが、下堰9がない
場合には、取鍋の反対方向の溶鋼流12が側壁に達する
前に、その流れが弱くなり、循環流が形成されにくい。
また、たとえば、比A/Bを6/4より大きい値とし
て、ガス吹き込み位置が給湯孔近傍に近すぎる場合に
も、下堰8で下方に向かう循環流が形成されにくい。詳
細は後述するが、下堰8がない場合には、取鍋の反対方
向の溶鋼流11が側壁に達する前に、その流れが弱くな
り、循環流が形成されにくい。
Further, in the method of the present invention, the ratio A / B of the distance A and the distance B is set in the range of 4/6 to 6/4, so that two circulation flows are easily formed. 4/6 ratio A / B
If the value is out of the range of 6/4, it is difficult to form a circulating flow. For example, if the ratio A / B is set to a value smaller than 4/6 and the gas injection position is too close to the molten steel receiving position from the ladle, the rising flow 10 of the molten steel will The molten steel flow 12 is in the opposite direction of the pot. However, since the distance from the position where the rising flow becomes the molten steel flow 12 in the opposite direction of the ladle to the vicinity of the lower weir 9 arranged near the hot water supply hole becomes longer, the molten steel flow 12 in the opposite direction of the ladle flows to the lower weir 9. Before the flow reaches the lower weir 9, it is difficult to form a downward circulating flow. As will be described in detail later, when the lower weir 9 is not provided, the flow of the molten steel flow 12 in the opposite direction of the ladle is weakened before reaching the side wall, and a circulating flow is not easily formed.
Also, for example, when the ratio A / B is set to a value larger than 6/4 and the gas injection position is too close to the vicinity of the hot water supply hole, a downward circulating flow is not easily formed by the lower weir 8. As will be described later in detail, when the lower weir 8 is not provided, the molten steel flow 11 in the opposite direction of the ladle weakens before reaching the side wall, and a circulating flow is hardly formed.

【0017】このようにタンディッシュ内に溶鋼の2つ
の循環流13、14が形成されると、溶鋼中の微小な酸
化物が循環する間に肥大化し、肥大化した酸化物は浮上
しやすいので、溶鋼中の酸化物を除去しやすくなる。さ
らに、溶鋼が循環する間に、溶鋼中の微小な酸化物はタ
ンディッシュ内の溶鋼表面に添加したフラックスなどに
よって捕捉されやすく、溶鋼系外に除去されやすくな
る。また、2つの循環流の間に気泡が浮上する領域が存
在するため、微小な酸化物と気泡が接触する機会が増大
し、気泡による酸化物の除去効果が向上する。
When the two circulating flows 13 and 14 of molten steel are formed in the tundish in this way, the fine oxides in the molten steel are enlarged while circulating, and the enlarged oxides easily float. In addition, oxides in molten steel can be easily removed. Furthermore, while the molten steel circulates, fine oxides in the molten steel are easily captured by the flux or the like added to the surface of the molten steel in the tundish, and are easily removed outside the molten steel system. Further, since there is a region where bubbles float between the two circulating flows, the chance of contact between the bubbles and the minute oxide increases, and the effect of removing the oxides by the bubbles improves.

【0018】[0018]

【発明の実施の形態】本発明の方法では、ガス吹き込み
口をタンディッシュ底部の幅方向に複数配置したガス吹
き込み位置と取鍋から溶鋼を受けるタンディッシュ底部
の受湯位置との間の距離Aと、このガス吹き込み位置と
受湯した溶鋼の鋳型への給湯孔との間の距離Bとの比A
/Bを4/6〜6/4の範囲の値とし、かつガスの吹き
込み量をタンディッシュを通過する溶鋼t当たり5.0
〜15.0Nリットル(以下、Nリットル/溶鋼tと記
す)とする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the method of the present invention, a distance A between a gas injection position where a plurality of gas injection ports are arranged in the width direction of the tundish bottom and a hot water receiving position at the bottom of the tundish which receives molten steel from a ladle. And the distance B between the gas injection position and the hot water supply hole to the mold of the molten steel received.
/ B is a value in the range of 4/6 to 6/4, and the amount of gas blown is 5.0 per molten steel t passing through the tundish.
1515.0 N liters (hereinafter referred to as N liters / molten steel t).

【0019】ガス吹き込み口は、多孔質耐火物でもよ
く、内径が1mm程度の鋼製の細管を複数埋設した耐火
物でもよい。これらガス吹き込み口の耐火物の1個の大
きさは、とくに限定するものではないが、タンディッシ
ュ底部への取り付け作業など、取り扱い安さの観点か
ら、水平断面が50〜100mm程度の矩形とするのが
よい。
The gas injection port may be a porous refractory or a refractory in which a plurality of thin steel tubes having an inner diameter of about 1 mm are embedded. The size of one of the refractories of the gas inlet is not particularly limited, but from the viewpoint of easy handling such as mounting work to the bottom of the tundish, the horizontal cross section is to be a rectangle of about 50 to 100 mm. Is good.

