JP5440933B2 - Immersion nozzle and continuous casting method using the same - Google Patents

Immersion nozzle and continuous casting method using the same Download PDF

Info

Publication number
JP5440933B2
JP5440933B2 JP2009296859A JP2009296859A JP5440933B2 JP 5440933 B2 JP5440933 B2 JP 5440933B2 JP 2009296859 A JP2009296859 A JP 2009296859A JP 2009296859 A JP2009296859 A JP 2009296859A JP 5440933 B2 JP5440933 B2 JP 5440933B2
Authority
JP
Japan
Prior art keywords
continuous casting
immersion nozzle
discharge hole
dispersion
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009296859A
Other languages
Japanese (ja)
Other versions
JP2011136354A (en
Inventor
芳章 末松
利明 溝口
大輔 三木
哲也 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009296859A priority Critical patent/JP5440933B2/en
Publication of JP2011136354A publication Critical patent/JP2011136354A/en
Application granted granted Critical
Publication of JP5440933B2 publication Critical patent/JP5440933B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、鋼の連続鋳造のための浸漬ノズル及びこれを用いた連続鋳造方法に関するものである。   The present invention relates to an immersion nozzle for continuous casting of steel and a continuous casting method using the same.

鋼の連続鋳造は、タンディッシュから供給される溶鋼を浸漬ノズルによって連続鋳造用モールド内に注湯しながら行われる。浸漬ノズルの下方部には吐出孔が設けられており、溶鋼は吐出孔からモールド内に吐出される。   Continuous casting of steel is performed while pouring molten steel supplied from a tundish into a continuous casting mold using an immersion nozzle. A discharge hole is provided in the lower part of the immersion nozzle, and the molten steel is discharged from the discharge hole into the mold.

ノズル閉塞防止のために、浸漬ノズル内にはアルゴンガス等の不活性ガスが吹き込まれており、その気泡が吐出流に乗ってモールド内に拡散している。また脱酸生成物であるアルミナ等の非金属介在物も吐出流に乗ってモールド内に拡散し、これらの気泡や非金属介在物が凝固界面に付着すると、表面欠陥を発生させる。   In order to prevent nozzle clogging, an inert gas such as argon gas is blown into the immersion nozzle, and the bubbles are diffused in the mold on the discharge flow. Further, non-metallic inclusions such as alumina, which is a deoxidation product, also ride on the discharge flow and diffuse into the mold, and when these bubbles and non-metallic inclusions adhere to the solidification interface, surface defects are generated.

例えば図1に示すように、モールド1の中央に浸漬ノズル2を配置し、その下方部の両側に形成された吐出孔3から溶鋼を吐出する場合には、図中に太い矢印で示すようにモールド1の長手方向に強い吐出流が発生する。このため、吐出流に乗って気泡や非金属介在物がモールド1の端部に運ばれて凝固界面に到達し易くなる。その結果、図2のグラフに示すように鋳片のエッジ部分における表面欠陥発生率が大きくなる。なお本明細書において用いる表面欠陥発生指数とは、連続鋳造された鋳片を圧延して製造されるコイルにおいて表面に現れる連続鋳造起因の欠陥(おもにスリバー疵)の発生頻度を指数化した値である。   For example, as shown in FIG. 1, when the immersion nozzle 2 is arranged at the center of the mold 1 and the molten steel is discharged from the discharge holes 3 formed on both sides of the lower part, as shown by the thick arrows in the drawing, A strong discharge flow is generated in the longitudinal direction of the mold 1. For this reason, bubbles and non-metallic inclusions are carried to the end portion of the mold 1 on the discharge flow and easily reach the solidification interface. As a result, as shown in the graph of FIG. 2, the surface defect occurrence rate at the edge portion of the slab increases. The surface defect occurrence index used in this specification is a value obtained by indexing the frequency of occurrence of defects (mainly sliver defects) due to continuous casting appearing on the surface of a coil produced by rolling continuously cast slabs. is there.

