JP2004322119A - Fountain for continuous casting - Google Patents

Fountain for continuous casting Download PDF

Info

Publication number
JP2004322119A
JP2004322119A JP2003117269A JP2003117269A JP2004322119A JP 2004322119 A JP2004322119 A JP 2004322119A JP 2003117269 A JP2003117269 A JP 2003117269A JP 2003117269 A JP2003117269 A JP 2003117269A JP 2004322119 A JP2004322119 A JP 2004322119A
Authority
JP
Japan
Prior art keywords
molten steel
gas
outflow hole
tundish
injection pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003117269A
Other languages
Japanese (ja)
Inventor
Mikio Suzuki
幹雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003117269A priority Critical patent/JP2004322119A/en
Publication of JP2004322119A publication Critical patent/JP2004322119A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a continuous casting fountain which enables gas to be uniformly and stably blown into molten steel flowing down in the fountain, which makes this gas mixed in the molten steel in a tundish as minute bubbles, and which has the ability to efficiently remove inclusions in the molten steel. <P>SOLUTION: The fountain 1 for continuous casting is for pouring molten steel in a ladle into the tundish by joining one end to a molten steel discharging port on the ladle side, immersing the other end in the molten steel in the tundish, and making the molten steel flow down inside the outflow hole 2. The bore of the molten steel outflow hole is composed of a shrinkage part 5 that gradually shrinks downward and an expansion part 6 that expands downward, with a gas flow passage 3 for passing nonoxidizing gas installed inside the side wall. In the part immersed in the molten steel in the tundish, there is installed a gas blowing part 4 for blowing off the nonoxidizing gas into the molten steel outflow hole linked with the gas flow passage. The gas blowing part is installed within the area of the expansion part or in the lower end of it. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、鋼の連続鋳造において取鍋内の溶鋼をタンディッシュ内に注入するための注入管に関し、詳しくは注入管内を流下する溶鋼に不活性ガス等の非酸化性ガスを吹き込むことの可能な注入管に関するものである。
【0002】
【従来の技術】
鋼中のアルミナを主体とする酸化物系非金属介在物(以下、「介在物」と記す)は、最終製品における表面疵等欠陥の発生原因となるので、極力除去する必要があり、そのため、最終製品の品質に直接関与する連続鋳造工程では、清浄性の優れた鋳片を得る手段として、種々の介在物低減対策が実施されてきた。そして、生産性向上のために鋳片引抜き速度を高速度化させた最近の操業形態では、鋳型内における介在物の分離・除去に限界があり、更に、近年の要求される品質の厳格化も加味され、溶鋼を鋳型に供給する以前のタンディッシュにおける清浄性向上対策も極めて重要となっている。
【0003】
タンディッシュ内で介在物を除去する方法としては、不活性ガス等の非酸化性ガスを溶鋼中に吹き込み、介在物を非酸化性ガス気泡で捕捉させ、介在物を気泡と共に浮上・分離させる方法が有効であるが、ガス気泡が大きいと介在物捕捉の効果が少ないだけでなく、気泡が溶鋼表面から離脱する際に溶鋼表面に浮遊する溶滓を巻込んだり、空気による溶鋼の酸化の原因となり、却って鋳片品質を劣化させる場合も発生する。
【0004】
これらの問題点は、非酸化性ガス気泡を微細化することによって防止可能であり、そのため、微細化した非酸化性ガス気泡をタンディッシュ内で生成させる手段が多数提案されている。例えば、特許文献1には、溶鋼の流れの方向に凹凸を有する通路を備えた堰をタンディッシュ内に設けて溶鋼を通過させ、凸部分から溶鋼中にガスを吹き込む方法が提案されている。特許文献1によれば、凸部分では断面積が減少することから溶鋼流速が速くなり、この溶鋼流によって剪断力が働き、気泡の離脱が促進され、微細な気泡を安定して溶鋼中に吹き込むことが可能となり、介在物を効率的に取り除くことができるとしている。
【0005】
又、特許文献2には、取鍋内の溶鋼をタンディッシュ内に注入するための注入管(「ロングノズル」とも呼ぶ)のタンディッシュ内溶鋼に浸漬させた部位にポーラス煉瓦を設置し、このポーラス煉瓦から注入管内にガスを吹き込む方法が提案されている。特許文献2によれば、高速で落下する溶鋼によって気泡が微細化され、微細化された気泡がタンディッシュ内で分散されるので、介在物を効率良く除去することができるとしている。
【0006】
【特許文献1】
特開平8−117939号公報
【0007】
【特許文献2】
特開2000−202602号公報
【0008】
【発明が解決しようとする課題】
本発明者等は、ガス気泡によって溶鋼中の介在物を効率的に除去するためには、ガス気泡を小さくすること、具体的にはガス気泡の直径を2.0mm以下とすることにより、直径20μm程度の微細な介在物も効率良く除去できることを確認している。
【0009】
この観点から検討した結果、特許文献1では、堰を通過する際の溶鋼流速がそれほど速くならず、溶鋼流による剪断力が小さいため、直径2mm以下の気泡を安定して生成させることは極めて難しいことが判明した。又、特許文献1のようにタンディッシュ内でガスを吹き込む場合には、ガス吹き込み部位となる堰をタンディッシュ内に設置する必要があり、堰設置に伴う耐火物コストの問題や、堰の存在がタンディッシュの熱間再使用の障害となる等の問題点がある。
【0010】
一方、特許文献2では、製造コストの過度の上昇を招くことなく、直径2mm以下の気泡が得られるものの、落下する溶鋼によって充填された内圧の高い部位でガスを吹き込むため、それによるトラブル、例えば、吹き込みガス圧力を高める必要性があり、それに起因して発生する、注入管とガス供給管との接続部からのガス漏れや、注入管に埋設したポーラス煉瓦のガスの流れやすい部位を優先してガスが通過するために、粗大な気泡が発生しやすい等の未だ改善の余地があることが判明した。
【0011】
本発明は上記事情に鑑みてなされたもので、その目的とするところは、溶鋼の連続鋳造の際に、注入管内を流下する溶鋼中に不活性ガス等の非酸化性ガスを均一に且つ安定して吹き込むことが可能であり、吹き込まれた非酸化性ガスを微細な気泡としてタンディッシュ内の溶鋼に混入させ、タンディッシュ内において溶鋼中の介在物を安定して効率良く除去することができる連続鋳造用注入管を提供することである。
【0012】
【課題を解決するための手段】
上記課題を解決するための第1の発明に係る連続鋳造用注入管は、その一端を取鍋側の溶鋼排出口に接合し、他端をタンディッシュ内の溶鋼に浸漬し、その内部の溶鋼流出孔内を流下させて取鍋内の溶鋼をタンディッシュ内へ注入する連続鋳造用注入管であって、前記溶鋼流出孔の内径が下方に向かって徐々に収縮する収縮部と、溶鋼流出孔の内径が下方に向かって拡大する拡大部と、が備えられ、前記注入管の側壁内部には、非酸化性ガスを通すためのガス流路が設置され、注入管のタンディッシュ内溶鋼に浸漬する部位には、前記ガス流路と連結して前記溶鋼流出孔内に非酸化性ガスを吹き込むためのガス吹き込み部位が設置されており、当該ガス吹き込み部位は、前記拡大部の範囲内又は拡大部の下方側に設けられていることを特徴とするものである。
【0013】
第2の発明に係る連続鋳造用注入管は、第1の発明において、前記ガス吹き込み部位における溶鋼流出孔の断面積(S )と、前記収縮部の下端位置における溶鋼流出孔の断面積(S )との比S /S が1.5〜2.5の範囲内であることを特徴とするものである。
【0014】
第3の発明に係る連続鋳造用注入管は、第1又は第2の発明において、前記収縮部は、下記の(1)式で定義される縮径テーパー値で0.1〜0.2の範囲内で溶鋼流出孔の内径が収縮していることを特徴とするものである。但し、(1)式において、Tpは縮径テーパー値、D は収縮部上端位置の溶鋼流出孔の直径、D は収縮部下端位置の溶鋼流出孔の直径、Lは収縮部の長さである。
【0015】
【数1】