【0020】本発明の方法では、タンディッシュ底部の
幅方向に、これらガス吹き込み口の耐火物を複数配置す
る。その際、これら配置したガス吹き込み口のタンディ
ッシュ幅方向の合計長さが、タンディッシュ底部の全幅
の長さの50%以上になるように配置するのが好まし
く、かつ、ガス吹き込み口をタンディッシュ幅方向に均
等に配置するのが好ましい。前述の図1(b)は、タン
ディッシュの全幅にガス吹き込み口を配置する例を示
す。また図1(c)は、全幅の長さの約60%にガス吹
き込み口を均等に配置する例を示す。全幅の長さの50
%未満では、溶鋼の上昇流により、循環流を形成させる
ことが困難である。タンディッシュの全幅にガス吹き込
み口を配置して吹き込むのがより好ましい。タンディッ
シュの全幅でより均一な上昇流が得られる。
In the method of the present invention, a plurality of refractories at the gas blowing ports are arranged in the width direction of the bottom of the tundish. At this time, it is preferable to arrange the gas inlets so that the total length in the tundish width direction of the arranged gas inlets is 50% or more of the total width of the bottom of the tundish. It is preferable to arrange them evenly in the width direction. FIG. 1B shows an example in which the gas blowing ports are arranged over the entire width of the tundish. FIG. 1C shows an example in which the gas blowing ports are arranged evenly at about 60% of the length of the entire width. 50 of full width length
%, It is difficult to form a circulating flow due to the upward flow of molten steel. It is more preferable to arrange a gas blowing port over the entire width of the tundish and blow the gas. A more uniform updraft is obtained over the entire width of the tundish.

【0021】距離Aと距離Bとの比A/Bが4/6〜6
/4の範囲内のタンディッシュ底部の位置に複数配置し
た吹き込み口からガスを吹き込むことにより、タンディ
ッシュ内に2つの溶鋼の循環流が形成される。比A/B
が4/6未満または6/4を超える場合には、前述のと
おり、溶鋼の上昇流が溶鋼表面に達した後に取鍋方向ま
たは取鍋の反対方向の溶鋼流になる際に、その溶鋼流の
流れが弱いので、循環流が形成されにくい。より好まし
い距離Aと距離Bとの比A/Bの範囲は4.5/5.5
〜5.5/4.5である。
The ratio A / B of the distance A to the distance B is 4/6 to 6
By circulating gas from a plurality of inlets arranged at the bottom of the tundish within the range of / 4, two circulating flows of molten steel are formed in the tundish. Ratio A / B
Is less than 4/6 or more than 6/4, as described above, when the upward flow of molten steel reaches the molten steel surface and becomes the molten steel flow in the ladle direction or the opposite direction of the ladle, the molten steel flow Is weak, so that a circulating flow is hardly formed. A more preferable range of the ratio A / B between the distance A and the distance B is 4.5 / 5.5.
5.5 / 4.5.

【0022】タンディッシュ底部における取鍋からの溶
鋼の受湯位置とガス吹き込み位置との間の距離は0.3
〜3.0m程度とするのが望ましい。0.3m未満の短
い距離では、取鍋の下部に備えるロングノズルなどから
供給された溶鋼が不活性ガスの吹き込み位置に達する際
の溶鋼の流れが速すぎるので、ガス吹き込み口近傍で、
溶鋼の上昇流が形成されにくい。3.0mを超えて長い
場合には、タンディッシュ内の全域に及ぶ循環流が形成
されにくいとともに、タンディッシュが大型化し、経済
的でない。
The distance between the molten steel receiving position from the ladle and the gas blowing position at the bottom of the tundish is 0.3.
It is desirable to set it to about 3.0 m. At a short distance of less than 0.3 m, the flow of molten steel supplied from a long nozzle or the like provided at the lower part of the ladle reaches the inert gas blowing position because the flow of the molten steel is too fast.
An upward flow of molten steel is unlikely to be formed. When the length is longer than 3.0 m, it is difficult to form a circulating flow over the entire area in the tundish, and the tundish becomes large, which is not economical.

【0023】距離Aと距離Bとの比A/Bを上述のとお
り適正な範囲の値とし、ガスの吹き込み量は5.0〜1
5.0Nリットル/溶鋼tとする。この範囲の吹き込み
量では、吹き込まれたガスの気泡が浮上する力により、
ガス吹き込み口近傍で、溶鋼の上昇流が形成されやす
い。
The ratio A / B of the distance A and the distance B is set to a value within an appropriate range as described above, and the gas blowing amount is 5.0 to 1
5.0N liter / t of molten steel. With the blowing amount in this range, the force of the bubble of the blown gas rises,
In the vicinity of the gas injection port, an upward flow of molten steel is likely to be formed.

