JP2020078810A - Tundish for continuous casting, and apparatus and method for continuous casting - Google Patents

Tundish for continuous casting, and apparatus and method for continuous casting Download PDF

Info

Publication number
JP2020078810A
JP2020078810A JP2018212318A JP2018212318A JP2020078810A JP 2020078810 A JP2020078810 A JP 2020078810A JP 2018212318 A JP2018212318 A JP 2018212318A JP 2018212318 A JP2018212318 A JP 2018212318A JP 2020078810 A JP2020078810 A JP 2020078810A
Authority
JP
Japan
Prior art keywords
runner
tundish
continuous casting
molten steel
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018212318A
Other languages
Japanese (ja)
Inventor
雅俊 川端
Masatoshi Kawabata
雅俊 川端
謙治 田口
Kenji Taguchi
謙治 田口
亮輔 ▲高▼田
亮輔 ▲高▼田
Ryosuke Takada
景都 鎌野
Keito Kamano
景都 鎌野
薫 杉森
Kaoru Sugimori
薫 杉森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018212318A priority Critical patent/JP2020078810A/en
Publication of JP2020078810A publication Critical patent/JP2020078810A/en
Pending legal-status Critical Current

Links

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

To provide a tundish for continuous casting adapted to effectively prevent the production of an inclusion by preventing a re-oxidation reaction between a molten steel or in-molten-steel aluminum and an in-tundish oxygen while suppressing the inclusion in the molten steel from being brought into a mold by a short path.SOLUTION: A tundish for continuous casting, for pouring a molten steel poured from a ladle, has a steel receiving unit that receives the molten steel, a discharge unit that discharges the molten steel into the mold, and a runner 20c that communicates and couples between the steel receiving unit and the discharge unit. The tundish for continuous casting is configured such that an inlet area of the runner 20c closer to the steel receiving unit is smaller than an outlet area of the runner 20c closer to the discharge unit, and in a vertical cross-section including an axis connecting between an in-figure center on an inlet plane of the runner 20c and an in-figure center on an outlet plane of the runner 20c, an angle α defined between the axis and an inner wall of the runner 20c satisfies the following expression (1). 0°<α<12°...(1)SELECTED DRAWING: Figure 3

Description

本願は、特定の湯道形状を有する連続鋳造用タンディッシュ、並びに、当該タンディッシュを用いた連続鋳造装置及び連続鋳造方法を開示する。   The present application discloses a tundish for continuous casting having a specific runner shape, and a continuous casting apparatus and a continuous casting method using the tundish.

鋼の連続鋳造プロセスにおいては、精錬工程で成分と温度を調整された溶鋼が、耐火物容器である取鍋に貯留された状態で、連続鋳造工程を実施する連続鋳造機まで輸送される。輸送された溶鋼は、連続鋳造機の鋳型に注入される。ここで、取鍋から鋳型に溶鋼を直接注入すると、溶鋼の流量の制御が難しい。加えて、連続鋳造を行うためには、取鍋を交換しつつ鋳型に継続的に溶鋼を供給する必要がある。そのため、一般的には取鍋の溶鋼は、取鍋の下面に取り付けられた注入ノズルを介して、取鍋下方に位置するタンディッシュと呼ばれる中間容器内に注入され、タンディッシュ内で流量調整された後、鋳型内に供給されている。   In the continuous casting process of steel, molten steel whose components and temperature have been adjusted in the refining process is transported to a continuous casting machine for carrying out the continuous casting process while being stored in a ladle which is a refractory container. The transported molten steel is poured into the mold of the continuous casting machine. Here, if the molten steel is directly injected into the mold from the ladle, it is difficult to control the flow rate of the molten steel. In addition, in order to perform continuous casting, it is necessary to replace the ladle and continuously supply molten steel to the mold. Therefore, in general, molten steel in a ladle is injected into an intermediate container called a tundish located below the ladle through an injection nozzle attached to the bottom surface of the ladle, and the flow rate is adjusted in the tundish. Then, it is fed into the mold.

タンディッシュは、上述のように流量を制御しつつ溶鋼を鋳型に供給する機能を持つ他に、鋼の精錬時等に不可避的に混入したスラグなどの非金属介在物を、その比重が鋼の比重よりも小さいことを利用してタンディッシュ内で浮上分離させる機能を有している。これにより、溶鋼中に存在する非金属介在物などがそのまま鋳型内に供給されることが抑制され、非金属介在物が鋳片に混入する事が抑制され、非金属介在物などが原因で生じる圧延時の疵や割れなどを抑制できる。例えば、特許文献1、2においては、タンディッシュの形状を最適化することで、タンディッシュ内の溶鋼に上昇流を発生させて、溶鋼中に存在する介在物がショートパスによって鋳型に持ち込まれることを抑制するとともに、溶鋼内に存在する介在物を浮上除去させている。   The tundish has the function of supplying molten steel to the mold while controlling the flow rate as described above, and also includes non-metallic inclusions such as slag that are inevitably mixed during refining of steel, etc. It has the function of floating and separating in the tundish by utilizing the fact that it is smaller than the specific gravity. As a result, it is possible to prevent the non-metallic inclusions existing in the molten steel from being directly supplied into the mold, to prevent the non-metal inclusions from mixing into the slab, and to cause the non-metal inclusions. It is possible to suppress flaws and cracks during rolling. For example, in Patent Documents 1 and 2, by optimizing the shape of the tundish, an upward flow is generated in the molten steel in the tundish, and inclusions present in the molten steel are brought into the mold by a short path. And the inclusions existing in the molten steel are floated and removed.

タンディッシュ内の溶鋼は、凝固時に成分が気体として発生しないよう、アルミニウムなどを加えて溶存酸素量を抑えている。一方で、タンディッシュの溶鋼湯面では不可避的にスラグ中の低級酸化物や大気などによる再酸化、すなわち溶鋼中のアルミニウムの酸化反応が発生している。酸化したアルミニウムはアルミナ介在物となって鋳片にとどまり、品質を低下させる。この再酸化反応速度を決める要素として溶鋼の湯面流動がある。非特許文献1は、スラグ中のSiO、MnOなどの低級酸化物と溶鋼中アルミニウムとの反応速度について述べており、溶鋼流速の1.5乗に比例してメタル側物質移動係数が増大し、アルミニウムの溶鋼湯面の移動が促進されて再酸化速度が大きくなることを示している。また、非特許文献2は、大気中の酸素と溶鋼中のアルミニウムとの反応速度について述べており、溶鋼流動がある場合、溶鋼湯面に存在する酸化膜が破断し再酸化速度が大きくなることを示している。 The molten steel in the tundish is added with aluminum or the like to suppress the amount of dissolved oxygen so that the components do not generate as a gas during solidification. On the other hand, on the molten steel surface of the tundish, reoxidation due to lower oxides in the slag and the atmosphere, that is, oxidation reaction of aluminum in the molten steel, is inevitably generated. Oxidized aluminum becomes alumina inclusions and remains in the slab, deteriorating the quality. The surface level of molten steel is a factor that determines the reoxidation reaction rate. Non-Patent Document 1 describes the reaction rate between lower oxides such as SiO 2 and MnO in slag and aluminum in molten steel, and the metal-side mass transfer coefficient increases in proportion to the 1.5th power of the molten steel flow rate. , The movement of the molten steel surface of aluminum is promoted, and the reoxidation rate increases. Non-Patent Document 2 describes the reaction rate between oxygen in the atmosphere and aluminum in molten steel. When molten steel flows, the oxide film present on the surface of the molten steel breaks and the reoxidation rate increases. Is shown.

特許第5527980号公報Japanese Patent No. 5527980 特許第5527981号公報Japanese Patent No. 5527981

笹井勝浩, 水上義正: 鉄と鋼, 81 (1995), 1139.Katsuhiro Sasai, Yoshimasa Mizukami: Iron and Steel, 81 (1995), 1139. 樋口善彦, 田子ユカリ, 高谷幸司, 深川信: 鉄と鋼, 84 (1998), 333.Yoshihiko Higuchi, Yukari Tako, Koji Takatani, Shin Fukagawa: Iron and Steel, 84 (1998), 333.