また図3に示すように、モールド1内の溶鋼に電磁ブレーキ4により静磁場を作用させ、下向きの吐出流を減衰させることも広く知られている。この場合には気泡や非金属介在物は図1の場合よりも速やかに湯面5に浮上し、凝固界面に付着しにくいので、鋳片全体の表面欠陥発生を抑制することができる。   As shown in FIG. 3, it is also widely known that a static magnetic field is applied to the molten steel in the mold 1 by an electromagnetic brake 4 to attenuate the downward discharge flow. In this case, bubbles and non-metallic inclusions float on the molten metal surface 5 more rapidly than in the case of FIG. 1 and are less likely to adhere to the solidification interface, so that the occurrence of surface defects in the entire slab can be suppressed.

しかし図3、図4に示すように、電磁ブレーキ4を使用すると電磁流体力により浸漬ノズル2の回りにMHD対向流と呼ばれる対向流が発生する。このMHD対向流はモールド1の長手方向の両側で発生し、吐出孔3に向かって流れて浸漬ノズル2の側面で衝突し、モールド1の内壁面に沿う強い上向流となる。このため気泡や非金属介在物が中央部の凝固表面に付着し易くなり、図5のグラフに示すように鋳片のセンター部の表面欠陥発生率が大きくなる。   However, as shown in FIGS. 3 and 4, when the electromagnetic brake 4 is used, a counter flow called an MHD counter flow is generated around the immersion nozzle 2 by the electromagnetic fluid force. This MHD counterflow is generated on both sides in the longitudinal direction of the mold 1, flows toward the discharge holes 3, collides with the side surface of the immersion nozzle 2, and becomes a strong upward flow along the inner wall surface of the mold 1. For this reason, bubbles and non-metallic inclusions easily adhere to the solidified surface of the central portion, and the surface defect occurrence rate at the center portion of the slab increases as shown in the graph of FIG.

上記したように、電磁ブレーキを用いるとエッジ部の表面欠陥は抑制できるが、センター部における気泡や非金属介在物による表面欠陥を防止することは容易ではない。そこで特許文献1には、浸漬ノズルの吐出孔を上向きにするとともに、吐出孔を囲むように下面が開放された箱を設け、溶鋼流を上昇させてから下降流とすることによって表面欠陥発生を防止する発明が開示されている。しかしこの発明はノズル部分の構造が複雑となり、メンテナンスが容易でない。   As described above, when an electromagnetic brake is used, surface defects at the edge portion can be suppressed, but it is not easy to prevent surface defects due to bubbles and non-metallic inclusions at the center portion. Therefore, in Patent Document 1, a surface defect is generated by making the discharge hole of the immersion nozzle face upward and providing a box whose lower surface is opened so as to surround the discharge hole, and raising the molten steel flow and then making it a downward flow. An invention to prevent is disclosed. However, according to the present invention, the structure of the nozzle portion is complicated and maintenance is not easy.

また特許文献2には、浸漬ノズルの吐出孔よりも上部に制流板を設けて旋回流を形成し、センター部における溶鋼流の滞留を防止する発明が開示されている。しかしこの発明は電磁ブレーキを使用しないことを前提としており、鋳片のエッジ部分における表面欠陥発生率の低減効果は小さいものと考えられる。   Patent Document 2 discloses an invention in which a swirling flow is formed by providing a baffle plate above the discharge hole of the submerged nozzle to prevent the molten steel flow from staying in the center portion. However, this invention is based on the premise that no electromagnetic brake is used, and the effect of reducing the surface defect occurrence rate at the edge portion of the slab is considered to be small.

さらに特許文献3には、浸漬ノズルの吐出孔よりも上部に制流板を設けるとともに、吐出孔の位置を制流板に対して斜めにして強い旋回流を生じさせる発明が開示されている。しかしこの発明では旋回流に乗って気泡や非金属介在物がモールドのエッジ部分に到達し易くなり、鋳片のエッジ部分における表面欠陥発生率の低減効果は小さいものと考えられる。   Further, Patent Document 3 discloses an invention in which a baffle plate is provided above the discharge hole of the submerged nozzle and a strong swirl flow is generated with the discharge hole being inclined with respect to the baffle plate. However, in the present invention, it is considered that bubbles and non-metallic inclusions easily reach the edge portion of the mold by riding on the swirling flow, and the effect of reducing the surface defect occurrence rate at the edge portion of the slab is considered to be small.