【0024】5.0Nリットル/溶鋼t未満では、ガス
吹き込み口近傍で、溶鋼の上昇流が形成されにくい。1
5.0Nリットル/溶鋼tを超えると、ガスの気泡によ
ってタンディッシュ内の溶鋼表面が上下に激しく変動
し、溶鋼上に添加したフラックスなどを溶鋼中に巻き込
みやすくなる。溶鋼中に巻き込まれたフラックスなど
は、鋳型内の溶鋼中にまで持ち込まれやすく、さらに、
鋳片に非金属介在物として残存しやすい。吹き込むガス
は、窒素ガス、またはArガスなどの不活性ガスを用い
ることができる。
If it is less than 5.0 Nl / t of molten steel, an upflow of the molten steel is hardly formed in the vicinity of the gas injection port. 1
If it exceeds 5.0 Nl / molten steel t, the molten steel surface in the tundish fluctuates up and down due to gas bubbles, and it becomes easy for the flux added on the molten steel to be entangled in the molten steel. Flux and the like entrained in the molten steel are easily brought into the molten steel in the mold,
It tends to remain as non-metallic inclusions in the slab. As the gas to be blown, an inert gas such as a nitrogen gas or an Ar gas can be used.

【0025】前述の図1(a)では、下堰を配置する例
を説明したが、下堰を配置しない場合の2つの循環流の
形成について、図1(a)の一部を用いて説明する。タ
ンディッシュ底部の幅方向に複数配置したガス吹き込み
口4から吹き込まれたガスの気泡15の浮上する力によ
り、溶鋼の上昇流10が形成される。上昇流10は、溶
鋼表面近傍に達した後、取鍋方向への溶鋼流11とその
反対側の溶鋼流12とに分かれる。取鍋方向に向かう溶
鋼流11は、受湯位置近傍またはタンディッシュ側壁近
傍で下方に向きを変え、1つの溶鋼の循環流が形成され
る。さらに、取鍋の反対側方向に向かう溶鋼流12は、
タンディッシュ側壁近傍で下方に向かう流れとなり、そ
の一部は給湯孔から鋳型内に流れる。ただし、ガス吹き
込み口の方向に流れる溶鋼の量が多いので、1つの溶鋼
の循環流が形成される。このようにして2つの循環流が
形成される。
In FIG. 1A described above, an example in which the lower weir is arranged has been described. However, the formation of two circulating flows in the case where the lower weir is not arranged will be described with reference to a part of FIG. I do. The upward flow 10 of the molten steel is formed by the force of the gas bubbles 15 blown from the gas blowing ports 4 arranged in the width direction of the bottom of the tundish to float. After reaching the vicinity of the molten steel surface, the ascending flow 10 is divided into a molten steel flow 11 in the ladle direction and a molten steel flow 12 on the opposite side. The molten steel flow 11 toward the ladle changes its direction downward near the hot water receiving position or near the tundish side wall, and a circulating flow of one molten steel is formed. Furthermore, the molten steel flow 12 heading in the opposite direction of the ladle is
The flow is downward in the vicinity of the tundish side wall, and a part of the flow flows from the hot water supply hole into the mold. However, since the amount of molten steel flowing in the direction of the gas injection port is large, a circulating flow of one molten steel is formed. In this way, two circulating flows are formed.

【0026】タンディッシュ底部で、少なくとも取鍋か
らの溶鋼の受湯位置とガス吹き込み位置との間の領域ま
たはガス吹き込み位置と受湯した溶鋼の鋳型への給湯孔
との間の領域に下堰を配置するのが望ましい。その際、
下堰の高さは、タンデイッシュ内の溶鋼高さの70〜8
0%とするのが望ましい。前述のとおり、循環流がより
効果的に形成されやすくなる。これらの下堰の材質は、
その他のタンディッシュの部分と同じ耐火物の材質を用
いることができる。たとえば、通常の高アルミナ質、マ
グネシア質、ジルコニア質などの耐火物でよい。
At the bottom of the tundish, at least a region between the molten steel receiving position from the ladle and the gas injection position or a region between the gas injection position and the molten steel supply hole for the molten steel received from the ladle is a lower weir. It is desirable to arrange. that time,
The height of the lower weir is 70 to 8 times the height of the molten steel in the tundish.
It is desirable to set it to 0%. As described above, the circulation flow is likely to be formed more effectively. The material of these lower weirs is
The same refractory material as the other tundish portions can be used. For example, refractories such as ordinary high alumina, magnesia, and zirconia materials may be used.

【0027】取鍋の下部に備えるノズルは、タンディッ
シュ内の溶鋼に浸漬するロングノズルを用いるのがよ
い。その際ロングノズルの吐出孔は、下向き1孔のもの
がよい。ロングノズルを用いると、タンディッシュ内の
溶鋼表面近傍に形成される溶鋼流に対して、取鍋から供
給される溶鋼が直接作用せず、それら溶鋼流が安定する
からである。
As the nozzle provided at the lower part of the ladle, a long nozzle dipped in molten steel in a tundish is preferably used. At this time, it is preferable that the ejection hole of the long nozzle has one downward hole. When a long nozzle is used, the molten steel supplied from the ladle does not directly act on the molten steel flow formed near the surface of the molten steel in the tundish, and the molten steel flows are stabilized.

【0028】図1では、1ストランドのみの場合の例で
説明したが、2つまたはそれ以上のストランドを有する
タンディッシュにも、本発明の方法を適用できる。
Although FIG. 1 shows an example in which only one strand is used, the method of the present invention can be applied to a tundish having two or more strands.

