JP4220848B2 - Tundish for continuous casting of steel with heating function - Google Patents

Tundish for continuous casting of steel with heating function Download PDF

Info

Publication number
JP4220848B2
JP4220848B2 JP2003195959A JP2003195959A JP4220848B2 JP 4220848 B2 JP4220848 B2 JP 4220848B2 JP 2003195959 A JP2003195959 A JP 2003195959A JP 2003195959 A JP2003195959 A JP 2003195959A JP 4220848 B2 JP4220848 B2 JP 4220848B2
Authority
JP
Japan
Prior art keywords
molten steel
tundish
steel
mold
ladle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003195959A
Other languages
Japanese (ja)
Other versions
JP2005028402A (en
Inventor
健彦 藤
良治 西原
保雄 丸木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003195959A priority Critical patent/JP4220848B2/en
Publication of JP2005028402A publication Critical patent/JP2005028402A/en
Application granted granted Critical
Publication of JP4220848B2 publication Critical patent/JP4220848B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鋼の連続鋳造用のタンディッシュに関する。
【0002】
【従来の技術】
鋼の連続鋳造においては、精錬工程で成分と温度を調整された溶鋼を取鍋で連続鋳造工程に輸送する。輸送された溶鋼は、連続鋳造機の鋳型に耐火物製のノズルを用いて注入されるが、取鍋から直接注入するのは溶鋼の流量の制御が難しくまた、取鍋を交換し、連続鋳造を続けて行う目的もあって、一般にはタンディッシュと呼ばれる中間容器内にノズルあるいは酸化を抑える不活性ガスでシールしたシュラウドを通して溶鋼を一旦溜めて、流量を制御しつつ鋳型内にノズルを通じて溶鋼を供給するのが一般的である。
【0003】
タンディッシュは、種々の形のものが存在するが、最も一般的には、舟の形をしたタンディッシュの中央部に取鍋からノズルを通じて溶鋼を供給し、舟の両舳先に相当する場所に設けられた上下に移動することにより流出口の断面積を制御して流量を制御する棒状のストッパー、あるいは丸孔が開いた2乃至3枚のプレートで孔の開口面積を制御し流量を制御するスライディングノズルにより、両端から溶鋼を2つの連鋳機(ストランドと呼ばれる)に供給する。
【0004】
さらにタンディッシュは、前記のように溶鋼を1つの取鍋から2つの鋳型に注ぎ分ける機能を持つほか、通常鋼を精錬する際に不可避的に混入する酸化物であるスラグの液滴や、脱酸を行うために通常生成するアルミナなどのいわゆる非金属介在物を、その比重が鋼の比重の半分以下であることを利用して浮上分離し、鋳型内に侵入して鋼に捕捉され圧延時に疵を生成することを防止する機能も有している。
【0005】
前記のように、比重の差を利用して、介在物を浮上させるものの、鋼中には数μm径からmm単位のものまで存在しており、鋼の品質要求の高まりによって、年々介在物の浮上性改善要求が高まっている。そこで、同じタンディッシュで内部に堰を設けることにより流動を制御し、浮上分離率を高める試みとして、例えば(特許文献1)あるいは(特許文献2)には、非金属介在物の浮上性を高めるために複数の平板状の堰を配置する技術が開示されている。
【0006】
上記の通り、取鍋から注入された溶鋼中の大きな介在物が浮上してできるスラグ溜りを、取鍋からタンディッシュへ溶鋼を供給するノズル周りに溜めておいて、鋳型の方へ移動させないための上堰、取鍋からタンディッシュへ注入した溶鋼が、直接鋳型の方へ流れを作らないように設けられる下堰の2つを基本的な構成要素にしたものが多く開示されている。
【0007】
一方、タンディッシュは上記の機能を有するが、溶鋼の温度は、鋳型内で凝固が始まるいわゆる液相線温度にスーパーヒートと呼称される付加的温度を与え、取鍋、タンディッシュ、ノズル内で溶鋼が凝固しないようにするのが通例である。
【0008】
しかし、取鍋からタンディッシュへ注入される溶鋼の温度が、注入中に次第に低下することから、タンディッシュ内で溶鋼に熱を付与して、温度低下を抑制する技術が発明されている。例えば(非特許文献1)にあるように、熱プラズマを用いて、溶鋼を加熱する方法がある。
【0009】
この技術では、電極と溶鋼間に電位差を与え、プラズマを発生させ、そのジュール熱と輻射熱により溶鋼が加熱される。この加熱方法では溶鋼の一部を加熱するので、均等にするためにガス攪拌を利用することが併せて記されている。
【0010】
【特許文献1】
特開平1−224152号公報
【特許文献2】
特開平7−132353号公報
【非特許文献1】
第129、130回西山記念技術講座
電磁気力を利用したマテリアルプロセシング
社団法人 日本鉄鋼協会編 平成元年4月28日刊 ページ247
【0011】
【発明が解決しようとする課題】
しかしながら、(非特許文献1)ではガス攪拌を必要とすることから、タンディッシュ内に多孔質レンガのガス吹き込み口を設ける必要があるため整備の負荷が大きいという問題、また、ガス攪拌によって発生する流動の乱れにより、タンディッシュ内溶鋼表面付近で浮上中の介在物を再度内部に持ち込んだり、あるいは、溶鋼表面付近に浮いている酸化物を巻き込んでしまい溶鋼を汚染するという問題があった。
本発明は、溶鋼の温度制御と清浄化の機能を高めたタンディッシュを提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明の要旨は以下の通りである。
(1)溶鋼を精錬工程から輸送する取鍋と、連続鋳造用鋳型との間に配置されるタンディッシュにおいて、取鍋からタンディッシュへ溶鋼を注入するノズル位置と、タンディッシュから鋳型へ溶鋼を注入するノズル位置の間に1対の上堰と、該1対の上堰に挟まれる位置に下堰が設置され、かつ該1対の上堰間にプラズマ加熱電極が配置され、後流側の上堰の下端とタンディッシュ底部との間隔D(m)、該部位での溶鋼深さH(m)、溶鋼流路平均幅W(m)、溶鋼のスループットQ(t/分)、後流側の上堰と溶鋼流出口までの距離L(m)が下記(1)式を満足することを特徴とする加熱機能を備えた鋼の連続鋳造用タンディッシュ。
L>α× { Q×(H+D/2) 1/2 } /(D×W)・・・(1)
但し、α:γ/ { ρ×(β×g×ΔT) 1/2 }
ρ:溶鋼の液相線温度での溶鋼密度(kg/m
β:溶鋼の体膨張率(1/K)
g:重力加速度
ΔT:プラズマ加熱による平均の溶鋼温度上昇(K)
γ:操業条件によって決まる比例定数
である。
【0013】
【発明の実施の形態】
以下本発明の装置と作用を図面に基づいて説明する。
図1は本発明に関わるタンディッシュの例を示す。精錬工程を経て取鍋1により輸送された溶鋼は、取鍋からの注入ノズル2を経て、タンディッシュ3に注入される。注入された溶鋼は、鋳型への注入ノズルにつながる溶鋼流出口4までタンディッシュ内を輸送される。すなわち、取鍋からタンディッシュ3へ注入された溶鋼は、上堰5、下堰6、上堰7を順次通り、鋳型への注入ノズルへ通じる溶鋼流出口4へ移動する。
【0014】
ここで上堰5は、取鍋1から流入する大型の介在物やスラグ滴を浮上させ、そのまま溶鋼表面に保持し、鋳型側へ流出しないよう、堰きとめる作用をする。
次に上堰5をくぐった溶鋼は、下堰6に衝突し、上昇流を形成する。さらに、上堰7の前で下降流をつくり、その後、鋳型側へ流出する。
【0015】
一般に、溶鋼は加熱がない場合、タンディッシュ内を通過する過程で、溶鋼表面から抜熱を受ける。従って、溶鋼は収縮し上部湯面及び壁際側で重くなり下方に沈み、いわゆる熱対流をつくることが知られている。
一方、本発明の構成の堰が設置されていない通常のタンディッシュで加熱を行なった場合には、加熱を行なっている湯面側の溶鋼だけが加熱され、この部分の溶鋼だけが膨張して軽くなるので、熱対流は起こりにくい状態となる。
【0016】
