JP5831124B2 - Manufacturing method of high cleanliness steel slab by continuous casting - Google Patents

Manufacturing method of high cleanliness steel slab by continuous casting Download PDF

Info

Publication number
JP5831124B2
JP5831124B2 JP2011230375A JP2011230375A JP5831124B2 JP 5831124 B2 JP5831124 B2 JP 5831124B2 JP 2011230375 A JP2011230375 A JP 2011230375A JP 2011230375 A JP2011230375 A JP 2011230375A JP 5831124 B2 JP5831124 B2 JP 5831124B2
Authority
JP
Japan
Prior art keywords
tundish
molten steel
weir
mold
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011230375A
Other languages
Japanese (ja)
Other versions
JP2013086147A (en
Inventor
孝平 古米
孝平 古米
三木 祐司
祐司 三木
村井 剛
剛 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011230375A priority Critical patent/JP5831124B2/en
Publication of JP2013086147A publication Critical patent/JP2013086147A/en
Application granted granted Critical
Publication of JP5831124B2 publication Critical patent/JP5831124B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、連続鋳造による高清浄度鋼鋳片の製造方法に関し、詳しくは、タンディッシュにおいて、脱酸生成物などの酸化物系非金属介在物の浮上分離を促進させて溶鋼の清浄性を高める方法に関する。   The present invention relates to a method for producing a high cleanliness steel slab by continuous casting. More specifically, the tundish promotes the floating separation of oxide-based non-metallic inclusions such as deoxidation products to improve the cleanliness of molten steel. It relates to how to increase.

鋼の連続鋳造では、取鍋内の溶鋼を一旦タンディッシュに注入し、タンディッシュ内に所定量の溶鋼を滞留させた状態で、タンディッシュから鋳型内に溶鋼を注入して鋳片を製造している。タンディッシュは、複数ヒートの連続鋳造を継続する際の取鍋交換時の溶鋼の供給機能、及び、複数の鋳型への溶鋼の分配機能を有するのみならず、タンディッシュ内に所定量の溶鋼を滞留させることで、タンディッシュから鋳型への溶鋼流出量が精度良く制御される、更には、溶鋼中に懸濁する脱酸生成物などの酸化物系非金属介在物(以下、単に「介在物」と記す)の浮上分離が促進されるなどの機能を有している。特に、近年の高品質の鉄鋼材料の要求から、タンディッシュにおいて介在物を効率的に浮上分離する技術が広く行われている。   In continuous casting of steel, the molten steel in the ladle is once poured into the tundish, and with a predetermined amount of molten steel retained in the tundish, the molten steel is poured into the mold from the tundish to produce a slab. ing. The tundish not only has the function of supplying molten steel at the time of ladle replacement when continuing continuous casting of multiple heats and the function of distributing molten steel to multiple molds, but also provides a predetermined amount of molten steel in the tundish. The amount of molten steel flowing out of the tundish from the mold to the mold is accurately controlled by the retention, and further, oxide-based nonmetallic inclusions such as deoxidation products suspended in the molten steel (hereinafter simply referred to as “inclusions”). )), And the like. In particular, due to the recent demand for high-quality steel materials, a technique for efficiently levitating and separating inclusions in tundish is widely used.

タンディッシュにおける介在物の浮上分離方法は、タンディッシュ内に堰を設置し、堰によって溶鋼の流動を制御する方法が一般的である。例えば、特許文献1には、下部に貫通孔を有し、タンディッシュの底部からタンディッシュ内の溶鋼湯面上にまで伸びる堰を、取鍋からの溶鋼の注入部位を挟んでタンディッシュ内の二箇所に相対して配置し、タンディッシュ内を受鋼領域と鋼準静止領域とに分離し、鋼準静止領域での介在物の浮上分離を目的とするタンディッシュが開示されている。   As a method for floating and separating inclusions in a tundish, a method is generally used in which a weir is installed in the tundish and the flow of molten steel is controlled by the weir. For example, in Patent Document 1, a weir that has a through hole in the lower part and extends from the bottom of the tundish to the surface of the molten steel in the tundish is placed inside the tundish with the molten steel injection site from the ladle interposed therebetween. There is disclosed a tundish that is disposed so as to be opposed to two locations, and the inside of the tundish is separated into a steel receiving region and a steel quasi-static region, and the inclusions are separated and floated in the steel quasi-static region.

特許文献2には、タンディッシュの底部に接する2個の貫通孔を有する堰によりタンディッシュ内を受鋼側と出鋼側とに分離し、且つ、前記堰の下流側にダム状の堰(下堰という)を配置し、更に、タンディッシュの長辺長さLと短辺長さWとの比L/Wを2〜7、受鋼側の容積比率を全体の10〜40%とするタンディッシュが開示されている。   In Patent Document 2, the inside of the tundish is separated into the receiving steel side and the outgoing steel side by a weir having two through holes in contact with the bottom of the tundish, and a dam-like weir ( And the ratio L / W between the long side length L and the short side length W of the tundish is 2 to 7, and the volume ratio on the steel receiving side is 10 to 40% of the whole. A tundish is disclosed.

また、特許文献3には、耐熱性組成物から形成されるタンディッシュ衝突パッドであって、該パッドが衝突面を備えたベースと、該ベースから上方に伸び且つ前記溶融金属の流れを受け入れるための上側開口部を備えた内部空間を完全に囲む無端の外側側壁部とを有し、前記外側側壁部が前記開口部へ向けて内方に且つ上方に伸びる少なくとも第1部分を備えた環状の内面を含むタンディッシュ衝突パッドが開示されている。   Patent Document 3 discloses a tundish collision pad formed from a heat-resistant composition, the pad having a collision surface, and extending upward from the base and receiving the flow of the molten metal. An endless outer side wall that completely surrounds the internal space with the upper opening, and the outer side wall has an annular shape with at least a first portion extending inward and upward toward the opening A tundish impact pad including an inner surface is disclosed.

特許文献3の技術を改善する技術も提案されており、特許文献4には、取鍋から注入される溶融金属流がタンディッシュ底部に衝突する部分に設置される、タンディッシュ内溶融金属の流動制御パッドであって、溶融金属流の衝突部を囲んでタンディッシュの底部から上方へ伸びる壁部と、該壁部の上端部位から壁部の囲み中心へ向かって伸びる庇状部とを有し、タンディッシュの長辺内壁と対向する側の壁部に、切り欠きを有する流動制御パッドが開示されている。   A technique for improving the technique of Patent Document 3 has also been proposed. Patent Document 4 describes the flow of molten metal in a tundish that is installed in a portion where a molten metal flow injected from a ladle collides with the bottom of the tundish. A control pad having a wall portion extending upward from the bottom of the tundish surrounding the collision portion of the molten metal flow, and a hook-shaped portion extending from the upper end portion of the wall portion toward the surrounding wall center. The flow control pad which has a notch in the wall part on the side facing the long side inner wall of the tundish is disclosed.

また、特許文献5には、特許文献3の衝突パッドは一体構造の耐火物であることから、衝突パッドに代えて堰とするべく、取鍋からタンディッシュへの溶融金属流に相対してタンディッシュの底部から上方へ伸びる壁部と、該壁部の上端部位から溶融金属流へ向かって伸びる庇状部と、を有する流動制御用堰であって、前記壁部の高さh及び庇状部の幅dが、0.1≦d/h≦1.0なる関係式を満足する堰が開示されている。   Further, in Patent Document 5, since the collision pad of Patent Document 3 is a refractory having an integral structure, a tank is formed relative to the molten metal flow from the ladle to the tundish so as to be a weir instead of the collision pad. A flow control weir having a wall portion extending upward from the bottom of the dish and a hook-like portion extending from the upper end portion of the wall portion toward the molten metal flow, wherein the wall portion has a height h and a hook-like shape. A weir is disclosed in which the width d of the portion satisfies the relational expression of 0.1 ≦ d / h ≦ 1.0.

更に、特許文献6には、取鍋からタンディッシュへの溶鋼流がタンディッシュ底部に衝突する部分に、該溶鋼流の衝突部を囲んでタンディッシュの底部から上方へ伸びる壁部と、該壁部の上端部位から壁部の囲み中心へ向かって伸びる庇状部とを有する流動制御パッドの配置されたタンディッシュを用い、溶鋼注入速度q(m3/min)と、庇状部を除いた流動制御パッド上面の面積A1(m2)と、流動制御パッド底面の面積A2(m2)とが、0.5<(q/A2)×(A1/A2)<5.0なる関係式を満足する条件で連続鋳造する高清浄鋼鋳片の製造方法が開示されている。 Further, Patent Document 6 discloses that a portion of the molten steel flow from the ladle to the tundish collides with the bottom of the tundish, a wall portion surrounding the collision portion of the molten steel flow and extending upward from the bottom of the tundish; Using a tundish in which a flow control pad having a bowl-shaped portion extending from the upper end portion of the section toward the wall enclosing center is disposed, the molten steel injection rate q (m 3 / min) and the bowl-shaped portion are excluded. The relational expression that the area A1 (m 2 ) of the top surface of the flow control pad and the area A2 (m 2 ) of the bottom surface of the flow control pad is 0.5 <(q / A2) × (A1 / A2) <5.0. A method of manufacturing a highly clean steel slab that is continuously cast under satisfactory conditions is disclosed.