Figure 2004322119
【0016】
本発明に係る注入管では、タンディッシュ内溶鋼に浸漬された部位で、注入管の溶鋼流出孔内にAr等の非酸化性ガスが吹き込まれる。この部位では、溶鋼は十分な落下エネルギーを有し且つ溶鋼流速は十分に高速であるので、吹き込まれた非酸化性ガスは、落下する溶鋼流によって剪断・粉砕され、容易に微細化される。更に、この部分では、溶鋼が注入管内に常に充満しているので、吹き込んだガスは溶鋼中に混入する。そして、溶鋼と共にタンディッシュ内に流入した微細な気泡は、微細であるがために浮上速度が小さく、溶鋼中の滞在時間が長くなり、溶鋼中を浮遊中に介在物と衝突・合体し、介在物を捕捉して浮上・分離するので、タンディッシュ内において介在物を効率良く除去することができる。
【0017】
注入管の溶鋼流出孔の内面積が急激に拡大すると、拡大した部位における溶鋼内圧力はベルヌーイの法則によって低下する。例えば、内面積がS である収縮部の圧力P と、内面積がS (S >S )である拡大部の圧力P との圧力差ΔPは、下記の(2)式によって表される。但し、(2)式において、ρは溶鋼の密度、Vは内面積がS の位置における溶鋼の流速である。
【0018】
【数2】
Figure 2004322119
【0019】
従って、溶鋼流出孔の内径を絞った収縮部から、溶鋼流出孔の内径を拡大させた拡大部に流下すると、溶鋼内の圧力が小さくなるため、非酸化性ガスの供給圧力を昇圧させる等の対策を採ることなく、注入管の下部に設置したガス吹き込み部位から非酸化性ガスを溶鋼流出孔内に吹き込むことができる。又、溶鋼内の圧力が低下しているので、ガス吹き込み部位から供給された非酸化性ガスは、溶鋼に迅速に吸引され、微細な気泡として溶鋼中に分散する。
【0020】
このように、注入管の溶鋼流出孔に収縮部とそれに続く拡大部とを設けることで、ガス吹き込みが簡単になり、安定して非酸化性ガスを溶鋼流出孔内に吹き込むことが可能になると同時に、吹き込まれた非酸化性ガスは溶鋼の落下エネルギーによって剪断されるため、微細な気泡を得ることが達成される。
【0021】
この場合、ガス吹き込み部位における溶鋼流出孔の断面積(S )と、収縮部の下端位置における溶鋼流出孔の断面積(S )との比S /S(以下、「断面積比S /S 」と記す)を1.5〜2.5の範囲内にすることが好ましい。これによって(2)式から計算される両者の位置の圧力差ΔPは、収縮部下端位置における圧力P の20%〜60%になり、ガス吹き込み部位から供給される非酸化性ガスは吹き込まれると云うよりも吸引された状態になり、より一層ガス吹き込みが簡単になる。断面積比S /S が1.5以下の場合には、非酸化性ガスの吹き込み時に或る程度の圧力が必要になり、注入管内壁のガス吹き込み部位から均一に吹き込むことが困難になる。断面積比S /S が2.5を越えると、注入管内壁にアルミナや地金が付着した場合に、最小内径部が狭くなり過ぎて溶鋼通過量が減少し、連続鋳造機の鋳片引抜き速度を低下せざるを得ない事態も発生するため、好ましくない。
【0022】
収縮部のテーパーは、上記の(1)式による縮径テーパー値で0.1〜0.2の範囲内とすることが好ましい。収縮部において、溶鋼は流下方向を曲げられるため、溶鋼には遠心力が作用する。この遠心力が大きいほど、溶鋼よりも密度の小さい介在物は中心側に曲げられて流下し、注入流の中心部に集まるため、収縮部の内壁にアルミナが付着し難くなる。縮径テーパー値が0.1未満では、溶鋼流出孔を流下する溶鋼の曲がり量が少ないため、遠心力の作用が小さく、収縮部にアルミナが付着しやすくなり、長時間の鋳造では所定の溶鋼量を注入できなくなる恐れがある。一方、縮径テーパー値が0.2を越えると、注入管内壁に地金やアルミナが付着した場合には最小内径部が狭くなり過ぎ、溶鋼通過量が不足する恐れがある。
【0023】
吹き込まれる非酸化性ガスとしては、Arが一般的であるが、水素ガスや窒素ガス或いはこれらとArとの混合ガスを用いてもよい。
【0024】
【発明の実施の形態】
以下、添付図面を参照して本発明の実施の形態を説明する。図1及び図2は、本発明の実施の形態を示す図であって、図1は、本発明に係る注入管の1例を示す概略図、図2は、本発明に係る注入管の他の例を示す概略図、図3は、本発明に係る注入管を用いた連続鋳造設備の概略図である。
【0025】
図1及び図2に示すように、本発明に係る耐火物製の注入管1は、注入管1の内部の溶鋼流出孔2が下方に向かって徐々に収縮する収縮部5と、収縮部5に続いて、溶鋼流出孔2が下方に向かって拡大する拡大部6とを備えている。そして、注入管1の側壁内部には、ガス流路となるスリット3が設けられ、注入管1の下方側先端部には、ガス吹き込み部位であるポーラス煉瓦4が設けられており、スリット3とポーラス煉瓦4とは連通しており、注入管1に取り付けられたガス導入管7からスリット3内に供給されるArや水素等の非酸化性ガスは、スリット3を通り、ポーラス煉瓦4を介して注入管1の溶鋼流出孔2内に吹き込まれるようになっている。ポーラス煉瓦4は、拡大部6の範囲内若しくは拡大部6の下方側に、溶鋼流出孔2に露出して配置されている。図中のLは収縮部5の長さ、D は収縮部5の上端位置における溶鋼流出孔2の直径、D は収縮部5の下端位置における溶鋼流出孔2の直径、D はガス吹き込み部位即ちポーラス煉瓦4の設置位置における溶鋼流出孔2の直径である。拡大部6は、図1に示すように下方に向かって徐々に拡大しても、一方、図2に示すように急激に拡大してもどちらでも構わない。
【0026】
前述したように、ガス吹き込み部位即ちポーラス煉瓦4の設置位置における溶鋼流出孔2の断面積(S )と、収縮部5の下端位置における溶鋼流出孔2の断面積(S )との断面積比S /S が1.5〜2.5の範囲内となるように、注入管1の形状を決めることが好ましく、又、収縮部5のテーパーが、前述した(1)式に示す縮径テーパー値で0.1〜0.2の範囲内となるように、注入管1の形状を決めることが好ましい。
【0027】
このような構成の注入管1を、例えば図3に示すような連続鋳造設備に用いて溶鋼を連続鋳造する。
【0028】
図3において、内面を耐火物で構築されたタンディッシュ9が、タンディッシュカー(図示せず)に搭載されて鋳型11の上方所定位置に配置され、又、タンディッシュ9の上方所定位置には溶鋼14を収容した取鍋8が配置されている。取鍋8の底部には上ノズル12が設置され、この上ノズル12の下面側にはスライディングノズル13が設置され、スライディングノズル13に密着して注入管1が接合されている。スライディングノズル13は、取鍋8からの溶鋼14の流量調整手段であり、スライディングノズル13の下端が取鍋8の溶鋼排出口となる。タンディッシュ9の注入管1の設置位置に対して長手方向反対側の底部には、鋳型11への溶鋼供給流路となる浸漬ノズル10が設置されている。
【0029】
そして、注入管1の先端をタンディッシュ9内の溶鋼14に浸漬させながら取鍋8内の溶鋼14をタンディッシュ9に注入する。その際に、収縮部5の範囲を含む、注入管1の下部の部位を、タンディッシュ9内の溶鋼14に浸漬させ、ポーラス煉瓦4から溶鋼流出孔2内にAr、水素、窒素等、及び、これらの混合ガス等からなる非酸化性ガスを吹き込む。
【0030】
注入管1内に吹き込まれた非酸化性ガスは、タンディッシュ9内の溶鋼14中に微細な気泡となって混入し、気泡中に溶鋼14中の介在物を吸着させ、次いで、タンディッシュ9内の溶鋼湯面に浮上する。そのため、介在物は効率良く溶鋼14から除去され、鋳型11へは介在物の少ない清浄な溶鋼14が鋳造される。鋳型11内に鋳造された溶鋼14は鋳型11内で冷却されて凝固し、清浄性の優れた鋳片15が鋳造される。
【0031】
尚、上記説明は単ストランド鋳造のタンディッシュ9における説明であるが、本発明は単ストランド鋳造に限るものではなく、多ストランド鋳造であっても上記に従って本発明を適用することができる。又、注入管1からの非酸化性ガスの吹き込み方法も上記説明に限るものではなく、例えばポーラス煉瓦4の代わりに複数の細孔を有する煉瓦を用いて吹き込んでもよい。
【0032】
【実施例】
[実施例1]
非酸化性ガスとしてArを用い、図1に示す注入管において、ガス吹き込み部位における溶鋼流出孔の断面積(S )と収縮部の下端位置における溶鋼流出孔の断面積(S )との断面積比S /S を、1.25〜3.0の範囲で変更した試験結果を説明する。又、比較のために断面積比S /S が1.0の注入管を用いた試験も実施した。
【0033】
内径100mm、外径200m、肉厚50mm、長さ2mのアルミナ−黒鉛製の図1に示す注入管を、図3に示す連続鋳造設備に設置した。用いた注入管では、スリットを溶鋼の浸漬部分まで伸長し、浸漬部分にポーラス煉瓦を埋め込んだ。注入管のAr導入口は注入管の上部、即ちスライディングノズルとの繋ぎの直下に設けた。この位置から浸漬部までの長さは1m以上であった。
【0034】
鋳造中には注入管内を溶鋼が通過するため、注入管は1000℃以上の高温状態にあり、この中をArが通過していくことによりArは加熱され、ポーラス煉瓦から溶鋼中に吹き出される時には急激な熱膨張は起こらなかった。
【0035】
図4は、注入管内の溶鋼通過量を9.8トン/分とした鋳造中にAr流量を20Nl/分の一定として鋳造したときの、スラブ鋳片から抽出した介在物量の調査結果を示す図である。図4に示すように、抽出介在物量は、断面積比S /S を大きくするほど減少し、良好な清浄性を示すことが分かった。しかし、断面積比S /S を3とした場合には、収縮部の断面積が小さくなり、鋳造の中期以降、注入管内壁にアルミナが付着・堆積して注入管を通過する溶鋼流量が減少し、鋳片引抜き速度を低下せざるを得ない状態になった。従って、断面積比S /S は1.5〜2.5の範囲内が好ましいことが分かった。このスラブ鋳片を圧延して製造した極薄肉厚の飲料缶の不良品発生率は、従来の1/10であった。尚、図4は、断面積比S /S が1.0のデータを基準として介在物量を指数化している。
【0036】
[実施例2]
実施例1と同じ連続鋳造設備で、非酸化性ガスとしてArを用い、図2に示す注入管を用いてスラブ鋳片を鋳造した。本実施例では、断面積比S /S を2.5の一定とし、収縮部のテーパーを、(1)式の縮径テーパー値で0.05〜0.25の範囲で変化させた。即ち、収縮部の長さLを変更した。溶鋼の注入量は9.8トン/分、ポーラス煉瓦からのAr流量は20Nl/分とした。又、比較のためにテーパー値がゼロの注入管を用いた試験も実施した。
【0037】
図5にスラブ鋳片からの抽出介在物量と、収縮部におけるテーパー値との関係を示す。図5に示すように、縮径テーパー値が0.1〜0.2の範囲で介在物量が減少した。縮径テーパー値が0.1よりも小さくなると、収縮部に多量のアルミナが付着して溶鋼の通過量が不足気味になった。一方、縮径テーパー値が0.2を越えると、ポーラス煉瓦にアルミナが付着して均一な吹き込みが困難になった。これらの結果から、収縮部の縮径テーパー値は0.1〜0.2の範囲内が好ましいことが分かった。尚、図5は、縮径テーパー値が0のデータを基準として介在物量を指数化している。
【0038】
【発明の効果】
本発明に係る注入管によれば、注入管の溶鋼流出孔に収縮部とそれに続く拡大部とを設けているので、ガス吹き込みが簡単になり、安定して非酸化性ガスを吹き込むことが可能になると同時に、吹き込まれた非酸化性ガスは溶鋼の落下エネルギーによって剪断されるため、微細な気泡を得ることが可能となり、この気泡によりタンディッシュ内において介在物を効率良く除去することができ、工業上有益な効果がもたらされる。
【図面の簡単な説明】
【図1】本発明の実施の形態を示す図であって、本発明に係る注入管の1例を示す概略図である。
【図2】本発明の実施の形態を示す図であって、本発明に係る注入管の他の例を示す概略図である。
【図3】本発明に係る注入管を用いた連続鋳造設備の概略図である。
【図4】スラブ鋳片の介在物量と断面積比S /S との関係を示す図である。
【図5】スラブ鋳片の介在物量と収縮部のテーパー値との関係を示す図である。
【符号の説明】
1 注入管
2 溶鋼流出孔
3 スリット
4 ポーラス煉瓦
5 収縮部
6 拡大部
7 ガス導入管
8 取鍋
9 タンディッシュ
10 浸漬ノズル
11 鋳型
12 上ノズル
13 スライディングノズル
14 溶鋼
15 鋳片[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to an injection pipe for injecting molten steel in a ladle into a tundish in continuous casting of steel, and more particularly, to inject a non-oxidizing gas such as an inert gas into molten steel flowing down in the injection pipe. Related to a simple injection tube.
[0002]
[Prior art]