そこで、本発明の装置を用いた場合は、1対の上堰5,7間でプラズマ8により加熱させることにより上堰間で加熱された溶鋼を強制的に上堰7によりタンディッシュ底部側に押し出し、下部から熱供給するために、タンディッシュ内での溶鋼の温度低下を抑制し、かつ溶鋼温度をほぼ均一に保持することを可能としている。
【0017】
次に、このような上堰7を設置すると、上堰7より上流側(取鍋からの注入ノズル側)で浮上できなかった介在物が、タンディッシュ底部まで輸送される可能性がある。すなわち、上堰7から下流側(鋳型への溶鋼流出口側)で浮上できない場合には、鋳型内に混入し鋳片内に捕捉されて欠陥を生成する可能性がある。従って、上堰7から鋳型への溶鋼流出口4までの距離は、介在物浮上に十分な距離を持たせることが好ましい。この距離は、介在物の熱対流と介在物の浮上速度により決まる。
【0018】
通常のサイズのタンディッシュにおいて、浮上可能な介在物で、かつ溶鋼を汚染する問題のある介在物の大きさは、直径50乃至100μm程度で、その浮上速度はアレンの式(例えば、「機械工学便覧 P8〜20 改訂第6版 昭和54年発行」に記載)で表されることが一般に知られている。
その浮上速度は0.1〜0.02(m/s)程度であり、熱対流の速度は0.05から0.1(m/s)程度であるから、浮上は熱対流に大きく左右されることがわかる。
ここで、温度変化による浮力=ρ・β・g・ΔTで表現できる。
但し、ρは溶鋼の液相線温度での溶鋼密度(kg/m3
βは溶鋼の体膨張率(1/K)
gは重力加速度
ΔTはプラズマ加熱による平均の溶鋼温度上昇(K)である。
【0019】
また、溶鋼側の慣性が運動エネルギー=1/2・ρ・w2で表現できる。
従って、運動エネルギーが力と移動距離の積に等しいとおくと、
1/2・ρ・w2=(ρ・β・g・ΔT)・H'となり、
熱対流の速度wは、(β・g・ΔT・H')1/2に比例すると簡易的に表現できる。
ここで、H'=H+D/2
wは溶鋼流速(m/s)である。
【0020】
以上のことから、タンディッシュ底部からD/2の高さの位置から湯面までの距離H'を前記熱対流の速度で割った時間、即ち、熱対流が湯面に到達するまで の時間が、上堰7を出た溶鋼が有している平均流速Q/(60・ρ・D・W)で、上堰7から鋳型位置までの距離Lを割った値から求まる時間よりも短ければ、介在物は浮上すると考えることができ、その関係から下式が得られる。
L>α{Q・(H+D/2)1/2}/(D×W)・・・(1)
但し、αは、γ/{ρ(β・g・ΔT)1/2
ここで、Dは後流側の上堰の下端とタンディッシュ底部との間隔(m)
Hは該部位での溶鋼深さ(m)
Wは溶鋼流路平均幅(m)
Qは溶鋼のスループット(ton/分)
Lは後流側の上堰と溶鋼流出口までの距離(m)
ρは溶鋼の液相線温度での溶鋼密度(kg/m3
βは溶鋼の体膨張率(1/K)
gは重力加速度
ΔTはプラズマ加熱による平均の溶鋼温度上昇(K)
γは操業条件によって決まる比例定数
である。
但し、上記のW(溶鋼流路平均幅)とは、
(溶鋼が通過するタンディッシュの流路の鉛直断面面積)/(流路の最大深さ)
で定義される。
【0021】
【実施例】
図2に示す構造で、長さ7(m)、平均幅1(m)、深さ1(m)の2ストランド用タンディッシュにおいて、後流側上堰7とタンディッシュ底部との距離Dを0.3(m)、平均幅W0.7(m)とし、後流側上堰7と鋳型への溶鋼流出口4間の水平距離Lを、後流側上堰7の位置を1.5(m),2.0(m),2.5(m)の3水準で変えて試験した。また、プラズマ加熱条件は入力500(kW)とした。
【0022】
溶鋼内の介在物の評価は1/4幅、厚み方向の中央、深さ10cmの位置で採取した溶鋼サンプル100(g)を電解抽出法により非金属介在物のみ取り出し、介在物の平均的な大きさ(直径)である100μm径の介在物を表すものとして、75μmから125μmの間の直径の介在物の個数を調査した。
ここで、介在物の中には、鋳型内の潤滑剤であるパウダーが巻き込まれたものも存在するが、その中にナトリウムが存在するか否かを元にナトリウムが存在しない介在物をタンディッシュから持ち込まれた介在物として、その個数のみカウントし比較した。
【0023】
各場合において、鋳型は1500(mm)幅、厚み250(mm)、鋳造速度1.5(m/分)で同じ条件とした。また、サンプリング時期も鋳造開始からの時間を10分で統一し、溶鋼のベースとなる清浄度がほぼ同じであることを、タンディッシュの入り側でとったサンプルからの介在物の電解抽出により確認した。
また、比較例として、堰もプラズマ加熱電極も設置されていない通常のタンディッシュを用い、溶鋼流出口4の位置は、上記の後流側上堰7の位置を1.5mの場合と同じ位置で実施した。
【0024】
結果の比較を図3に示す。ここで、鋳型への介在物個数指数とは取鍋からの流入口で与えた介在物個数に対して、鋳型へ溶鋼を注入するノズルを通じて鋳型に流出する介在物個数の比を、堰なしの場合を1として相対的に示した指数である。
【0025】
その結果、本発明の装置を用いて後流側上堰7の位置を1.5mとすると、鋳型への介在物個数指数は大幅に減少し、さらに後流側上堰7の位置を2.0mと長くすることで、介在物個数指数は著しく減少できた。
さらに、(1)式を満足する様に、後流側上堰7の位置を2.5mとすると、100(μm)径介在物が発見されず、鋳型に流出する介在物をなくすことができた。
【0026】
次に、本願発明の装置で下堰のみが設置されていない場合を比較例として、上堰7がL=2.5(m)の位置にある場合について、鋳型への溶鋼流出口4の位置でタンディッシュの底部から0.2mの高さ(タンディッシュ出側と記載)で溶鋼温度を測定した。参考までに、取鍋からの注入ノズル2の位置(タンディッシュ入側と記載)の溶鋼温度については、タンディッシュの底部から0.2mの高さで溶鋼温度を測定した。
【0027】
その結果は図4に示す通り、本願発明の装置の様に下堰6が設置されている場合は、比較例の様に下堰6が設置されていない場合よりも5(K)温度が高くなっていた。従って、下堰6ありの場合、鋳型に注入される溶鋼の加熱温度を上げ、実質的な熱効率を上げる効果が確認された。
【0028】
【発明の効果】
以上説明したように、本発明の装置を用いれば、加熱効率が良く、また、大型介在物が少ない清浄鋼の製造が可能となる。
【図面の簡単な説明】
【図1】本発明の装置構成を示す説明図。
【図2】本発明の装置により発生する流動を模式的に示す説明図。
【図3】実施例の後流側上堰と鋳型位置間の距離と介在物の比較図。
【図4】実施例のタンディシュ出側における溶鋼温度の測定比較図。
【符号の説明】
1 取鍋
2 取鍋からの注入ノズル
3 タンディッシュ
4 鋳型への溶鋼流出口
5 上堰
6 下堰
7 上堰
8 プラズマ
9 電極
10 流動
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a tundish for continuous casting of steel.
[0002]
[Prior art]
In the continuous casting of steel, the molten steel whose components and temperature are adjusted in the refining process is transported to the continuous casting process using a ladle. The transported molten steel is injected into the mold of a continuous casting machine using a refractory nozzle, but it is difficult to control the flow rate of the molten steel directly from the ladle. The molten steel is temporarily stored in an intermediate vessel called a tundish through a nozzle or a shroud sealed with an inert gas that suppresses oxidation, and the molten steel is placed in the mold through the nozzle while controlling the flow rate. It is common to supply.
[0003]
