JPH08117939A - Method for blowing air bubbles into molten steel - Google Patents

Method for blowing air bubbles into molten steel

Info

Publication number
JPH08117939A
JPH08117939A JP26336894A JP26336894A JPH08117939A JP H08117939 A JPH08117939 A JP H08117939A JP 26336894 A JP26336894 A JP 26336894A JP 26336894 A JP26336894 A JP 26336894A JP H08117939 A JPH08117939 A JP H08117939A
Authority
JP
Japan
Prior art keywords
molten steel
bubbles
steel
tundish
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP26336894A
Other languages
Japanese (ja)
Inventor
Hideaki Yamamura
英明 山村
Yoshimasa Mizukami
義正 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP26336894A priority Critical patent/JPH08117939A/en
Publication of JPH08117939A publication Critical patent/JPH08117939A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

PURPOSE: To provide a method for blowing air bubbles capable of incorporating the fine air bubbles into molten steel in continuous casting of steel. CONSTITUTION: A tundish 1 for continuous casting of the steel is provided with passages having ruggednesses 16, 17 in the direction of flow between immersion nozzles 3 from a ladle long nozzle 2 in a tundish 1 in the continuous casting of steel to allow passage of the molten steel therethrough. Gas is blown into the tundish from the projecting parts 15, by which the fine bubbles are incorporated into the molten steel. As a result, the blowing of the fine bubbles into the molten metal is made possible. Gaseous components, such as hydrogen and nitrogen, and impurities, such as carbon and nonmetallic inclusions, in the molten metal are effectively removed by the fine bubbles.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は鋼の連続鋳造において微
細な気泡を溶鋼中に混入させることを可能にする気泡の
吹き込み方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for blowing bubbles which enables fine bubbles to be mixed into molten steel in continuous casting of steel.

【0002】[0002]

【従来の技術】溶融金属中の水素、窒素などのガス成分
や炭素、非金属介在物を取り除く手段として溶融金属中
にガス気泡を吹き込むことが行われる。気泡の吹き込み
による除去効果を活発に行わせるには微細な気泡を吹き
込むことが有効である。タンディッシュ内で微細な気泡
を作る手段として特開平2−11256号公報に示され
ているような、タンディッシュ内の溶鋼流通路に設けた
仕切堰によって溶鋼流速を速くして、その仕切堰近傍か
らガスを吹き込むことによって微細な気泡を得る方法が
提案されている。
2. Description of the Related Art Gas bubbles are blown into a molten metal as a means for removing gas components such as hydrogen and nitrogen, carbon and non-metallic inclusions in the molten metal. It is effective to blow fine bubbles in order to actively perform the removal effect by blowing bubbles. As a means for producing fine bubbles in the tundish, a partition weir provided in the molten steel flow passage in the tundish as shown in JP-A-2-11256 makes the molten steel flow velocity fast and the vicinity of the partition weir. There has been proposed a method of obtaining fine bubbles by blowing a gas from.

【0003】[0003]

【発明が解決しようとする課題】特開平2−11256
号公報に示されている方法では、流速を確保するために
流路面積を小さくする必要があり、そのため圧損が大き
くなって溶鋼が通過しにくくなり高速で鋳造する場合の
溶鋼量が確保できなくなる。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
In the method disclosed in Japanese Patent Publication, it is necessary to reduce the flow passage area in order to secure the flow velocity, so that the pressure loss becomes large and it becomes difficult for the molten steel to pass through, and the amount of molten steel cannot be secured when casting at high speed. .

【0004】また、流路面積が狭いと流路が詰まりやす
く、短時間で鋳造ができなくなったりする。さらに、通
常では鋳造初期や取鍋交換時では鋳造速度を減少させる
操業を行うので、溶鋼流速が遅くなり気泡が大きくな
る。したがって、より遅い流速で微細な気泡を生成させ
ることが必要である。
Further, if the flow passage area is small, the flow passage is easily clogged, and casting cannot be performed in a short time. Furthermore, since the operation for reducing the casting speed is usually performed at the beginning of casting or when the ladle is replaced, the molten steel flow velocity becomes slow and the bubbles become large. Therefore, it is necessary to generate fine bubbles at a slower flow rate.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に本発明は、鋼の連続鋳造のタンディッシュにおいて取
鍋ロングノズルから浸漬ノズルの間に流れの方向に凹凸
を有する通路を設けて溶鋼を通過させ、凸部分よりガス
を吹き込むことによって微細な気泡を溶鋼に均一に混入
させることを特徴とする気泡の吹き込み方法を提案する
ものである。
In order to solve the above-mentioned problems, the present invention provides molten steel by providing a passage having irregularities in the flow direction between a long nozzle of a ladle and a dipping nozzle in a tundish for continuous casting of steel. The present invention proposes a method of blowing bubbles characterized in that fine bubbles are uniformly mixed into the molten steel by letting gas pass through and passing gas through the convex portion.