特開昭53−6231号公報JP-A-53-6231 特開平10−216909号公報Japanese Patent Laid-Open No. 10-216909 特表平9−505242号公報JP-T 9-505242 特開2004−1077号公報JP 2004-1077 A 特開2004−98066号公報JP 2004-98066 A 特開2004−154803号公報JP 2004-154803 A

特許文献1〜6によって、タンディッシュにおける介在物の浮上分離は大幅に改善され、堰を設置しない場合に比較して溶鋼の清浄性は大幅に向上した。特に、特許文献3〜6では、「開口部へ向けて内方に且つ上方に伸びる環状の内面」、または、「壁部の上端部位から壁部の囲み中心へ向かって伸びる庇状部」により、取鍋からタンディッシュへの溶鋼注入流は溶鋼の注入部位側に戻るように攪拌されることで、溶鋼注入流が減速され、介在物の浮上分離を阻害する、タンディッシュ内での短絡流及び高速流が解消されて、介在物の浮上に寄与している。   By patent documents 1-6, the floating separation of the inclusion in a tundish was improved significantly, and the cleanliness of the molten steel improved significantly compared with the case where a weir is not installed. In particular, in Patent Documents 3 to 6, “an annular inner surface extending inward and upward toward the opening portion” or “a hook-shaped portion extending from the upper end portion of the wall portion toward the surrounding center of the wall portion”. The molten steel injection flow from the ladle to the tundish is agitated so as to return to the molten steel injection site side, so that the molten steel injection flow is decelerated and the floating separation of inclusions is hindered. In addition, the high-speed flow is eliminated and the inclusions are lifted.

しかしながら、特許文献3〜6においても、未だ改善の余地がある。即ち、特許文献5を例にとれば、取鍋からの溶鋼注入流は、タンディッシュの底部から上方へ伸びる壁部に衝突することによって流れの向きを変え、更にその上部に存在する、壁部の上端部位から壁部の囲み中心へ向かって伸びる庇状部によって溶鋼注入部位側に戻るように攪拌されるが、堰の上部開口部面積、壁部に設ける切り欠きの開口面積、庇状部を有する堰で囲まれる空間の体積及び堰の平面形状が、取鍋からタンディッシュへの溶鋼注入流量、並びに、タンディッシュから鋳型への溶鋼注入流量及び注入速度に応じた適切な形状でない場合には、取鍋からの溶鋼注入流を均一に減速することができず、つまり、堰の効果を十分に得ることができず、タンディッシュ内での介在物の浮上分離の促進は期待できない。   However, Patent Documents 3 to 6 still have room for improvement. That is, taking Patent Document 5 as an example, the molten steel injection flow from the ladle changes the direction of the flow by colliding with the wall portion extending upward from the bottom of the tundish, and further exists on the wall portion. It is stirred so as to return to the molten steel injection site side by a bowl-shaped part extending from the upper end part of the wall toward the wall enclosure center, but the upper opening area of the weir, the opening area of the notch provided in the wall part, and the bowl-shaped part The volume of the space surrounded by the weir and the planar shape of the weir are not suitable shapes according to the molten steel injection flow rate from the ladle to the tundish, and the molten steel injection flow rate and injection rate from the tundish to the mold However, the molten steel injection flow from the ladle cannot be uniformly decelerated, that is, the effect of the weir cannot be sufficiently obtained, and it is not expected to promote the floating separation of inclusions in the tundish.

本発明はこのような事情に鑑みてなされたもので、その目的とするところは、タンディッシュの溶鋼注入部位と溶鋼流出口との間に、タンディッシュ底部から上方に伸びる壁部と、該壁部の上端部位に前記溶鋼注入部位側を向いて水平方向に突出した庇状部と、を有する堰を設置したタンディッシュを用いて連続鋳造するにあたり、庇状部を有する堰の形状を、取鍋からタンディッシュへの溶鋼の注入流量、並びに、タンディッシュから鋳型への溶鋼の注入流量及び注入速度に応じて最適化することで、介在物の浮上分離を従来に比較して確実且つ有効に行うことができ、その結果、介在物起因の製品欠陥を大幅に低減することのできる、連続鋳造による高清浄度鋼鋳片の製造方法を提供することである。   The present invention has been made in view of such circumstances, and an object thereof is to provide a wall portion extending upward from the bottom of the tundish between the molten steel injection site of the tundish and the molten steel outlet, and the wall. When continuously casting using a tundish provided with a weir having a bowl-like part that faces the molten steel injection site side and projecting in the horizontal direction at the upper end part of the part, the shape of the weir having the bowl-like part is taken. By optimizing according to the flow rate of molten steel injected from the pan to the tundish and the flow rate and speed of molten steel injected from the tundish to the mold, the flotation separation of inclusions is ensured and more effective than before. It is possible to provide a method for producing a high cleanliness steel slab by continuous casting, which can be performed and, as a result, can significantly reduce product defects due to inclusions.

上記課題を解決するための本発明の要旨は以下のとおりである。
(1)脱酸された溶鋼を取鍋から一旦タンディッシュに注入し、次いでタンディッシュから鋳型に注入して鋼鋳片を連続鋳造するにあたり、
取鍋からの溶鋼注入流がタンディッシュ底部に衝突する溶鋼注入部位と、タンディッシュから鋳型への溶鋼流出口との間に、前記溶鋼注入部位を四方向から囲んでタンディッシュの底部から上方に伸びる壁部と、該壁部の上端部位に前記溶鋼注入部位側を向いて水平方向に突出した庇状部と、を有する堰であって、前記壁部から前記庇状部に亘って連続した切り欠きを一箇所以上有し、外形が矩形の堰を配置したタンディッシュを用い、
前記堰の上部開口部面積、前記切り欠きの開口面積、前記堰で囲まれる空間の体積、前記堰の矩形外形の長辺長さ及び前記堰の矩形外形の短辺長さに対して、取鍋からタンディッシュへの溶鋼の注入流量と、タンディッシュから鋳型への溶鋼の注入流量及びタンディッシュから鋳型への溶鋼の注入速度とが、下記の(1)式の関係を満足するように、
取鍋からタンディッシュへの溶鋼注入及びタンディッシュから鋳型への溶鋼注入を制御しながら鋼鋳片を連続鋳造することを特徴とする、連続鋳造による高清浄度鋼鋳片の製造方法。
3.0≦(m×u)×(S1/Q)×(1/V)×(X/Y)×(1+S2)≦50 …(1)
但し、(1)式において、mは、タンディッシュから鋳型への溶鋼の注入流量(トン/秒)、uは、タンディッシュから鋳型への溶鋼の注入速度(m/秒)、Qは、取鍋からタンディッシュへの溶鋼の注入流量(m3/秒)、S1は、庇状部を有する堰の上部開口部面積(m2)、S2は、切り欠きの開口面積(m2)、Vは、庇状部を有する堰で囲まれる空間の体積(m3)、Xは、堰の矩形外形の長辺長さ(m)、Yは、堰の矩形外形の短辺長さ(m)である。
(2)前記の取鍋からタンディッシュへの溶鋼注入を、前記取鍋の底部に設置され、その下端部がタンディッシュ内溶鋼に浸漬されるロングノズルを介して行い、且つ、ロングノズル周囲におけるタンディッシュ内溶鋼の表面流速が下記の(2)式の範囲内となるように制御されていることを特徴とする、上記(1)に記載の連続鋳造による高清浄度鋼鋳片の製造方法。
15≦uS≦50 …(2)
但し、(2)式において、uSは、ロングノズル周囲におけるタンディッシュ内溶鋼の表面流速(cm/秒)である。
(3)前記タンディッシュには、前記堰と前記溶鋼流出口との間に、更に、少なくとも下端部を溶鋼に浸漬し、上端部を溶鋼から突出させる上堰が設置されており、該上堰の設置位置及び溶鋼中への浸漬深さが下記の(3)式の関係を満たすように構成されていることを特徴とする、上記(1)または上記(2)に記載の連続鋳造による高清浄度鋼鋳片の製造方法。
0.1<(L/M)×(1/D)×(h/H)<1.9 …(3)
但し、(3)式において、Lは、タンディッシュの長辺長さ(m)、Mは、連続鋳造機のストランド個数(−)、Dは、溶鋼注入部位から上堰までの距離(m)、hは、定常鋳造時の上堰の溶鋼中浸漬深さ(m)、Hは、定常鋳造時のタンディッシュ内溶鋼湯面高さ(m)である。
The gist of the present invention for solving the above problems is as follows.
(1) When deoxidized molten steel is once poured into a tundish from a ladle and then poured into a mold from the tundish to continuously cast a steel slab,
Between the molten steel injection site where the molten steel injection flow from the ladle collides with the bottom of the tundish and the molten steel outlet from the tundish to the mold, the molten steel injection site is surrounded from four directions and upward from the bottom of the tundish. A weir having an extending wall portion and a hook-like portion protruding in the horizontal direction facing the molten steel injection portion side at an upper end portion of the wall portion, and continuous from the wall portion to the hook-like portion Use a tundish with one or more cutouts and a weir with a rectangular outer shape,
For the upper opening area of the weir, the opening area of the notch, the volume of the space surrounded by the weir, the long side length of the rectangular outer shape of the weir and the short side length of the rectangular outer shape of the weir. In order that the injection flow rate of molten steel from the pan to the tundish, the injection flow rate of molten steel from the tundish to the mold and the injection rate of molten steel from the tundish to the mold satisfy the relationship of the following formula (1):
A method for producing a high cleanliness steel slab by continuous casting, wherein the steel slab is continuously cast while controlling the molten steel injection from the ladle to the tundish and the molten steel injection from the tundish to the mold.
3.0 ≦ (m × u) × (S1 / Q) × (1 / V) × (X / Y) × (1 + S2) ≦ 50 (1)
In Equation (1), m is the flow rate of molten steel injected from the tundish to the mold (ton / second), u is the injection rate of molten steel from the tundish to the mold (m / second), and Q is the intake flow rate. The flow rate of molten steel from the pan to the tundish (m 3 / sec), S1 is the upper opening area (m 2 ) of the weir with the bowl-shaped part, S2 is the opening area (m 2 ) of the notch, V Is the volume (m 3 ) of the space surrounded by the weir having the hook-shaped part, X is the long side length (m) of the rectangular outer shape of the weir, Y is the short side length (m) of the rectangular outer shape of the weir It is.
(2) Molten steel injection from the ladle to the tundish is performed through a long nozzle that is installed at the bottom of the ladle and the lower end is immersed in the molten steel in the tundish, and around the long nozzle The method for producing a high cleanliness steel slab by continuous casting according to (1) above, wherein the surface flow velocity of the molten steel in tundish is controlled to be within the range of the following formula (2): .
15 ≦ u S ≦ 50 (2)
However, in the equation (2), u S is the surface flow velocity (cm / second) of the molten steel in the tundish around the long nozzle.
(3) The tundish is further provided with an upper weir between the weir and the molten steel outlet, wherein at least the lower end is immersed in the molten steel and the upper end protrudes from the molten steel. The height by continuous casting according to (1) or (2) above, wherein the installation position of the steel and the immersion depth in the molten steel satisfy the relationship of the following formula (3): A method for producing clean steel slabs.
0.1 <(L / M) × (1 / D) × (h / H) <1.9 (3)
However, in the formula (3), L is the long side length (m) of the tundish, M is the number of strands of the continuous casting machine (−), and D is the distance (m) from the molten steel injection site to the upper weir. , H is the immersion depth (m) in the molten steel of the upper weir during steady casting, and H is the molten steel surface height (m) in the tundish during steady casting.