Oxide-based non-metallic inclusions mainly composed of alumina in steel (hereinafter referred to as “inclusions”) cause defects such as surface flaws in the final product, and must be removed as much as possible. In the continuous casting process directly related to the quality of the final product, various measures for reducing inclusions have been implemented as means for obtaining a slab excellent in cleanliness. In recent operation modes in which the slab drawing speed is increased to improve productivity, there is a limit to the separation and removal of inclusions in the mold, and furthermore, the strictness of the quality required in recent years has been increasing. In addition, measures to improve cleanliness in the tundish before supplying molten steel to the mold are also very important.
[0003]
As a method of removing inclusions in a tundish, a method of blowing a non-oxidizing gas such as an inert gas into molten steel, capturing the inclusions with non-oxidizing gas bubbles, and floating / separating the inclusions with the bubbles Is effective, but if the gas bubbles are large, not only is the effect of trapping inclusions small, but also the slag floating on the molten steel surface when the bubbles separate from the molten steel surface, and the air may cause oxidation of the molten steel In some cases, the quality of the slab deteriorates.
[0004]
These problems can be prevented by reducing the size of the non-oxidizing gas bubbles. For this reason, many means have been proposed for generating the reduced non-oxidizing gas bubbles in a tundish. For example, Patent Literature 1 proposes a method in which a weir provided with a passage having irregularities in the flow direction of molten steel is provided in a tundish to allow the molten steel to pass therethrough, and a gas is blown into the molten steel from the convex portion. According to Patent Literature 1, the cross-sectional area is reduced at the convex portion, so that the flow rate of the molten steel is increased, and the shear force is exerted by the molten steel flow, the separation of the bubbles is promoted, and the fine bubbles are stably blown into the molten steel. It is stated that inclusions can be efficiently removed.
[0005]
Further, in Patent Document 2, a porous brick is installed in a portion of a pouring pipe (also referred to as a “long nozzle”) for injecting molten steel in a ladle into a tundish, which is immersed in the molten steel in the tundish. A method of blowing gas from a porous brick into an injection pipe has been proposed. According to Patent Literature 2, bubbles are miniaturized by molten steel falling at a high speed, and the micronized air bubbles are dispersed in the tundish, so that inclusions can be efficiently removed.
[0006]
[Patent Document 1]
JP-A-8-117939
[Patent Document 2]
Japanese Patent Application Laid-Open No. 2000-202602
[Problems to be solved by the invention]
In order to efficiently remove inclusions in molten steel by gas bubbles, the present inventors made the gas bubbles smaller, specifically, by reducing the diameter of the gas bubbles to 2.0 mm or less, It has been confirmed that fine inclusions of about 20 μm can be efficiently removed.
[0009]
As a result of examination from this viewpoint, in Patent Document 1, it is extremely difficult to stably generate bubbles having a diameter of 2 mm or less because the molten steel flow rate when passing through the weir is not so high and the shear force due to the molten steel flow is small. It has been found. In addition, when gas is blown in a tundish as in Patent Document 1, it is necessary to install a weir serving as a gas blowing part in the tundish, and there is a problem of refractory costs associated with the weir installation and the existence of the weir. However, there is a problem that hinders hot reuse of the tundish.
[0010]
On the other hand, in Patent Document 2, although bubbles having a diameter of 2 mm or less can be obtained without excessively increasing the manufacturing cost, gas is blown at a portion having a high internal pressure filled with falling molten steel. It is necessary to increase the pressure of the blown gas, and prioritize the gas leakage from the connection between the injection pipe and the gas supply pipe, or the part of the porous brick buried in the injection pipe where gas flows easily. It has been found that there is still room for improvement, for example, that coarse gas bubbles are likely to be generated due to the passage of gas.
[0011]
The present invention has been made in view of the above circumstances, and an object thereof is to uniformly and stabilize a non-oxidizing gas such as an inert gas in molten steel flowing down an injection pipe during continuous casting of molten steel. It is possible to mix the blown non-oxidizing gas as fine bubbles into the molten steel in the tundish, and to stably and efficiently remove inclusions in the molten steel in the tundish. It is to provide an injection tube for continuous casting.
[0012]
[Means for Solving the Problems]
An injection pipe for continuous casting according to a first aspect of the present invention for solving the above-mentioned problems has one end joined to a molten steel discharge port on the ladle side, the other end immersed in molten steel in a tundish, and the molten steel in the interior. A casting pipe for continuous casting for injecting molten steel in a ladle into a tundish by flowing down in an outflow hole, wherein a contraction portion in which an inner diameter of the molten steel outflow hole gradually shrinks downward, and a molten steel outflow hole. A gas passage for passing a non-oxidizing gas is provided inside the side wall of the injection pipe, and is immersed in molten steel in a tundish of the injection pipe. A gas blowing part for blowing a non-oxidizing gas into the molten steel outflow hole in connection with the gas flow path is installed in the part to be blown, and the gas blowing part is in the range of the expanding part or in the expanding part. Is provided on the lower side of the part Is shall.