【0006】[0006]

【作用】本発明の方法を図1により詳細に説明する。連
続鋳造におけるタンディッシュ1のロングノズル2と浸
漬ノズル3の間に仕切り堰4を設置し、その堰に流れの
方向に凹凸をつけた溶鋼5を流す孔9を開け、この孔の
内壁の凸部16の耐火物にArガスを吹き込む多孔質耐
火物10を設置してArガスを吹き込むと溶鋼中に気泡
8が生成する。この孔部分では浸漬ノズル方向へ流れる
溶鋼の流れ18が速くなっており、この流れにより剪断
力が働いて気泡の離脱が促進され気泡が小さくなる。
The method of the present invention will be described in detail with reference to FIG. A partition weir 4 is installed between the long nozzle 2 and the immersion nozzle 3 of the tundish 1 in continuous casting, and a hole 9 for flowing the molten steel 5 having irregularities in the flow direction is opened in the weir, and the inner wall of the hole is convex. When the porous refractory 10 into which the Ar gas is blown is installed in the refractory of the portion 16 and the Ar gas is blown into the refractory, bubbles 8 are generated in the molten steel. The flow 18 of molten steel flowing in the direction of the immersion nozzle is fast in this hole portion, and due to this flow, a shearing force is exerted to promote the separation of the bubbles and the bubbles become smaller.

【0007】発明者らは種々の実験を行った結果、発生
する気泡の径は孔の断面平均の流速で求められる流れの
境界層の厚みに相当することを見いだした。すなわち、
多孔質耐火物より吹き込まれた気泡は壁面で成長する
が、流れが弱い境界層よりも気泡が小さい時には気泡は
離脱しにくい。ところが、気泡が境界層よりも大きくな
ると流れの影響が強くなって壁面の気泡は引き離されて
溶鋼中に離脱する。したがって、気泡径は境界層厚みと
ほぼ同じ大きさになる。これにより、同じ断面平均流速
でも境界層厚を薄くすれば発生する気泡の径を小さくす
ることが可能となる。
As a result of various experiments, the inventors have found that the diameter of bubbles generated corresponds to the thickness of the boundary layer of the flow, which is determined by the average velocity of the cross-section of the holes. That is,
The bubbles blown from the porous refractory grow on the wall surface, but when the bubbles are smaller than the boundary layer where the flow is weak, the bubbles are difficult to separate. However, when the bubbles become larger than the boundary layer, the influence of the flow becomes strong and the bubbles on the wall surface are separated and separated into the molten steel. Therefore, the bubble diameter is almost the same as the boundary layer thickness. As a result, even if the average cross-sectional flow velocity is the same, it is possible to reduce the diameter of bubbles generated by reducing the boundary layer thickness.

【0008】一方、図2に示すように製品において欠陥
となる50μm以上の大きさの介在物をタンディッシュ
内で浮上させるには2mm以下の径の気泡を吹き込むこ
とが必要であり、このためには境界層の厚みを2mm以
下にすればよい。
On the other hand, as shown in FIG. 2, it is necessary to blow air bubbles having a diameter of 2 mm or less in order to float inclusions having a size of 50 μm or more, which are defective in the product, in the tundish. The boundary layer may have a thickness of 2 mm or less.