【0029】[0029]

【実施例】垂直曲げ型連続鋳造機を用いて、C含有率が
0.05質量%の低炭素鋼を厚さ200mm、幅120
0mmの断面形状が長方形の鋳片に、速度1.2m/分
で鋳造した。1ヒートは約80tである。
EXAMPLE Using a vertical bending type continuous casting machine, a low carbon steel having a C content of 0.05% by mass was formed to a thickness of 200 mm and a width of 120 mm.
A 0 mm cross section was cast into a rectangular slab at a speed of 1.2 m / min. One heat is about 80t.

【0030】タンディッシュの形状は通常の箱形とし、
その内法サイズは、幅800mm、高さ1250mm、
長さ2500mmとした。容量は約18tである。タン
ディッシュ底部で取鍋からの溶鋼の受湯位置と鋳型への
給湯孔との間の距離は2000mmとした。受湯位置ま
たは給湯孔とそれぞれ近接する側壁とのそれぞれの距離
は同じとした。溶鋼の深さは1000mmで一定となる
ように調整した。
The shape of the tundish is an ordinary box shape,
Its inner size is 800mm wide, 1250mm high,
The length was 2500 mm. The capacity is about 18t. The distance between the molten steel receiving position from the ladle and the hot water supply hole to the mold at the bottom of the tundish was 2000 mm. The distance between the hot water receiving position or the hot water supply hole and the adjacent side wall was the same. The depth of the molten steel was adjusted to be constant at 1000 mm.

【0031】タンディッシュ底部にガス吹き込み口を配
置する試験では、通常のハイアルミナ質の多孔質耐火物
の吹き込み口を用いた。1個の多孔質耐火物は、水平断
面形状が正方形で、1辺が50mmのものとし、これら
吹き込み口を下記のように配置した。すなわち、ガス吹
き込み口をタンディッシュ幅方向に複数配置したガス吹
き込み位置と取鍋から溶鋼を受けるタンディッシュ底部
の受湯位置との間の距離Aと、ガス吹き込み位置と受湯
した溶鋼の鋳型への給湯孔との間の距離Bとの比A/B
を3/7〜7/3の範囲で位置を変更して配置した。タ
ンディッシュ幅方向には、ガス吹き込み口の長さの合計
がタンディッシュの全幅の長さの30%、50%、また
は全幅になるように、ガス吹き込み口をタンディッシュ
幅方向に均等に配置した。
In the test for disposing a gas inlet at the bottom of the tundish, a normal high alumina porous refractory inlet was used. One porous refractory had a square horizontal cross section and a side of 50 mm, and these blowing ports were arranged as follows. That is, the distance A between the gas injection position where a plurality of gas injection ports are arranged in the width direction of the tundish and the hot water receiving position at the bottom of the tundish that receives the molten steel from the ladle, and the gas injection position and the mold of the molten steel received. A / B with the distance B between the hot water supply hole
Was changed in position in the range of 3/7 to 7/3 and arranged. In the width direction of the tundish, the gas injection ports are arranged uniformly in the width direction of the tundish so that the total length of the gas injection ports is 30%, 50%, or the entire width of the entire width of the tundish. .

【0032】吹き込むガスには、Arガスを用い、吹き
込み量は5.0〜15.0Nリットル/溶鋼tの範囲で
変更して試験した。また、一部の試験では、Arガスを
吹き込まなかった。
An Ar gas was used as the gas to be blown, and the amount of the blown gas was changed in the range of 5.0 to 15.0 Nl / t of molten steel for the test. In some tests, Ar gas was not blown.

【0033】一部の試験では、タンディッシュ底部で、
取鍋からの溶鋼の受湯位置とガス吹き込み位置との間の
受湯部位置近傍に、およびガス吹き込み位置と受湯した
溶鋼の鋳型への給湯孔との間の給湯部近傍に、それぞれ
下堰を配置した。受湯位置と下堰との間の距離、および
下堰と給湯孔との間の距離は、それぞれ300mmとし
た。下堰の高さは、タンデイッシュ内の溶鋼高さの80
%となるように800mmとした。
In some tests, at the bottom of the tundish,
In the vicinity of the hot water receiving position between the molten steel receiving position from the ladle and the gas blowing position, and near the hot water supplying portion between the gas blowing position and the hot water supply hole to the molten steel casting mold, respectively, Weirs were placed. The distance between the hot water receiving position and the lower weir, and the distance between the lower weir and the hot water supply hole were each 300 mm. The height of the lower weir is 80 times the height of the molten steel in the tundish.
% Was set to 800 mm.