特許文献1、2に開示されているように、タンディッシュ内で溶鋼に上昇流を発生させた場合、溶鋼湯面の流速が増加し、湯面に存在する大気あるいはスラグ内の酸素と溶鋼中のアルミニウムとが反応してアルミナ系の介在物を逆に増加させてしまうという問題がある。この点を考慮しつつ、タンディッシュにおいて、溶鋼中に存在する介在物がショートパスによって鋳型に持ち込まれることを抑制しつつ、溶鋼または溶鋼中のアルミニウムとタンディッシュ内の酸素との再酸化反応を防止して介在物の生成を効果的に防ぐ新たな技術が必要である。   As disclosed in Patent Documents 1 and 2, when an ascending flow is generated in molten steel in a tundish, the flow velocity of the molten steel surface increases, and the oxygen existing in the atmosphere or slag existing in the molten metal and the molten steel However, there is a problem in that the aluminum-based inclusions react with aluminum to increase the amount of alumina-based inclusions. In consideration of this point, in the tundish, while suppressing inclusions existing in the molten steel from being brought into the mold by a short path, the reoxidation reaction between the molten steel or aluminum in the molten steel and oxygen in the tundish can be prevented. New technology is needed to prevent and effectively prevent the formation of inclusions.

本願は上記課題を解決するための手段の一つとして、取鍋から注入された溶鋼を鋳型へと注入する、連続鋳造用のタンディッシュであって、前記溶鋼を受け入れる受鋼部と、前記溶鋼を前記鋳型へと排出する排出部と、前記受鋼部と前記排出部とを連通して結合する湯道と、を有し、前記湯道の前記受鋼部側の入口面積が、前記湯道の前記排出部側の出口面積よりも小さく、前記湯道の入口面の図心と前記湯道の出口面の図心とを結んだ軸を含む鉛直断面において、前記軸と前記湯道の内壁とのなす角度αが下記式(1)を満たす、連続鋳造用タンディッシュを開示する。
0°<α<12°・・・(1)
The present application is, as one of the means for solving the above problems, a tundish for continuous casting, injecting molten steel injected from a ladle into a mold, and a steel receiving portion for receiving the molten steel, and the molten steel Has a discharge part for discharging to the mold, and a runner connecting the steel receiving part and the discharge part in communication with each other, and the inlet area of the runner on the steel receiving part side is the hot water. In a vertical cross section that is smaller than the outlet area of the outlet on the side of the discharge portion and includes a shaft connecting the centroid of the inlet surface of the runner and the centroid of the outlet surface of the runner, Disclosed is a tundish for continuous casting in which an angle α with an inner wall satisfies the following expression (1).
0°<α<12° (1)

本開示の連続鋳造用タンディッシュにおいて、前記角度αが下記式(2)を満たしてもよい。
3°<α<12°・・・(2)
In the continuous casting tundish of the present disclosure, the angle α may satisfy the following expression (2).
3°<α<12° (2)

本開示の連続鋳造用タンディッシュにおいて、前記軸を含むとともに前記鉛直断面と直交する断面において、前記軸と前記湯道の内壁とのなす角度βが下記式(3)を満たしてもよい。
0°<β<12°・・・(3)
In the continuous casting tundish of the present disclosure, an angle β formed by the shaft and the inner wall of the runner may satisfy the following expression (3) in a cross section including the shaft and orthogonal to the vertical cross section.
0°<β<12° (3)

本開示の連続鋳造用タンディッシュにおいて、前記角度βが下記式(4)を満たしてもよい。
3°<β<12°・・・(4)
In the continuous casting tundish of the present disclosure, the angle β may satisfy the following expression (4).
3°<β<12°・・・(4)

本開示の連続鋳造用タンディッシュにおいて、前記湯道の入口面の図心と前記湯道の出口面の図心との距離が50cm以上200cm以下であってもよい。   In the continuous casting tundish of the present disclosure, the distance between the centroid of the inlet surface of the runner and the centroid of the outlet surface of the runner may be 50 cm or more and 200 cm or less.

本開示の連続鋳造用タンディッシュにおいて、前記湯道の流路面積のうち、前記入口の輪郭の少なくとも一部を含む入口側最小面積をA、前記出口の輪郭の少なくとも一部を含む出口側最小面積をAとした場合、A/Aが0.4以上0.8以下であってもよい。 In the continuous casting tundish of the present disclosure, the inlet side minimum area including at least a part of the inlet contour is A 1 among the flow passage areas of the runner, and the outlet side including at least a part of the outlet contour. When the minimum area is A 2 , A 1 /A 2 may be 0.4 or more and 0.8 or less.

本願は上記課題を解決するための手段の一つとして、上記本開示の連続鋳造用タンディッシュを備える、連続鋳造装置を開示する。   The present application discloses, as one of means for solving the above problems, a continuous casting apparatus including the continuous casting tundish of the present disclosure.

本願は上記課題を解決するための手段の一つとして、取鍋内の溶鋼をタンディッシュに注入した後、該溶鋼を鋳型内に注入する連続鋳造方法であって、前記タンディッシュが、前記溶鋼を受け入れる受鋼部と、前記溶鋼を前記鋳型へと排出する排出部と、前記受鋼部と前記排出部とを連通して結合する湯道と、を有し、前記湯道の前記受鋼部側の入口面積が、前記湯道の前記排出部側の出口面積よりも小さく、前記湯道の入口面の図心と前記湯道の出口面の図心とを結んだ軸を含む鉛直断面において、前記軸と前記湯道の内壁とのなす角度αが下記式(1)を満たす、連続鋳造方法を開示する。
0°<α<12°・・・(1)
The present application is, as one of the means for solving the above problems, a continuous casting method of injecting molten steel in a ladle into a tundish, and then injecting the molten steel into a mold, wherein the tundish is the molten steel. A steel receiving part for receiving the molten steel, a discharging part for discharging the molten steel to the mold, and a runner for connecting the steel receiving part and the discharging part to each other for connection. A vertical cross section in which the inlet area on the part side is smaller than the outlet area on the discharge part side of the runner, and which includes an axis connecting the centroid of the entrance surface of the runner and the centroid of the exit surface of the runner In, a continuous casting method is disclosed in which an angle α formed by the shaft and the inner wall of the runner satisfies the following expression (1).
0°<α<12° (1)

本開示の連続鋳造方法においては、前記角度αが下記式(2)を満たしてもよい。
3°<α<12°・・・(2)
In the continuous casting method of the present disclosure, the angle α may satisfy the following expression (2).
3°<α<12° (2)

本開示の連続鋳造方法においては、前記軸を含むとともに前記鉛直断面と直交する断面において、前記軸と前記湯道の内壁とのなす角度βが下記式(3)を満たしてもよい。
0°<β<12°・・・(3)
In the continuous casting method of the present disclosure, the angle β formed by the shaft and the inner wall of the runner may satisfy the following formula (3) in the cross section including the shaft and orthogonal to the vertical cross section.
0°<β<12° (3)

本開示の連続鋳造方法においては、前記角度βが下記式(4)を満たしてもよい。
3°<β<12°・・・(4)
In the continuous casting method of the present disclosure, the angle β may satisfy the following expression (4).
3°<β<12°・・・(4)

本開示の連続鋳造方法においては、前記湯道の入口面の図心と前記湯道の出口面の図心との距離が50cm以上200cm以下であってもよい。   In the continuous casting method of the present disclosure, the distance between the centroid of the entrance surface of the runner and the centroid of the exit surface of the runner may be 50 cm or more and 200 cm or less.

本開示の連続鋳造方法においては、前記湯道の流路面積のうち、前記入口の輪郭の少なくとも一部を含む入口側最小面積をA、前記出口の輪郭の少なくとも一部を含む出口側最小面積をAとした場合、A/Aが0.4以上0.8以下であってもよい。 In the continuous casting method of the present disclosure, in the flow passage area of the runner, an inlet-side minimum area including at least a part of the inlet contour is A 1 , and an outlet-side minimum area including at least a part of the outlet contour. When the area is A 2 , A 1 /A 2 may be 0.4 or more and 0.8 or less.

本発明者の新たな知見によれば、タンディッシュを溶鋼を受け入れる受鋼部と溶鋼を鋳型に注入する排出部とに分けるとともに、当該受鋼部と溶鋼排出部とを連通して結合する湯道を設け、当該湯道の形状を上記した所定の形状とすることで、溶鋼中に存在する介在物がショートパスによって鋳型に持ち込まれることを抑制しつつ、タンディッシュにおける溶鋼の平均流速の増加を抑えて、溶鋼または溶鋼中のアルミニウムとタンディッシュ内の酸素との再酸化反応を抑制して介在物の生成を効果的に防ぐことができる。   According to a new finding of the present inventor, a tundish is divided into a steel receiving part for receiving molten steel and a discharging part for injecting molten steel into a mold, and a hot water for connecting the steel receiving part and the molten steel discharging part in communication. By increasing the average flow velocity of molten steel in the tundish, while preventing passage of inclusions existing in molten steel into the mold by a short path by providing a passage and setting the shape of the runner to the predetermined shape described above. It is possible to suppress the reoxidation reaction between the molten steel or aluminum in the molten steel and oxygen in the tundish, thereby effectively preventing the formation of inclusions.