特開2003−266155号公報JP 2003-266155 A 特開昭63−235050号公報JP 63-2335050 特開平5−146851号公報Japanese Patent Laid-Open No. 5-146851

従って本発明の目的は上記した従来の問題点を解決し、電磁ブレーキ使用時に発生するMHD対向流による鋳片のセンター部の表面欠陥発生率を効果的に減少させることができ、しかも構造が簡単でメンテナンスも容易な浸漬ノズル及びこれを用いた連続鋳造方法を提供することである。   Therefore, the object of the present invention is to solve the above-mentioned conventional problems, and to effectively reduce the surface defect occurrence rate of the center part of the slab due to the MHD counterflow generated when using the electromagnetic brake, and the structure is simple. And an immersion nozzle that is easy to maintain and a continuous casting method using the same.

上記の課題を解決するためになされた本発明の浸漬ノズルは、電磁ブレーキを掛けながら連続鋳造用モールド内に溶鋼を注湯するノズル本体の両側に、連続鋳造用モールドの長手方向に延びる分散防止板を、吐出孔を挟んで取り付け、前記分散防止板の上端高さを吐出孔の上端と湯面との間とし、分散防止板の下端高さを吐出孔の下端とノズル本体の下端との間としたことを特徴とするものである。 The immersion nozzle of the present invention, which has been made to solve the above-mentioned problems, prevents dispersion extending in the longitudinal direction of the continuous casting mold on both sides of the nozzle body for pouring molten steel into the continuous casting mold while applying an electromagnetic brake. A plate is mounted across the discharge hole, the upper end height of the dispersion prevention plate is between the upper end of the discharge hole and the hot water surface, and the lower end height of the dispersion prevention plate is between the lower end of the discharge hole and the lower end of the nozzle body. It is characterized by being between .

なお上記の浸漬ノズルは、分散防止板のノズル本体からの水平方向の突出量を、10mm以上300mm以下とすることが好ましい。また吐出孔の吐出角度を、上向き20°と下向き60°との間とすることが好ましい。   In addition, it is preferable that said immersion nozzle shall make the protrusion amount of the horizontal direction from the nozzle main body of a dispersion prevention board into 10 mm or more and 300 mm or less. Moreover, it is preferable that the discharge angle of the discharge hole is between 20 ° upward and 60 ° downward.

さらに本発明の連続鋳造方法は、上記の浸漬ノズルを用い、電磁ブレーキを掛けながら連続鋳造用モールド内に溶鋼を注湯し、ノズル本体に向かう対向流を左右一対の分散防止板により湯面に向けてガイドすることを特徴とするものである。なお、電磁ブレーキにより印加する静磁場を吐出孔位置において500G以上とすることが好ましい。   Furthermore, the continuous casting method of the present invention uses the above-mentioned immersion nozzle, pours molten steel into the continuous casting mold while applying an electromagnetic brake, and causes the opposing flow toward the nozzle body to be melted by a pair of right and left dispersion prevention plates. It is characterized by being directed toward. Note that the static magnetic field applied by the electromagnetic brake is preferably 500 G or more at the discharge hole position.

本発明によれば、電磁ブレーキ使用時に発生し浸漬ノズルに向かうMHD対向流を、ノズル本体の両側に形成された連続鋳造用モールドの長手方向に延びる分散防止板によってガイドし、湯面に向けて浮上させる。この上向流は主として一対の分散防止板の間を流れるため、気泡や非金属介在物が凝固界面に付着することが防止され、湯面のパウダーにより捕捉される。このため表面欠陥発生率を大幅に低下させることができる。しかも本発明の浸漬ノズルは、構造が比較的簡単であるから製作コスト及びメンテナンスコストが安価である。   According to the present invention, the MHD counterflow generated when using the electromagnetic brake and directed toward the immersion nozzle is guided by the dispersion preventing plate extending in the longitudinal direction of the continuous casting mold formed on both sides of the nozzle body and directed toward the molten metal surface. Make it rise. Since this upward flow mainly flows between the pair of dispersion preventing plates, bubbles and non-metallic inclusions are prevented from adhering to the solidification interface and are captured by the powder on the molten metal surface. For this reason, the surface defect occurrence rate can be greatly reduced. Moreover, since the immersion nozzle of the present invention has a relatively simple structure, the manufacturing cost and the maintenance cost are low.