本発明によれば、庇状部を有する堰の形状を鋳造条件に基づいて最適化し、更に、この堰の形状に応じて、取鍋からタンディッシュへの溶鋼の注入流量、並びに、タンディッシュから鋳型への溶鋼の注入量及び注入速度を所定の範囲に制御するので、タンディッシュにおける介在物の浮上分離が促進され、鋳型に注入される溶鋼の清浄性が高まり、連続鋳造される鋼鋳片の清浄度が向上して、介在物起因の製品欠陥を大幅に低減することが実現される。   According to the present invention, the shape of the weir having the hook-like portion is optimized based on the casting conditions, and further, according to the shape of the weir, the flow rate of the molten steel from the ladle to the tundish, as well as from the tundish The amount of molten steel injected into the mold and the injection speed are controlled within a predetermined range, so that the floating separation of inclusions in the tundish is promoted, the cleanliness of the molten steel injected into the mold is increased, and the steel slab is continuously cast. This improves the cleanliness of the product and significantly reduces product defects caused by inclusions.

本発明で使用する連続鋳造設備のタンディッシュ及び鋳型の部分を示す正面断面概略図である。It is a front cross-sectional schematic diagram which shows the part of the tundish and casting_mold | template of the continuous casting equipment used by this invention. 図1に示すタンディッシュの平面図である。It is a top view of the tundish shown in FIG. 図1に示すタンディッシュの側面図である。It is a side view of the tundish shown in FIG. 鋼板での介在物起因の欠陥の発生密度に及ぼす(m×u)×(S1/Q)×(1/V)×(X/Y)×(1+S2)の影響を調査した結果を示す図である。It is a figure which shows the result of investigating the influence of (m × u) × (S1 / Q) × (1 / V) × (X / Y) × (1 + S2) on the density of defects due to inclusions in the steel sheet. is there. 鋼板での介在物起因の欠陥の発生密度に及ぼす溶鋼の表面流速uSの影響を調査した結果を示す図である。Is a diagram showing the result of investigating the influence of the surface velocity u S of the molten steel on the generation density of inclusions caused defects in the steel sheet. タンディッシュ内溶鋼の表面流速uSの測定方法を示す概略図である。It is a schematic diagram showing a method of measuring the surface velocity u S tundish molten steel. 鋼板での介在物起因の欠陥の発生密度に及ぼす上堰の設置位置及び溶鋼中への浸漬深さの影響を調査した結果を示す図である。It is a figure which shows the result of having investigated the influence of the installation position of the upper dam and the immersion depth in molten steel on the generation density of the defect resulting from the inclusion in a steel plate. 鋳片での介在物数の調査結果を、本発明例、比較例、従来例で対比して示す図である。It is a figure which shows the investigation result of the number of inclusions in a slab in comparison with an example of the present invention, a comparative example, and a conventional example.

以下、添付図面を参照して本発明を具体的に説明する。図1は、本発明の実施の形態を示す図であって、連続鋳造設備のタンディッシュ及び鋳型の部分を示す正面断面概略図、図2は、図1に示すタンディッシュの平面図、図3は、図1に示すタンディッシュの側面図である。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. 1 is a diagram showing an embodiment of the present invention, and is a schematic front sectional view showing a tundish and a mold part of a continuous casting facility, FIG. 2 is a plan view of the tundish shown in FIG. FIG. 2 is a side view of the tundish shown in FIG. 1.

図1〜3において、符号1はタンディッシュ、2は鋳型、3は取鍋(図示せず)の底部に取り付けられたロングノズル、4はタンディッシュ1の底部に取り付けられた浸漬ノズルであり、予めアルミニウム、珪素、チタンなどの脱酸材で脱酸され、取鍋内に収容された溶鋼12がロングノズル3を介してタンディッシュ1に注入されながら、タンディッシュ内に所定量の溶鋼12を滞留させた状態で、タンディッシュ内の溶鋼12が浸漬ノズル4を介して鋳型2に注入されて、鋼鋳片13が製造されている。これらの図は、2台の鋳型2で、2条(2ストランド)のスラブ鋳片を連続鋳造する図である。   1-3, reference numeral 1 is a tundish, 2 is a mold, 3 is a long nozzle attached to the bottom of a ladle (not shown), 4 is an immersion nozzle attached to the bottom of the tundish 1, A predetermined amount of molten steel 12 is introduced into the tundish while the molten steel 12 previously deoxidized with a deoxidizing material such as aluminum, silicon, titanium, etc. and is poured into the tundish 1 through the long nozzle 3. In the state of being retained, the molten steel 12 in the tundish is injected into the mold 2 through the immersion nozzle 4 to produce a steel slab 13. These drawings are diagrams in which two slab slabs are continuously cast with two molds 2.

本発明で使用するタンディッシュ1は、図1〜3に示すように、取鍋(図示せず)からロングノズル3を介してタンディッシュ1に注入される溶鋼注入流がタンディッシュ1の底部に衝突する位置である溶鋼注入部位5と、タンディッシュ1から鋳型2への溶鋼流出口6との間に、タンディッシュ1の底部から鉛直方向上方に伸びる壁部8と、壁部8の上端部位に溶鋼注入部位側を向いて水平方向に突出した庇状部9と、を有する、壁部8の水平面への投影外形が矩形である堰7が配置されている。図1に示すように、堰7は、壁部8の溶鋼注入部位側の面と、庇状部9の下面側の面とが、円弧により滑らかに結ばれた形状となっているが、壁部8の溶鋼注入部位側の面と、庇状部9の下面側の面とが、直交する形状であっても構わない。   As shown in FIGS. 1 to 3, the tundish 1 used in the present invention has a molten steel injection flow injected into the tundish 1 from the ladle (not shown) through the long nozzle 3 at the bottom of the tundish 1. Between the molten steel injection | pouring site | part 5 which is a collision position, and the molten steel outflow port 6 from the tundish 1 to the casting_mold | template 2, the wall part 8 extended in the perpendicular direction upward from the bottom part of the tundish 1, and the upper end part of the wall part 8 A weir 7 having a rectangular projection shape on the horizontal plane of the wall 8 is disposed, which has a bowl-shaped portion 9 that faces the molten steel injection site side and protrudes in the horizontal direction. As shown in FIG. 1, the weir 7 has a shape in which the surface on the molten steel injection site side of the wall portion 8 and the surface on the lower surface side of the bowl-shaped portion 9 are smoothly connected by an arc. The surface on the molten steel injection site side of the portion 8 and the surface on the lower surface side of the bowl-shaped portion 9 may be orthogonal to each other.

堰7は、溶鋼注入部位5を四方から囲むように、タンディッシュ1の長辺面側にも配置されている。つまり、溶鋼注入部位5は、水平面への投影外形が正方形或いは長方形の矩形である堰7によって四方向から囲まれている。但し、堰7には、壁部8から庇状部9に亘って連続する、1.0mm以上の開口幅の切り欠き10が少なくも一箇所は設けられており、鋳造終了時には、堰7で囲まれる空間内の溶鋼12が、切り欠き10を通り、溶鋼流出口6に向いて排出されるように構成されている。   The weir 7 is also arranged on the long side surface side of the tundish 1 so as to surround the molten steel injection site 5 from four directions. That is, the molten steel injection | pouring site | part 5 is enclosed from four directions by the weir 7 whose projection external shape to a horizontal surface is a square or a rectangular rectangle. However, the weir 7 is provided with at least one notch 10 having an opening width of 1.0 mm or more continuous from the wall portion 8 to the bowl-shaped portion 9. The molten steel 12 in the enclosed space passes through the notch 10 and is discharged toward the molten steel outlet 6.

図1〜3に示すタンディッシュ1では、二箇所に切り欠き10が配置されているが、三箇所以上であっても構わない。また、図2では、切り欠き10がタンディッシュ1の長辺面側に設置されているが、切り欠き10の設置位置はタンディッシュ1の長辺面側に限る必要はなく、タンディッシュ1の短辺面側を向いた面に設置しても構わない。但し、切り欠き10がタンディッシュ1の短辺側を向いた面に設置される場合には、溶鋼流出口6に向かう短絡流が形成されて介在物の浮上が損なわれる虞があるので、切り欠き10はタンディッシュ1の長辺面側に設置することが好ましい。また、切り欠き10の開口幅を大きくすると堰7の効果が低下するので、切り欠き10の開口幅は、それぞれ30mm以下とすることが好ましい。   In the tundish 1 shown in FIGS. 1 to 3, the notches 10 are arranged in two places, but there may be three or more places. In FIG. 2, the notch 10 is installed on the long side surface side of the tundish 1, but the installation position of the notch 10 is not limited to the long side surface side of the tundish 1. You may install in the surface which faced the short side surface side. However, when the notch 10 is installed on the surface facing the short side of the tundish 1, a short-circuit flow toward the molten steel outlet 6 may be formed and the floating of the inclusion may be impaired. The notch 10 is preferably installed on the long side surface side of the tundish 1. Moreover, since the effect of the weir 7 will fall if the opening width of the notch 10 is enlarged, it is preferable that the opening width of the notch 10 is 30 mm or less, respectively.