【0034】鋳造速度など鋳造作業が安定した後、タン
ディッシュ内の受湯部近傍および鋳型内において、直径
30mm、長さ100mmの溶鋼試料をボンブ法により
採取した。得られたサンプルの横断面を研磨して、40
0倍の倍率で光学顕微鏡により5μm以上の大きさの酸
化物、すなわち非金属介在物の個数を粒径別に調査し
た。鋳型内の溶鋼中の酸化物の個数を、タンディッシュ
内の受湯部近傍の溶鋼中の酸化物の個数で除した値を粒
径別に求め、溶鋼中の酸化物の低減比として表した。し
たがって、酸化物の低減比の値が小さい方がより効果的
に酸化物が除去されたことを意味する。
After the casting operation such as the casting speed was stabilized, a molten steel sample having a diameter of 30 mm and a length of 100 mm was collected by the bomb method in the vicinity of the hot water receiving portion in the tundish and in the mold. The cross section of the obtained sample was polished to 40
The number of oxides having a size of 5 μm or more, that is, nonmetallic inclusions was examined for each particle size by an optical microscope at 0 × magnification. The value obtained by dividing the number of oxides in the molten steel in the mold by the number of oxides in the molten steel in the vicinity of the receiving part in the tundish was determined for each particle size, and expressed as a reduction ratio of the oxides in the molten steel. Therefore, the smaller the value of the oxide reduction ratio, the more effectively the oxide was removed.

【0035】さらに、タンディッシュの形状、Arガス
の吹き込み条件、鋳造速度などの鋳造条件の各試験条件
に基づいて、タンディッシュ内の溶鋼の流動解析を行っ
た。溶鋼の流動解析に際して、エネルギー保存の式、運
動量保存の式、質量保存の式、ガス気泡の運動方程式、
および気泡の分布密度の輸送方程式を連成させ、乱流モ
デルにはκ−εモデルを用いて解析した。
Further, the flow analysis of the molten steel in the tundish was performed based on each test condition such as the shape of the tundish, the conditions for blowing Ar gas, and the casting speed. In the flow analysis of molten steel, energy conservation equation, momentum conservation equation, mass conservation equation, gas bubble kinetic equation,
And the transport equation of the distribution density of bubbles was coupled, and the turbulence model was analyzed using a κ-ε model.

【0036】溶鋼の流動状況の解析結果から、タンディ
ッシュ内に供給された溶鋼が、ガス吹き込み口近傍で上
昇流となり、その後溶鋼の上昇流が、取鍋方向への溶鋼
流とその反対側の溶鋼流とに分かれ、タンディッシュ内
で2つの循環流が形成されるているかどうかを評価し
た。評価○は、2つの強い流れの循環流が形成されてい
る場合、評価△は、2つの循環流が形成されているが、
その流れが弱い場合、評価×は、循環流が形成されてい
ない場合とした。試験条件および試験結果を表1に示
す。
From the analysis results of the flow state of the molten steel, the molten steel supplied into the tundish becomes an upward flow near the gas injection port, and then the upward flow of the molten steel flows in the ladle direction and on the opposite side. It was evaluated whether or not two circulating flows were formed in the tundish by being divided into a molten steel flow. Evaluation ○ indicates that two strong circulating flows are formed, and evaluation △ indicates that two circulating flows are formed.
When the flow was weak, the evaluation x was made when the circulation flow was not formed. Table 1 shows the test conditions and test results.

【0037】[0037]

【表1】 本発明例の試験No.1〜No.4では、ガス吹き込み
位置に関する比A/Bの値を4/6または6/4とし、
全幅からArガスを5.0Nリットル/溶鋼tまたは1
5.0Nリットル/溶鋼tの吹き込みガス量で溶鋼中に
吹き込んだ。
[Table 1] Test No. of the present invention example. 1 to No. In 4, the value of the ratio A / B for the gas injection position is set to 4/6 or 6/4,
5.0Nl / Molten steel t or 1 from full width
The gas was blown into the molten steel at a blowing gas amount of 5.0 Nl / t of molten steel.

【0038】これらの試験では、50μmを超える大き
さの溶鋼中の酸化物の低減比が0.05〜0.14であ
り、溶鋼中の酸化物が浮上して、溶鋼系外に効果的に除
去された。10μm未満の溶鋼中の微小な酸化物も、そ
の低減比は0.27〜0.45で、溶鋼系外に効果的に
除去された。また、溶鋼の流動解析結果でも、2つの強
い流れの循環流が形成されるのが確認できた。
In these tests, the reduction ratio of oxides in molten steel having a size exceeding 50 μm was 0.05 to 0.14, and the oxides in the molten steel floated to effectively move out of the molten steel system. Removed. Fine oxides in molten steel of less than 10 μm were also effectively removed outside the molten steel system at a reduction ratio of 0.27 to 0.45. The flow analysis results of the molten steel also confirmed that two strong circulating flows were formed.

【0039】本発明例の試験No.5およびNo.6で
は、ガス吹き込み位置に関する比A/Bの値を5/5と
し、全幅からArガスを5.0Nリットル/溶鋼tまた
は15.0Nリットル/溶鋼tの吹き込みガス量で溶鋼
中に吹き込んだ。
Test No. of the present invention example 5 and No. 5 In No. 6, the value of the ratio A / B with respect to the gas injection position was set to 5/5, and Ar gas was blown into the molten steel from the entire width at a blowing gas amount of 5.0 Nl / molten steel t or 15.0 Nl / molten steel t.