There are various types of tundish, but most commonly, molten steel is supplied from a ladle through a nozzle to the center of the boat-shaped tundish, and the tundish is placed at a location corresponding to the two tips of the boat. The flow rate is controlled by controlling the opening area of the hole with a rod-like stopper that controls the flow rate by controlling the cross-sectional area of the outlet by moving up and down, or two to three plates with round holes. The sliding nozzle supplies molten steel from both ends to two continuous casters (called strands).
[0004]
In addition to having the function of pouring molten steel from one ladle into two molds as described above, tundish also has a function of dropping slag, which is an oxide that is inevitably mixed when refining steel. So-called non-metallic inclusions such as alumina that are usually produced to perform acid are floated and separated using the fact that their specific gravity is less than half of the specific gravity of steel, and penetrates into the mold and is captured by the steel during rolling. It also has a function to prevent generation of soot.
[0005]
As described above, inclusions are levitated by utilizing the difference in specific gravity, but there are steels with diameters from several μm to millimeters in the steel. There is a growing demand for improvement in flying characteristics. Therefore, as an attempt to control the flow by providing a weir in the same tundish to increase the floating separation rate, for example, (Patent Document 1) or (Patent Document 2) increases the floating property of nonmetallic inclusions. Therefore, a technique for arranging a plurality of flat plate-like weirs is disclosed.
[0006]
As mentioned above, the slag reservoir formed by the large inclusions in the molten steel injected from the ladle is collected around the nozzle that supplies the molten steel from the ladle to the tundish, so that it does not move toward the mold. Many of the upper weirs and the lower weirs provided so that the molten steel poured from the ladle into the tundish does not directly flow toward the mold are used as basic components.
[0007]
On the other hand, the tundish has the above functions, but the temperature of the molten steel gives an additional temperature called superheat to the so-called liquidus temperature where solidification starts in the mold, and in the ladle, tundish, and nozzle. It is customary to prevent the molten steel from solidifying.
[0008]
However, since the temperature of the molten steel poured into the tundish from the ladle gradually decreases during the pouring, a technique has been invented in which heat is applied to the molten steel in the tundish to suppress the temperature drop. For example, as described in (Non-Patent Document 1), there is a method of heating molten steel using thermal plasma.
[0009]
In this technique, a potential difference is applied between the electrode and the molten steel, plasma is generated, and the molten steel is heated by the Joule heat and radiant heat. In this heating method, since a part of the molten steel is heated, it is also described that gas agitation is used for equalization.
[0010]
[Patent Document 1]
JP-A-1-224152 [Patent Document 2]
JP-A-7-132353 [Non-patent Document 1]
129, 130th Nishiyama Memorial Technology Course Material Processing Using Electromagnetic Force Japan Iron and Steel Institute April 28, 1989 Page 247
[0011]
[Problems to be solved by the invention]
However, in (Non-patent Document 1), since gas agitation is required, it is necessary to provide a gas blowing port for porous bricks in the tundish. Due to the turbulence of the flow, there has been a problem that inclusions floating in the vicinity of the molten steel surface in the tundish are brought into the inside again, or oxide floating in the vicinity of the molten steel is entrained to contaminate the molten steel.
An object of this invention is to provide the tundish which improved the temperature control and the cleaning function of molten steel.
[0012]