【0009】図3に示すように境界層は流路先端からの
距離が長くなるほど厚くなるので、流路の前方に気泡吹
き込み部を設ければ低流速でも微細な気泡が吹き込め
る。しかし、これでは吹き込み面積が限られるために、
鋳造初期や取鍋交換時のように介在物量が多い場合に
は、介在物除去に必要な量の気泡を吹き込めない場合が
生じる。そこで、流路に凹凸を設けると発達した境界層
が凹部で剥離し、凸部の先端から再び境界層が発達し始
めるので広い面積にわたって境界層の薄い領域が確保で
き、微細な気泡の吹き込みが可能となる。
As shown in FIG. 3, the boundary layer becomes thicker as the distance from the tip of the flow channel becomes longer. Therefore, if a bubble blowing portion is provided in front of the flow channel, fine bubbles can be blown even at a low flow velocity. However, since this limits the blowing area,
When the amount of inclusions is large as in the initial stage of casting or when the ladle is replaced, the amount of bubbles necessary for removing the inclusions may not be blown. Therefore, when unevenness is provided in the flow path, the developed boundary layer peels off at the concave portion, and the boundary layer begins to develop again from the tip of the convex portion, so a thin area of the boundary layer can be secured over a large area, and fine air bubbles cannot be blown in. It will be possible.

【0010】凸部の長さは境界層厚が2mm以下となる
ような距離よりも小さくする必要がある。凹凸の高さは
大きいほどよいが、最低でも境界層と同程度以上とする
ことが必要である。溶鋼やスラグ、介在物等の付着や溶
損等による凹凸の減少を考慮すると5mm以上確保する
ことが望ましい。凹部の長さは境界層の剥離を充分行わ
せるために凹凸の高さと同程度の長さとすることが望ま
しい。
The length of the convex portion must be smaller than the distance such that the boundary layer thickness is 2 mm or less. The height of the unevenness is preferably as large as possible, but it is necessary to make it at least as high as that of the boundary layer. Considering the reduction of unevenness due to adhesion of molten steel, slag, inclusions, melting loss, etc., it is desirable to secure at least 5 mm. It is desirable that the length of the recess be approximately the same as the height of the unevenness in order to sufficiently remove the boundary layer.

【0011】堰に設ける孔は1つでなく、複数でもよ
い。この場合にはそれぞれの孔において2mm以下の境
界層厚になるようにする事が必要である。また孔の形状
は円形でも矩形でもよい。
The weir may have a plurality of holes instead of one. In this case, it is necessary that each hole has a boundary layer thickness of 2 mm or less. The shape of the holes may be circular or rectangular.

【0012】ガスを吹き込む耐火物は堰に開けた孔に埋
め込んでも良いし、浸漬ノズルのような内孔体を有する
筒を孔として堰にはめ込んでもよい。また、ガスを吹き
込む手段としては単管や複数管のノズルでも多孔体質の
耐火物でもよい。
The refractory material into which gas is blown may be embedded in a hole formed in the weir, or a cylinder having an inner hole body such as an immersion nozzle may be fitted as a hole in the weir. The means for blowing gas may be a single-tube or multi-tube nozzle or a porous refractory material.

【0013】[0013]

【実施例】実施例の第1として、鋼の連続鋳造における
幅40cm、深さ80cmのタンディッシュ1において
取鍋からロングノズル2を通して10ton/minで注入さ
れた低炭素アルミキルド鋼の溶鋼5を浸漬ノズル3から
鋳型6へ注入し、厚み245mm、幅1200mmの鋳
片7を鋳造した。
EXAMPLE As a first example, a molten steel 5 of low carbon aluminum killed steel injected at 10 ton / min from a ladle through a long nozzle 2 in a tundish 1 having a width of 40 cm and a depth of 80 cm in continuous casting of steel is immersed. It was poured into the mold 6 from the nozzle 3 to cast a slab 7 having a thickness of 245 mm and a width of 1200 mm.

【0014】[0014]

【表1】 [Table 1]

【0015】図1に示すように、ロングノズルから浸漬
ノズルまでの間に耐火物製の仕切り堰4を設置し、表1
に示す断面平均流速が得られる断面積の溶鋼が通過する
矩形の孔9をあけた。孔の底部には凹凸をつけて、凸部
16にアルミナ質の多孔質耐火物10を埋込み、10N
l/minのArガスを吹き込んだ。堰の浸漬ノズル側よ
り浮上してくる気泡の大きさを観察するとともに、溶鋼
サンプルを採取しスライム抽出法で介在物量を測定し
た。
As shown in FIG. 1, a refractory partition weir 4 is installed between the long nozzle and the dipping nozzle, and Table 1
A rectangular hole 9 through which the molten steel having a cross-sectional area capable of obtaining the cross-sectional average flow velocity shown in FIG. The bottom of the hole is made uneven, and the alumina-based porous refractory material 10 is embedded in the projection 16 to form 10N.
A 1 / min Ar gas was blown in. The size of bubbles rising from the dipping nozzle side of the weir was observed, and a molten steel sample was collected and the amount of inclusions was measured by the slime extraction method.