【0040】これらの試験では、50μmを超える大き
さの溶鋼中の酸化物の低減比が0.02または0.10
であり、溶鋼中の酸化物が浮上して、溶鋼系外に効果的
に除去された。10μm未満の溶鋼中の微小な酸化物
も、その低減比は0.25または0.40で、効果的に
溶鋼系外に除去された。さらに、溶鋼の流動解析結果で
も、2つの強い流れの循環流が形成されるのが確認でき
た。前述の試験No.1〜No.4より良い結果であっ
たのは、ガス吹き込み位置に関する比A/Bの値を5/
5とした効果である。
In these tests, the reduction ratio of oxides in molten steel having a size exceeding 50 μm was 0.02 or 0.10.
The oxides in the molten steel floated and were effectively removed outside the molten steel system. Even small oxides in the molten steel of less than 10 μm were effectively removed outside the molten steel system at a reduction ratio of 0.25 or 0.40. Furthermore, the flow analysis results of the molten steel also confirmed that two strong circulating flows were formed. The test No. described above. 1 to No. The result that was better than 4 was that the value of the ratio A / B with respect to the gas injection position was 5/5.
This is an effect of 5.

【0041】本発明例の試験No.7およびNo.8で
は、ガス吹き込み位置に関する比A/Bの値を5/5と
し、全幅からArガスを5.0Nリットル/溶鋼tまた
は15.0Nリットル/溶鋼tの吹き込みガス量で溶鋼
中に吹き込んだ。また、ともにタンディッシュ底部に下
堰を配置した。
Test No. of the present invention example 7 and No. 7 In No. 8, the value of the ratio A / B with respect to the gas injection position was set to 5/5, and Ar gas was blown into the molten steel from the entire width at a blowing gas amount of 5.0 Nl / molten steel t or 15.0 Nl / molten steel t. In both cases, a lower weir was placed at the bottom of the tundish.

【0042】これらの試験では、50μmを超える大き
さの溶鋼中の酸化物の低減比が0.02または0.08
であり、溶鋼中の酸化物が浮上して、溶鋼系外により効
果的に除去された。10μm未満の溶鋼中の微小な酸化
物も、その低減比は0.19または0.35で、より効
果的に溶鋼系外に除去された。さらに、溶鋼の流動解析
結果でも、2つの強い流れの循環流が形成されるのが確
認できた。前述の試験No.5およびNo.6より良い
結果であったのは、タンディッシュ底部に下堰を配置し
た効果である。
In these tests, the reduction ratio of oxides in molten steel having a size exceeding 50 μm was 0.02 or 0.08.
The oxides in the molten steel floated and were more effectively removed outside the molten steel system. Fine oxides in the molten steel of less than 10 μm were also removed more effectively outside the molten steel system at a reduction ratio of 0.19 or 0.35. Furthermore, the flow analysis results of the molten steel also confirmed that two strong circulating flows were formed. The test No. described above. 5 and No. 5 The result that was better than 6 was the effect of disposing the lower weir at the bottom of the tundish.

【0043】本発明例の試験No.9では、ガス吹き込
む位置に関し、タンディッシュの全幅の30%相当から
しか吹き込まなかった。その他の試験条件は、試験N
o.6と同じとした。50μmを超える大きさの溶鋼中
の酸化物の低減比は0.26であり、また10μm未満
の溶鋼中の微小な酸化物の低減比は0.50で、酸化物
の除去効果はあるが、その効果が試験No.1〜No.
8に比べてやや小さかった。溶鋼の流動解析結果では、
2つの循環流が形成されているが、その流れがやや弱い
ことが確認されており、試験結果を裏付ける解析結果で
あった。
Test No. of the present invention example. In No. 9, the gas was blown only from a position corresponding to 30% of the entire width of the tundish with respect to the gas blowing position. Other test conditions are test N
o. Same as 6. The reduction ratio of oxide in molten steel having a size exceeding 50 μm is 0.26, and the reduction ratio of minute oxide in molten steel of less than 10 μm is 0.50, which has an oxide removing effect. The effect is shown in Test No. 1 to No.
It was a little smaller than 8. In the flow analysis results of molten steel,
Although two circulating flows were formed, it was confirmed that the flows were slightly weak, which was an analysis result supporting the test results.

【0044】比較例の試験No.10では、Arガスを
溶鋼中に吹き込まなかった。10μm未満の溶鋼中の微
小な酸化物の低減比は0.98で、ほとんど浮上、除去
されなかった。溶鋼の流動解析結果では、循環流は形成
されなかった。
Test No. of Comparative Example In No. 10, Ar gas was not blown into the molten steel. The reduction ratio of minute oxides in the molten steel of less than 10 μm was 0.98, which was hardly levitated or removed. In the flow analysis of the molten steel, no circulating flow was formed.

【0045】比較例の試験No.11およびNo.12
では、ガス吹き込み位置に関する比A/Bの値を3/7
または7/3として試験した。これらの値は、本発明の
方法で規定する条件を外れた値である。また、全幅から
Arガスを5.0Nリットル/溶鋼tまたは15.0N
リットル/溶鋼tの吹き込みガス量で吹き込んだ。これ
らの吹き込みガス量の値は、本発明の方法で規定する条
件を外れた値である。
Test No. of Comparative Example 11 and No. 12
Then, the value of the ratio A / B with respect to the gas injection position is 3/7.
Or tested as 7/3. These values are out of the conditions defined by the method of the present invention. In addition, from the entire width, 5.0 N l / mol of steel t or 15.0 N
The gas was blown at a rate of 1 liter / t of molten steel. These values of the blown gas amount are values outside the conditions defined by the method of the present invention.