[0013]
The injection pipe for continuous casting according to the second invention is the injection pipe for continuous casting according to the first invention, wherein a cross-sectional area (S L ) of a molten steel outflow hole at the gas blowing portion and a cross-sectional area of the molten steel outflow hole at a lower end position of the contraction portion (S L ). The ratio S L / S S with respect to S S ) is in the range of 1.5 to 2.5.
[0014]
In the injection pipe for continuous casting according to a third invention, in the first or second invention, the contracted portion has a diameter reduction taper value of 0.1 to 0.2 defined by the following equation (1). The inner diameter of the molten steel outflow hole shrinks within the range. However, (1) In the equation, Tp is reduced in diameter taper value, D 0 is the length of the diameter of the molten steel outflow hole of the constriction upper end position, D S is the diameter of the molten steel outflow hole of the constriction lower end position, L is the constriction It is.
[0015]
(Equation 1)
Figure 2004322119
[0016]
In the injection pipe according to the present invention, a non-oxidizing gas such as Ar is blown into the molten steel outflow hole of the injection pipe at a portion immersed in the molten steel in the tundish. In this part, the molten steel has sufficient falling energy and the molten steel flow velocity is sufficiently high, so that the blown non-oxidizing gas is sheared and pulverized by the falling molten steel flow, and is easily miniaturized. Further, in this portion, the injected gas is mixed into the molten steel because the molten steel is always filled in the injection pipe. The fine bubbles that flow into the tundish together with the molten steel are small and have a low floating speed, so the residence time in the molten steel is prolonged. Since the object is captured and floated / separated, inclusions can be efficiently removed in the tundish.
[0017]
When the inner area of the molten steel outflow hole of the injection pipe increases rapidly, the pressure in the molten steel at the expanded portion decreases according to Bernoulli's law. For example, the pressure difference ΔP between the pressure P 1 of the contracted portion whose inner area is S 1 and the pressure P 2 of the enlarged portion whose inner area is S 2 (S 2 > S 1 ) is expressed by the following equation (2). Is represented by However, in (2), [rho is the density of molten steel, V is the inner area is the flow rate of the molten steel at the location of S 1.
[0018]
(Equation 2)
Figure 2004322119
[0019]
Therefore, when flowing down from the contracted portion in which the inner diameter of the molten steel outflow hole is narrowed down to the enlarged portion in which the inner diameter of the molten steel outflow hole is enlarged, the pressure in the molten steel is reduced, so that the supply pressure of the non-oxidizing gas is increased. Without taking measures, a non-oxidizing gas can be blown into the molten steel outflow hole from a gas blowing portion provided at the lower part of the injection pipe. In addition, since the pressure in the molten steel is reduced, the non-oxidizing gas supplied from the gas injection site is quickly sucked into the molten steel and dispersed as fine bubbles in the molten steel.
[0020]
As described above, by providing the contracted portion and the enlarging portion subsequent to the molten steel outflow hole of the injection pipe, gas injection is simplified, and it becomes possible to stably inject a non-oxidizing gas into the molten steel outflow hole. At the same time, the blown non-oxidizing gas is sheared by the falling energy of the molten steel, so that fine bubbles can be obtained.
[0021]
In this case, the ratio S L / S S (hereinafter referred to as “cross-sectional area ratio”) of the cross-sectional area (S L ) of the molten steel outflow hole at the gas injection portion and the cross-sectional area (S S ) of the molten steel outflow hole at the lower end position of the contraction portion. S L / S S ) is preferably in the range of 1.5 to 2.5. The pressure difference ΔP of the position of both calculated from a result (2) becomes 20% to 60% of the pressure P S in the contracted portion the lower end position, non-oxidizing gas supplied from the site blowing gas is blown Rather than being sucked, which makes gas blowing easier. When the cross-sectional area ratio S L / S S is 1.5 or less, a certain pressure is required at the time of blowing the non-oxidizing gas, and it is difficult to blow uniformly from the gas blowing portion on the inner wall of the injection pipe. Become. If the cross-sectional area ratio S L / S S exceeds 2.5, when alumina or ingot adheres to the inner wall of the injection pipe, the minimum inner diameter becomes too narrow and the amount of molten steel passing decreases, and the casting of the continuous casting machine is reduced. This is not preferable because a situation occurs in which the one-side drawing speed must be reduced.
[0022]