タンディッシュを用いた連続鋳造装置及び連続鋳造方法を説明するための概略図である。It is a schematic diagram for explaining a continuous casting device and a continuous casting method using a tundish. タンディッシュにおける受鋼部と排出部と湯道との位置関係の一例を説明するための概略図である。It is a schematic diagram for explaining an example of a physical relationship among a steel receiving part, a discharge part, and a runner in a tundish. タンディッシュの湯道の形状の一例を説明するための概略図である。It is a schematic diagram for explaining an example of the shape of the runway of a tundish. タンディッシュの湯道の形状の一例を説明するための概略図である。軸Xを含む鉛直断面における湯道の形状を概略的に示している。It is a schematic diagram for explaining an example of the shape of the runway of a tundish. The shape of the runner in a vertical cross section including the axis X is schematically shown. タンディッシュの湯道の形状の一例を説明するための概略図である。軸Xを含む断面であって鉛直断面と直交する断面における湯道の形状を概略的に示している。It is a schematic diagram for explaining an example of the shape of the runway of a tundish. The shape of the runner is schematically shown in a cross section including the axis X and orthogonal to the vertical cross section. 本開示の技術思想について補足説明するための概略図である。It is a schematic diagram for supplementary explanation about a technical idea of this indication. タンディッシュの湯道の形状の一例を説明するための概略図である。軸Xを含む鉛直断面における湯道の形状を概略的に示している。It is a schematic diagram for explaining an example of the shape of the runway of a tundish. The shape of the runner in a vertical cross section including the axis X is schematically shown. 計算ケース(1)の条件を示す図である。It is a figure which shows the conditions of calculation case (1). 計算ケース(2)の条件を示す図である。It is a figure which shows the conditions of calculation case (2). 角度αと溶鋼の平均流速との関係を示す図である。It is a figure which shows the relationship between the angle (alpha) and the average flow velocity of molten steel. 角度αを15°とした場合における計算結果を示す図である。It is a figure which shows the calculation result in case the angle (alpha) is 15 degrees. 角度αと溶鋼の逆流率との関係を示す図である。It is a figure which shows the relationship between the angle (alpha) and the backflow rate of molten steel. 実施例にて用いたH型タンディッシュの形状について説明するための概略図である。It is a schematic diagram for explaining the shape of the H type tundish used in the examples. 実施例及び比較例の評価結果を示す図である。It is a figure which shows the evaluation result of an Example and a comparative example.

図1〜7を参照しつつ、本開示のタンディッシュ、並びに、当該タンディッシュを用いた連続鋳造装置及び連続鋳造方法について説明する。図1に示すように、連続鋳造においては、取鍋10内の溶鋼1をタンディッシュ20に注入した後、該溶鋼1を鋳型30内に注入する。取鍋10及び鋳型30の形態、並びに、取鍋10、タンディッシュ20及び鋳型30の位置関係等については連続鋳造の分野において自明であることから、ここでは詳細な説明を省略する。   A tundish of the present disclosure, and a continuous casting device and a continuous casting method using the tundish will be described with reference to FIGS. 1 to 7. As shown in FIG. 1, in continuous casting, after the molten steel 1 in the ladle 10 is poured into the tundish 20, the molten steel 1 is poured into the mold 30. The forms of the ladle 10 and the mold 30 and the positional relationship between the ladle 10, the tundish 20 and the mold 30 are obvious in the field of continuous casting, and therefore detailed description thereof is omitted here.

1.連続鋳造用タンディッシュ
図1に示すように、タンディッシュ20は、取鍋10から注入された溶鋼1を鋳型30へと注入する、連続鋳造用のタンディッシュであって、溶鋼1を受け入れる受鋼部20aと、溶鋼1を鋳型30へと排出する排出部20bと、受鋼部20aと排出部20bとを連通して結合する湯道20cと、を有している。受鋼部20aや排出部20b、湯道20cはタンディッシュ20を構成する材料として公知の耐火物により構成すればよい。
1. Tundish for Continuous Casting As shown in FIG. 1, a tundish 20 is a tundish for continuous casting in which the molten steel 1 injected from a ladle 10 is injected into a mold 30 and is a steel receiving plate that receives the molten steel 1. It has a portion 20a, a discharge portion 20b for discharging the molten steel 1 to the mold 30, and a runner 20c for connecting and connecting the steel receiving portion 20a and the discharge portion 20b. The steel receiving portion 20a, the discharging portion 20b, and the runner 20c may be made of a known refractory material as a material for the tundish 20.

図2に、上面視における受鋼部20aと排出部20bと湯道20cとの位置関係の一例を概略的に示す。図2に示すタンディッシュ20は、受鋼部20aと排出部20bと湯道20cとが一体で形成されたH型タンディッシュに相当するが、タンディッシュ20の形状はこれに限定されるものではなく、受鋼部20aと排出部20bと湯道20cとを有するものであれば如何なる形状であってもよい。例えば、図示しないが、通常のタンディッシュの内部に受鋼部と排出部とを隔てる堰を設け、当該堰の少なくとも一部に穴を開けて受鋼部と排出部とを連通する湯道を設けたような形態であってもよい。図2に示すように、取鍋10からタンディッシュ20の受鋼部20aに注入された溶鋼1は、タンディッシュ20の排出部20bへと到達する前に必ず湯道20cを通る。このように、湯道20cを介することで溶鋼1の平均流速等を制御することができる。   FIG. 2 schematically shows an example of the positional relationship among the steel receiving portion 20a, the discharging portion 20b, and the runner 20c in a top view. The tundish 20 shown in FIG. 2 corresponds to an H-shaped tundish in which the steel receiving portion 20a, the discharging portion 20b, and the runner 20c are integrally formed, but the shape of the tundish 20 is not limited to this. Instead, it may have any shape as long as it has the steel receiving portion 20a, the discharging portion 20b, and the runner 20c. For example, although not shown, a weir that separates the steel receiving portion and the discharging portion is provided inside a normal tundish, and a runner that connects the steel receiving portion and the discharging portion with a hole is formed in at least a part of the weir. The form provided may be sufficient. As shown in FIG. 2, the molten steel 1 poured from the ladle 10 into the steel receiving portion 20a of the tundish 20 always passes through the runner 20c before reaching the discharging portion 20b of the tundish 20. Thus, the average flow velocity of the molten steel 1 and the like can be controlled through the runner 20c.

図3、4にタンディッシュ20の湯道20cの形状の一例を概略的に示す。図3においては湯道20cの全体の形状を斜視的に示している。図4においては後述の軸Xを含む鉛直断面における湯道20cの形状を示している。尚、図3、4においては、タンディッシュ20の側壁の一般的な形状に合わせて、湯道20cの入口の面や出口の面が鉛直方向に対して傾いている形態について示しているが、湯道の入口及び出口の形態はこれに限定されるものではない。例えば、湯道20cの入口及び/又は出口の面が鉛直方向に沿っていてもよい。   3 and 4 schematically show an example of the shape of the runner 20c of the tundish 20. In FIG. 3, the overall shape of the runner 20c is shown in perspective. FIG. 4 shows the shape of the runner 20c in a vertical cross section including the axis X described later. 3 and 4 show a configuration in which the inlet surface and the outlet surface of the runner 20c are inclined with respect to the vertical direction in accordance with the general shape of the side wall of the tundish 20. The form of the entrance and the exit of the runner is not limited to this. For example, the surface of the inlet and/or the outlet of the runner 20c may be along the vertical direction.