[Means for Solving the Problems]
The gist of the present invention is as follows.
(1) In the tundish arranged between the ladle for transporting molten steel from the refining process and the continuous casting mold, the nozzle position for injecting molten steel from the ladle to the tundish, and the molten steel from the tundish to the mold and Kamizeki pair between nozzle position for injecting, the lower weir is disposed at a position sandwiched Kamizeki of the pair, and plasma heating electrode is disposed between Kamizeki of the pair, the downstream side The distance D (m) between the lower end of the upper weir and the bottom of the tundish, the molten steel depth H (m), the molten steel flow channel average width W (m), the molten steel throughput Q (t / min), A tundish for continuous casting of steel having a heating function, wherein the distance L (m) from the upper weir on the flow side to the molten steel outlet satisfies the following formula (1) .
L> α × { Q × (H + D / 2) 1/2 } / (D × W) (1)
Where α: γ / { ρ × (β × g × ΔT) 1/2 }
ρ: Molten steel density at the liquidus temperature of molten steel (kg / m 3 )
β: Body expansion coefficient of molten steel (1 / K)
g: Gravity acceleration
ΔT: Average molten steel temperature rise due to plasma heating (K)
γ: a proportionality constant determined by operating conditions .
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The apparatus and operation of the present invention will be described below with reference to the drawings.
FIG. 1 shows an example of a tundish according to the present invention. The molten steel transported by the ladle 1 through the refining process is injected into the tundish 3 through the injection nozzle 2 from the ladle. The injected molten steel is transported in the tundish to a molten steel outlet 4 connected to an injection nozzle for a mold. That is, the molten steel poured into the tundish 3 from the ladle moves through the upper weir 5, the lower weir 6, and the upper weir 7 to the molten steel outlet 4 leading to the casting nozzle into the mold.
[0014]
Here, the upper weir 5 acts to suspend large inclusions and slag droplets flowing from the ladle 1, holding them on the molten steel surface as they are, and preventing them from flowing out to the mold side.
Next, the molten steel passing through the upper weir 5 collides with the lower weir 6 to form an upward flow. Further, a downward flow is created in front of the upper weir 7 and then flows out to the mold side.
[0015]
Generally, when there is no heating, the molten steel receives heat from the surface of the molten steel in the process of passing through the tundish. Accordingly, it is known that the molten steel shrinks and becomes heavy on the upper molten metal surface and the side of the wall and sinks downward, creating so-called thermal convection.
On the other hand, when heating is performed with a normal tundish in which the weir of the present invention is not installed, only the molten steel on the molten metal surface side being heated is heated, and only the molten steel in this portion expands. Since it becomes lighter, heat convection hardly occurs.
[0016]
Therefore, when the apparatus of the present invention is used, the molten steel heated between the upper weirs is forced to move to the tundish bottom side by the upper weirs by heating with a plasma 8 between the pair of upper weirs 5 and 7. Since extrusion and heat supply from the lower part, it is possible to suppress the temperature drop of the molten steel in the tundish and to keep the molten steel temperature substantially uniform.
[0017]