It is preferable that the taper of the shrinking portion be in the range of 0.1 to 0.2 in terms of the diameter reduction taper according to the above equation (1). In the shrinking part, the molten steel is bent in the downflow direction, so that a centrifugal force acts on the molten steel. As the centrifugal force increases, the inclusions having a density lower than that of the molten steel are bent toward the center and flow down, and gather at the center of the injection flow. Therefore, it becomes difficult for the alumina to adhere to the inner wall of the contraction portion. If the diameter reduction taper value is less than 0.1, the amount of bending of the molten steel flowing down the molten steel outflow hole is small, so that the effect of the centrifugal force is small, and alumina tends to adhere to the contracted portion. The dose may not be able to be injected. On the other hand, if the diameter-reduced taper value exceeds 0.2, when the metal or alumina adheres to the inner wall of the injection pipe, the minimum inner diameter portion becomes too narrow, and there is a possibility that the amount of molten steel passing becomes insufficient.
[0023]
Ar is generally used as the non-oxidizing gas to be blown, but a hydrogen gas, a nitrogen gas, or a mixed gas of these and Ar may be used.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. 1 and 2 are diagrams showing an embodiment of the present invention. FIG. 1 is a schematic view showing an example of an injection tube according to the present invention, and FIG. FIG. 3 is a schematic view of a continuous casting facility using an injection pipe according to the present invention.
[0025]
As shown in FIGS. 1 and 2, the injection pipe 1 made of a refractory according to the present invention includes a contraction section 5 in which a molten steel outflow hole 2 inside the injection pipe 1 gradually contracts downward, and a contraction section 5. And an enlarged portion 6 in which the molten steel outflow hole 2 expands downward. A slit 3 serving as a gas flow path is provided inside the side wall of the injection pipe 1, and a porous brick 4 serving as a gas blowing portion is provided at a lower end of the injection pipe 1. Non-oxidizing gas such as Ar and hydrogen supplied into the slit 3 from the gas introduction pipe 7 attached to the injection pipe 1 is communicated with the porous brick 4, passes through the slit 3, and passes through the porous brick 4. As a result, it is blown into the molten steel outflow hole 2 of the injection pipe 1. The porous brick 4 is disposed in the range of the enlarged portion 6 or below the enlarged portion 6 so as to be exposed to the molten steel outflow hole 2. The length of L is constriction 5 in the figure, D 0 is the diameter of the molten steel outflow hole 2 at the upper end position of the constriction 5, D S is the molten steel outflow hole 2 at the lower end position of the constriction 5 in diameter, D L gas This is the diameter of the molten steel outflow hole 2 at the blow site, that is, the installation position of the porous brick 4. The enlargement portion 6 may be either gradually enlarged downward as shown in FIG. 1 or rapidly enlarged as shown in FIG.
[0026]
As described above, the cross-sectional area (S L ) of the molten steel outflow hole 2 at the gas blowing site, that is, the installation position of the porous brick 4, and the cross-sectional area (S S ) of the molten steel outflow hole 2 at the lower end position of the contraction portion 5 are cut. It is preferable to determine the shape of the injection tube 1 so that the area ratio S L / S S is in the range of 1.5 to 2.5, and the taper of the shrinking portion 5 is determined by the equation (1). It is preferable to determine the shape of the injection tube 1 so that the indicated diameter reduction taper value is in the range of 0.1 to 0.2.
[0027]
The molten steel is continuously cast by using the injection pipe 1 having such a configuration in, for example, a continuous casting facility as shown in FIG.
[0028]
In FIG. 3, a tundish 9 having an inner surface made of a refractory is mounted on a tundish car (not shown) and arranged at a predetermined position above the mold 11, and at a predetermined position above the tundish 9. Ladle 8 containing molten steel 14 is arranged. An upper nozzle 12 is installed at the bottom of the ladle 8, and a sliding nozzle 13 is installed on the lower surface side of the upper nozzle 12, and the injection pipe 1 is joined to the sliding nozzle 13 in close contact therewith. The sliding nozzle 13 is a means for adjusting the flow rate of the molten steel 14 from the ladle 8, and the lower end of the sliding nozzle 13 serves as a molten steel discharge port of the ladle 8. An immersion nozzle 10 serving as a flow path for supplying molten steel to the mold 11 is provided at the bottom of the tundish 9 on the opposite side to the installation position of the injection pipe 1 in the longitudinal direction.
[0029]
Then, the molten steel 14 in the ladle 8 is injected into the tundish 9 while the tip of the injection pipe 1 is immersed in the molten steel 14 in the tundish 9. At that time, the lower part of the injection pipe 1 including the range of the contraction part 5 is immersed in the molten steel 14 in the tundish 9, and Ar, hydrogen, nitrogen, etc. Then, a non-oxidizing gas composed of a mixed gas thereof is blown.
[0030]
The non-oxidizing gas blown into the injection pipe 1 is mixed as fine bubbles into the molten steel 14 in the tundish 9, adsorbs the inclusions in the molten steel 14 into the bubbles, and then the tundish 9 Floats on the molten steel surface inside. Therefore, inclusions are efficiently removed from the molten steel 14, and a clean molten steel 14 with few inclusions is cast into the mold 11. The molten steel 14 cast in the mold 11 is cooled and solidified in the mold 11 to cast a slab 15 having excellent cleanliness.
[0031]
Although the above description is for the tundish 9 of single-strand casting, the present invention is not limited to single-strand casting, and the present invention can be applied to multi-strand casting as described above. The method of blowing the non-oxidizing gas from the injection pipe 1 is not limited to the above description. For example, the blowing may be performed using a brick having a plurality of pores instead of the porous brick 4.