図3、4に示すように、タンディッシュ20の湯道20cの受鋼部20a側の入口面積が、湯道20cの排出部20b側の出口面積よりも小さいことが重要である。すなわち、湯道20cは入口から出口に向かって流路面積が拡大している。このように、湯道20cの入口面積を出口面積よりも小さくすることで、湯道20cを流通する溶鋼1の平均流速を低下させることができる。湯道20cの入口面積と出口面積との比は、後述の角度α等を満たす限り、特に限定されるものではない。尚、湯道20cの「入口面積」とは、湯道20cの入口を構成する輪郭によって囲まれる領域を平面に投影した場合(平面として捉えた場合)の最大面積をいう。「出口面積」とは、湯道20cの出口を構成する輪郭によって囲まれる領域を平面に投影した場合(平面として捉えた場合)の最大面積をいう。   As shown in FIGS. 3 and 4, it is important that the inlet area of the runner 20c of the tundish 20 on the steel receiving portion 20a side is smaller than the outlet area of the runner 20c on the discharging portion 20b side. That is, the runner 20c has a flow passage area that increases from the inlet to the outlet. In this way, by making the inlet area of the runner 20c smaller than the outlet area, the average flow velocity of the molten steel 1 flowing through the runner 20c can be reduced. The ratio between the inlet area and the outlet area of the runner 20c is not particularly limited as long as the angle α described below is satisfied. The "entrance area" of the runner 20c refers to the maximum area when the region surrounded by the contours forming the entrance of the runner 20c is projected on a flat surface (when it is regarded as a flat surface). The “exit area” refers to the maximum area when the area surrounded by the contours forming the exit of the runner 20c is projected on a plane (when it is regarded as a plane).

図3、4に示すように、タンディッシュ20の湯道20cの入口面の図心と湯道20cの出口面の図心とを結んだ軸Xを含む鉛直断面において、軸Xと湯道20cの内壁とのなす角度αが下記式(1)を満たすことが重要である。言い換えれば、タンディッシュ20の湯道20cは、軸Xを含む鉛直断面において、上側の内壁と下側の内壁とのなす角度α’(図3、4におけるα1+α2)が0°超24°未満となる。或いは、タンディッシュ20の湯道20cは入口から出口に向かって角度0°超24°未満にて先太りとされている(流路面積が拡大されている)とも言える。
0°<α<12°・・・(1)
As shown in FIGS. 3 and 4, in the vertical cross section including the axis X connecting the centroid of the entrance surface of the runner 20c of the tundish 20 and the centroid of the exit surface of the runner 20c, the axis X and the runner 20c are shown. It is important that the angle α formed with the inner wall of the above satisfies the following formula (1). In other words, the runner 20c of the tundish 20 has an angle α′ (α1+α2 in FIGS. 3 and 4) between the upper inner wall and the lower inner wall in the vertical cross section including the axis X of more than 0° and less than 24°. Become. Alternatively, it can be said that the runners 20c of the tundish 20 are tapered at an angle of more than 0° and less than 24° from the inlet to the outlet (the flow passage area is enlarged).
0°<α<12° (1)

「湯道の入口面の図心」とは、湯道の入口を構成する輪郭によって囲まれる領域を平面として捉えた場合に、当該平面上の任意の点のうち、その位置を支点としたときに当該平面が釣り合う点をいう。「湯道の出口面の図心」についても同様である。湯道の入口面の図心の位置は例えば以下のようにして特定することができる。すなわち、上記した「入口面積」と対応する平面(湯道20cの入口を構成する輪郭によって囲まれる領域を平面として捉えた場合の当該平面)の任意の点を原点として、断面1次モーメントを計算し、計算した断面1次モーメントを入口面積で割った値が、当該原点から図心までの距離となる。特定の平面図形における図心の位置を特定する方法については公知であることから、ここではこれ以上の説明を省略する。   "The centroid of the entrance surface of the runner" means that when the area surrounded by the contours that form the entrance of the runner is regarded as a plane, that position is taken as the fulcrum among any points on that plane. The point at which the plane is in balance. The same applies to the “centroid of the exit surface of the runway”. The position of the centroid of the entrance surface of the runner can be specified as follows, for example. That is, the first moment of area is calculated with an arbitrary point on the plane corresponding to the above-mentioned "inlet area" (the plane when the area surrounded by the contours forming the inlet of the runner 20c is regarded as a plane). Then, the value obtained by dividing the calculated first moment of area by the entrance area is the distance from the origin to the centroid. Since a method for specifying the position of the centroid in a specific plane figure is known, further description is omitted here.

湯道20cにおける上記の角度αが0°超であることで、入口から出口に向かって湯道20cの流路を拡大することができ、湯道20cを流通する溶鋼1の平均流速を低下させることができる。平均流速を一層低下させる観点からは、角度αが下記式(2)を満たすことが好ましい。
3°<α<12°・・・(2)
When the angle α in the runner 20c is more than 0°, the flow path of the runner 20c can be expanded from the inlet to the outlet, and the average flow velocity of the molten steel 1 flowing through the runner 20c is reduced. be able to. From the viewpoint of further reducing the average flow velocity, it is preferable that the angle α satisfies the following expression (2).
3°<α<12° (2)

一方、本発明者の新たな知見では、上記の角度αが12°以上に大きくなると、湯道20cを流通する溶鋼1の逆流率が大きく上昇する。逆流を一層抑制する観点からは、上記角度αが10°以下であることが好ましく、9°以下であることがより好ましい。   On the other hand, according to a new finding of the present inventor, when the angle α is increased to 12° or more, the backflow rate of the molten steel 1 flowing through the runner 20c is greatly increased. From the viewpoint of further suppressing backflow, the angle α is preferably 10° or less, more preferably 9° or less.

尚、図3、4において、湯道20cの上側内壁と軸Xとのなす角度α1と、下側内壁と軸Xとのなす角度α2とは、同じ値であっても異なる値であってもよい。角度α1及びα2のいずれについても0°超12°未満の範囲内であればよい。   3 and 4, the angle α1 formed by the upper inner wall of the runner 20c and the axis X and the angle α2 formed by the lower inner wall and the axis X may be the same value or different values. Good. Both of the angles α1 and α2 may be within the range of more than 0° and less than 12°.

上記の説明では、所定の鉛直断面における湯道20cの内壁のなす角度について説明した。一方、タンディッシュ20は、湯道20cが鉛直方向(上下方向)だけでなく、左右方向においても、入口から出口に向かって流路面積が拡大していることが好ましい。図5にタンディッシュ20の湯道20cの形状の一例を概略的に示す。図5においては軸Xを含むとともに鉛直断面と直交する断面における湯道20cの形状(上面視における湯道20cの形状と略一致)を示している。図5に示すように、タンディッシュ20は、軸Xを含むとともに鉛直断面と直交する断面において、軸Xと湯道20cの内壁とのなす角度βが下記式(3)を満たすことが好ましい。このように、鉛直方向だけでなく、鉛直方向と直交する方向においても、湯道20cの形状を入口から出口に向かって特定の角度にて先太りとすることで、湯道20cを流通する溶鋼1の平均流速をより適切に低下させることができる。
0°<β<12°・・・(3)
In the above description, the angle formed by the inner wall of the runner 20c in a predetermined vertical cross section has been described. On the other hand, in the tundish 20, it is preferable that the runner 20c has a flow passage area increasing from the inlet to the outlet not only in the vertical direction (vertical direction) but also in the horizontal direction. FIG. 5 schematically shows an example of the shape of the runner 20c of the tundish 20. FIG. 5 shows the shape of the runner 20c in a section including the axis X and orthogonal to the vertical section (substantially the same as the shape of the runner 20c in a top view). As shown in FIG. 5, in the tundish 20 including the axis X and a cross section orthogonal to the vertical cross section, it is preferable that an angle β formed by the axis X and the inner wall of the runner 20c satisfies the following expression (3). Thus, not only in the vertical direction, but also in the direction orthogonal to the vertical direction, by making the shape of the runner 20c thicker at a specific angle from the inlet to the outlet, the molten steel flowing through the runner 20c The average flow velocity of 1 can be reduced more appropriately.
0°<β<12° (3)

角度βの好ましい範囲は、上記角度αと同様である。すなわち、角度βが下記式(4)を満たすことがより好ましい。また、逆流を一層抑制する観点からは、角度βが10°以下であることが好ましく、9°以下であることがより好ましい。
3°<β<12°・・・(4)
The preferable range of the angle β is the same as that of the angle α. That is, it is more preferable that the angle β satisfies the following expression (4). Further, from the viewpoint of further suppressing backflow, the angle β is preferably 10° or less, and more preferably 9° or less.
3°<β<12°・・・(4)