従来技術を示す平面図と正面図である。It is the top view and front view which show a prior art. 図1の場合の表面欠陥発生指数のグラフである。It is a graph of the surface defect generation index in the case of FIG. 他の従来技術(電磁ブレーキ採用)を示す平面図と正面図である。It is the top view and front view which show other prior art (electromagnetic brake adoption). 図3の場合の反転流の説明図である。It is explanatory drawing of the reversal flow in the case of FIG. 図3の場合の表面欠陥発生指数のグラフである。It is a graph of the surface defect generation index in the case of FIG. 本発明の実施形態を示す平面図と正面図である。It is the top view and front view which show embodiment of this invention. 本発明の実施形態における反転流の説明図である。It is explanatory drawing of the inversion flow in embodiment of this invention. 分散防止板の寸法説明図である。It is dimension explanatory drawing of a dispersion | distribution prevention board. 本発明の実施形態における表面欠陥発生指数のグラフである。It is a graph of the surface defect generation index in the embodiment of the present invention.

以下に本発明の実施形態を説明する。
図6〜図8は本発明の浸漬ノズルの説明図であり、従来と同様に1は連続鋳造用のモールド、2は浸漬ノズル、3は浸漬ノズル2の下方部両側に形成された吐出孔、4はモールド1内の溶鋼に静磁場を印加する電磁ブレーキ、5は湯面である。
Embodiments of the present invention will be described below.
6 to 8 are explanatory views of the immersion nozzle according to the present invention. As in the prior art, 1 is a mold for continuous casting, 2 is an immersion nozzle, 3 is a discharge hole formed on both sides of the lower part of the immersion nozzle 2, 4 is an electromagnetic brake for applying a static magnetic field to the molten steel in the mold 1, and 5 is a molten metal surface.

本発明では、浸漬ノズル2のノズル本体の両側に分散防止板6が取り付けられている。分散防止板6はノズル本体と同質の耐火物製の平板であり、吐出孔3を挟む両側に配置されている。その方向はモールド1の長手方向であり、この実施形態では2枚の平板が平行に配置されているが、浸漬ノズル2から遠い外側がやや開くように斜めに配置してもよい。ノズル本体への取り付け方は任意であり、例えばモルタルによる接合やセラミック製固定具による固定などを適宜採用することができる。   In the present invention, the dispersion preventing plates 6 are attached to both sides of the nozzle body of the immersion nozzle 2. The dispersion prevention plate 6 is a refractory flat plate having the same quality as the nozzle body, and is disposed on both sides of the discharge hole 3. The direction is the longitudinal direction of the mold 1. In this embodiment, two flat plates are arranged in parallel, but they may be arranged obliquely so that the outer side far from the immersion nozzle 2 opens slightly. The attachment method to the nozzle body is arbitrary, and for example, joining with a mortar or fixing with a ceramic fixture can be appropriately employed.

この分散防止板6は吐出孔3に向かうMHD対向流をガイドし、湯面5に向けて浮上させる役割を果たすものであるから、その上下幅Wは少なくとも吐出孔3を覆うことができる幅とする。このため、分散防止板6の上端高さは吐出孔3の上端と湯面5との間とし、分散防止板6の下端高さは吐出孔3の下端とノズル本体の下端との間としておくことが好ましい。なお分散防止板6の上端高さが湯面5を超えると、湯面パウダーとの反応により分散防止板6を形成している耐火物の劣化が進行し易くなるうえ、湯面5よりも上方に突出した露出部分と溶湯内部への浸漬部分との温度差が生ずるので好ましくない。また分散防止板6の下端高さがノズル本体の下端よりも下側になると、浸漬ノズル2の製作やハンドリングが行いにくくなるので好ましくない。   The dispersion prevention plate 6 serves to guide the MHD counterflow toward the discharge hole 3 and to float toward the molten metal surface 5, so that the vertical width W is at least a width that can cover the discharge hole 3. To do. Therefore, the upper end height of the dispersion preventing plate 6 is set between the upper end of the discharge hole 3 and the molten metal surface 5, and the lower end height of the dispersion preventing plate 6 is set between the lower end of the discharge hole 3 and the lower end of the nozzle body. It is preferable. If the upper end height of the dispersion preventing plate 6 exceeds the molten metal surface 5, the refractory forming the dispersion preventing plate 6 is likely to deteriorate due to the reaction with the molten metal powder, and above the molten metal surface 5. This is not preferable because a temperature difference occurs between the exposed portion protruding to the inside and the portion immersed in the molten metal. If the lower end height of the dispersion preventing plate 6 is lower than the lower end of the nozzle body, it is not preferable because it is difficult to manufacture and handle the immersion nozzle 2.