[0032]
【Example】
[Example 1]
Using Ar as the non-oxidizing gas, in the injection pipe shown in FIG. 1, the cross-sectional area (S L ) of the molten steel outflow hole at the gas injection site and the cross-sectional area (S S ) of the molten steel outflow hole at the lower end position of the contraction portion are shown. Test results in which the sectional area ratio S L / S S is changed in the range of 1.25 to 3.0 will be described. For comparison, a test using an injection tube having a sectional area ratio S L / S S of 1.0 was also performed.
[0033]
The injection pipe shown in FIG. 1 made of alumina-graphite having an inner diameter of 100 mm, an outer diameter of 200 m, a thickness of 50 mm, and a length of 2 m was installed in the continuous casting facility shown in FIG. In the injection pipe used, the slit was extended to the immersion part of the molten steel, and a porous brick was embedded in the immersion part. The Ar inlet of the injection pipe was provided at the upper part of the injection pipe, that is, immediately below the connection with the sliding nozzle. The length from this position to the immersion part was 1 m or more.
[0034]
During casting, the molten steel passes through the injection pipe, so that the injection pipe is in a high temperature state of 1000 ° C. or higher, and Ar is heated by passing through the injection pipe, and is blown out of the porous brick into the molten steel. Sometimes rapid thermal expansion did not occur.
[0035]
FIG. 4 is a diagram showing the results of an investigation of the amount of inclusions extracted from the slab slab when casting was performed at a constant Ar flow rate of 20 Nl / min during casting at a molten steel passage rate of 9.8 ton / min in the injection pipe. It is. As shown in FIG. 4, it was found that the amount of inclusion inclusions decreased as the cross-sectional area ratio S L / S S was increased, indicating good cleanliness. However, when the cross-sectional area ratio S L / S S is set to 3, the cross-sectional area of the contracted portion becomes small, and after the middle stage of casting, alumina adheres and accumulates on the inner wall of the injection pipe and the flow rate of molten steel passing through the injection pipe. Decreased, and the slab drawing speed had to be reduced. Therefore, it was found that the cross-sectional area ratio S L / S S was preferably in the range of 1.5 to 2.5. The rejection rate of an extremely thin beverage can produced by rolling this slab slab was 1/10 of the conventional one. In FIG. 4, the amount of inclusions is indexed based on data having a sectional area ratio S L / S S of 1.0.
[0036]
[Example 2]
In the same continuous casting equipment as in Example 1, Ar was used as the non-oxidizing gas, and a slab slab was cast using the injection pipe shown in FIG. In this embodiment, the cross-sectional area ratio S L / S S is kept constant at 2.5, and the taper of the contracted portion is changed in the range of 0.05 to 0.25 in the diameter reduction taper value of the equation (1). . That is, the length L of the contracted portion was changed. The injection rate of molten steel was 9.8 tons / min, and the flow rate of Ar from the porous brick was 20 Nl / min. For comparison, a test using an injection tube having a taper value of zero was also performed.
[0037]
FIG. 5 shows the relationship between the amount of inclusions extracted from the slab slab and the taper value at the shrinking part. As shown in FIG. 5, the amount of inclusions decreased when the diameter reduction taper value was in the range of 0.1 to 0.2. When the diameter-reduced taper value was smaller than 0.1, a large amount of alumina adhered to the shrinking portion, and the amount of molten steel passing therethrough became insufficient. On the other hand, when the diameter-reduced taper value exceeds 0.2, alumina adhered to the porous brick, making uniform blowing difficult. From these results, it was found that the diameter reduction taper value of the contracted portion was preferably in the range of 0.1 to 0.2. In FIG. 5, the amount of inclusions is indexed on the basis of data having a diameter reduction taper value of 0.
[0038]
【The invention's effect】
According to the injection pipe of the present invention, since the contraction section and the enlarging section following the contraction section are provided in the molten steel outflow hole of the injection pipe, gas injection is simplified, and a non-oxidizing gas can be stably injected. At the same time, the injected non-oxidizing gas is sheared by the falling energy of the molten steel, so that fine bubbles can be obtained, and the bubbles can efficiently remove inclusions in the tundish, An industrially beneficial effect is provided.
[Brief description of the drawings]
FIG. 1 is a view showing an embodiment of the present invention and is a schematic view showing an example of an injection tube according to the present invention.
FIG. 2 is a view showing an embodiment of the present invention, and is a schematic view showing another example of an injection tube according to the present invention.
FIG. 3 is a schematic view of a continuous casting facility using an injection pipe according to the present invention.
FIG. 4 is a diagram showing the relationship between the amount of inclusions in the slab slab and the cross-sectional area ratio S L / S S.
FIG. 5 is a diagram showing a relationship between the amount of inclusions in a slab slab and the taper value of a contracted portion.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Injection pipe 2 Molten steel outflow hole 3 Slit 4 Porous brick 5 Shrinkage part 6 Expansion part 7 Gas introduction pipe 8 Ladle 9 Tundish 10 Immersion nozzle 11 Mold 12 Upper nozzle 13 Sliding nozzle 14 Molten steel 15 Slab