【0046】これらの試験では、50μmを超える大き
さの溶鋼中の酸化物の低減比は0.30または0.35
であり、溶鋼中の酸化物の除去効果は小さかった。さら
に、10μm未満の溶鋼中の微小な酸化物の低減比は
0.78または0.85で、ほとんど溶鋼系外に除去さ
れなかった。溶鋼の流動解析結果でも、2つの循環流が
形成されているが、その流れが弱いことが確認されてお
り、試験結果を裏付ける解析結果であった。
In these tests, the reduction ratio of oxides in molten steel having a size exceeding 50 μm was 0.30 or 0.35.
And the effect of removing oxides in the molten steel was small. Further, the reduction ratio of minute oxides in the molten steel of less than 10 μm was 0.78 or 0.85, and was hardly removed outside the molten steel system. In the flow analysis results of molten steel, two circulating flows were formed, but it was confirmed that the flows were weak, and the analysis results supported the test results.

【0047】比較例の試験No.13およびNo.14
では、ガス吹き込み位置に関する比A/Bの値を5/5
とした。この値は、本発明の方法で規定する条件の範囲
内の値である。また、全幅からArガスを2.5Nリッ
トル/溶鋼tまたは20.0Nリットル/溶鋼tの吹き
込みガス量で溶鋼中に吹き込んだ。これらの値は、本発
明の方法で規定する条件を外れた値である。
Test No. of Comparative Example 13 and No. 14
Then, the value of the ratio A / B with respect to the gas injection position is 5/5
And This value is a value within the range defined by the method of the present invention. In addition, Ar gas was blown into the molten steel from the entire width at a blowing gas amount of 2.5 N l / t molten steel or 20.0 N l / t molten steel t. These values are out of the conditions defined by the method of the present invention.

【0048】ガスの吹き込み量が2.5Nリットル/溶
鋼tと少ない試験No.13では、50μmを超える大
きさの溶鋼中の酸化物の低減比は0.35であり、溶鋼
中の酸化物の除去効果は小さかった。さらに、10μm
未満の溶鋼中の微小な酸化物の低減比は0.85で、ほ
とんど溶鋼系外に除去されなかった。溶鋼の流動解析結
果でも、ガスの吹き込み量が少ないために、循環流が形
成されていないことが確認された。
Test No. 1 with a small gas injection amount of 2.5 Nl / t of molten steel. In No. 13, the reduction ratio of the oxide in the molten steel having a size exceeding 50 μm was 0.35, and the effect of removing the oxide in the molten steel was small. Furthermore, 10 μm
The reduction ratio of minute oxides in the molten steel less than 0.85 was hardly removed outside the molten steel system. The results of the flow analysis of the molten steel also confirmed that a circulating flow was not formed because the amount of gas blown was small.

【0049】ガスの吹き込み量が20.0Nリットル/
溶鋼tと多い試験試験No.14では、粒径別のそれぞ
れの溶鋼中の酸化物の低減比は0.80〜1.20であ
り、タンディッシュ内に供給された溶鋼中の大きな酸化
物が、むしろ増加する結果となった。溶鋼の流動解析結
果では、循環流が形成されることが確認できているが、
ガスの吹き込み量が多すぎて、タンデイッシュ内の溶鋼
表面のフラックスなどを溶鋼中に巻き込んだため悪い結
果となった。
The gas blowing rate is 20.0 Nl /
Test No. In No. 14, the reduction ratio of oxides in each molten steel by the particle size was 0.80 to 1.20, and the large oxides in the molten steel supplied into the tundish resulted in an increase. . The flow analysis results of molten steel confirmed that a circulating flow was formed,
The amount of gas blown was too large and the flux on the molten steel surface in the tundish was involved in the molten steel, resulting in a bad result.

【0050】[0050]

【発明の効果】本発明の方法の適用により、安価な設備
費および製造コストで溶鋼中の微小な酸化物まで除去で
き、清浄性に優れた鋳片を得ることができる。
According to the method of the present invention, even minute oxides in molten steel can be removed at low equipment cost and production cost, and a cast piece excellent in cleanliness can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法を適用し、タンディッシュ内に2
つの溶鋼の循環流が形成される場合を示す模式図であ
る。
FIG. 1 shows the application of the method of the present invention to a 2
It is a schematic diagram which shows the case where the circulation flow of two molten steels is formed.