Next, when such an upper weir 7 is installed, inclusions that could not float on the upstream side (the injection nozzle side from the ladle) may be transported to the tundish bottom. That is, when it cannot float on the downstream side from the upper weir 7 (on the side of the molten steel outlet to the mold), it may be mixed in the mold and trapped in the slab to generate a defect. Therefore, it is preferable that the distance from the upper weir 7 to the molten steel outlet 4 to the mold has a sufficient distance for floating the inclusions. This distance is determined by the thermal convection of the inclusion and the rising speed of the inclusion.
[0018]
In a normal size tundish, the size of inclusions that can float and contaminate molten steel is about 50 to 100 μm in diameter, and the flying speed is the Allen equation (for example, “mechanical engineering”). It is generally known that it is expressed in “Handbook P8-20 Revised 6th edition published in 1979”).
The levitation speed is about 0.1 to 0.02 (m / s) and the speed of thermal convection is about 0.05 to 0.1 (m / s), so the levitation is greatly influenced by thermal convection. I understand that
Here, buoyancy due to temperature change = ρ · β · g · ΔT.
Where ρ is the molten steel density (kg / m 3 ) at the liquidus temperature of the molten steel.
β is the expansion coefficient of molten steel (1 / K)
g is the acceleration of gravity ΔT is the average molten steel temperature rise (K) due to plasma heating.
[0019]
Further, the inertia on the molten steel side can be expressed by kinetic energy = 1/2 · ρ · w 2 .
Therefore, if the kinetic energy is equal to the product of force and travel distance,
1/2 · ρ · w 2 = (ρ · β · g · ΔT) · H ′
The velocity w of thermal convection can be simply expressed as being proportional to (β · g · ΔT · H ′) 1/2 .
Here, H ′ = H + D / 2
w is a molten steel flow velocity (m / s).
[0020]
From the above, the time obtained by dividing the distance H ′ from the position at a height of D / 2 from the bottom of the tundish to the molten metal surface by the speed of the thermal convection, that is, the time until the thermal convection reaches the molten metal surface. If the average flow velocity Q / (60 · ρ · D · W) of the molten steel exiting the upper weir 7 is shorter than the time obtained from the value obtained by dividing the distance L from the upper weir 7 to the mold position, The inclusions can be considered to rise, and the following formula is obtained from the relationship.
L> α {Q · (H + D / 2) 1/2 } / (D × W) (1)
Where α is γ / {ρ (β · g · ΔT) 1/2 }
Where D is the distance (m) between the lower end of the upstream weir and the bottom of the tundish
H is the depth of the molten steel at the part (m)
W is the average width of the molten steel channel (m)
Q is the throughput of molten steel (ton / min)
L is the distance between the upper weir on the wake side and the molten steel outlet (m)
ρ is the molten steel density at the liquidus temperature of the molten steel (kg / m 3 )
β is the expansion coefficient of molten steel (1 / K)
g is the gravitational acceleration ΔT is the average temperature rise of molten steel due to plasma heating (K)
γ is a proportionality constant determined by operating conditions.
However, the above W (molten steel channel average width) is
(Vertical cross-sectional area of the tundish channel through which molten steel passes) / (Maximum depth of the channel)
Defined by
[0021]
【Example】
In the structure shown in FIG. 2, in the tundish for two strands having a length of 7 (m), an average width of 1 (m), and a depth of 1 (m), the distance D between the upstream dam 7 and the bottom of the tundish is The horizontal distance L between the wake upstream dam 7 and the molten steel outlet 4 to the mold is set to 0.3 (m), the average width W 0.7 (m), and the position of the wake upstream dam 7 is set to 1.5. The test was carried out with three levels (m), 2.0 (m) and 2.5 (m). The plasma heating conditions were set to 500 (kW) for input.
[0022]