より顕著な効果を発揮させる観点から、タンディッシュ20は、湯道20cの内壁の形状が、上記した鉛直方向(上下方向)の断面や左右方向の断面だけでなく、あらゆる方向の断面において、入口から出口に向かって所定の角度にて流路が拡大するような形状であることが好ましい。すなわち、タンディッシュ20は、軸Xを含む任意の断面において、軸Xと湯道20cの内壁とのなす角度γが下記式(5)を満たすことが好ましく、下記式(6)を満たすことがより好ましい。角度γのさらに好ましい範囲については角度αや角度βと同様である。
0°<γ<12°・・・(5)
3°<γ<12°・・・(6)
From the viewpoint of exerting a more remarkable effect, the tundish 20 has the shape of the inner wall of the runner 20c not only in the above-described vertical (vertical) cross section and in the left-right cross section, but also in the cross-sections in all directions. The shape is preferably such that the flow path expands from the to the outlet at a predetermined angle. That is, in the tundish 20, in any cross section including the axis X, the angle γ formed by the axis X and the inner wall of the runner 20c preferably satisfies the following expression (5), and may satisfy the following expression (6). More preferable. The more preferable range of the angle γ is the same as the angle α and the angle β.
0°<γ<12° (5)
3°<γ<12° (6)

タンディッシュ20の湯道20cの長さは特に限定されるものではないが、あまりに短すぎてもあまりに長すぎても効果が小さくなる傾向にある。例えば、溶鋼1の平均流速をより一層適切に減少させる観点からは、湯道20cの入口面の図心と湯道20cの出口面の図心との距離が50cm以上200cm以下であることが好ましい。   The length of the runner 20c of the tundish 20 is not particularly limited, but if it is too short or too long, the effect tends to be small. For example, from the viewpoint of more appropriately reducing the average flow velocity of the molten steel 1, it is preferable that the distance between the centroid of the inlet surface of the runner 20c and the centroid of the outlet surface of the runner 20c is 50 cm or more and 200 cm or less. ..

タンディッシュ20の湯道20cの入口側流路面積と出口側流路面積との比は、上記の角度を満たす限り特に限定されるものではない。通常、湯道20cの入口面や出口面の開口面積は、当該入口面や出口面の傾斜角度(鉛直方向に対する傾き)によって大きく変化し得る(図6参照)。この点、湯道20cの入口面と出口面との面積比を特定しただけでは、溶鋼1の平均流速を適切に低減することは難しい。これに対し、タンディッシュ20にあっては、湯道20cの入口面積を出口面積よりも小さくするだけでなく、湯道20cを入口から出口に向かって所定の角度にて先太りとすることで、溶鋼1の平均流速を適切に低減することが可能である。   The ratio of the inlet side flow passage area and the outlet side flow passage area of the runner 20c of the tundish 20 is not particularly limited as long as the above angle is satisfied. Normally, the opening area of the inlet surface or the outlet surface of the runner 20c can largely change depending on the inclination angle (the inclination with respect to the vertical direction) of the inlet surface or the outlet surface (see FIG. 6). In this respect, it is difficult to appropriately reduce the average flow velocity of the molten steel 1 only by specifying the area ratio between the inlet surface and the outlet surface of the runner 20c. On the other hand, in the tundish 20, not only is the inlet area of the runner 20c smaller than the outlet area, but the runner 20c is tapered at a predetermined angle from the inlet to the outlet. It is possible to appropriately reduce the average flow velocity of the molten steel 1.

尚、図7に示すように、湯道20cの入口の面の傾斜角度θと出口の面の傾斜角度θとに差が存在する場合は、湯道20cの流路面積のうち、入口の輪郭の少なくとも一部を含む入口側最小面積を「入口面積」として特定するとよい。また、湯道20cの流路面積のうち、出口の輪郭の少なくとも一部を含む出口側最小面積を「出口面積」として特定するとよい。ここで、タンディッシュ20においては、湯道20cの流路面積のうち、入口の輪郭の少なくとも一部を含む入口側最小面積をA、出口の輪郭の少なくとも一部を含む出口側最小面積をAとした場合、A/Aが0.4以上0.8以下であることが好ましい。また、湯道20cの好ましい長さを考慮すると、入口側最小面積Aは80cm以上2000cm以下であることが好ましく、出口側最小面積Aは100cm以上5000cm以下であることが好ましい。図7は軸Xを含む鉛直断面における湯道20cの形状を例示したが、軸Xを含む断面であって当該鉛直断面と直交する断面における湯道20cの形状についても同様に入口面及び出口面の傾斜角度を考慮することが好ましい。 In addition, as shown in FIG. 7, when there is a difference between the inclination angle θ 1 of the inlet surface of the runner 20c and the inclination angle θ 2 of the outlet surface, of the flow passage area of the runner 20c, The minimum area on the inlet side including at least a part of the contour of is preferably specified as the “inlet area”. Further, among the flow passage areas of the runner 20c, the outlet-side minimum area including at least a part of the outlet contour may be specified as the "outlet area". Here, in the tundish 20, among the flow passage areas of the runner 20c, the inlet-side minimum area including at least a part of the inlet contour is A 1 , and the outlet-side minimum area including at least a part of the outlet contour is When A 2 is set, A 1 /A 2 is preferably 0.4 or more and 0.8 or less. In consideration of the preferred length of the runner 20c, it is preferable that the inlet side minimum area A 1 is 80 cm 2 or more 2000 cm 2 or less, it is preferable that the outlet side minimum area A 2 is 100 cm 2 or more 5000 cm 2 or less . Although FIG. 7 exemplifies the shape of the runner 20c in the vertical cross section including the axis X, the shape of the runner 20c in the cross section including the axis X and the cross section orthogonal to the vertical cross section similarly has the inlet surface and the outlet surface. It is preferable to consider the inclination angle of.

タンディッシュ20において、湯道20cの入口側及び出口側の開口形状(湯道20cにおける溶鋼1の流通方向と直交する断面における湯道20cの形状)は、現実的且つ一般的な形状であればどのような形状であってもよい。例えば、多角形状の開口や丸状の開口等を採用可能である。湯道をより容易に成形可能である観点からは、略四角形状又は略丸状が好ましく、略四角形状がより好ましい。   In the tundish 20, the opening shape on the inlet side and the outlet side of the runner 20c (the shape of the runner 20c in a cross section orthogonal to the flowing direction of the molten steel 1 in the runner 20c) is a realistic and general shape. It may have any shape. For example, a polygonal opening, a round opening, or the like can be adopted. From the viewpoint that the runner can be formed more easily, a substantially square shape or a substantially round shape is preferable, and a substantially square shape is more preferable.

上記説明においては、タンディッシュ20に湯道20cが1つだけ備えられる形態について説明したが、湯道20cの数は1つに限定されるものではない。また、上記説明においては、断面形状において、湯道20cの内壁が入口から出口に向かって直線状とされた形態について説明したが、湯道20cの内壁面は直線状に限定されず、上記の角度を満たす範囲において曲線状であってもよい。   In the above description, the tundish 20 is provided with only one runner 20c, but the number of runners 20c is not limited to one. Further, in the above description, in the cross-sectional shape, the inner wall of the runner 20c is described as being linear from the inlet to the outlet, but the inner wall surface of the runner 20c is not limited to the linear shape, and It may be curved in a range satisfying the angle.

2.連続鋳造装置
上記説明においては、本開示の技術のうち連続鋳造用タンディッシュとしての側面について説明した。一方、本開示の技術は、連続鋳造装置としての側面も有する。すなわち、本開示の連続鋳造装置は、上述した本開示の連続鋳造用タンディッシュ20を備えることを特徴とする。
2. Continuous Casting Device In the above description, the aspect of the tundish for continuous casting of the techniques of the present disclosure has been described. On the other hand, the technique of the present disclosure also has a side face as a continuous casting device. That is, the continuous casting apparatus of the present disclosure includes the tundish 20 for continuous casting of the present disclosure described above.

本開示の連続鋳造装置において、タンディッシュ20の好ましい形態等については上述した通りであることから、ここでは詳細な説明を省略する。また、本開示の連続鋳造装置においてタンディッシュ20以外の構成は本技術分野において自明であることからここでは詳細な説明を省略する。   In the continuous casting apparatus of the present disclosure, the preferable form of the tundish 20 and the like are as described above, and thus detailed description thereof is omitted here. Further, in the continuous casting apparatus of the present disclosure, the configuration other than the tundish 20 is obvious in the present technical field, and thus detailed description thereof will be omitted here.