ロングノズル3を介して溶鋼注入部位5に注入された溶鋼12は、溶鋼注入部位5に衝突した後、溶鋼注入流の落下エネルギーによってタンディッシュ1の底面に沿って四方を向いて流れるが、堰7の壁部8に衝突して上向き方向となり、更に、堰7の上端部の庇状部9によって溶鋼注入部位5を向いた流れになる。溶鋼注入部位5を向いた、四方から来る流れは、互いに衝突し合い、運動エネルギーを消費して減速する。即ち、堰7によって、ロングノズル3を介して注入された高速の溶鋼流は大幅に減速されると同時に、タンディッシュ内の溶鋼流が均一化される。これにより、タンディッシュ内での短絡流及び高速流が解消されて、これらの流れに随伴して溶鋼流出口6から鋳型2に流出する介在物が減少する。つまり、タンディッシュ1における介在物の浮上分離が促進される。   Although the molten steel 12 injected into the molten steel injection site 5 through the long nozzle 3 collides with the molten steel injection site 5, it flows in four directions along the bottom surface of the tundish 1 by the falling energy of the molten steel injection flow. 7 and collides with the wall portion 8 in the upward direction, and further flows toward the molten steel injection site 5 by the flange 9 at the upper end of the weir 7. Flows coming from four directions facing the molten steel injection site 5 collide with each other and consume kinetic energy and decelerate. That is, the high-speed molten steel flow injected through the long nozzle 3 is greatly decelerated by the weir 7, and at the same time, the molten steel flow in the tundish is made uniform. Thereby, the short circuit flow and the high-speed flow in the tundish are eliminated, and the inclusions flowing out from the molten steel outlet 6 to the mold 2 are reduced accompanying these flows. That is, the floating separation of inclusions in the tundish 1 is promoted.

但し、この堰7による作用・効果を得るためには、堰7の形状を鋳造条件に応じて最適化すると同時に、堰7の形状に応じた流量で溶鋼12をタンディッシュ1に注入するとともに、堰7の形状に応じた流量及び流速でタンディッシュ内の溶鋼12を鋳型2に注入する必要がある。   However, in order to obtain the action / effect by the weir 7, the shape of the weir 7 is optimized according to the casting conditions, and simultaneously, the molten steel 12 is injected into the tundish 1 at a flow rate according to the shape of the weir 7, It is necessary to inject the molten steel 12 in the tundish into the mold 2 at a flow rate and a flow rate corresponding to the shape of the weir 7.

即ち、堰7を配置したタンディッシュ1において、堰7の上部開口部面積、切り欠き10の開口面積、堰7で囲まれる空間の体積、堰7の矩形外形の長辺長さ、堰7の矩形外形の短辺長さ、取鍋からタンディッシュ1への溶鋼12の注入流量、タンディッシュ1から鋳型2への溶鋼12の注入流量、タンディッシュ1から鋳型2への溶鋼12の注入速度からなる8つの要因の鋼鋳片13の清浄化に及ぼす影響を調査した結果、取鍋からタンディッシュ1への溶鋼12の注入流量、並びに、タンディッシュ1から鋳型2への溶鋼12の注入流量及びタンディッシュ1から鋳型2への溶鋼12の注入速度(流速)に応じて堰7の形状を決定し、その形状の堰7を設置した上で、堰7の形状の決定に用いた鋳造条件に合致させて、溶鋼12をタンディッシュ1に注入し、且つ、タンディッシュ1から鋳型2に注入することが必要であることが分った。   That is, in the tundish 1 in which the weir 7 is arranged, the upper opening area of the weir 7, the opening area of the notch 10, the volume of the space surrounded by the weir 7, the long side length of the rectangular outer shape of the weir 7, From the short side length of the rectangular external shape, the injection flow rate of the molten steel 12 from the ladle to the tundish 1, the injection flow rate of the molten steel 12 from the tundish 1 to the mold 2, and the injection rate of the molten steel 12 from the tundish 1 to the mold 2 As a result of investigating the influence of the eight factors on the cleaning of the steel slab 13, the injection flow rate of the molten steel 12 from the ladle to the tundish 1, the injection flow rate of the molten steel 12 from the tundish 1 to the mold 2, and The shape of the weir 7 is determined in accordance with the injection speed (flow velocity) of the molten steel 12 from the tundish 1 to the mold 2, and after the weir 7 having the shape is installed, the casting conditions used for determining the shape of the weir 7 are used. Match the molten steel 12 with tande It poured into Mesh 1, and was found to be necessary to inject the tundish 1 into the mold 2.

取鍋からタンディッシュ1への溶鋼12の注入流量をQ(m3/秒)、タンディッシュ1から鋳型2への溶鋼12の注入流量をm(トン/秒)、タンディッシュ1から鋳型2への溶鋼の注入速度をu(m/秒)、堰7の上部開口部面積をS1(m2)、切り欠き10の開口面積をS2(m2)、堰7で囲まれる空間の体積をV(m3)、堰7の矩形外形の長辺長さをX(m)、堰7の矩形外形の短辺長さをY(m)として、以下に調査結果を説明する。 The flow rate of molten steel 12 from the ladle 1 to the tundish 1 is Q (m 3 / sec), the flow rate of molten steel 12 from the tundish 1 to the mold 2 is m (tons / second), and the flow rate from the tundish 1 to the mold 2 The molten steel injection speed is u (m / sec), the upper opening area of the weir 7 is S1 (m 2 ), the opening area of the notch 10 is S2 (m 2 ), and the volume of the space surrounded by the weir 7 is V The investigation results will be described below, where (m 3 ), the long side length of the rectangular outer shape of the weir 7 is X (m), and the short side length of the rectangular outer shape of the weir 7 is Y (m).

尚、堰7の上部開口部面積S1とは、四方を庇状部9で囲まれた範囲の面積であり、切り欠き10の開口面積S2とは、それぞれの切り欠き10の開口幅と堰7の高さとの乗算で求められる各開口面積の、全ての切り欠き10の合計値である。また、堰7で囲まれる空間の体積Vとは、タンディッシュ1の底面と堰7の壁部8と堰7の庇状部9の下面とで囲まれる空間の体積であり、堰7の矩形外形の長辺長さXとは、水平面への投影矩形外形の長い方の辺の長さ(図2ではタンディッシュ1の長辺面と直行する壁部8の長さ)であり、堰7の矩形外形の短辺長さYとは、水平面への投影矩形外形の短い方の辺の長さ(図2ではタンディッシュ1の長辺面と平行な壁部8の長さ)である。また、タンディッシュ1から鋳型2への溶鋼の注入速度uとは、溶鋼流出口6の上端位置における溶鋼12の下降速度である。   The upper opening area S1 of the weir 7 is an area in the range surrounded by the hook-shaped portion 9 on all sides, and the opening area S2 of the notch 10 is the opening width of each notch 10 and the weir 7 The total value of all the cutouts 10 for each opening area obtained by multiplication with the height of. The volume V of the space surrounded by the weir 7 is the volume of the space surrounded by the bottom surface of the tundish 1, the wall portion 8 of the weir 7, and the lower surface of the bowl-shaped portion 9 of the weir 7. The long side length X of the outer shape is the length of the longer side of the projected rectangular outer shape on the horizontal plane (in FIG. 2, the length of the wall portion 8 perpendicular to the long side surface of the tundish 1). The short side length Y of the rectangular external shape is the length of the shorter side of the rectangular external shape projected onto the horizontal plane (the length of the wall portion 8 parallel to the long side surface of the tundish 1 in FIG. 2). The molten steel injection speed u from the tundish 1 to the mold 2 is the descending speed of the molten steel 12 at the upper end position of the molten steel outlet 6.

図4に、横軸を、(m×u)×(S1/Q)×(1/V)×(X/Y)×(1+S2)とし、縦軸を鋼板での介在物起因の欠陥個数密度として、鋼板での介在物起因の欠陥の発生密度に及ぼす(m×u)×(S1/Q)×(1/V)×(X/Y)×(1+S2)の影響を調査した結果を示す。尚、(m×u)は、タンディッシュ1から鋳型2へ流出する際の溶鋼12の運動量であり、(S1/Q)×(1/V)は、堰7の内部に注入された溶鋼12の堰7からの上昇度合いを表し、溶鋼中介在物の上昇し易さの尺度を示すものであり、(X/Y)は、堰7の上部からの介在物上昇効率を示し、溶鋼中介在物の浮上分離の尺度を表すと考えることができる。   In FIG. 4, the horizontal axis is (m × u) × (S1 / Q) × (1 / V) × (X / Y) × (1 + S2), and the vertical axis is the number of defects due to inclusions in the steel sheet. Shows the results of investigating the influence of (m × u) × (S1 / Q) × (1 / V) × (X / Y) × (1 + S2) on the defect density due to inclusions in the steel sheet. . Incidentally, (m × u) is the momentum of the molten steel 12 when it flows out from the tundish 1 to the mold 2, and (S1 / Q) × (1 / V) is the molten steel 12 injected into the inside of the weir 7. Represents the degree to which the inclusions in the molten steel rise easily, and (X / Y) indicates the inclusion raising efficiency from the top of the weir 7, and the inclusion in the molten steel It can be thought of as a measure of the floating separation of objects.

図4に示すように、鋳型2への溶鋼12の注入流量m、鋳型2への溶鋼12の注入速度u、タンディッシュ1への溶鋼12の注入流量Q、堰7の上部開口部面積S1、切り欠き10の開口面積S2、堰7で囲まれる空間の体積V、堰7の矩形外形の長辺長さX、堰7の矩形外形の短辺長さYが、下記の(1)式を満たす場合に、鋼板における介在物起因の欠陥の発生が少なくなることが分った。   As shown in FIG. 4, the injection flow rate m of the molten steel 12 into the mold 2, the injection rate u of the molten steel 12 into the mold 2, the injection flow rate Q of the molten steel 12 into the tundish 1, the upper opening area S1 of the weir 7; The opening area S2 of the notch 10, the volume V of the space surrounded by the weir 7, the long side length X of the rectangular outer shape of the weir 7, and the short side length Y of the rectangular outer shape of the weir 7 are expressed by the following equation (1). It has been found that the occurrence of defects due to inclusions in the steel sheet is reduced when it is satisfied.