【0016】表1に結果を示すように、2mm以下の径
の気泡が発生しているのが観察され、孔の断面積が小さ
くなるにしたがってさらに気泡が小さくなることが確認
された。また、吹き込まない場合に比べて介在物量が大
幅に減少している。
As shown in the results in Table 1, it was observed that bubbles having a diameter of 2 mm or less were generated, and it was confirmed that the bubbles became smaller as the cross-sectional area of the holes became smaller. In addition, the amount of inclusions is significantly reduced as compared with the case where no blowing is performed.

【0017】実施例の第2として、図4に示した、鋼の
連続鋳造におけるロングノズル2部分の第1槽11と浸
漬ノズル3部分の第2槽12の2つの部分に分かれ、そ
の中央部の連結部13で2つの槽がつながっている上か
らみてH型をした形状のタンディッシュ1において、取
鍋からロングノズルを通して10ton/minで注入された
低炭素アルミキルド鋼の溶鋼5を浸漬ノズルから鋳型6
へ注入し、厚み245mm、幅1200mmの鋳片7を
鋳造した。
As a second embodiment, as shown in FIG. 4, it is divided into two parts, a first tank 11 of the long nozzle 2 part and a second tank 12 of the immersion nozzle 3 part in the continuous casting of steel, and the central part thereof. In the tundish 1 which is H-shaped when viewed from above, where the two tanks are connected at the connecting part 13 of the molten steel 5 of low carbon aluminum killed steel injected at 10 ton / min from the ladle through the long nozzle from the dipping nozzle. Mold 6
And cast into a slab 7 having a thickness of 245 mm and a width of 1200 mm.

【0018】図4に示すように、2つの槽の連結部13
に表1に示す断面平均流速が得られる断面積の円筒状の
耐火物14を埋め込んで堰を設置した。円筒状の耐火物
の内側にはリング状の多孔質耐火物15を埋め込んで凸
部16を形成し、その多孔質耐火物よりArガスを吹き
込んだ。堰の浸漬ノズル側より浮上してくる気泡の大き
さを観察するとともに、溶鋼サンプルを採取しスライム
抽出法で介在物量を測定した。
As shown in FIG. 4, the connecting portion 13 of the two tanks is connected.
The weir was installed by embedding a cylindrical refractory material 14 having a cross-sectional area capable of obtaining the cross-sectional average flow velocity shown in Table 1. A ring-shaped porous refractory material 15 was embedded inside the cylindrical refractory material to form a convex portion 16, and Ar gas was blown from the porous refractory material. The size of bubbles rising from the dipping nozzle side of the weir was observed, and a molten steel sample was collected and the amount of inclusions was measured by the slime extraction method.

【0019】表1に結果を示すように、2mm以下の径
の気泡が発生しているのが観察された。また、吹き込ま
ない場合に較べて介在物量が大幅に減少している。
As shown in the results in Table 1, it was observed that bubbles having a diameter of 2 mm or less were generated. In addition, the amount of inclusions is significantly reduced compared to the case without blowing.

【0020】比較例として、図5に示すように鋼の連続
鋳造における幅40cm、深さ80cmのタンディッシ
ュ1において取鍋からロングノズル2を通して10ton
/minで注入された低炭素アルミキルド鋼の溶鋼5を浸
漬ノズル3から鋳型6へ注入し、厚み245mm、幅1
200mmの鋳片7を鋳造した。
As a comparative example, as shown in FIG. 5, in a tundish 1 having a width of 40 cm and a depth of 80 cm in continuous casting of steel, 10 ton was passed from a ladle through a long nozzle 2.
The molten steel 5 of low carbon aluminum killed steel, which is injected at a flow rate of 1 / min, is injected from the dipping nozzle 3 into the mold 6, and the thickness is 245 mm and the width is 1
A 200 mm slab 7 was cast.