分散防止板6のノズル本体からの水平方向の突出量Lは、10mm以上300mm以下とすることが好ましい。突出量Lが10mm未満であるとMHD対向流をガイドする機能が不十分となる。また突出量Lが300mmを超えても整流効果の向上は見られず、製作コストの増加や折損によるトラブルの原因となるおそれがある。分散防止板6の厚さtは特に限定されるものではないが、溶鋼流中でノズル本体と同等の使用寿命を持つように設定すればよく、例えば10mm以上とすればよい。   The horizontal protrusion amount L of the dispersion preventing plate 6 from the nozzle body is preferably 10 mm or more and 300 mm or less. If the protruding amount L is less than 10 mm, the function of guiding the MHD counterflow is insufficient. Further, even if the protruding amount L exceeds 300 mm, the rectification effect is not improved, and there is a risk of causing an increase in manufacturing cost or trouble due to breakage. The thickness t of the dispersion preventing plate 6 is not particularly limited, but may be set so as to have a service life equivalent to that of the nozzle body in the molten steel flow, for example, 10 mm or more.

なお、浸漬ノズル2の吐出孔3の吐出角度αは、上向き20°と下向き60°との間とすることが好ましい。吐出角度αが上向き20°を超えると湯面5の沸き上がりが生じて好ましくない。また下向き60°を超えると吐出流の侵入深さが深くなりすぎて浮上しにくくなり、気泡や非金属介在物が凝固界面に付着しやすくなるので好ましくない。特に内部欠陥を助長する。   Note that the discharge angle α of the discharge hole 3 of the immersion nozzle 2 is preferably between 20 ° upward and 60 ° downward. If the discharge angle α exceeds 20 ° upward, boiling of the hot water surface 5 occurs, which is not preferable. On the other hand, when the angle exceeds 60 ° downward, the depth of penetration of the discharge flow becomes too deep and it is difficult to float, and bubbles and non-metallic inclusions tend to adhere to the solidification interface, which is not preferable. Especially conducive to internal defects.

このように構成された分散防止板6付きの浸漬ノズル2を用い、かつ電磁ブレーキ4を用いて溶鋼の連続鋳造を行えば、吐出孔3に向かうMHD対向流は2枚の分散防止板6に挟まれた中央の流路を通じて湯面5に向かって上昇し、センター部の凝固界面との接触が生じにくくなる。このため図9のグラフに示すように、表面欠陥発生指数を大幅に低減することができる。   When the immersion nozzle 2 with the dispersion prevention plate 6 configured as described above is used and the molten steel is continuously cast using the electromagnetic brake 4, the MHD counterflow toward the discharge hole 3 is applied to the two dispersion prevention plates 6. Ascending toward the hot water surface 5 through the sandwiched central flow path, it becomes difficult to make contact with the solidification interface of the center portion. For this reason, as shown in the graph of FIG. 9, the surface defect occurrence index can be significantly reduced.

上記したように、本発明は電磁ブレーキ4の使用を前提とするものであり、エッジ部における表面欠陥発生指数の低減は電磁ブレーキ4によるところが大きい。このため電磁ブレーキにより印加する静磁場を500G以上とすることが好ましい。   As described above, the present invention is premised on the use of the electromagnetic brake 4, and the reduction of the surface defect occurrence index at the edge portion is largely due to the electromagnetic brake 4. For this reason, it is preferable that the static magnetic field applied with an electromagnetic brake shall be 500 G or more.