3.0≦(m×u)×(S1/Q)×(1/V)×(X/Y)×(1+S2)≦50 …(1)
(m×u)×(S1/Q)×(1/V)×(X/Y)×(1+S2)の値が3.0未満の場合、堰7からの溶鋼上昇流速が速くなりすぎ、タンディッシュ内の溶鋼表面を擾乱させ、溶鋼湯面上のタンディッシュ内スラグの巻き込みを起こす可能性があり、一方、(m×u)×(S1/Q)×(1/V)×(X/Y)×(1+S2)の値が50を超えると、堰7からの溶鋼上昇流速が遅くなり、介在物の浮上分離が不足する。従って、(m×u)×(S1/Q)×(1/V)×(X/Y)×(1+S2)の値を上記(1)式の範囲とする必要がある。
3.0 ≦ (m × u) × (S1 / Q) × (1 / V) × (X / Y) × (1 + S2) ≦ 50 (1)
When the value of (m × u) × (S1 / Q) × (1 / V) × (X / Y) × (1 + S2) is less than 3.0, the molten steel ascending flow rate from the weir 7 becomes too fast, There is a possibility that the molten steel surface in the dish will be disturbed and the slag in the tundish on the molten steel surface may be involved, while (m × u) × (S1 / Q) × (1 / V) × (X / When the value of (Y) × (1 + S2) exceeds 50, the flow rate of the molten steel from the weir 7 becomes slow, and the floating separation of inclusions is insufficient. Therefore, the value of (m × u) × (S1 / Q) × (1 / V) × (X / Y) × (1 + S2) needs to be within the range of the above equation (1).

鋳造中、取鍋交換後においてタンディッシュ内の湯面高さを定常状態に戻すまでの範囲(「非定常部」という)は、溶綱の供給流量は、取鍋からタンディッシュ1への注入流量Qと、タンディッシュ1から鋳型2への注入流量mとで異なるが、図4から明らかなように、このような非定常部においても、定常鋳造部(定常部)と同様に、(1)式の範囲に制御することで溶鋼12の清浄性が良好となることが分る。   During casting, after changing the ladle, the range until the molten metal surface height in the tundish is returned to the steady state (referred to as “unsteady part”) is the molten steel supply flow rate from the ladle to the tundish 1 Although the flow rate Q differs from the flow rate m injected from the tundish 1 into the mold 2, as is apparent from FIG. 4, even in such an unsteady portion, (1 It can be seen that the cleanliness of the molten steel 12 is improved by controlling it within the range of the formula.

また、図5は、(m×u)×(S1/Q)×(1/V)×(X/Y)×(1+S2)の値を3.0〜50の本発明の範囲として堰7からの溶鋼上昇流速を変化させ、これによって、ロングノズル3の周囲でのタンディッシュ内溶鋼の表面流速uSを変更し、ロングノズル3の周囲におけるタンディッシュ内溶鋼の表面流速uSの鋼板での介在物起因の欠陥の発生密度に及ぼす影響を調査した結果を示す図である。尚、タンディッシュ内の溶鋼12の表面流速uSは、図6に示すように、タンディッシュ内の溶鋼12に耐火物製の浸漬棒14を浸漬させ、溶鋼流によって浸漬棒14に加わる圧力を、浸漬棒14を保持する支持金具15に取り付けた歪みゲージ16で測定し、測定される圧力から溶鋼流速を求めるという方法で測定した。また、ロングノズル3の周囲における溶鋼12の表面流速uSとは、ロングノズル3の外表面から100cmの範囲内の溶鋼12の表面流速である。 FIG. 5 shows the value of (m × u) × (S1 / Q) × (1 / V) × (X / Y) × (1 + S2) from the weir 7 in the range of 3.0 to 50 of the present invention. As a result, the surface flow velocity u S of the molten steel in the tundish around the long nozzle 3 is changed, and the surface flow velocity u S of the molten steel in the tundish around the long nozzle 3 is changed. It is a figure which shows the result of having investigated the influence which it has on the generation density of the defect resulting from inclusion. As shown in FIG. 6, the surface flow velocity u S of the molten steel 12 in the tundish is obtained by immersing a refractory immersion rod 14 in the molten steel 12 in the tundish, and applying pressure applied to the immersion rod 14 by the molten steel flow. Measured by a method of measuring with a strain gauge 16 attached to a support fitting 15 holding the dip rod 14 and obtaining a molten steel flow velocity from the measured pressure. The surface flow velocity u S of the molten steel 12 around the long nozzle 3 is a surface flow velocity of the molten steel 12 within a range of 100 cm from the outer surface of the long nozzle 3.

図5に示すように、ロングノズル3の周囲での溶鋼12の表面流速uS(cm/秒)が、下記の(2)式を満たす場合に、鋼板における介在物起因の欠陥の発生が安定して少なくなることが分った。 As shown in FIG. 5, when the surface flow velocity u S (cm / sec) of the molten steel 12 around the long nozzle 3 satisfies the following formula (2), the occurrence of defects due to inclusions in the steel plate is stable. I found that it was less.

15≦uS≦50 …(2)
表面流速uSが15cm/秒未満の場合は、堰7からの溶鋼12の上昇流が弱く、つまり、介在物の浮上効果が損なわれ、一方、表面流速uSが50cm/秒超えの場合は、溶鋼湯面の擾乱によるタンディッシュ内スラグの巻き込みの虞があり、表面流速uSが(2)式の範囲内であれば、安定して介在物の浮上分離を促進させることができることが分った。即ち、(1)式を満たした上で、更に(2)式を満たすように鋳造条件を制御することが好ましいことが分った。
15 ≦ u S ≦ 50 (2)
When the surface flow velocity u S is less than 15 cm / second, the upward flow of the molten steel 12 from the weir 7 is weak, that is, the inclusion floating effect is impaired, while the surface flow velocity u S exceeds 50 cm / second. There is a risk that the slag in the tundish may be caught due to the disturbance of the molten steel surface, and if the surface flow velocity u S is within the range of the formula (2), it is possible to stably promote the floating separation of inclusions. It was. That is, it was found that it is preferable to control the casting conditions so as to satisfy the expression (2) after satisfying the expression (1).

また、本発明で使用するタンディッシュ1は、介在物の浮上をより促進させる観点から、図1に示すように、堰7と溶鋼流出口6との間に、少なくともその下端部を溶鋼12に浸漬し、その上端部を溶鋼12から突出させる上堰11が設置されたタンディッシュであることが好ましい。   In addition, the tundish 1 used in the present invention has at least a lower end portion of the molten steel 12 between the weir 7 and the molten steel outlet 6 as shown in FIG. 1 from the viewpoint of further promoting the floating of inclusions. It is preferable that the tundish is provided with an upper weir 11 that is immersed and has its upper end protruding from the molten steel 12.

図1に示す、堰7及び上堰11を有するタンディッシュ1を使用して溶鋼12を連続鋳造すると、ロングノズル3から注入された溶鋼中の介在物は、堰7により上向き方向の流動を得て、タンディッシュ内の溶鋼湯面に浮上する。一方、溶鋼湯面に浮上しなかった介在物は、その後、溶鋼流に乗って上堰11の溶鋼湯面近傍の壁部に至り、溶鋼流は、上堰11によって上向き及び下向きの流れに別れる。介在物は溶鋼12よりも密度が小さいので、溶鋼流中の介在物は、主に、上堰11によって形成される上向き流れに随伴し、溶鋼湯面に浮上して、介在物の溶鋼湯面への浮上・分離が促進される。但し、上堰11の設置位置及び溶鋼中への浸漬深さが適切でなければ、上記効果を十分に得ることはできない。   When the molten steel 12 is continuously cast using the tundish 1 having the weir 7 and the upper weir 11 shown in FIG. 1, inclusions in the molten steel injected from the long nozzle 3 obtain an upward flow by the weir 7. Ascend to the molten steel surface in the tundish. On the other hand, the inclusions that have not floated on the molten steel surface then ride on the molten steel flow and reach the wall near the molten steel surface of the upper weir 11, and the molten steel flow is separated into upward and downward flows by the upper weir 11. . Since inclusions have a density lower than that of molten steel 12, inclusions in the molten steel flow mainly follow the upward flow formed by the upper weir 11 and float on the molten steel surface. Floating / separating is promoted. However, if the installation position of the upper weir 11 and the immersion depth in the molten steel are not appropriate, the above effect cannot be obtained sufficiently.

そこで、(m×u)×(S1/Q)×(1/V)×(X/Y)×(1+S2)の値を13.1の一定とした条件で、上堰11の設置位置及び溶鋼中への浸漬深さを変化させ、鋼板での介在物起因の欠陥の発生密度に及ぼす、上堰11の設置位置及び溶鋼中への浸漬深さの影響を調査した。調査結果を図7に示す。   Therefore, the position of the upper weir 11 and the molten steel are set under the condition that the value of (m × u) × (S1 / Q) × (1 / V) × (X / Y) × (1 + S2) is constant at 13.1. The effect of the installation position of the upper weir 11 and the immersion depth in the molten steel on the occurrence density of defects due to inclusions in the steel sheet was investigated by changing the immersion depth inside. The survey results are shown in FIG.

図7に示すように、上堰11の設置位置及び溶鋼中への浸漬深さは、下記の(3)式の関係を満たすことが好ましいことが分った。尚、図7の横軸の(L/M)×(1/D)×(h/H)は、鋳型の上方に相当するタンディッシュ内におけるタンディッシュ内スラグの巻き込み防止の指標である。   As shown in FIG. 7, it has been found that the installation position of the upper weir 11 and the immersion depth in the molten steel preferably satisfy the relationship of the following expression (3). Note that (L / M) × (1 / D) × (h / H) on the horizontal axis in FIG. 7 is an index for preventing the slag in the tundish from being caught in the tundish corresponding to the upper part of the mold.