【符号の説明】[Explanation of symbols]

1:取鍋 2:ロングノズル 3:タンディッシュ 4:ガス吹き込み口 5:給湯孔 6:浸漬ノズル 7:鋳型 8:下堰 9:下堰 10:上昇流 11:取鍋方向への溶鋼流 12:反対側の溶鋼流 13:循環流 14:循環流 15:気泡 16:溶鋼 A:タンディッシュ底部における取鍋からの溶鋼の受湯
位置とガス吹き込み位置との間の距離 B:タンディッシュ底部におけるガス吹き込み位置と受
湯した溶鋼の鋳型への給湯孔との間の距離 C:取鍋から溶鋼を受けるタンディッシュ底部の受湯位
1: Ladle 2: Long nozzle 3: Tundish 4: Gas inlet 5: Hot water supply hole 6: Immersion nozzle 7: Mold 8: Lower weir 9: Lower weir 10: Upflow 11: Molten steel flow toward ladle 12 : Molten steel flow on the opposite side 13: Circulating flow 14: Circulating flow 15: Bubbles 16: Molten steel A: Distance between hot metal receiving position from ladle at ladle bottom and gas blowing position B: Tundish bottom The distance between the gas injection position and the hot water supply hole to the mold of the molten steel that has been received C: The receiving position at the bottom of the tundish that receives molten steel from the ladle

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】取鍋から溶鋼を受けるタンディッシュ底部
の受湯位置と受湯した溶鋼の鋳型への給湯孔とを結ぶ方
向に垂直な方向であるタンディッシュ底部の幅方向にガ
ス吹き込み口を複数配置し、これらガス吹き込み口を複
数配置したガス吹き込み位置と上記タンディッシュ底部
の受湯位置との間の距離Aと、上記ガス吹き込み位置と
上記鋳型への給湯孔との間の距離Bとの比A/Bを4/
6〜6/4の範囲の値とし、かつガスの吹き込み量をタ
ンディッシュを通過する溶鋼t当たり5.0〜15.0
Nリットルとする条件で、タンディッシュ内の溶鋼中に
ガスを吹き込むことを特徴とする鋼の連続鋳造方法。
1. A gas blowing port is provided in a width direction of a bottom of a tundish, which is a direction perpendicular to a direction connecting a hot water receiving position of a bottom of a tundish for receiving molten steel from a ladle and a hot water supply hole to a casting mold of the received molten steel. A distance A between a gas injection position where a plurality of gas injection ports are arranged and a hot water receiving position at the bottom of the tundish, a distance B between the gas injection position and a hot water supply hole to the mold, and Ratio A / B of 4 /
The value is in the range of 6 to 6/4, and the amount of gas blown is 5.0 to 15.0 per molten steel t passing through the tundish.
A continuous casting method for steel, wherein gas is blown into molten steel in a tundish under a condition of N liters.
JP2000197671A 2000-06-30 2000-06-30 Method for continuously casting steel Pending JP2002011555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000197671A JP2002011555A (en) 2000-06-30 2000-06-30 Method for continuously casting steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000197671A JP2002011555A (en) 2000-06-30 2000-06-30 Method for continuously casting steel

Publications (1)

Publication Number Publication Date
JP2002011555A true JP2002011555A (en) 2002-01-15

Family

ID=18695961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000197671A Pending JP2002011555A (en) 2000-06-30 2000-06-30 Method for continuously casting steel

Country Status (1)

Country Link
JP (1) JP2002011555A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110891710A (en) * 2017-07-14 2020-03-17 株式会社Posco Molten material processing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110891710A (en) * 2017-07-14 2020-03-17 株式会社Posco Molten material processing apparatus
US11203059B2 (en) 2017-07-14 2021-12-21 Posco Molten material treatment apparatus
CN110891710B (en) * 2017-07-14 2022-01-18 株式会社Posco Molten material processing apparatus

Similar Documents

Publication Publication Date Title
JP5807719B2 (en) High cleanliness steel slab manufacturing method and tundish
AU731665B2 (en) Continuous casting method, and device therefor
JP5516235B2 (en) Manufacturing method of high cleanliness steel slab by continuous casting
JP2002011555A (en) Method for continuously casting steel
JP4728724B2 (en) Continuous casting slab and manufacturing method thereof
JP5751078B2 (en) Manufacturing method of high cleanliness steel slab by continuous casting
JP5831124B2 (en) Manufacturing method of high cleanliness steel slab by continuous casting
JP4319072B2 (en) Tundish with excellent inclusion levitation
JPH09122848A (en) Cleaning method for molten steel in tundish
JP2001286992A (en) Tundish and continuous casting method
JP2007216288A (en) Continuous casting method for steel
JP5510061B2 (en) Continuous casting method
JPH04238658A (en) Immersion nozzle for continuous casting
JP2000126850A (en) Continuous casting method
JPH08117939A (en) Method for blowing air bubbles into molten steel
JPH04220148A (en) Molten steel supplying nozzle
WO2023190017A1 (en) Immersion nozzle, mold, and steel continuous casting method
JP4220848B2 (en) Tundish for continuous casting of steel with heating function
JP2000202602A (en) Method for removing inclusion in tundish for continuos casting
JP3697040B2 (en) Immersion nozzle for continuous casting of steel and method for continuous casting of steel using the same
JPH10263777A (en) Method for continuously casting steel
JP2001162357A (en) Method for continuously casting steel and tundish
JP2023066965A (en) nozzle system
JP2005028376A (en) Tundish for continuously casting steel
JP2023143363A (en) Long nozzle and nozzle system