【0021】ロングノズルから浸漬ノズルまでの間に耐
火物製の仕切り堰4を設置し、表1に示す溶鋼が通過す
る矩形の孔9をあけ孔の底部にアルミナ質の多孔質耐火
物10を埋込み、Arガスを吹き込んだ。堰の浸漬ノズ
ル側より浮上してくる気泡の大きさを観察した。実施例
に較べると同じ断面積でも大きな気泡しか得られず、吹
き込まない場合に対する介在物の減少効果も大きくな
い。また、比較例の2のように2mm以下の気泡を得る
ために断面積を小さくすると所定の鋳造速度で鋳造する
ことができなかった。
A refractory partition weir 4 is installed between the long nozzle and the dipping nozzle, and a rectangular hole 9 through which molten steel shown in Table 1 passes is formed, and an alumina porous refractory 10 is provided at the bottom of the hole. Buried and Ar gas was blown in. The size of bubbles rising from the dipping nozzle side of the weir was observed. Compared with the embodiment, only large bubbles can be obtained even with the same cross-sectional area, and the effect of reducing inclusions when not blown is not great. Moreover, when the cross-sectional area was reduced to obtain bubbles of 2 mm or less as in Comparative Example 2, casting could not be performed at a predetermined casting speed.

【0022】[0022]

【発明の効果】本発明によれば高速で鋳造する場合の溶
鋼量が確保できなくなることなく、また、短時間で鋳造
ができなくなったりすることなく、低速鋳造部でも溶融
金属中に微細な気泡を吹き込むことができ、本発明によ
って作った微細な気泡によって溶融金属中の水素、窒素
などのガス成分や炭素、非金属介在物等の不純物を効率
的に取り除くことが可能となる。
EFFECTS OF THE INVENTION According to the present invention, the amount of molten steel cannot be secured in the case of high speed casting, and casting cannot be performed in a short time. The gas bubbles such as hydrogen and nitrogen in the molten metal and impurities such as carbon and non-metal inclusions can be efficiently removed by the fine bubbles produced by the present invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】は本発明の実施例を示す説明図。FIG. 1 is an explanatory view showing an embodiment of the present invention.

【図2】は気泡径による介在物除去効果を示す説明図。FIG. 2 is an explanatory diagram showing the effect of removing inclusions by the bubble diameter.

【図3】は距離と境界層の厚みとの関係を示す説明図。FIG. 3 is an explanatory diagram showing a relationship between a distance and a thickness of a boundary layer.

【図4】は本発明の第2の実施例を示す説明図。FIG. 4 is an explanatory diagram showing a second embodiment of the present invention.

【図5】は比較例を示す説明図。FIG. 5 is an explanatory diagram showing a comparative example.

【符号の説明】[Explanation of symbols]

1:タンディッシュ、 2:ロングノズル、 3:浸漬
ノズル、 4:堰、5:溶鋼、 6:鋳型、 7:鋳
片、 8:気泡、 9:溶鋼通過孔、 10:多孔質耐
火物、 11:第1槽、 12:第2槽、 13:連結
部、 14:耐火物円筒、 15:リング状多孔質耐火
物、 16:凸部、 17:凹部、 18:溶鋼流れ。
1: Tundish, 2: Long nozzle, 3: Immersion nozzle, 4: Weir, 5: Molten steel, 6: Mold, 7: Cast slab, 8: Bubble, 9: Molten steel passage hole, 10: Porous refractory material, 11 : 1st tank, 12: 2nd tank, 13: connection part, 14: refractory cylinder, 15: ring-shaped porous refractory material, 16: convex part, 17: concave part, 18: molten steel flow.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C21C 7/072 Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display area C21C 7/072 Z

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】鋼の連続鋳造のタンディッシュにおいて取
鍋ロングノズルから浸漬ノズルの間に流れの方向に凹凸
を有する通路を設けて溶鋼を通過させ、凸部分よりガス
を吹き込むことによって微細な気泡を溶鋼に混入させる
ことを特徴とする溶鋼中への気泡の吹き込み方法。
1. In a tundish for continuous casting of steel, a passage having irregularities in the flow direction is provided between a long ladle nozzle and a dipping nozzle to pass molten steel and blow gas from the convex portion to form fine bubbles. A method for injecting bubbles into molten steel, characterized in that is mixed with molten steel.
JP26336894A 1994-10-27 1994-10-27 Method for blowing air bubbles into molten steel Withdrawn JPH08117939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26336894A JPH08117939A (en) 1994-10-27 1994-10-27 Method for blowing air bubbles into molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26336894A JPH08117939A (en) 1994-10-27 1994-10-27 Method for blowing air bubbles into molten steel

Publications (1)

Publication Number Publication Date
JPH08117939A true JPH08117939A (en) 1996-05-14