0.1<(L/M)×(1/D)×(h/H)<1.9 …(3)
但し、(3)式において、Lは、タンディッシュ1の長辺長さ(m)、Mは、連続鋳造機のストランド個数(−)、Dは、溶鋼注入部位5から上堰11までの距離(m)、hは、定常鋳造時の上堰11の溶鋼中浸漬深さ(m)、Hは、定常鋳造時のタンディッシュ内溶鋼湯面高さ(m)である。
0.1 <(L / M) × (1 / D) × (h / H) <1.9 (3)
However, in Formula (3), L is the long side length (m) of the tundish 1, M is the number of strands (−) of the continuous casting machine, and D is the distance from the molten steel injection site 5 to the upper weir 11. (M), h is the immersion depth (m) in the molten steel of the upper weir 11 during steady casting, and H is the molten steel surface height (m) in the tundish during steady casting.

(L/M)×(1/D)×(h/H)の値が0.1以下の場合は、上堰11の設置位置がロングノズル3から離れすぎており、介在物の浮上・分離効果が得られにくい。或いは、上堰11の浸漬深さが小さすぎて、介在物の浮上・分離効果が得られにくい。一方、(L/M)×(1/D)×(h/H)の値が1.9以上の場合は、上堰11がロングノズル3に近すぎるために溶綱12が上堰11に衝突後、流速の速い下降流が発生し、この下降流により介在物の浮上が阻害される。或いは、上堰11の浸漬深さが大きすぎ、上堰11の設置位置で流速の速い下降流ができやすく、この下降流により介在物の浮上が阻害される。(L/M)×(1/D)×(h/H)の値が(3)式を満足する場合は、上堰11による介在物の浮上・分離効果を安定して得ることができる。   When the value of (L / M) × (1 / D) × (h / H) is 0.1 or less, the installation position of the upper weir 11 is too far from the long nozzle 3 and the inclusions float and separate. It is difficult to obtain the effect. Alternatively, the immersion depth of the upper weir 11 is too small, and the inclusion floating and separation effects are difficult to obtain. On the other hand, when the value of (L / M) × (1 / D) × (h / H) is 1.9 or more, the upper weir 11 is too close to the long nozzle 3, so that the molten steel 12 is in the upper weir 11. After the collision, a descending flow having a high flow velocity is generated, and the rising of the inclusions is hindered by the descending flow. Alternatively, the immersion depth of the upper weir 11 is too large, and a downward flow having a high flow rate is easily generated at the installation position of the upper weir 11, and the rising of the inclusions is hindered by this downward flow. When the value of (L / M) × (1 / D) × (h / H) satisfies the expression (3), the effect of floating and separating inclusions by the upper weir 11 can be stably obtained.

ここで、堰7は、上方に溶鋼12が存在することを前提とした堰であり、従って、堰7の高さは、少なくとも、堰7を配置する位置でのタンディッシュ内の溶鋼深さ未満とすることが必要である。また、好ましくは、堰7の高さは、堰7を配置する位置でのタンディッシュ内の溶鋼深さの1/2以下とする。一方、堰7の高さが余りに低いと、堰7の効果が得られないので、堰7の高さは100mm以上確保することが好ましい。   Here, the weir 7 is a weir on the premise that the molten steel 12 exists above. Therefore, the height of the weir 7 is at least less than the molten steel depth in the tundish at the position where the weir 7 is disposed. Is necessary. Preferably, the height of the weir 7 is not more than ½ of the molten steel depth in the tundish at the position where the weir 7 is disposed. On the other hand, if the height of the weir 7 is too low, the effect of the weir 7 cannot be obtained. Therefore, the height of the weir 7 is preferably secured to 100 mm or more.

また、実際の溶鋼注入部位5は「点」ではなく、或る程度の面積を持っており、このような溶鋼注入部位を四方から囲むと同時に、堰7で囲まれる空間の絶対量を確保するために、堰7の上部開口部のタンディッシュ長辺方向の開口長さを、少なくともロングノズル3の下端部内径と同等とし、好ましくはそれ以上とする。尚、図1では、面積を有する溶鋼注入部位の中心位置を、溶鋼注入部位5として表示している。   In addition, the actual molten steel injection site 5 is not a “point” but has a certain area, and such a molten steel injection site is surrounded from all sides, and at the same time, the absolute amount of the space surrounded by the weir 7 is ensured. For this purpose, the opening length of the upper opening of the weir 7 in the tundish long side direction is at least equal to the inner diameter of the lower end of the long nozzle 3, preferably more than that. In addition, in FIG. 1, the center position of the molten steel injection | pouring site | part which has an area is displayed as the molten steel injection | pouring site | part 5. FIG.

予定する溶鋼12のタンディッシュ1への注入流量Q、並びに、予定する溶鋼12の鋳型2への注入流量m及び注入速度uに基づいて、堰7の上部開口部面積S1、切り欠き10の開口面積S2、堰7で囲まれる空間の体積V、堰7の矩形外形の長辺長さX、堰7の矩形外形の短辺長さYが、上記の(1)式を満たすように、堰7の形状を決定し、その形状の堰7をタンディッシュ1に配置し、このタンディッシュ1を使用して、タンディッシュ1への溶鋼12の注入流量Q、並びに、鋳型2への溶鋼12の注入流量m及び注入速度uが(1)式の関係式を満足するように、タンディッシュ1への溶鋼12の注入、並びに、タンディッシュ1から鋳型2への溶鋼12の注入を制御しながら連続鋳造することで、ロングノズル3から注入された溶鋼中の介在物は、堰7によって上向き方向の流動を得て、タンディッシュ内の溶鋼湯面に浮上分離する。つまり、堰7によって溶鋼中の介在物の浮上分離が促進され、清浄な鋼鋳片13の製造が可能となる。   Based on the injection flow rate Q of the molten steel 12 to the tundish 1 and the injection flow rate m of the molten steel 12 to the mold 2 and the injection speed u, the upper opening area S1 of the weir 7 and the opening of the notch 10 The weir so that the area S2, the volume V of the space surrounded by the weir 7, the long side length X of the rectangular outer shape of the weir 7 and the short side length Y of the rectangular outer shape of the weir 7 satisfy the above formula (1). 7 is determined, and the weir 7 having the shape is arranged in the tundish 1. Using this tundish 1, the injection flow rate Q of the molten steel 12 into the tundish 1 and the molten steel 12 into the mold 2 are determined. Continuously controlling the injection of the molten steel 12 into the tundish 1 and the injection of the molten steel 12 from the tundish 1 into the mold 2 so that the injection flow rate m and the injection speed u satisfy the relational expression (1). By casting, the melt injected from the long nozzle 3 Inclusions in, with the flow of an upward direction by the weir 7, flotation on molten steel surface in the tundish. That is, the levitation and separation of the inclusions in the molten steel are promoted by the weir 7, and the clean steel slab 13 can be manufactured.

以上説明したように、本発明によれば、庇状部9を有する堰7の形状を鋳造条件に基づいて最適化し、更に、取鍋からタンディッシュ1への溶鋼12の注入流量、並びに、タンディッシュ1から鋳型2への注入流量及び注入速度を、堰7の形状に応じて所定の範囲に制御するので、タンディッシュ1における介在物の浮上分離が促進され、鋳型2に注入される溶鋼12の清浄性が高まり、連続鋳造される鋼鋳片13の清浄度が向上して、介在物起因の製品欠陥を大幅に低減することが実現される。   As described above, according to the present invention, the shape of the weir 7 having the bowl-shaped portion 9 is optimized based on the casting conditions, and the flow rate of the molten steel 12 from the ladle to the tundish 1 and the tank Since the injection flow rate and the injection speed from the dish 1 to the mold 2 are controlled within a predetermined range according to the shape of the weir 7, the floating separation of inclusions in the tundish 1 is promoted, and the molten steel 12 injected into the mold 2. This improves the cleanliness of the steel slab, improves the cleanliness of the continuously cast steel slab 13 and significantly reduces product defects caused by inclusions.

転炉での溶銑の脱炭精錬及びその後のRH真空脱ガス装置での真空脱ガス精錬によって溶製した約250トンのアルミキルド極低炭素鋼を、図1に示す構成の容量70トンの2ストランド方式のタンディッシュを有するスラブ連続鋳造設備を用い、タンディッシュから鋳型への溶鋼注入流量をストランドあたり4.8トン/分(m=0.08トン/秒)、取鍋からタンディッシュへの溶鋼注入量を2ストランドの合計で9.6トン/分(Q≒0.02m3/秒)として、鋼のスラブ鋳片に連続鋳造する試験を実施した。一部の試験では上堰を設置しないまま連続鋳造した。 About 250 tons of aluminum-killed ultra-low carbon steel melted by decarburization and refining of hot metal in a converter and subsequent vacuum degassing and refining in an RH vacuum degassing unit, is composed of two strands with a capacity of 70 tons having the configuration shown in FIG. Using a slab continuous casting equipment with a tundish of the type, the molten steel injection flow rate from the tundish to the mold is 4.8 tons / min (m = 0.08 tons / second) per strand, and the molten steel from the ladle to the tundish A test for continuous casting on a steel slab slab was carried out at a total injection amount of two strands of 9.6 tons / min (Q≈0.02 m 3 / sec). In some tests, continuous casting was performed without an upper weir.

その際に、堰の上部開口部面積S1、切り欠きの開口面積S2、堰で囲まれる空間の体積V、堰の矩形外形の長辺長さX、堰の矩形外形の短辺長さYを変更して鋳造し、本発明の範囲を満足させた試験(本発明例1〜6)と、本発明の範囲を満足しない試験(比較例1〜3)とを行った。全てのタンディッシュで、庇状部の突出長(=壁部内壁面からの突出長さ)を0.12m、壁部と庇状部とを結ぶ円弧の半径を0.06mとした。また、比較のために、堰を設置していない以外は試験鋳造と同一のタンディッシュを使用した鋳造試験も実施した(従来例)。   At that time, the upper opening area S1 of the weir, the opening area S2 of the notch, the volume V of the space surrounded by the weir, the long side length X of the rectangular outer shape of the weir, and the short side length Y of the rectangular outer shape of the weir The test which changed and casted and satisfied the range of this invention (invention example 1-6) and the test which does not satisfy the range of this invention (comparative example 1-3) were done. In all tundishes, the protruding length of the hook-shaped portion (= the protruding length from the inner wall surface of the wall portion) was 0.12 m, and the radius of the arc connecting the wall portion and the hook-shaped portion was 0.06 m. For comparison, a casting test using the same tundish as the test casting was performed except that no weir was installed (conventional example).