表1に本願発明による実施例を、比較例とともに示す。
短辺250mm、長辺1600mmのモールド1に浸漬ノズル2より溶鋼を注入し、鋳造速度2.5m/minで連続鋳造した。分散防止板の上端位置、下端位置、及び突出量を表1に示した寸法としながら、それぞれの吐出角度を有する浸漬ノズルに取り付け鋳造した。鋳造後のスラブを圧延し、コイル表面に現われた連続鋳造起因の欠陥を検査して、本願発明の効果を確認した。
Table 1 shows examples according to the present invention together with comparative examples.
Molten steel was poured from the immersion nozzle 2 into a mold 1 having a short side of 250 mm and a long side of 1600 mm, and continuously cast at a casting speed of 2.5 m / min. The dispersion prevention plate was cast by being attached to an immersion nozzle having each discharge angle while setting the upper end position, the lower end position, and the protrusion amount of the dispersion prevention plate to the dimensions shown in Table 1. The slab after casting was rolled, and defects due to continuous casting that appeared on the coil surface were inspected to confirm the effect of the present invention.

Figure 0005440933
Figure 0005440933

実施例1乃至13の結果によると、表面欠陥指標は0.5以下であって、極めて良好な表面品位を達成することができた。浸漬ノズル2の吐出孔3に向かうMHD対向流が2枚の分散防止板6に挟まれた中央の流路を通じて湯面5に向かって上昇し、センター部の凝固界面との接触が生じにくくなったと考えられる。   According to the results of Examples 1 to 13, the surface defect index was 0.5 or less, and a very good surface quality could be achieved. The MHD counterflow toward the discharge hole 3 of the submerged nozzle 2 rises toward the molten metal surface 5 through the central flow path sandwiched between the two dispersion prevention plates 6 and is less likely to contact the solidification interface at the center. It is thought.

参考例14、15は分散防止板6の垂直方向長さが短く、気泡・介在物の分散を防止する効果が比較的低いものの、表面欠陥指標は1.0以下となり分散防止板6がない比較例と対比すると優位であった。実施例16は、分散防止板6の突出量が2mmと短いが、表面欠陥指標は1.0以下となり分散防止板6がない比較例と対比すると優位であった。実施例17は、分散防止板6の突出量が400mmと長いが、表面欠陥指標は1.0以下となり分散防止板6がない比較例と対比すると優位であった。実施例18は、吐出孔の角度が上向き30°であり、湯面変動が比較的大きくなったが、表面欠陥指標は1.0以下となり分散防止板6がない比較例と対比すると優位であった。 In Reference Examples 14 and 15, although the vertical length of the dispersion preventing plate 6 is short and the effect of preventing the dispersion of bubbles and inclusions is relatively low, the surface defect index is 1.0 or less, and there is no dispersion preventing plate 6 Contrast with the example. In Example 16, the protrusion amount of the dispersion preventing plate 6 was as short as 2 mm, but the surface defect index was 1.0 or less, which was superior to the comparative example without the dispersion preventing plate 6. In Example 17, the protrusion amount of the dispersion preventing plate 6 was as long as 400 mm, but the surface defect index was 1.0 or less, which was superior to the comparative example in which the dispersion preventing plate 6 was not provided. In Example 18, the angle of the discharge hole was upward 30 °, and the molten metal surface fluctuation was relatively large, but the surface defect index was 1.0 or less, which was superior to the comparative example without the dispersion preventing plate 6. It was.

実施例19は、吐出孔の角度が下向き70°であり、吐出流が下向きに強くなるため、内部品質に懸念があるものの、表面欠陥指標は1.0以下となり分散防止板6がない比較例と対比すると優位であった。実施例20は、本願請求項に係る浸漬ノズルと電磁攪拌装置を併用した場合であり、電磁攪拌装置による溶鋼メニスカス付近のシェルウォッシング効果とのシナジー効果によって、実施例のなかで最も良好な表面品位となった。   Example 19 is a comparative example in which the angle of the discharge hole is 70 ° downward and the discharge flow becomes strong downward, and there is concern about internal quality, but the surface defect index is 1.0 or less and there is no dispersion prevention plate 6 Contrast with it. Example 20 is a case where the immersion nozzle according to the claims of the present application and an electromagnetic stirrer are used in combination, and the best surface quality among the examples by the synergy effect with the shell washing effect near the molten steel meniscus by the electromagnetic stirrer. It became.