Claims (3)

その一端を取鍋側の溶鋼排出口に接合し、他端をタンディッシュ内の溶鋼に浸漬し、その内部の溶鋼流出孔内を流下させて取鍋内の溶鋼をタンディッシュ内へ注入する連続鋳造用注入管であって、前記溶鋼流出孔の内径が下方に向かって徐々に収縮する収縮部と、溶鋼流出孔の内径が下方に向かって拡大する拡大部と、が備えられ、前記注入管の側壁内部には、非酸化性ガスを通すためのガス流路が設置され、注入管のタンディッシュ内溶鋼に浸漬する部位には、前記ガス流路と連結して前記溶鋼流出孔内に非酸化性ガスを吹き込むためのガス吹き込み部位が設置されており、当該ガス吹き込み部位は、前記拡大部の範囲内又は拡大部の下方側に設けられていることを特徴とする連続鋳造用注入管。One end is joined to the molten steel discharge port on the ladle side, the other end is immersed in the molten steel in the tundish, and the molten steel in the ladle flows down through the molten steel outflow hole in the inside to continuously inject the molten steel in the ladle into the tundish A casting tube for casting, comprising: a contraction portion in which the inside diameter of the molten steel outflow hole gradually contracts downward; and an enlarged portion in which the inside diameter of the molten steel outflow hole expands downward. A gas flow path for passing a non-oxidizing gas is installed inside the side wall of the pipe, and a portion of the injection pipe immersed in the molten steel in the tundish is connected to the gas flow path to form a non-oxidized gas in the molten steel outflow hole. A gas injection part for injecting an oxidizing gas is provided, and the gas injection part is provided within the range of the enlarged portion or below the enlarged portion. 前記ガス吹き込み部位における溶鋼流出孔の断面積(S )と、前記収縮部の下端位置における溶鋼流出孔の断面積(S )との比S /S が1.5〜2.5の範囲内であることを特徴とする、請求項1に記載の連続鋳造用注入管。The ratio S L / S S of the cross-sectional area (S L ) of the molten steel outflow hole at the gas injection portion to the cross-sectional area (S S ) of the molten steel outflow hole at the lower end position of the contraction portion is 1.5 to 2.5. The injection pipe for continuous casting according to claim 1, wherein the injection pipe is in the range of: 前記収縮部は、下記の(1)式で定義される縮径テーパー値で0.1〜0.2の範囲内で溶鋼流出孔の内径が収縮していることを特徴とする、請求項1又は請求項2に記載の連続鋳造用注入管。
Tp=(D−D)/(2×L) …(1)
但し、(1)式において、Tpは縮径テーパー値、D は収縮部上端位置の溶鋼流出孔の直径、D は収縮部下端位置の溶鋼流出孔の直径、Lは収縮部の長さである。
The inner diameter of the molten steel outflow hole of the shrinking portion is shrunk within a range of 0.1 to 0.2 in a diameter reducing taper value defined by the following equation (1). Or the injection pipe for continuous casting according to claim 2.
Tp = (D 0 -D S) / (2 × L) ... (1)
However, (1) In the equation, Tp is reduced in diameter taper value, D 0 is the length of the diameter of the molten steel outflow hole of the constriction upper end position, D S is the diameter of the molten steel outflow hole of the constriction lower end position, L is the constriction It is.
JP2003117269A 2003-04-22 2003-04-22 Fountain for continuous casting Pending JP2004322119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003117269A JP2004322119A (en) 2003-04-22 2003-04-22 Fountain for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003117269A JP2004322119A (en) 2003-04-22 2003-04-22 Fountain for continuous casting