表1に、取鍋からタンディッシュへの溶鋼の注入流量Q、タンディッシュから鋳型への溶鋼の注入流量m及び注入速度u、使用したタンディッシュの堰の形状、並びに、溶鋼のタンディッシュ及び鋳型への注入条件と堰形状とから定まる(m×u)×(S1/Q)×(1/V)×(X/Y)×(1+S2)の値と、上堰の設置位置及び溶鋼への浸漬深さから定まる(L/M)×(1/D)×(h/H)の値を示す。尚、表1に示す切り欠きの開口面積S2は、二箇所に設置した切り欠きの開口面積の合計値である。   Table 1 shows the molten steel injection flow rate Q from the ladle to the tundish, the molten steel injection flow rate m and the injection speed u from the tundish to the mold, the shape of the tundish weir used, and the molten steel tundish and mold. The value of (m × u) × (S1 / Q) × (1 / V) × (X / Y) × (1 + S2) determined from the injection conditions and weir shape, the installation position of the upper weir and the molten steel The value of (L / M) × (1 / D) × (h / H) determined from the immersion depth is shown. In addition, the opening area S2 of the notch shown in Table 1 is the total value of the opening areas of the notches installed at two places.

Figure 0005831124
Figure 0005831124

鋳造後、超音波探傷測定により鋳片の介在物数を調査した。図8に、鋳片の介在物数の調査結果を示す。尚、図8は、堰を配置していないタンディッシュを使用した従来例での介在物測定値を基準(=1.0)として指数化して表示している。   After casting, the number of inclusions in the slab was examined by ultrasonic flaw detection. FIG. 8 shows the result of investigation of the number of inclusions in the slab. In FIG. 8, the inclusion measurement value in the conventional example using the tundish without the weir is indexed and displayed as a reference (= 1.0).

図8に示すように、本発明を適用することで、スラブ鋳片の介在物数を大幅に削減できることが確認できた。特に、(3)式を満足する条件で上堰を設置した本発明例3、4、5ではスラブ鋳片の介在物数を大幅に削減することができた。このように、本発明を適用することにより、タンディッシュにおける介在物の浮上効果を大幅に促進できることが確認できた。   As shown in FIG. 8, it was confirmed that the number of inclusions in the slab slab can be significantly reduced by applying the present invention. In particular, in the inventive examples 3, 4, and 5 in which the upper weir was installed under the condition satisfying the expression (3), the number of inclusions in the slab slab could be greatly reduced. Thus, it has been confirmed that by applying the present invention, the floating effect of inclusions in the tundish can be greatly promoted.

転炉での溶銑の脱炭精錬及びその後のRH真空脱ガス装置での真空脱ガス精錬によって溶製した約250トンのアルミキルド極低炭素鋼を、図1に示す構成の容量70トンの2ストランド方式のタンディッシュを有するスラブ連続鋳造設備を用い、タンディッシュから鋳型への溶鋼注入流量をストランドあたり4.8トン/分(m=0.08トン/秒)、取鍋からタンディッシュへの溶鋼注入量を2ストランドの合計で9.6トン/分(Q≒0.02m3/秒)、(m×u)×(S1/Q)×(1/V)×(X/Y)×(1+S2)の値を3.0〜50の本発明の範囲内で変更して、ロングノズルの周囲における溶鋼の表面流速uSを変化させ、鋼のスラブ鋳片に連続鋳造する試験を実施した。一部の試験では上堰を設置しないまま連続鋳造した。タンディッシュ内溶鋼の表面流速uSは、ロングノズルの外表面からタンディッシュの短辺面側に50cm離れたタンディッシュの厚み方向中心位置で測定した。また、上堰は(3)式を満足する条件で設置した。 About 250 tons of aluminum-killed ultra-low carbon steel melted by decarburization and refining of hot metal in a converter and subsequent vacuum degassing and refining in an RH vacuum degassing unit, is composed of two strands with a capacity of 70 tons having the configuration shown in FIG. Using a slab continuous casting equipment with a tundish of the type, the molten steel injection flow rate from the tundish to the mold is 4.8 tons / min (m = 0.08 tons / second) per strand, and the molten steel from the ladle to the tundish The total injection amount of the two strands is 9.6 tons / min (Q≈0.02 m 3 / sec), (m × u) × (S1 / Q) × (1 / V) × (X / Y) × ( The value of 1 + S2) was changed within the range of the present invention of 3.0 to 50, and the surface flow rate u S of the molten steel around the long nozzle was changed, and a test for continuous casting on a steel slab slab was performed. In some tests, continuous casting was performed without an upper weir. The surface flow velocity u S of the molten steel in the tundish was measured at the center position in the thickness direction of the tundish 50 cm away from the outer surface of the long nozzle toward the short side surface of the tundish. Moreover, the upper weir was installed on the conditions which satisfy | filling (3) Formula.

全てのタンディッシュで、庇状部の突出長(=壁部内壁面からの突出長さ)を0.12m、壁部と庇状部とを結ぶ円弧の半径を0.06mとした。また、比較のために、堰を設置していない以外は試験鋳造と同一のタンディッシュを使用した鋳造試験も実施した(従来例)。   In all tundishes, the protruding length of the hook-shaped portion (= the protruding length from the inner wall surface of the wall portion) was 0.12 m, and the radius of the arc connecting the wall portion and the hook-shaped portion was 0.06 m. For comparison, a casting test using the same tundish as the test casting was performed except that no weir was installed (conventional example).

表2に、取鍋からタンディッシュへの溶鋼の注入流量Q、タンディッシュから鋳型への溶鋼の注入流量m及び注入速度u、使用したタンディッシュの堰の形状、上堰の有無、タンディッシュ内溶鋼湯面高さH、並びに、溶鋼のタンディッシュ及び鋳型への注入条件と堰形状とから定まる(m×u)×(S1/Q)×(1/V)×(X/Y)×(1+S2)の値と、溶鋼の表面流速uSの測定結果を示す。尚、表2に示す切り欠きの開口面積S2は、二箇所に設置した切り欠きの開口面積の合計値である。 Table 2 shows the flow rate Q of molten steel from the ladle to the tundish, the flow rate m and the flow rate u of molten steel from the tundish to the mold, the shape of the tundish weir used, the presence of the upper weir, the inside of the tundish (M × u) × (S1 / Q) × (1 / V) × (X / Y) × ((M × u) × (S1 / Q) × (1 / V) × () determined from the molten steel surface height H, the condition of pouring the molten steel into the tundish and mold, and the weir shape. The value of 1 + S2) and the measurement result of the surface flow velocity u S of the molten steel are shown. The opening area S2 of the notch shown in Table 2 is the total value of the opening areas of the notches provided at two places.

Figure 0005831124
Figure 0005831124

鋳造後、超音波探傷測定により鋳片の介在物数を調査した。表2に、鋳片の介在物数の調査結果を併せて示す。尚、表2は、堰を配置していないタンディッシュを使用した従来例での介在物測定値を基準(=1.0)として指数化して表示している。   After casting, the number of inclusions in the slab was examined by ultrasonic flaw detection. Table 2 also shows the survey results of the number of inclusions in the slab. Table 2 shows the inclusion measurement value in the conventional example using a tundish without a weir as an index with the reference (= 1.0).

表2からも明らかなように、溶鋼の表面流速uSが15〜50cm/秒の試験では、より一層スラブ鋳片の介在物数を削減できることが確認できた。また、(3)式を満足する条件で上堰を設置することにより、スラブ鋳片の介在物数を更に削減できることが確認された。 As is apparent from Table 2, it was confirmed that the number of inclusions in the slab slab could be further reduced in the test in which the surface flow velocity u S of the molten steel was 15 to 50 cm / sec. Moreover, it was confirmed that the number of inclusions in the slab slab can be further reduced by installing the upper weir under the condition that satisfies the expression (3).

1 タンディッシュ
2 鋳型
3 ロングノズル
4 浸漬ノズル
5 溶鋼注入部位
6 溶鋼流出口
7 堰
8 壁部
9 庇状部
10 切り欠き
11 上堰
12 溶鋼
13 鋼鋳片
14 浸漬棒
15 支持金具
16 歪みゲージ
DESCRIPTION OF SYMBOLS 1 Tundish 2 Mold 3 Long nozzle 4 Immersion nozzle 5 Molten steel injection | pouring site 6 Molten steel outlet 7 Weir 8 Wall part 9 Ridge part 10 Notch 11 Upper weir 12 Molten steel 13 Steel slab 14 Immersion rod 15 Supporting metal fixture 16 Strain gauge

Claims (3)