比較例Comparative example

実施例と同じ鋳造条件で、分散防止板を有しない浸漬ノズルを用いて鋳造を行った。電磁ブレーキによる静磁場が弱い比較例21、及び22については、モールド1の長手方向に発生した強い吐出流のため、吐出流に乗った気泡や非金属介在物がモールド1の端部に運ばれて、鋳片のエッジ部分における表面品位が低下し、表面欠陥指標は1より大きくなった。電磁ブレーキによる静磁場を強くした比較例23乃至25については、、MHD対向流により巾センターでの表面品位が低下し、表面欠陥指標は1より大きくなった。   Casting was carried out under the same casting conditions as in the Examples, using an immersion nozzle having no dispersion prevention plate. In Comparative Examples 21 and 22 in which the static magnetic field generated by the electromagnetic brake is weak, the strong discharge flow generated in the longitudinal direction of the mold 1 causes air bubbles and non-metallic inclusions carried on the discharge flow to be carried to the end of the mold 1. Thus, the surface quality at the edge portion of the slab was lowered, and the surface defect index was larger than 1. In Comparative Examples 23 to 25 in which the static magnetic field generated by the electromagnetic brake was increased, the surface quality at the width center was lowered due to the MHD counter flow, and the surface defect index was larger than 1.

1 モールド
2 浸漬ノズル
3 吐出孔
4 電磁ブレーキ
5 湯面
6 分散防止板
DESCRIPTION OF SYMBOLS 1 Mold 2 Immersion nozzle 3 Discharge hole 4 Electromagnetic brake 5 Molten surface 6 Dispersion prevention board

Claims (5)

電磁ブレーキを掛けながら連続鋳造用モールド内に溶鋼を注湯するノズル本体の両側に、連続鋳造用モールドの長手方向に延びる分散防止板を、吐出孔を挟んで取り付け、
前記分散防止板の上端高さを吐出孔の上端と湯面との間とし、分散防止板の下端高さを吐出孔の下端とノズル本体の下端との間としたことを特徴とする浸漬ノズル。
A dispersion preventing plate extending in the longitudinal direction of the continuous casting mold is attached to both sides of the nozzle body for pouring molten steel into the continuous casting mold while applying an electromagnetic brake, with the discharge hole interposed therebetween,
An immersion nozzle characterized in that the upper end height of the dispersion prevention plate is between the upper end of the discharge hole and the molten metal surface, and the lower end height of the dispersion prevention plate is between the lower end of the discharge hole and the lower end of the nozzle body. .
散防止板のノズル本体からの水平方向の突出量を、10mm以上300mm以下としたことを特徴とする請求項1記載の浸漬ノズル。 Immersion nozzle according to claim 1, wherein the amount of protrusion of the horizontal direction from the nozzle body of distributed prevention plate, characterized in that a 10mm or 300mm or less. 出孔の吐出角度を、上向き20°と下向き60°との間としたことを特徴とする請求項1記載の浸漬ノズル。 Immersion nozzle according to claim 1, wherein the discharge angle of ejection Deana, characterized in that the between the upward 20 ° and down 60 °. 請求項1〜3の何れかに記載の浸漬ノズルを用い、電磁ブレーキを掛けながら連続鋳造用モールド内に溶鋼を注湯し、ノズル本体に向かう対向流を左右一対の分散防止板により湯面に向けてガイドすることを特徴とする連続鋳造方法。   Using the immersion nozzle according to any one of claims 1 to 3, molten steel is poured into a mold for continuous casting while applying an electromagnetic brake, and a counter flow toward the nozzle body is made to a molten metal surface by a pair of right and left dispersion prevention plates. A continuous casting method characterized by being directed toward. 電磁ブレーキにより印加する静磁場を吐出孔位置において500G以上とすることを特徴とする請求項4記載の連続鋳造方法。   The continuous casting method according to claim 4, wherein a static magnetic field applied by an electromagnetic brake is set to 500 G or more at a discharge hole position.
JP2009296859A 2009-12-28 2009-12-28 Immersion nozzle and continuous casting method using the same Active JP5440933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009296859A JP5440933B2 (en) 2009-12-28 2009-12-28 Immersion nozzle and continuous casting method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009296859A JP5440933B2 (en) 2009-12-28 2009-12-28 Immersion nozzle and continuous casting method using the same