The inclusions in the molten steel were evaluated by extracting only the non-metallic inclusions by electrolytic extraction from a molten steel sample 100 (g) collected at a position of 1/4 width, center in the thickness direction, and depth of 10 cm. The number of inclusions having a diameter between 75 μm and 125 μm was investigated as representing the inclusions having a diameter of 100 μm.
Here, some of the inclusions include powder that is a lubricant in the mold, but the inclusions that do not contain sodium based on whether or not sodium is present are tundished. Only the number of the inclusions brought in was counted for comparison.
[0023]
In each case, the mold was made the same conditions with a width of 1500 (mm), a thickness of 250 (mm), and a casting speed of 1.5 (m / min). In addition, the sampling time is unified by 10 minutes from the start of casting, and it is confirmed by electrolytic extraction of inclusions from the sample taken at the entrance of the tundish that the cleanliness that is the base of the molten steel is almost the same. did.
In addition, as a comparative example, a normal tundish in which no weir nor plasma heating electrode is installed is used, and the position of the molten steel outlet 4 is the same as the case where the position of the upstream dam 7 is 1.5 m. It carried out in.
[0024]
A comparison of the results is shown in FIG. Here, the inclusion index to the mold is the ratio of the number of inclusions flowing out to the mold through the nozzle for pouring molten steel into the mold with respect to the number of inclusions given at the inlet from the ladle. It is an index relative to the case as 1.
[0025]
As a result, if the position of the upstream dam 7 is 1.5 m using the apparatus of the present invention, the number index of inclusions in the mold is greatly reduced. Inclusion number index could be remarkably reduced by increasing the length to 0 m.
Further, if the position of the upstream weir 7 on the wake side is 2.5 m so as to satisfy the expression (1), inclusions with a diameter of 100 (μm) are not found, and inclusions flowing out into the mold can be eliminated. It was.
[0026]
Next, in the case where only the lower weir is not installed in the apparatus of the present invention, as a comparative example, the position of the molten steel outlet 4 to the mold when the upper weir 7 is at the position of L = 2.5 (m) The molten steel temperature was measured at a height of 0.2 m from the bottom of the tundish (described as the tundish outlet side). For reference, the molten steel temperature at the position of the injection nozzle 2 from the ladle (described as the tundish inlet side) was measured at a height of 0.2 m from the bottom of the tundish.
[0027]
As a result, as shown in FIG. 4, when the lower weir 6 is installed as in the apparatus of the present invention, the temperature is 5 (K) higher than when the lower weir 6 is not installed as in the comparative example. It was. Therefore, in the case where the lower weir 6 is present, it was confirmed that the heating temperature of the molten steel injected into the mold was raised and the substantial heat efficiency was increased.
[0028]
【The invention's effect】
As described above, the use of the apparatus of the present invention makes it possible to produce clean steel with good heating efficiency and few large inclusions.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a device configuration of the present invention.
FIG. 2 is an explanatory view schematically showing the flow generated by the apparatus of the present invention.
FIG. 3 is a comparison diagram of the distance between the upstream dam on the wake side of the embodiment and the mold position and inclusions.
FIG. 4 is a measurement comparison diagram of molten steel temperature on the tundish delivery side of the example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ladle 2 Injection nozzle from ladle 3 Tundish 4 Molten steel outlet 5 to mold 5 Upper weir 6 Lower weir 7 Upper weir 8 Plasma 9 Electrode 10 Flow