脱酸された溶鋼を取鍋から一旦タンディッシュに注入し、次いでタンディッシュから鋳型に注入して鋼鋳片を連続鋳造するにあたり、
取鍋からの溶鋼注入流がタンディッシュ底部に衝突する溶鋼注入部位と、タンディッシュから鋳型への溶鋼流出口との間に、前記溶鋼注入部位を四方向から囲んでタンディッシュの底部から上方に伸びる壁部と、該壁部の上端部位に前記溶鋼注入部位側を向いて水平方向に突出した庇状部と、を有する堰であって、前記壁部から前記庇状部に亘って連続した切り欠きを一箇所以上有し、外形が矩形の堰を配置したタンディッシュを用い、
前記庇状部で四方を囲まれた領域を前記堰の上部開口部としたときに、前記堰の上部開口部面積、前記切り欠きの開口面積、前記堰で囲まれる空間の体積、前記堰の矩形外形の長辺長さ及び前記堰の矩形外形の短辺長さに対して、取鍋からタンディッシュへの溶鋼の注入流量と、タンディッシュから鋳型への溶鋼の注入流量及びタンディッシュから鋳型への溶鋼の注入速度とが、下記の(1)式の関係を満足するように、
取鍋からタンディッシュへの溶鋼注入及びタンディッシュから鋳型への溶鋼注入を制御しながら鋼鋳片を連続鋳造することを特徴とする、連続鋳造による高清浄度鋼鋳片の製造方法。
3.0≦(m×u)×(S1/Q)×(1/V)×(X/Y)×(1+S2)≦50…(1)
但し、(1)式において、mは、タンディッシュから鋳型への溶鋼の注入流量(トン/秒)、uは、タンディッシュから鋳型への溶鋼の注入速度(m/秒)、Qは、取鍋からタンディッシュへの溶鋼の注入流量(m/秒)、S1は、庇状部を有する堰の上部開口部面積(m)、S2は、切り欠きの開口面積(m)、Vは、庇状部を有する堰で囲まれる空間の体積(m)、Xは、堰の矩形外形の長辺長さ(m)、Yは、堰の矩形外形の短辺長さ(m)である。
When the deoxidized molten steel is once poured into the tundish from the pan, and then poured into the mold from the tundish to continuously cast the steel slab,
Between the molten steel injection site where the molten steel injection flow from the ladle collides with the bottom of the tundish and the molten steel outlet from the tundish to the mold, the molten steel injection site is surrounded from four directions and upward from the bottom of the tundish. A weir having an extending wall portion and a hook-like portion protruding in the horizontal direction facing the molten steel injection portion side at an upper end portion of the wall portion, and continuous from the wall portion to the hook-like portion Use a tundish with one or more cutouts and a weir with a rectangular outer shape,
When a region surrounded on all sides by the bowl-shaped portion is the upper opening of the weir, the upper opening area of the weir, the opening area of the notch, the volume of the space surrounded by the weir, The flow rate of molten steel from the ladle to the tundish, the flow rate of molten steel from the tundish to the mold, and the mold from the tundish to the mold for the long side length of the rectangular shape and the short side length of the rectangular shape of the weir In order to satisfy the relationship of the following formula (1)
A method for producing a high cleanliness steel slab by continuous casting, wherein the steel slab is continuously cast while controlling the molten steel injection from the ladle to the tundish and the molten steel injection from the tundish to the mold.
3.0 ≦ (m × u) × (S1 / Q) × (1 / V) × (X / Y) × (1 + S2) ≦ 50 (1)
In Equation (1), m is the flow rate of molten steel injected from the tundish to the mold (ton / second), u is the injection rate of molten steel from the tundish to the mold (m / second), and Q is the intake flow rate. Injection flow rate of molten steel from the pan to the tundish (m 3 / sec), S1 is the upper opening area (m 2 ) of the weir having the bowl-shaped part, S2 is the opening area (m 2 ) of the notch, V Is the volume (m 3 ) of the space surrounded by the weir having the hook-shaped part, X is the long side length (m) of the rectangular outer shape of the weir, and Y is the short side length (m) of the rectangular outer shape of the weir It is.
前記の取鍋からタンディッシュへの溶鋼注入を、前記取鍋の底部に設置され、その下端部がタンディッシュ内溶鋼に浸漬されるロングノズルを介して行い、且つ、ロングノズル周囲におけるタンディッシュ内溶鋼の表面流速が下記の(2)式の範囲内となるように制御されていることを特徴とする、請求項1に記載の連続鋳造による高清浄度鋼鋳片の製造方法。
15≦u≦50…(2)
但し、(2)式において、uは、ロングノズル周囲におけるタンディッシュ内溶鋼の表面流速(cm/秒)であり、ロングノズル周囲におけるタンディッシュ内溶鋼の表面流速とは、ロングノズルの外表面からタンディッシュの短辺面側に50cm離れたタンディッシュの厚み方向中心位置におけるタンディッシュ内溶鋼の表面流速である。
Injection of molten steel from the ladle into the tundish is performed through a long nozzle that is installed at the bottom of the ladle and the lower end of the ladle is immersed in the molten steel in the tundish, and in the tundish around the long nozzle. 2. The method for producing a high cleanliness steel slab by continuous casting according to claim 1, wherein the surface flow velocity of the molten steel is controlled to be within the range of the following formula (2).
15 ≦ u S ≦ 50 (2)
However, in (2), u S is Ri surface velocity (cm / sec) der tundish molten steel at ambient long nozzle, the surface velocity of the tundish molten steel at ambient long nozzle, outside the long nozzle It is the surface flow velocity of the molten steel in the tundish at the center position in the thickness direction of the tundish 50 cm away from the surface toward the short side of the tundish.
前記タンディッシュには、前記堰と前記溶鋼流出口との間に、更に、少なくとも下端部を溶鋼に浸漬し、上端部を溶鋼から突出させる上堰が設置されており、該上堰の設置位置及び溶鋼中への浸漬深さが下記の(3)式の関係を満たすように構成されていることを特徴とする、請求項1または請求項2に記載の連続鋳造による高清浄度鋼鋳片の製造方法。
0.1<(L/M)×(1/D)×(h/H)<1.9…(3)
但し、(3)式において、Lは、タンディッシュの長辺長さ(m)、Mは、連続鋳造機のストランド個数(−)、Dは、溶鋼注入部位から上堰までの距離(m)、hは、定常鋳造時の上堰の溶鋼中浸漬深さ(m)、Hは、定常鋳造時のタンディッシュ内溶鋼湯面高さ(m)である。
In the tundish, an upper weir is further provided between the weir and the molten steel outlet, and at least a lower end is immersed in the molten steel and an upper end protrudes from the molten steel. The high cleanliness steel slab by continuous casting according to claim 1 or 2, wherein the immersion depth in the molten steel satisfies the relationship of the following formula (3): Manufacturing method.
0.1 <(L / M) × (1 / D) × (h / H) <1.9 (3)
However, in the formula (3), L is the long side length (m) of the tundish, M is the number of strands of the continuous casting machine (−), and D is the distance (m) from the molten steel injection site to the upper weir. , H is the immersion depth (m) in the molten steel of the upper weir during steady casting, and H is the molten steel surface height (m) in the tundish during steady casting.
JP2011230375A 2011-10-20 2011-10-20 Manufacturing method of high cleanliness steel slab by continuous casting Active JP5831124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011230375A JP5831124B2 (en) 2011-10-20 2011-10-20 Manufacturing method of high cleanliness steel slab by continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011230375A JP5831124B2 (en) 2011-10-20 2011-10-20 Manufacturing method of high cleanliness steel slab by continuous casting

Publications (2)

Publication Number Publication Date
JP2013086147A JP2013086147A (en) 2013-05-13
JP5831124B2 true JP5831124B2 (en) 2015-12-09

Family

ID=48530620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011230375A Active JP5831124B2 (en) 2011-10-20 2011-10-20 Manufacturing method of high cleanliness steel slab by continuous casting

Country Status (1)

Country Link
JP (1) JP5831124B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101779153B1 (en) * 2015-11-02 2017-09-18 주식회사 포스코 Apparatus and method for treating molten steel
CN108994270B (en) * 2018-09-30 2020-06-19 武汉钢铁有限公司 Method for purifying molten steel at tail stage of ladle in continuous casting process
CN112191835B (en) * 2020-10-12 2024-04-19 武汉科技大学 Multi-stage bottom swirling type current stabilizer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5358551A (en) * 1993-11-16 1994-10-25 Ccpi, Inc. Turbulence inhibiting tundish and impact pad and method of using
JP4023289B2 (en) * 2002-11-05 2007-12-19 Jfeスチール株式会社 Manufacturing method of high cleanliness steel slab by continuous casting
JP4998705B2 (en) * 2007-01-23 2012-08-15 Jfeスチール株式会社 Steel continuous casting method
JP5751078B2 (en) * 2011-08-04 2015-07-22 Jfeスチール株式会社 Manufacturing method of high cleanliness steel slab by continuous casting

Also Published As

Publication number Publication date
JP2013086147A (en) 2013-05-13

Similar Documents

Publication Publication Date Title
JP5807719B2 (en) High cleanliness steel slab manufacturing method and tundish
US8397793B2 (en) Steel continuous casting method
JP5516235B2 (en) Manufacturing method of high cleanliness steel slab by continuous casting
JP5831124B2 (en) Manufacturing method of high cleanliness steel slab by continuous casting
JP5751078B2 (en) Manufacturing method of high cleanliness steel slab by continuous casting
JP5556465B2 (en) Manufacturing method of high cleanliness steel slab by continuous casting
JP5556421B2 (en) Manufacturing method of high cleanliness steel slab by continuous casting
JP2016182612A (en) Continuous casting method blowing inert gas from upper porous refractory and lower porous refractory
JP5831138B2 (en) Manufacturing method of high cleanliness steel slab by continuous casting
JP4725244B2 (en) Ladle for continuous casting and method for producing slab
JP5082700B2 (en) Steel continuous casting method
JP2011143449A (en) Method for removing inclusion in tundish for continuous casting
JP7332885B2 (en) Molten metal continuous casting method and continuous casting apparatus
JP6806111B2 (en) Method for determining the risk of quality deterioration of continuously cast slabs due to non-metal inclusions
JP5125663B2 (en) Continuous casting method of slab slab
JP4998705B2 (en) Steel continuous casting method
JP2011194420A (en) Method of producing high cleanliness steel
JP7200722B2 (en) In-mold flow control method in curved continuous casting equipment
JP4319072B2 (en) Tundish with excellent inclusion levitation
JP5440933B2 (en) Immersion nozzle and continuous casting method using the same
JP5025312B2 (en) Method of pouring into casting mold for ingot casting to improve the surface of steel ingot by generating swirling flow in runner
JP5791234B2 (en) Continuous casting method for steel slabs
JP2011212716A (en) Continuous casting method of steel cast slab
JP2007054861A (en) Tundish for continuous casting and method for producing cast slab
JP2023066965A (en) nozzle system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20150724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151012

R150 Certificate of patent or registration of utility model

Ref document number: 5831124

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250