Publications (1)

Publication Number Publication Date
JP2004322119A true JP2004322119A (en) 2004-11-18

Family

ID=33497209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003117269A Pending JP2004322119A (en) 2003-04-22 2003-04-22 Fountain for continuous casting

Country Status (1)

Country Link
JP (1) JP2004322119A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015188893A (en) * 2014-03-27 2015-11-02 新日鐵住金株式会社 Method for removing fine inclusion in molten steel
CN107755679A (en) * 2017-12-07 2018-03-06 安徽工业大学 The long nozzle device and argon jetting method of a kind of argon blowing seal and purifying of steel
CN107983943A (en) * 2017-12-07 2018-05-04 安徽工业大学 A kind of system and method for improving tundish Cleanliness of Molten Steel under unstable state state
CN109759575A (en) * 2019-02-20 2019-05-17 山东钢铁股份有限公司 A kind of annular air curtain barricade wall and its Argon metallurgical method for ladle
JP6997397B2 (en) 2020-04-28 2022-01-17 品川リフラクトリーズ株式会社 Refractory for continuous casting

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015188893A (en) * 2014-03-27 2015-11-02 新日鐵住金株式会社 Method for removing fine inclusion in molten steel
CN107755679A (en) * 2017-12-07 2018-03-06 安徽工业大学 The long nozzle device and argon jetting method of a kind of argon blowing seal and purifying of steel
CN107983943A (en) * 2017-12-07 2018-05-04 安徽工业大学 A kind of system and method for improving tundish Cleanliness of Molten Steel under unstable state state
CN107983943B (en) * 2017-12-07 2019-07-05 安徽工业大学 A kind of system and method improving tundish Cleanliness of Molten Steel under unstable state state
CN107755679B (en) * 2017-12-07 2023-09-19 安徽工业大学 Argon blowing sealing and molten steel cleaning long nozzle device and argon blowing method
CN109759575A (en) * 2019-02-20 2019-05-17 山东钢铁股份有限公司 A kind of annular air curtain barricade wall and its Argon metallurgical method for ladle
CN109759575B (en) * 2019-02-20 2023-08-25 山东钢铁股份有限公司 Annular gas curtain wall for steel ladle and argon blowing metallurgical method thereof
JP6997397B2 (en) 2020-04-28 2022-01-17 品川リフラクトリーズ株式会社 Refractory for continuous casting

Similar Documents

Publication Publication Date Title
JP5910578B2 (en) Steel continuous casting method
JP2004322119A (en) Fountain for continuous casting
JP2005131661A (en) Method and equipment for continuously casting high cleanness steel by tundish
JP2007090423A (en) Upper nozzle for continuous casting apparatus
JP4815821B2 (en) Continuous casting method of aluminum killed steel
JP2009066603A (en) Continuous casting method for steel, and upper nozzle of continuous casting tundish
JP3525894B2 (en) Steel continuous casting method
JPH05293614A (en) Pouring tube in tundish
JP3579568B2 (en) Stopper rod for continuous casting
JP2004009079A (en) Upper nozzle in tundish and continuous casting method
JP4113967B2 (en) Metal ingot casting apparatus and casting method
JP2012020293A (en) Method for changing immersion depth of immersion nozzle
JPH07195161A (en) Method for removing inclusion in continuous casting of steel
JPH08117939A (en) Method for blowing air bubbles into molten steel
JPH0422538A (en) Method for continuously casting beam blank
KR101062953B1 (en) Immersion nozzle
JP2898296B2 (en) Continuous casting method of slab for thin steel plate
JP2000202602A (en) Method for removing inclusion in tundish for continuos casting
JP4444034B2 (en) Immersion nozzle for continuous casting and method of pouring a mold for continuous casting using this immersion nozzle for continuous casting
JP3464856B2 (en) Tundish for continuous casting of high cleanliness steel
KR20050016086A (en) Casting system and method for pouring nonferrous metal molten masses
JP2004098127A (en) Method for continuously casting high quality stainless steel cast slab
JP4474948B2 (en) Steel continuous casting method
JP2004098082A (en) Method for casting molten stainless steel performing electromagnetic stirring
JP2004066335A (en) Method for continuously casting steel