Claims (1)

溶鋼を精錬工程から輸送する取鍋と、連続鋳造用鋳型との間に配置されるタンディッシュにおいて、取鍋からタンディッシュへ溶鋼を注入するノズル位置と、タンディッシュから鋳型へ溶鋼を注入するノズル位置の間に1対の上堰と、該1対の上堰に挟まれる位置に下堰が設置され、かつ該1対の上堰間にプラズマ加熱電極が配置され、後流側の上堰の下端とタンディッシュ底部との間隔D(m)、該部位での溶鋼深さH(m)、溶鋼流路平均幅W(m)、溶鋼のスループットQ(t/分)、後流側の上堰と溶鋼流出口までの距離L(m)が下記(1)式を満足することを特徴とする加熱機能を備えた鋼の連続鋳造用タンディッシュ。
L>α× { Q×(H+D/2) 1/2 } /(D×W)・・・(1)
但し、α:γ/ { ρ×(β×g×ΔT) 1/2 }
ρ:溶鋼の液相線温度での溶鋼密度(kg/m
β:溶鋼の体膨張率(1/K)
g:重力加速度
ΔT:プラズマ加熱による平均の溶鋼温度上昇(K)
γ:操業条件によって決まる比例定数
In the tundish arranged between the ladle for transporting molten steel from the refining process and the continuous casting mold, the nozzle position for injecting molten steel from the ladle to the tundish, and the nozzle for injecting molten steel from the tundish to the mold A pair of upper weirs and a lower weir placed between the pair of upper weirs, and a plasma heating electrode is disposed between the pair of upper weirs. The distance D (m) between the lower end of the steel and the bottom of the tundish, the depth H (m) of the molten steel at the portion, the average width W (m) of the molten steel channel, the throughput Q (t / min) of the molten steel, A tundish for continuous casting of steel having a heating function , characterized in that the distance L (m) between the upper weir and the molten steel outlet satisfies the following formula (1) .
L> α × { Q × (H + D / 2) 1/2 } / (D × W) (1)
Where α: γ / { ρ × (β × g × ΔT) 1/2 }
ρ: Molten steel density at the liquidus temperature of molten steel (kg / m 3 )
β: Body expansion coefficient of molten steel (1 / K)
g: Gravity acceleration
ΔT: Average molten steel temperature rise due to plasma heating (K)
γ: Proportional constant determined by operating conditions
JP2003195959A 2003-07-11 2003-07-11 Tundish for continuous casting of steel with heating function Expired - Fee Related JP4220848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003195959A JP4220848B2 (en) 2003-07-11 2003-07-11 Tundish for continuous casting of steel with heating function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003195959A JP4220848B2 (en) 2003-07-11 2003-07-11 Tundish for continuous casting of steel with heating function