Family

ID=17388525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26336894A Withdrawn JPH08117939A (en) 1994-10-27 1994-10-27 Method for blowing air bubbles into molten steel

Country Status (1)

Country Link
JP (1) JPH08117939A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007090424A (en) * 2005-09-30 2007-04-12 Nippon Steel Corp Tundish for continuous casting
CN104668494A (en) * 2013-11-26 2015-06-03 北京科技大学 Continuous casting tundish for synchronously casting molten steel in double steel ladles
WO2019044292A1 (en) * 2017-08-30 2019-03-07 Jfeスチール株式会社 Continuous casting method for steel and method for manufacturing thin steel plate
WO2021034559A1 (en) * 2019-08-19 2021-02-25 Harbison Walker International, Inc. Diffusion article
JP2021517070A (en) * 2018-03-30 2021-07-15 宝山鋼鉄股▲分▼有限公司 Flow-controlled tundish structure that can filter inclusions in molten steel

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007090424A (en) * 2005-09-30 2007-04-12 Nippon Steel Corp Tundish for continuous casting
JP4714539B2 (en) * 2005-09-30 2011-06-29 新日本製鐵株式会社 Tundish for continuous casting
CN104668494A (en) * 2013-11-26 2015-06-03 北京科技大学 Continuous casting tundish for synchronously casting molten steel in double steel ladles
WO2019044292A1 (en) * 2017-08-30 2019-03-07 Jfeスチール株式会社 Continuous casting method for steel and method for manufacturing thin steel plate
JP6493635B1 (en) * 2017-08-30 2019-04-03 Jfeスチール株式会社 Method of continuous casting of steel and method of manufacturing thin steel sheet
CN111032248A (en) * 2017-08-30 2020-04-17 杰富意钢铁株式会社 Method for continuously casting steel and method for manufacturing thin steel plate
CN111032248B (en) * 2017-08-30 2021-11-09 杰富意钢铁株式会社 Method for continuously casting steel and method for manufacturing thin steel plate
JP2021517070A (en) * 2018-03-30 2021-07-15 宝山鋼鉄股▲分▼有限公司 Flow-controlled tundish structure that can filter inclusions in molten steel
WO2021034559A1 (en) * 2019-08-19 2021-02-25 Harbison Walker International, Inc. Diffusion article
US11338357B2 (en) 2019-08-19 2022-05-24 Harbisonwalker International, Inc. Diffusion article
JP2022545658A (en) * 2019-08-19 2022-10-28 ハービソン ウォーカー インターナショナル、インク. diffusion device
US11701705B2 (en) 2019-08-19 2023-07-18 Harbisonwalker International, Inc. Diffusion article

Similar Documents

Publication Publication Date Title
WO2013190799A1 (en) Method for manufacturing high-purity steel casting, and tundish
JP2007105745A (en) Continuous casting method of steel
JPH08117939A (en) Method for blowing air bubbles into molten steel
US4619443A (en) Gas distributing tundish barrier
US4186791A (en) Process and apparatus for horizontal continuous casting of metal
JP5082700B2 (en) Steel continuous casting method
JP4220840B2 (en) Method for removing inclusions in tundish and weir used therefor
JP3216384B2 (en) Method for removing inclusions in continuous casting of steel
JP3525894B2 (en) Steel continuous casting method
SK166399A3 (en) Method and device for producing slabs
JP2000202602A (en) Method for removing inclusion in tundish for continuos casting
JP2976848B2 (en) Highly clean method for molten steel in tundish
JP3464856B2 (en) Tundish for continuous casting of high cleanliness steel
JP2004322119A (en) Fountain for continuous casting
JPH04220148A (en) Molten steel supplying nozzle
KR101062953B1 (en) Immersion nozzle
JP2603402B2 (en) Continuous casting method of defect-free slab using straight immersion nozzle
JPH0890177A (en) Immersion nozzle for continuous casting
JPH09314294A (en) Immersion nozzle for continuous casting
JPH08187557A (en) Method for continuously casting steel using electromagnetic field
JPH04238658A (en) Immersion nozzle for continuous casting
JP2002079355A (en) Method for continuously casting steel
JP3962249B2 (en) Method for removing non-metallic inclusions in molten metal
JPH1034299A (en) Pouring device
KR200215015Y1 (en) The device to protect the clogging of submerged entry nozzle for a continuous caster

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020115