3.連続鋳造方法
上記説明においては、本開示の技術のうち連続鋳造用タンディッシュや連続鋳造装置としての側面について説明した。一方、本開示の技術は、連続鋳造方法としての側面も有する。すなわち、本開示の連続鋳造方法は、取鍋10内の溶鋼1をタンディッシュ20に注入した後、該溶鋼1を鋳型30内に注入する連続鋳造方法であって、タンディッシュ20が、溶鋼1を受け入れる受鋼部20aと、溶鋼1を鋳型30へと排出する排出部20bと、受鋼部20aと排出部20bとを連通して結合する湯道20cと、を有し、湯道20cの受鋼部20a側の入口面積が、湯道20cの排出部20b側の出口面積よりも小さく、湯道20cの入口面の図心と湯道20cの出口面の図心とを結んだ軸Xを含む鉛直断面において、軸Xと湯道20cの内壁とのなす角度αが下記式(1)を満たすことを特徴とする。
0°<α<12°・・・(1)
3. Continuous casting method In the above description, the aspects of the tundish for continuous casting and the continuous casting apparatus among the techniques of the present disclosure have been described. On the other hand, the technique of the present disclosure has an aspect as a continuous casting method. That is, the continuous casting method of the present disclosure is a continuous casting method in which the molten steel 1 in the ladle 10 is poured into the tundish 20 and then the molten steel 1 is poured into the mold 30. A steel receiving portion 20a for receiving the molten steel 1, a discharging portion 20b for discharging the molten steel 1 to the mold 30, and a runner 20c for connecting the steel receiving portion 20a and the discharging portion 20b for communication. The entrance area on the steel receiving portion 20a side is smaller than the exit area on the discharge portion 20b side of the runner 20c, and the axis X connecting the centroid of the entrance surface of the runner 20c and the centroid of the exit surface of the runner 20c. In a vertical cross section including, the angle α formed by the axis X and the inner wall of the runner 20c satisfies the following formula (1).
0°<α<12° (1)

本開示の連続鋳造方法において、タンディッシュ20の好ましい形態等については上述した通りであることから、ここでは詳細な説明を省略する。また、本開示の連続鋳造方法においてタンディッシュ20以外の構成は本技術分野において自明であることからここでは詳細な説明を省略する。   In the continuous casting method of the present disclosure, the preferable form and the like of the tundish 20 are as described above, and thus detailed description thereof is omitted here. Further, in the continuous casting method of the present disclosure, configurations other than the tundish 20 are obvious in the present technical field, and therefore detailed description thereof will be omitted here.

本開示の連続鋳造方法において、取鍋10からタンディッシュ20に注入される溶鋼1の流量(流速)や、タンディッシュ20から鋳型30へと排出される溶鋼1の流量(流速)については特に限定されるものではなく、一般的な流量(流速)であれば、本開示の連続鋳造方法による効果が発揮される。より顕著な効果を発揮させる観点から、本開示の連続鋳造方法においては、湯道20cの入口における溶鋼1の平均流速が0.1m/s以上1m/s以下、出口における溶鋼1の平均流速が0.05m/s以上0.5m/s以下となるように、タンディッシュ20に注入される溶鋼1及びタンディッシュ20から排出される溶鋼1の流量を調整することが好ましい。   In the continuous casting method of the present disclosure, the flow rate (flow rate) of the molten steel 1 injected from the ladle 10 into the tundish 20 and the flow rate (flow rate) of the molten steel 1 discharged from the tundish 20 into the mold 30 are particularly limited. However, if the flow rate is a general flow rate, the effect of the continuous casting method of the present disclosure is exhibited. From the viewpoint of exerting a more remarkable effect, in the continuous casting method of the present disclosure, the average flow velocity of the molten steel 1 at the inlet of the runner 20c is 0.1 m/s or more and 1 m/s or less, and the average velocity of the molten steel 1 at the outlet is It is preferable to adjust the flow rates of the molten steel 1 injected into the tundish 20 and the molten steel 1 discharged from the tundish 20 so as to be not less than 0.05 m/s and not more than 0.5 m/s.

以下、実施例を示しつつ、本開示のタンディッシュによる効果について説明する。   Hereinafter, effects of the tundish of the present disclosure will be described with reference to examples.

1.数値流体解析による検討
流体解析ソフトFLUENTを用いた数値流体解析を実施した。具体的には、図8に示す、計算ケース(1)の条件(600mm×600mmの領域から0.1m/sで溶鋼を流入させ、入側の形状が300mm×300mmの正方形断面で出側の断面積が入側よりも大きくなっている長さ1000mmの湯道内に溶鋼を流通した場合)において、湯道出側断面における溶鋼流速を定常計算した。ここで、入口面及び出口面の図心を通る軸と、湯道の内壁とのなす角を湯道入出勾配角度αと定義した(図3、4参照)。乱流モデルはk−ωを用い、溶鋼は密度7000kg/m、粘度0.006Pa・sとした。尚、ノズル壁面からの抜熱などによる温度分布が流動に与える影響は小さいと考え、熱対流は計算していない。
1. Examination by Computational Fluid Analysis Computational fluid analysis was carried out using fluid analysis software FLUENT. Specifically, as shown in FIG. 8, the molten steel is flown at a condition of calculation case (1) (0.1 mm/s from the area of 600 mm×600 mm, and the shape of the inlet side is a square cross section of 300 mm×300 mm, and In the case where molten steel was circulated in a runner having a cross-sectional area larger than that of the inlet side and having a length of 1000 mm), the steady-state calculation of the molten steel flow velocity at the runner outlet side cross section was performed. Here, the angle formed by the axes passing through the centroids of the inlet surface and the outlet surface and the inner wall of the runner was defined as the runner inlet/outlet inclination angle α (see FIGS. 3 and 4). The turbulent flow model was k-ω, and the molten steel had a density of 7000 kg/m 3 and a viscosity of 0.006 Pa·s. It should be noted that thermal convection is not calculated since it is considered that the temperature distribution due to heat removal from the nozzle wall surface has a small effect on the flow.

また、タンディッシュの形状によっては、湯道を左右方向に同じ角度で拡大することができない場合がある。この場合を想定して、図9に示す計算ケース(2)の条件(湯道の上下と片側の内壁面のみを拡大し、もう片側は湯道入出勾配角度を0°とした場合)について、湯道出側断面における溶鋼流速を定常計算した。   Further, depending on the shape of the tundish, it may not be possible to expand the runner at the same angle in the left-right direction. Assuming this case, regarding the condition of calculation case (2) shown in FIG. 9 (when the upper and lower sides of the runner and only the inner wall surface on one side are enlarged and the runner entrance/exit angle is set to 0° on the other side), Steady-state calculation of molten steel flow velocity in the runway exit side section was performed.

図10は、湯道入出勾配角度αと湯道の出側断面での溶鋼流速のうち、入り口から出口方向に向かう流動の平均流速を比較したものである。計算ケース(1)及び(2)ともに湯道入出勾配角度αが大きいほど溶鋼流速が低下している。すなわち、計算ケース(1)及び(2)のように、湯道の形状の異なる場合でも、湯道を流通する溶鋼の平均流速は上記の角度αで整理できることが分かった。   FIG. 10 compares the runner inlet/outlet inclination angle α and the molten steel flow velocity on the outlet side cross-section of the runner with the average flow velocity of the flow from the inlet to the outlet. In both calculation cases (1) and (2), the molten steel flow velocity decreases as the runner entrance/exit gradient angle α increases. That is, it was found that even when the shapes of the runners were different as in calculation cases (1) and (2), the average flow velocity of the molten steel flowing through the runners could be arranged by the angle α.

尚、図10の結果から、湯道入出勾配角度αが2°の場合、平均流速の低下が小さく、より顕著な効果を確保する観点からは角度αを3°超とするのがよいことが分かる。湯道の内壁面近傍において粘性の影響で溶鋼流動がほとんどなかったことが原因と考えられる。また、特に湯道入出勾配角度αが9°程度までは、角度αの増加に応じて溶鋼流速の減少効果がみられたがそれ以上では飽和する傾向が見られた。   From the result of FIG. 10, when the runner entrance/exit inclination angle α is 2°, it is preferable that the angle α is more than 3° from the viewpoint of reducing the decrease in average flow velocity and securing a more remarkable effect. I understand. It is considered that there was almost no molten steel flow near the inner wall surface of the runner due to the effect of viscosity. Further, especially, when the runner entrance/exit gradient angle α was up to about 9°, there was an effect of decreasing the molten steel flow velocity in accordance with the increase of the angle α, but there was a tendency to saturate above that.

以下の検討により、湯道入出勾配角度αが大きい場合について溶鋼流速の減少効果が飽和することについて確認した。図11は計算ケース(1)において湯道入出勾配角度αが15°の時の出側断面付近の流動の様子である。この場合、部分的に溶鋼の吸い込みが発生して湯道内に逆流することが分かる。このような逆流がある場合、タンディッシュ内の湯面のスラグや大気を巻き込んで溶鋼の品質が悪化する可能性があるため、逆流ができるだけ生じない範囲で流速を低減することが好ましい。   The following examination confirmed that the effect of reducing the molten steel flow velocity was saturated when the runner entrance/exit gradient angle α was large. FIG. 11 shows the flow around the outlet cross section when the runner inlet/outlet inclination angle α is 15° in the calculation case (1). In this case, it is understood that the molten steel is partially sucked and flows back into the runner. If there is such backflow, the quality of molten steel may be deteriorated by entraining the slag on the surface of the molten metal in the tundish and the atmosphere, so it is preferable to reduce the flow velocity within the range in which backflow does not occur as much as possible.

図12に出側断面の面積に対して溶鋼が逆流している面積の百分率を逆流率と定義して示した。湯道入出勾配角度αが9°までは逆流率0で、10°を越えた12°以上で逆流率が大きく増大することがわかった。このような流動が生じている場合、湯道出口での流速が小さくならず、またタンディッシュ内の湯面付近に浮かんだスラグなどを吸い込んで溶鋼中の介在物が増加する可能性がある。   In FIG. 12, the percentage of the area in which the molten steel flows backward with respect to the area of the exit side section is defined as the backflow rate. It was found that the backflow rate was 0 when the runner inlet/outlet angle α was 9°, and the backflow rate was significantly increased when the runner inlet/outlet angle α was more than 10° and 12° or more. When such a flow occurs, the flow velocity at the outlet of the runner does not decrease, and the slag floating near the surface of the molten metal in the tundish may be sucked in to increase the inclusions in the molten steel.

以上の結果から、角度αの範囲は、0°<α<12°とする必要があり、流速減少効果がより大きくなる3°<α<12°とすることが好ましいといえる。   From the above results, it is necessary to set the range of the angle α to 0°<α<12°, and it is preferable to set 3°<α<12° where the flow velocity reducing effect becomes larger.

2.実機試験
転炉−二次精錬工程を経た溶鋼を、H形状のタンディッシュ内に注湯した後、垂直曲げ連続鋳造機にて鋳造して幅1600mm、厚み250mmの鋳片とした。溶鋼はC濃度0.2質量%のアルミキルド鋼を使用した。取鍋交換と取鍋交換との間の定常部にあたる鋳片の幅1/4、鋳造の水平時に上側の面すなわちL面からの厚みが20mmの位置からサンプルを採取した。得られたサンプルは、Alなどの酸化物系の介在物濃度を評価するため、全酸素濃度(T.O)の測定に供した。全酸素濃度(T.O)は、採取したサンプルを黒鉛坩堝内で溶融し、鋼中の酸素と坩堝中の炭素を反応させて一酸化炭素ガスとし、赤外線吸収検出機によってその一酸化炭素ガスを検出して求めた。H形状タンディッシュの受鋼部と溶鋼排出部をつなぐ中空形状の湯道形状は矩形とし、湯道長さ(入口側図心と出口側図心との距離)は0.7mとした。
2. Actual machine test The molten steel that had been subjected to the converter-secondary refining process was poured into an H-shaped tundish, and then cast by a vertical bending continuous casting machine to obtain a slab with a width of 1600 mm and a thickness of 250 mm. As the molten steel, an aluminum killed steel having a C concentration of 0.2 mass% was used. A sample was taken from a position where the width of the slab corresponding to the steady portion between the ladle exchanges was 1/4, and the thickness from the upper surface, that is, the L surface at the time of horizontal casting was 20 mm. The obtained sample was subjected to measurement of total oxygen concentration (TO) in order to evaluate the concentration of oxide-based inclusions such as Al 2 O 3 . The total oxygen concentration (TO) was determined by melting the collected sample in a graphite crucible and reacting oxygen in the steel with carbon in the crucible to form carbon monoxide gas, which was then detected by an infrared absorption detector. Was found. The hollow runner shape connecting the steel receiving portion and the molten steel discharging portion of the H-shaped tundish was rectangular, and the runner length (distance between the inlet side centroid and the outlet side centroid) was 0.7 m.

比較例ではH形状タンディッシュの1槽目と2槽目をつなぐ湯道の形状を、入口と出口で同じ34.6cm角とし、実施例では出口を49.0cm角に上下、左右方向に拡張した(図13参照)。この時、湯道の入り口の断面積は両方の条件で0.12mと同じであり、出口の断面積は比較例では0.12m、実施例では0.24mとした。この時、湯道入出勾配角度αは比較例で0°、実施例では約6°であった。 In the comparative example, the shape of the runner connecting the first tank and the second tank of the H-shaped tundish was the same 34.6 cm square at the inlet and outlet, and in the example, the outlet was expanded vertically to 49.0 cm square and left and right. (See FIG. 13). At this time, the cross-sectional area of the inlet of the runner was the same as 0.12 m 2 under both conditions, and the cross-sectional area of the outlet was 0.12 m 2 in the comparative example and 0.24 m 2 in the example. At this time, the runner entrance/exit gradient angle α was 0° in the comparative example and about 6° in the example.

図14に測定結果を示す。縦軸は比較例で測定したT.Oの値を1として規格化した値である。図14に示すように、実施例においては、比較例よりも1割程度T.Oが減少した。すなわち、タンディッシュの受鋼部と排出部とを連通する湯道の形状を、入口から出口に向かって所定の角度にて先太りとすることで、溶鋼中に存在する介在物がショートパスによって鋳型に持ち込まれることを抑制しつつ、タンディッシュにおける溶鋼の平均流速の増加を抑えて、溶鋼または溶鋼中のアルミニウムとタンディッシュ内の酸素との再酸化反応を抑制して介在物の生成を効果的に防ぐことができるといえる。   FIG. 14 shows the measurement result. The vertical axis represents the T.I. measured in the comparative example. It is a value normalized with the value of O as 1. As shown in FIG. 14, in the embodiment, the T. O decreased. That is, the shape of the runner that connects the steel receiving portion and the discharging portion of the tundish is tapered at a predetermined angle from the inlet to the outlet so that the inclusions present in the molten steel are short-passed. Inhibits the increase in the average flow rate of molten steel in the tundish while suppressing the introduction into the mold, and suppresses the reoxidation reaction between molten steel or aluminum in molten steel and oxygen in the tundish to form inclusions. It can be said that it can be prevented.

本開示の連続鋳造方法により鋳造される鋳片は、各種鋼製品の素材として利用可能である。   The slab cast by the continuous casting method of the present disclosure can be used as a raw material for various steel products.

1 溶鋼
10 取鍋
20 タンディッシュ
20a 受鋼部
20b 排出部
20c 湯道
30 鋳型
1 molten steel 10 ladle 20 tundish 20a steel receiving part 20b discharging part 20c runner 30 mold

Claims (13)

取鍋から注入された溶鋼を鋳型へと注入する、連続鋳造用のタンディッシュであって、
前記溶鋼を受け入れる受鋼部と、前記溶鋼を前記鋳型へと排出する排出部と、前記受鋼部と前記排出部とを連通して結合する湯道と、を有し、
前記湯道の前記受鋼部側の入口面積が、前記湯道の前記排出部側の出口面積よりも小さく、
前記湯道の入口面の図心と前記湯道の出口面の図心とを結んだ軸を含む鉛直断面において、前記軸と前記湯道の内壁とのなす角度αが下記式(1)を満たす、
連続鋳造用タンディッシュ。
0°<α<12°・・・(1)
A tundish for continuous casting in which molten steel injected from a ladle is injected into a mold,
A steel receiving portion that receives the molten steel, a discharging portion that discharges the molten steel to the mold, and a runner that connects the steel receiving portion and the discharging portion in communication with each other,
The inlet area of the runner on the steel receiving portion side is smaller than the outlet area of the runner on the discharge portion side,
In a vertical section including an axis connecting the centroid of the inlet surface of the runner and the centroid of the outlet surface of the runner, the angle α between the axis and the inner wall of the runner is expressed by the following formula (1). Fulfill,
Tundish for continuous casting.
0°<α<12° (1)
前記角度αが下記式(2)を満たす、
請求項1に記載の連続鋳造用タンディッシュ。
3°<α<12°・・・(2)
The angle α satisfies the following expression (2),
The tundish for continuous casting according to claim 1.
3°<α<12° (2)
前記軸を含むとともに前記鉛直断面と直交する断面において、前記軸と前記湯道の内壁とのなす角度βが下記式(3)を満たす、
請求項1又は2に記載の連続鋳造用タンディッシュ。
0°<β<12°・・・(3)
In a cross section including the axis and orthogonal to the vertical cross section, an angle β formed by the axis and the inner wall of the runner satisfies the following expression (3):
The tundish for continuous casting according to claim 1 or 2.
0°<β<12° (3)
前記角度βが下記式(4)を満たす、
請求項3に記載の連続鋳造用タンディッシュ。
3°<β<12°・・・(4)
The angle β satisfies the following expression (4),
The tundish for continuous casting according to claim 3.
3°<β<12°・・・(4)
前記湯道の入口面の図心と前記湯道の出口面の図心との距離が50cm以上200cm以下である、
請求項1〜4のいずれか1項に記載の連続鋳造用タンディッシュ。
The distance between the centroid of the entrance surface of the runner and the centroid of the exit surface of the runner is 50 cm or more and 200 cm or less,
The tundish for continuous casting according to any one of claims 1 to 4.
前記湯道の流路面積のうち、前記入口の輪郭の少なくとも一部を含む入口側最小面積をA、前記出口の輪郭の少なくとも一部を含む出口側最小面積をAとした場合、A/Aが0.4以上0.8以下である、
請求項1〜5のいずれか1項に記載の連続鋳造用タンディッシュ。
If the inlet side minimum area including at least a part of the inlet contour is A 1 and the outlet side minimum area including at least a part of the outlet contour is A 2 among the flow passage areas of the runner, A 1 /A 2 is 0.4 or more and 0.8 or less,
The tundish for continuous casting according to any one of claims 1 to 5.
請求項1〜6のいずれか1項に記載の連続鋳造用タンディッシュを備える、
連続鋳造装置。
A tundish for continuous casting according to any one of claims 1 to 6,
Continuous casting equipment.
取鍋内の溶鋼をタンディッシュに注入した後、該溶鋼を鋳型内に注入する連続鋳造方法であって、
前記タンディッシュが、前記溶鋼を受け入れる受鋼部と、前記溶鋼を前記鋳型へと排出する排出部と、前記受鋼部と前記排出部とを連通して結合する湯道と、を有し、
前記湯道の前記受鋼部側の入口面積が、前記湯道の前記排出部側の出口面積よりも小さく、
前記湯道の入口面の図心と前記湯道の出口面の図心とを結んだ軸を含む鉛直断面において、前記軸と前記湯道の内壁とのなす角度αが下記式(1)を満たす、
連続鋳造方法。
0°<α<12°・・・(1)
After injecting the molten steel in the ladle into the tundish, a continuous casting method of injecting the molten steel into the mold,
The tundish has a steel receiving portion that receives the molten steel, a discharging portion that discharges the molten steel to the mold, and a runner that connects the steel receiving portion and the discharging portion in communication with each other,
The inlet area of the runner on the steel receiving portion side is smaller than the outlet area of the runner on the discharge portion side,
In a vertical section including an axis connecting the centroid of the inlet surface of the runner and the centroid of the outlet surface of the runner, the angle α between the axis and the inner wall of the runner is expressed by the following formula (1). Fulfill,
Continuous casting method.
0°<α<12° (1)
前記角度αが下記式(2)を満たす、
請求項8に記載の連続鋳造方法。
3°<α<12°・・・(2)
The angle α satisfies the following expression (2),
The continuous casting method according to claim 8.
3°<α<12° (2)
前記軸を含むとともに前記鉛直断面と直交する断面において、前記軸と前記湯道の内壁とのなす角度βが下記式(3)を満たす、
請求項8又は9に記載の連続鋳造方法。
0°<β<12°・・・(3)
In a cross section including the axis and orthogonal to the vertical cross section, an angle β formed by the axis and the inner wall of the runner satisfies the following expression (3):
The continuous casting method according to claim 8 or 9.
0°<β<12° (3)
前記角度βが下記式(4)を満たす、
請求項10に記載の連続鋳造方法。
3°<β<12°・・・(4)
The angle β satisfies the following expression (4),
The continuous casting method according to claim 10.
3°<β<12°・・・(4)
前記湯道の入口面の図心と前記湯道の出口面の図心との距離が50cm以上200cm以下である、
請求項8〜11のいずれか1項に記載の連続鋳造方法。
The distance between the centroid of the entrance surface of the runner and the centroid of the exit surface of the runner is 50 cm or more and 200 cm or less,
The continuous casting method according to any one of claims 8 to 11.
前記湯道の流路面積のうち、前記入口の輪郭の少なくとも一部を含む入口側最小面積をA、前記出口の輪郭の少なくとも一部を含む出口側最小面積をAとした場合、A/Aが0.4以上0.8以下である、
請求項8〜12のいずれか1項に記載の連続鋳造方法。
If the inlet side minimum area including at least a part of the inlet contour is A 1 and the outlet side minimum area including at least a part of the outlet contour is A 2 among the flow passage areas of the runner, A 1 /A 2 is 0.4 or more and 0.8 or less,
The continuous casting method according to any one of claims 8 to 12.
JP2018212318A 2018-11-12 2018-11-12 Tundish for continuous casting, and apparatus and method for continuous casting Pending JP2020078810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018212318A JP2020078810A (en) 2018-11-12 2018-11-12 Tundish for continuous casting, and apparatus and method for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018212318A JP2020078810A (en) 2018-11-12 2018-11-12 Tundish for continuous casting, and apparatus and method for continuous casting

Publications (1)

Publication Number Publication Date
JP2020078810A true JP2020078810A (en) 2020-05-28

Family

ID=70801218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018212318A Pending JP2020078810A (en) 2018-11-12 2018-11-12 Tundish for continuous casting, and apparatus and method for continuous casting

Country Status (1)

Country Link
JP (1) JP2020078810A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008036660A (en) * 2006-08-03 2008-02-21 Kobe Steel Ltd Tundish
JP2017177158A (en) * 2016-03-30 2017-10-05 株式会社神戸製鋼所 Multiple strand tundish for continuous casting

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008036660A (en) * 2006-08-03 2008-02-21 Kobe Steel Ltd Tundish
JP2017177158A (en) * 2016-03-30 2017-10-05 株式会社神戸製鋼所 Multiple strand tundish for continuous casting

Similar Documents

Publication Publication Date Title
JP6515388B2 (en) Upper nozzle for continuous casting
JP2016182612A (en) Continuous casting method blowing inert gas from upper porous refractory and lower porous refractory
JP2011143449A (en) Method for removing inclusion in tundish for continuous casting
JP6454205B2 (en) Tundish for continuous casting and continuous casting method using the tundish
JP2020078810A (en) Tundish for continuous casting, and apparatus and method for continuous casting
JP2017177178A (en) Tundish for continuous casting, and continuous casting method using the tundish
JP3649143B2 (en) Continuous casting method
JP5053227B2 (en) Tundish for continuous casting
JP5510047B2 (en) Continuous casting method and continuous casting apparatus
CN109047695A (en) A kind of immersed nozzle for continuous casting mould Argon control method
JP3988538B2 (en) Manufacturing method of continuous cast slab
CN108495727A (en) Continuous casting sprue with baffle
JP5206584B2 (en) Tundish for continuous casting and continuous casting method
JP2018051598A (en) Bottom pouring ingot-making equipment
TW533102B (en) Method and device for the continuous casting of metals
JP4972776B2 (en) Flow control method for molten steel in mold and surface quality judgment method for continuous cast slab
JP4264291B2 (en) Steel continuous casting method
JP6454206B2 (en) Tundish for continuous casting and continuous casting method using the tundish
JP4220848B2 (en) Tundish for continuous casting of steel with heating function
JP6451466B2 (en) Capturing device and removal method for non-metallic inclusions in molten metal
JP5510061B2 (en) Continuous casting method
JP2001047203A (en) Continuous casting method
JP2017177179A (en) Tundish for continuous casting, and continuous casting method using the tundish
JP2017177180A (en) Tundish for continuous casting, and continuous casting method using the tundish
JP2016190240A (en) Tundish for continuous casting, and method for continuous casting using tundish

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221108