Publications (2)

Publication Number Publication Date
JP2011136354A JP2011136354A (en) 2011-07-14
JP5440933B2 true JP5440933B2 (en) 2014-03-12

Family

ID=44348303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009296859A Active JP5440933B2 (en) 2009-12-28 2009-12-28 Immersion nozzle and continuous casting method using the same

Country Status (1)

Country Link
JP (1) JP5440933B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5741314B2 (en) * 2011-08-15 2015-07-01 新日鐵住金株式会社 Immersion nozzle and continuous casting method of steel using the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63235050A (en) * 1987-03-25 1988-09-30 Nkk Corp Submerged nozzle
JPS6466052A (en) * 1987-09-08 1989-03-13 Nippon Steel Corp Production of complex metal material by continuous casting
JP2726096B2 (en) * 1989-04-27 1998-03-11 川崎製鉄株式会社 Continuous casting method of steel using static magnetic field
JP2944782B2 (en) * 1991-05-10 1999-09-06 川崎製鉄株式会社 Continuous casting method of steel using static magnetic field
JPH05146851A (en) * 1991-11-29 1993-06-15 Nippon Yakin Kogyo Co Ltd Immersion nozzle for continuous casting
JPH08300113A (en) * 1995-04-28 1996-11-19 Nippon Steel Corp Method for reducing non-metallic inclusion in continuous casting
JP2003266155A (en) * 2002-03-12 2003-09-24 Nippon Steel Corp Method for continuously casting molten steel and immersion nozzle used for the continuous casting
JP2005021941A (en) * 2003-07-02 2005-01-27 Nippon Steel Corp Continuous casting device for molten metal and continuous casting method

Also Published As

Publication number Publication date
JP2011136354A (en) 2011-07-14

Similar Documents

Publication Publication Date Title
KR101220767B1 (en) Device for continuously casting steel
WO2013190799A1 (en) Method for manufacturing high-purity steel casting, and tundish
JP5321528B2 (en) Equipment for continuous casting of steel
US20190151937A1 (en) Method for continuously casting steel
JP4746398B2 (en) Steel continuous casting method
JP2009066618A (en) Continuous casting method of steel
JP4772798B2 (en) Method for producing ultra-low carbon slab
JP4585504B2 (en) Method for continuous casting of molten metal
JP5516235B2 (en) Manufacturing method of high cleanliness steel slab by continuous casting
JP5440933B2 (en) Immersion nozzle and continuous casting method using the same
JP4216642B2 (en) Immersion nozzle and continuous casting method using the same
JP5556465B2 (en) Manufacturing method of high cleanliness steel slab by continuous casting
JP5751078B2 (en) Manufacturing method of high cleanliness steel slab by continuous casting
JP5556421B2 (en) Manufacturing method of high cleanliness steel slab by continuous casting
JP4912945B2 (en) Manufacturing method of continuous cast slab
JP2007054860A (en) Ladle for continuous casting and method for producing cast slab
JP4998705B2 (en) Steel continuous casting method
JP6484856B2 (en) Continuous casting mold
JP5831138B2 (en) Manufacturing method of high cleanliness steel slab by continuous casting
CN216540828U (en) Tundish nozzle steel retaining groove, tundish nozzle and tundish
JP3802866B2 (en) Immersion nozzle for continuous casting
KR102265880B1 (en) Continuous casting method and continuous casting apparatus
JP2004209512A (en) Continuous casting method and immersion nozzle
JP2008132504A (en) Tundish for continuous casting
JPS63235050A (en) Submerged nozzle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131205

R151 Written notification of patent or utility model registration

Ref document number: 5440933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350