Publications (2)

Publication Number Publication Date
JP2005028402A JP2005028402A (en) 2005-02-03
JP4220848B2 true JP4220848B2 (en) 2009-02-04

Family

ID=34206639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003195959A Expired - Fee Related JP4220848B2 (en) 2003-07-11 2003-07-11 Tundish for continuous casting of steel with heating function

Country Status (1)

Country Link
JP (1) JP4220848B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111408708A (en) * 2020-04-24 2020-07-14 北京奥邦新材料有限公司 Tundish molten steel low-temperature constant-temperature intelligent casting system with plasma heating function

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5053227B2 (en) * 2008-10-10 2012-10-17 新日本製鐵株式会社 Tundish for continuous casting

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59163062A (en) * 1983-03-09 1984-09-14 Nippon Steel Corp Heater for molten steel in tundish
JPS6195755A (en) * 1984-10-16 1986-05-14 Kawasaki Steel Corp Heating method of molten metal in tundish
JPS63149055A (en) * 1986-12-15 1988-06-21 Nippon Steel Corp Refining method for molten steel in tundish for continuous casting
JPH08267199A (en) * 1995-03-29 1996-10-15 Nisshin Steel Co Ltd Method for continuous casting of high cleanliness steel using tundish provided with openable/closable weir
JPH09122852A (en) * 1995-10-31 1997-05-13 Nisshin Steel Co Ltd Continuous casting method for high cleanness steel with using tundish arranged with gate capable of opening/ closing
JP4456284B2 (en) * 2001-01-29 2010-04-28 新日本製鐵株式会社 Molten steel heating device using plasma torch

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111408708A (en) * 2020-04-24 2020-07-14 北京奥邦新材料有限公司 Tundish molten steel low-temperature constant-temperature intelligent casting system with plasma heating function

Also Published As

Publication number Publication date
JP2005028402A (en) 2005-02-03

Similar Documents

Publication Publication Date Title
EP1996353B1 (en) Distributor device for use in metal casting
JP5807719B2 (en) High cleanliness steel slab manufacturing method and tundish
JP4714539B2 (en) Tundish for continuous casting
JP4220848B2 (en) Tundish for continuous casting of steel with heating function
JP2011143449A (en) Method for removing inclusion in tundish for continuous casting
JP5510047B2 (en) Continuous casting method and continuous casting apparatus
JP4725244B2 (en) Ladle for continuous casting and method for producing slab
JP5267315B2 (en) Tundish for continuous casting and continuous casting method
JP3988538B2 (en) Manufacturing method of continuous cast slab
JP5206584B2 (en) Tundish for continuous casting and continuous casting method
Gushchin et al. Technical solutions for controlling flows of melts in the tundishes of continuous casters.
JP6451466B2 (en) Capturing device and removal method for non-metallic inclusions in molten metal
JP5510061B2 (en) Continuous casting method
JP4474948B2 (en) Steel continuous casting method
JP7397499B2 (en) Molten metal casting method using impact pad in tundish
JP2019206018A (en) Method for feeding molten steel
JP2023066986A (en) nozzle system
JP2011104622A (en) Continuous casting method and ladle for continuous casting
JP2005028376A (en) Tundish for continuously casting steel
RU2216427C1 (en) Method for casting metallic ingots and apparatus for performing the same
JP2020078810A (en) Tundish for continuous casting, and apparatus and method for continuous casting
JP2020171955A (en) Continuous casting method for steel
JP5009033B2 (en) Steel continuous casting method and continuous casting apparatus
FI69972B (en) METAL CONTAINER CONTAINER
JP2023143363A (en) Long nozzle and nozzle system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4220848

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees