JP2002003965A - Copper alloy for electronic and electric apparatus excellent in bending workability and stress relaxation property - Google Patents

Copper alloy for electronic and electric apparatus excellent in bending workability and stress relaxation property

Info

Publication number
JP2002003965A
JP2002003965A JP2000184341A JP2000184341A JP2002003965A JP 2002003965 A JP2002003965 A JP 2002003965A JP 2000184341 A JP2000184341 A JP 2000184341A JP 2000184341 A JP2000184341 A JP 2000184341A JP 2002003965 A JP2002003965 A JP 2002003965A
Authority
JP
Japan
Prior art keywords
copper alloy
heat treatment
stress relaxation
bending workability
electronic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000184341A
Other languages
Japanese (ja)
Other versions
JP3989161B2 (en
Inventor
Kuniteru Mihara
邦照 三原
Yoshimasa Oyama
好正 大山
Masaaki Kurihara
正明 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2000184341A priority Critical patent/JP3989161B2/en
Publication of JP2002003965A publication Critical patent/JP2002003965A/en
Application granted granted Critical
Publication of JP3989161B2 publication Critical patent/JP3989161B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a copper alloy for electronic and electric apparatus excellent in bending workability and a stress relaxation property, and suitable for connectors or terminals used for electronic and electric apparatus and automobiles. SOLUTION: This copper alloy for electronic and electric apparatus has a composition containing, by weight, 3.0 to 9.0% Sn and Fe and P by 0.05 to 1.0% in total, in which the atomic weight ratio of Fe to P shown by the formula of [Fe/P] is 0.2 to 3.0, and the balance Cu with ineivtalbe impurities and is obtained by carrying out heat treatment of performing heating at 500 to 900 deg.C for 10 to 100 sec to form a recrystallied structure having a crystal grain size of <=5 μm and thereafter performing final cold working. Sn contributes to the improvement of its mechanical properties, Fe and P are dispersed into the Cu base phase as an Fe-P compound and are made into recrystallized nuclei at the time of the above heat treatment to refine the crystal grains and to improve its bending workability. Further, a part of the above Fe-P compound reenters into solid solution at the time of the above heat treatment to improve its stress relaxation properties.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子電気機器や自
動車内配線に用いられるコネクタや端子に好適な曲げ加
工性および耐応力緩和特性に優れた電子電気機器用銅合
金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper alloy for electronic and electrical equipment having excellent bending workability and stress relaxation resistance suitable for connectors and terminals used for electronic and electrical equipment and wiring in automobiles.

【0002】[0002]

【従来の技術】電子電気機器や自動車内配線などに用い
られるコネクタ或いは端子などの電子部品には、鉄系材
料または熱・電気伝導性に優れるりん青銅、丹銅、黄銅
などの銅系材料が使用されている。近年、電子電気機器
の小型化、軽量化および高密度実装化が進展する中で、
コネクタなどの電子部品材料には、高強度であること
と、電気接続性に重要な耐応力緩和特性に優れることが
強く求められている。
2. Description of the Related Art Iron-based materials or copper-based materials such as phosphor bronze, copper bronze, and brass, which have excellent thermal and electrical conductivity, are used for electronic components such as connectors and terminals used in electronic and electrical equipment and wiring in automobiles. It is used. In recent years, as electronic equipment has become smaller, lighter and more densely packed,
There is a strong demand for materials for electronic components such as connectors to have high strength and excellent stress relaxation resistance, which is important for electrical connectivity.

【0003】[0003]

【発明が解決しようとする課題】前記強度は加工硬化に
より容易に高められるが、加工硬化材は靱性に劣るため
端子などに加工する際に曲げ割れが発生し、また加工硬
化材は耐応力緩和特性に劣るため良好な電気接続性が得
られない、などの問題がある。このようなことから、本
発明者等は、多用されているりん青銅合金について、曲
げ加工性および応力緩和特性の改善について種々検討
し、合金組成と最終冷間加工前の熱処理条件を規定する
ことにより、曲げ加工性および応力緩和特性を改善し得
ることを知見し、さらに研究を進めて本発明を完成させ
るに至った。本発明は、曲げ加工性および耐応力緩和特
性に優れた電子電気機器用銅合金の提供を目的とする。
The strength is easily increased by work hardening. However, the work hardened material is inferior in toughness, so that bending cracks occur when it is processed into a terminal or the like. There is a problem that good electrical connectivity cannot be obtained due to poor characteristics. For these reasons, the present inventors have made various studies on the improvement in bending workability and stress relaxation characteristics of a phosphor bronze alloy that is frequently used, and have specified the alloy composition and heat treatment conditions before final cold working. As a result, it was found that the bending workability and the stress relaxation property could be improved, and further research was carried out to complete the present invention. An object of the present invention is to provide a copper alloy for electronic and electrical equipment having excellent bending workability and stress relaxation resistance.

【0004】[0004]

【課題を解決するための手段】請求項1記載の発明は、
Snを3.0〜9.0wt%、FeおよびPを合計で
0.05〜1.0wt%含有し、前記FeおよびPの
〔Fe/P〕の式で示される原子量比が0.2〜3.0
であり、残部がCuおよび不可避不純物からなる銅合金
であって、500〜900℃の温度で10〜100秒加
熱する熱処理を施して結晶粒度が5μm以下の再結晶組
織としたのち、最終冷間加工が施されていることを特徴
とする曲げ加工性および耐応力緩和特性に優れた電子電
気機器用銅合金である。
According to the first aspect of the present invention,
It contains 3.0 to 9.0 wt% of Sn and 0.05 to 1.0 wt% of Fe and P in total, and the atomic weight ratio of Fe and P represented by the formula of [Fe / P] is 0.2 to 2.0 wt%. 3.0
The remainder is a copper alloy consisting of Cu and unavoidable impurities, and is subjected to a heat treatment of heating at a temperature of 500 to 900 ° C. for 10 to 100 seconds to form a recrystallized structure having a crystal grain size of 5 μm or less. It is a copper alloy for electronic and electrical equipment which is excellent in bending workability and stress relaxation resistance characterized by being processed.

【0005】請求項2記載の発明は、Snを3.0〜
9.0wt%、Fe、NiおよびPを合計で0.05〜
1.0wt%含有し、前記Fe、NiおよびPの〔(F
e+Ni)/P〕の式で示される原子量比が0.2〜
3.0であり、残部がCuおよび不可避不純物からなる
銅合金であって、500〜900℃の温度で10〜10
0秒加熱する熱処理を施して結晶粒度が5μm以下の再
結晶組織としたのち、最終冷間加工が施されていること
を特徴とする曲げ加工性および耐応力緩和特性に優れた
電子電気機器用銅合金である。
According to a second aspect of the present invention, Sn is adjusted to 3.0 to 3.0.
9.0 wt%, Fe, Ni and P in total of 0.05 to
1.0 wt%, and the Fe, Ni and P [(F
e + Ni) / P] is 0.2 to 0.2.
3.0, the balance being a copper alloy consisting of Cu and unavoidable impurities, at a temperature of 500 to 900 ° C. and 10 to 10
Heat treatment for 0 seconds to obtain a recrystallized structure with a crystal grain size of 5 μm or less, and then subjected to final cold working. It is a copper alloy.

【0006】[0006]

【発明の実施の形態】請求項1記載発明の銅合金は、S
n、Fe、Pを適量含有する銅合金に所定の熱処理を施
し、その後、最終冷間加工を施して製造された銅合金で
あり、前記熱処理条件を規定することにより、前記銅合
金中に分散するFe−P化合物が再結晶核となって前記
熱処理後の結晶粒度を5μm以下に微細化し、以て曲げ
加工性を改善したものである。この銅合金は、耐応力緩
和特性にも優れるものであり、これは前記熱処理時にF
e−P化合物の一部が再固溶するためである。前記結晶
粒度は、前記熱処理後にFe−P化合物が0.01〜1
μmの大きさで均一に分散している場合において、特に
均一微細に形成され、曲げ加工性がより良好となる。
BEST MODE FOR CARRYING OUT THE INVENTION The copper alloy according to the first aspect of the present invention is
A copper alloy containing appropriate amounts of n, Fe, and P is subjected to a predetermined heat treatment, and then subjected to final cold working. The copper alloy is manufactured by dispersing in the copper alloy by defining the heat treatment conditions. The Fe-P compound becomes a recrystallization nucleus to reduce the crystal grain size after the heat treatment to 5 μm or less, thereby improving bending workability. This copper alloy is also excellent in stress relaxation resistance.
This is because a part of the e-P compound is dissolved again. The grain size is such that the Fe-P compound is 0.01 to 1 after the heat treatment.
In the case where the particles are uniformly dispersed in a size of μm, the particles are particularly uniformly finely formed, and the bending workability is further improved.

【0007】請求項1記載発明の銅合金において、Sn
は機械的性質の向上に寄与する。Snの含有量を3.0
〜9.0wt%に規定する理由は、3.0wt%未満で
はその効果が十分に得られず、9.0wt%を超えると
製造加工性が低下するためである。FeおよびPは、前
述のように、Fe−P化合物として銅合金中に分散し
て、前記熱処理時に再結晶核となって結晶粒を微細化し
て曲げ加工性を改善し、同時に、一部が再固溶して耐応
力緩和特性を改善する。
[0007] In the copper alloy according to the first aspect of the present invention, Sn
Contributes to the improvement of mechanical properties. Sn content of 3.0
The reason for defining the content to be 9.0 wt% is that if the content is less than 3.0 wt%, the effect cannot be sufficiently obtained, and if the content is more than 9.0 wt%, the manufacturing processability decreases. As described above, Fe and P are dispersed as a Fe-P compound in the copper alloy, and serve as recrystallization nuclei during the heat treatment to refine crystal grains and improve bending workability. Re-dissolve to improve stress relaxation resistance.

【0008】この発明において、FeおよびPの含有量
を合計で0.05〜1.0wt%に規定する理由は、
0.05wt%未満ではその効果が十分に得られず、
1.0wt%を超えると製造加工性が低下するためであ
る。この発明において、〔Fe/P〕の式で示される原
子量比を0.2〜3.0に規定する理由は、前記原子量
比が0.2未満ではP化合物量が少なく、結晶粒微細化
効果が十分に得られず、前記原子量比が3.0を超える
とFe−P化合物とならないFeが銅合金中に固溶して
銅合金の導電率が低下するためである。
In the present invention, the reason why the total content of Fe and P is defined as 0.05 to 1.0 wt% is as follows.
If the content is less than 0.05 wt%, the effect cannot be sufficiently obtained.
If the content exceeds 1.0% by weight, the workability of the production is reduced. In the present invention, the reason why the atomic weight ratio represented by the formula of [Fe / P] is defined to be 0.2 to 3.0 is that when the atomic weight ratio is less than 0.2, the amount of the P compound is small, and If the atomic weight ratio exceeds 3.0, Fe that does not become an Fe-P compound forms a solid solution in the copper alloy and the electrical conductivity of the copper alloy decreases.

【0009】請求項2記載発明は、請求項1記載発明の
銅合金に、Niを含有させた銅合金であり、前記Ni
は、Ni−P化合物、Fe−Ni−P化合物などとし
て、前記Fe−P化合物と一緒に銅合金中に分散して、
最終冷間圧延前の熱処理時に再結晶核となり結晶粒を微
細化して曲げ加工性を改善し、同時に、前記諸化合物の
一部が再固溶して耐応力緩和特性を改善する。その他
は、請求項1記載発明の場合と同じである。
A second aspect of the present invention is a copper alloy obtained by adding Ni to the copper alloy according to the first aspect of the present invention.
Is dispersed in a copper alloy together with the Fe-P compound as a Ni-P compound, an Fe-Ni-P compound,
It becomes a recrystallization nucleus during heat treatment before the final cold rolling, refines crystal grains and improves bending workability, and at the same time, a part of the above compounds re-dissolves to improve stress relaxation resistance. Others are the same as those of the first aspect of the invention.

【0010】本発明において、最終冷間加工前の熱処理
条件を、500〜900℃の温度で10〜100秒加熱
する条件に規定する理由は、500℃未満でもまた10
秒未満でも、再結晶が十分進行しないため曲げ加工性に
劣り、またP化合物(Ni−P、Fe−Ni−P、Fe
−P化合物などの総称)が十分再固溶せず耐応力緩和特
性に劣るためである。一方900℃を超えるか100秒
を超えると、P化合物を構成する元素が再固溶して結晶
核となる個数が減少し、その結果、結晶粒が十分微細化
されなくなり、また導電率も低下するためである。な
お、前記熱処理は連続焼鈍炉を用いて行うのが生産性に
優れ望ましい。本発明の銅合金は、前記熱処理後の最終
冷間加工により適正な強度に調整される。なお、最終冷
間加工後に熱処理を施して内部応力を除去しておくのが
望ましい。
In the present invention, the reason why the heat treatment condition before the final cold working is defined as a condition of heating at a temperature of 500 to 900 ° C. for 10 to 100 seconds is that even if the temperature is lower than 500 ° C.
In less than a second, recrystallization does not proceed sufficiently, resulting in poor bending workability. In addition, P compounds (Ni-P, Fe-Ni-P, Fe
-P compound etc.) do not sufficiently re-dissolve in solid solution and have poor stress relaxation resistance. On the other hand, when the temperature exceeds 900 ° C. or exceeds 100 seconds, the elements constituting the P compound are re-dissolved to reduce the number of crystal nuclei. As a result, the crystal grains are not sufficiently refined, and the conductivity also decreases. To do that. The heat treatment is preferably performed using a continuous annealing furnace because of its high productivity. The copper alloy of the present invention is adjusted to an appropriate strength by final cold working after the heat treatment. It is desirable to perform a heat treatment after the final cold working to remove internal stress.

【0011】[0011]

【実施例】以下に、本発明を実施例により詳細に説明す
る。 (実施例1)表1に示す請求項1記載発明で規定する合
金組成のCu−Sn−Fe−P合金を高周波溶解炉によ
り溶解し、これを10〜30℃/秒の冷却速度でDC鋳
造して厚さ30mm、幅100mm、長さ150mmの
鋳塊を得た。次に、この鋳塊に800℃で1時間加熱す
る均質化処理を施し徐冷した。次いで両面を面削して酸
化皮膜を除去し、次いで冷間圧延を施して厚さ1.2m
mの板材とし、次いで不活性ガス雰囲気中で700℃で
1時間熱処理し、徐冷した。この厚さ1.2mmの熱処
理材に冷間圧延、熱処理(400〜600℃×1時
間)、冷間圧延をこの順に施して厚さ0.35mmの板
材を得た。次にこの板材に500〜900℃で10〜1
00秒の熱処理aを施し、次いで厚さ0.25mmに最
終冷間圧延を施し、その後250℃で0.5時間熱処理
して内部応力を除去した。
The present invention will be described below in detail with reference to examples. (Example 1) A Cu-Sn-Fe-P alloy having an alloy composition specified in the invention described in claim 1 shown in Table 1 was melted in a high-frequency melting furnace and DC-cast at a cooling rate of 10 to 30 ° C / sec. Thus, an ingot having a thickness of 30 mm, a width of 100 mm, and a length of 150 mm was obtained. Next, the ingot was subjected to a homogenization treatment of heating at 800 ° C. for 1 hour and gradually cooled. Next, both surfaces were chamfered to remove the oxide film, and then cold-rolled to a thickness of 1.2 m.
m plate material, and then heat-treated at 700 ° C. for 1 hour in an inert gas atmosphere and gradually cooled. The heat-treated material having a thickness of 1.2 mm was subjected to cold rolling, heat treatment (400 to 600 ° C. × 1 hour), and cold rolling in this order to obtain a sheet material having a thickness of 0.35 mm. Next, this plate is heated at 500-900 ° C for 10-1.
A heat treatment a was performed for 00 seconds, followed by final cold rolling to a thickness of 0.25 mm, and then a heat treatment at 250 ° C. for 0.5 hour to remove internal stress.

【0012】(比較例1)表1に示す請求項1記載発明
規定外組成のCu−Sn−Fe−P合金を用いた他は、
実施例1と同じ方法により銅合金板を製造した。
(Comparative Example 1) Except for using a Cu-Sn-Fe-P alloy having a composition outside the range specified in claim 1 shown in Table 1,
A copper alloy plate was manufactured in the same manner as in Example 1.

【0013】(比較例2)熱処理bを本発明規定外の条
件で施した他は、実施例1と同じ方法により銅合金板を
製造した。
(Comparative Example 2) A copper alloy plate was manufactured in the same manner as in Example 1 except that the heat treatment b was performed under conditions other than those specified in the present invention.

【0014】実施例1および比較例1、2で製造した各
々の銅合金板について(1)機械的性質(引張強さ:T
S、0.2%耐力:YS)(2)曲げ加工性、(3)耐
応力緩和特性、(4)製造加工性を調査した。さらに熱
処理b後の(5)結晶粒度、(6)Fe−P化合物の分
散状態を調査した。結果を表1に併記した。調査方法を
以下に記す。 (1)機械的性質は、圧延方向と平行に切り出したJI
S−13B号試験片をJIS−Z2241に準じて3本
測定し、その平均値で示した。 (2)曲げ加工性は、長さ25mm、幅10mmの試験
片を切出し、これを長さ方向に曲げ半径R=0でV曲げ
し、曲げ部を光学顕微鏡で50倍に拡大して観察し、割
れおよび肌荒れが全く生じていないものをA、肌荒れが
少し生じたものをB、肌荒れが生じたものをC、肌荒れ
以外に割れが少し生じたものをD、割れが全体に生じた
ものをEとランク付けし、A〜Cを良好(○実用可)、
D、Eを不良(×実用不可)と判定した。試験片は、そ
の長さ方向と圧延方向とが平行なもの(Good Way:G
W)と、長さ方向と圧延方向が垂直なもの(Bad Way:B
W) の2種類用意した。 (3)耐応力緩和特性は、日本電子材料工業会標準企画
EMAS−3003に準じて応力緩和率を求めて判定し
た。前記応力緩和率は、図1(イ)に示すように一端が
固定された試験片1の他端に支持台2をあてがってδ0
のたわみ量(0.2%耐力×0.8に相当するたわみ
量)を付与し、この状態で150℃で1000時間加熱
したのち、図1(ロ)に示すように支持台2を外し、試
験片1に残留する永久たわみδt =Ht −H1を測定
し、前記δ0 とδt を(δt /δ0 )×100%の式に
代入して求めた。応力緩和率が38%以下を良好と判定
した。 (4)製造加工性は、熱間圧延、冷間圧延時の割れの発
生状況により評価した。 (5)結晶粒度は、熱処理b後の再結晶組織を走査電子
顕微鏡により観察し、JIS−H0501の切断法に準
じて測定した。 (6)Fe−P化合物の分散状態は、透過電子顕微鏡に
より5千〜10万倍の写真を撮り、0.01〜1μm径
のP化合物個数が全個数の80%以上のとき良好
(○)、80%未満50%以上のとき準良好(△)、5
0%未満のとき不良(×)と判定した。
For each of the copper alloy sheets produced in Example 1 and Comparative Examples 1 and 2, (1) mechanical properties (tensile strength: T
S, 0.2% yield strength: YS) (2) bending workability, (3) stress relaxation resistance, and (4) manufacturing workability were investigated. Further, (5) the crystal grain size after the heat treatment b and (6) the dispersion state of the Fe-P compound were investigated. The results are shown in Table 1. The survey method is described below. (1) Mechanical properties were determined by JI cut out parallel to the rolling direction.
Three S-13B test pieces were measured according to JIS-Z2241, and the average value was shown. (2) The bending workability was determined by cutting out a test piece having a length of 25 mm and a width of 10 mm, bending the test piece in the length direction with a bending radius R = 0, and observing the bent portion with an optical microscope at a magnification of 50 times. A, no cracks and rough skin occurred A, slightly roughened skin B, roughened skin C, cracked slightly cracked other than rough skin D, cracked whole Rank E and A to C are good (○ practical)
D and E were determined to be defective (x not practical). A test piece whose length direction and rolling direction are parallel (Good Way: G
W) and the one whose length direction and rolling direction are perpendicular (Bad Way: B
W) were prepared. (3) The stress relaxation resistance was determined by obtaining the stress relaxation rate according to the standard plan of the Electronic Materials Industries Association of Japan, EMAS-3003. As shown in FIG. 1 (a), the stress relaxation rate is determined by applying a support base 2 to the other end of a test piece 1 having one end fixed thereto.
(Bending amount corresponding to 0.2% proof stress × 0.8), and after heating at 150 ° C. for 1000 hours in this state, the support table 2 was removed as shown in FIG. The permanent deflection δt = Ht−H1 remaining in the test piece 1 was measured, and the values were determined by substituting δ0 and δt into the equation of (δt / δ0) × 100%. A stress relaxation rate of 38% or less was determined to be good. (4) Manufacturability was evaluated based on the occurrence of cracks during hot rolling and cold rolling. (5) The grain size was measured by observing the recrystallized structure after the heat treatment b with a scanning electron microscope and according to the cutting method of JIS-H0501. (6) The dispersion state of the Fe—P compound is good when the number of P compounds having a diameter of 0.01 to 1 μm is 80% or more of the total number by taking a photograph of 5,000 to 100,000 times with a transmission electron microscope (O). , Quasi-good when less than 80% and 50% or more (△), 5
When it was less than 0%, it was determined to be defective (x).

【0015】[0015]

【表1】 [Table 1]

【0016】表1より明らかなように、本発明例のN
o.1〜14は、いずれも、熱処理b後の結晶粒が5μ
m以下であり、0.01〜1μm径のP化合物(ここで
はFe−P化合物)個数が全化合物の80%以上を占め
ており、機械的性質、曲げ加工性、応力緩和特性、製造
加工性に優れた。これに対し、比較例のNo.15はS
nの含有量が少ないため機械的性質に劣った。No.1
6はSnの含有量が多いため、No.18はFeとPの
合計含有量が多いため、いずれも製造加工性に劣った。
No.17はFeとPの合計含有量が少ないため、N
o.19はFe/Pの比率が小さいため、No.20は
Fe/Pの比率が大きいため、いずれも曲げ加工性およ
び応力緩和特性が劣った。また、No.21は熱処理時
間が短いため、No.22は熱処理温度が低いため、い
ずれも結晶粒が十分微細化せずまたP化合物が十分再固
溶せず、従って曲げ加工性および応力緩和特性が劣っ
た。No.23は熱処理時間が長いため、No.24は
熱処理温度が高いため、いずれもP化合物が再固溶して
結晶粒が粗大化し、曲げ加工性が劣った。
As is apparent from Table 1, N of the present invention example
o. In all of Nos. 1 to 14, the crystal grains after the heat treatment b were 5 μm.
m or less, and the number of P compounds (here, Fe-P compounds) having a diameter of 0.01 to 1 μm occupies 80% or more of all the compounds, and has mechanical properties, bending workability, stress relaxation properties, and manufacturing workability. Excellent. On the other hand, in Comparative Example No. 15 is S
Since the content of n was small, the mechanical properties were poor. No. 1
No. 6 has a large Sn content, and Sample No. 18 was inferior in manufacturing workability because of a large total content of Fe and P.
No. No. 17 has a small total content of Fe and P,
o. No. 19 has a small Fe / P ratio, and Sample No. 20 was inferior in bending workability and stress relaxation characteristics because of a large Fe / P ratio. In addition, No. No. 21 has a short heat treatment time. In No. 22, since the heat treatment temperature was low, the crystal grains were not sufficiently refined and the P compound was not sufficiently re-dissolved in any of them, so that the bending workability and the stress relaxation property were inferior. No. No. 23 has a long heat treatment time. In No. 24, since the heat treatment temperature was high, the P compound re-dissolved in the solid solution, the crystal grains became coarse, and the bending workability was poor.

【0017】(実施例2)表2に示す請求項2記載発明
規定内組成のCu−Sn−Fe−Ni−P合金を用いた
他は、実施例1と同じ方法により銅合金板を製造した。
(Example 2) A copper alloy plate was produced in the same manner as in Example 1 except that a Cu-Sn-Fe-Ni-P alloy having a composition defined in claim 2 shown in Table 2 was used. .

【0018】(比較例3)熱処理aを本発明規定外の条
件で施した他は、実施例2と同じ方法により銅合金板を
製造した。
Comparative Example 3 A copper alloy plate was manufactured in the same manner as in Example 2 except that the heat treatment a was performed under conditions outside the range specified in the present invention.

【0019】実施例2および比較例3で製造した各々の
銅合金板について(1)結晶粒度、(2)引張強さ、
(3)曲げ加工性、(4)応力緩和特性を、前記段落0
013で述べた方法で調べた。結果を表2に併記した。
For each of the copper alloy sheets produced in Example 2 and Comparative Example 3, (1) grain size, (2) tensile strength,
(3) The bending workability and (4) the stress relaxation property were measured in the above paragraph 0.
The test was performed by the method described in No. 013. The results are shown in Table 2.

【0020】[0020]

【表2】 [Table 2]

【0021】表2より明らかなように、本発明例のN
o.31〜36は、いずれも、機械的性質、曲げ加工
性、応力緩和特性に優れた。これに対し、比較例のN
o.37、38は熱処理時間が長いため、いずれもP化
合物が再固溶して結晶粒が粗大化して曲げ加工性が劣っ
た。No.39、40は熱処理温度が低いため、いずれ
も結晶粒が十分微細化せず、またP化合物が十分再固溶
せず、曲げ加工性および応力緩和特性が劣った。
As is clear from Table 2, N of the present invention example
o. All of Nos. 31 to 36 were excellent in mechanical properties, bending workability, and stress relaxation properties. On the other hand, N
o. In Nos. 37 and 38, since the heat treatment time was long, the P compound was re-dissolved and the crystal grains became coarse and the bending workability was poor. No. In Examples 39 and 40, since the heat treatment temperature was low, the crystal grains were not sufficiently refined, the P compound was not sufficiently re-dissolved, and the bending workability and stress relaxation characteristics were inferior.

【0022】[0022]

【発明の効果】以上に述べたように、請求項1記載発明
の銅合金は、Sn、Fe、Pを適量含有する銅合金に所
定の熱処理が施され、その後最終冷間加工が施された銅
合金であり、前記Snは機械的性質の向上に寄与し、F
eおよびPはFe−P化合物としてCu母相中に分散し
て、前記熱処理時に再結晶核となって結晶粒を微細化し
曲げ加工性を改善する。また前記Fe−P化合物の一部
は前記熱処理時に再固溶して応力緩和特性を改善する。
請求項2記載発明の銅合金は、請求項1記載発明の銅合
金にさらにNiを適量含有させたもので、NiがNi−
P化合物またはFe−Ni−P化合物を形成して前記F
e−P化合物と同様の作用を果たすので、請求項1記載
発明と同じ効果が得られる。依って、工業上顕著な効果
を奏する。
As described above, in the copper alloy according to the first aspect of the present invention, a predetermined heat treatment is applied to a copper alloy containing Sn, Fe, and P in appropriate amounts, and then a final cold working is performed. It is a copper alloy, and the Sn contributes to improvement of mechanical properties, and F
e and P are dispersed in the Cu matrix as Fe-P compounds, and serve as recrystallization nuclei during the heat treatment to refine crystal grains and improve bending workability. Further, a part of the Fe-P compound re-dissolves during the heat treatment to improve stress relaxation characteristics.
A copper alloy according to a second aspect of the present invention is a copper alloy according to the first aspect of the present invention, further containing an appropriate amount of Ni, wherein Ni is Ni-
Forming a P compound or an Fe-Ni-P compound,
Since the same action as the e-P compound is achieved, the same effect as the first aspect of the present invention can be obtained. Therefore, an industrially remarkable effect is achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(イ)、(ロ)は耐応力緩和特性の試験方法の
説明図である。
FIGS. 1A and 1B are explanatory diagrams of a test method of stress relaxation resistance.

【符号の説明】[Explanation of symbols]

1 試験片 2 支持台 1 test piece 2 support

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 661 C22F 1/00 661A 682 682 685 685Z 691 691B 691C ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/00 661 C22F 1/00 661A 682 682 685 685Z 691 691B 691C

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Snを3.0〜9.0wt%、Feおよ
びPを合計で0.05〜1.0wt%含有し、前記Fe
およびPの〔Fe/P〕の式で示される原子量比が0.
2〜3.0であり、残部がCuおよび不可避不純物から
なる銅合金であって、500〜900℃の温度で10〜
100秒加熱する熱処理を施して結晶粒度が5μm以下
の再結晶組織としたのち、最終冷間加工が施されている
ことを特徴とする曲げ加工性および耐応力緩和特性に優
れた電子電気機器用銅合金。
1. An alloy containing 3.0 to 9.0 wt% of Sn and 0.05 to 1.0 wt% of Fe and P in total.
And the atomic weight ratio of P expressed by the formula [Fe / P] is 0.
2 to 3.0, the balance being a copper alloy consisting of Cu and unavoidable impurities.
A heat treatment of heating for 100 seconds to obtain a recrystallized structure having a crystal grain size of 5 μm or less, and then a final cold working is performed, which is excellent in bending workability and stress relaxation resistance. Copper alloy.
【請求項2】 Snを3.0〜9.0wt%、Fe、N
iおよびPを合計で0.05〜1.0wt%含有し、前
記Fe、NiおよびPの〔(Fe+Ni)/P〕の式で
示される原子量比が0.2〜3.0であり、残部がCu
および不可避不純物からなる銅合金であって、500〜
900℃の温度で10〜100秒加熱する熱処理を施し
て結晶粒度が5μm以下の再結晶組織としたのち、最終
冷間加工が施されていることを特徴とする曲げ加工性お
よび耐応力緩和特性に優れた電子電気機器用銅合金。
2. Sn of 3.0 to 9.0 wt%, Fe, N
i and P are contained in a total amount of 0.05 to 1.0 wt%, and the atomic weight ratio of Fe, Ni and P represented by the formula [(Fe + Ni) / P] is 0.2 to 3.0, and the balance is Is Cu
And a copper alloy comprising unavoidable impurities,
Bending workability and stress relaxation resistance characterized by being subjected to a heat treatment of heating at 900 ° C. for 10 to 100 seconds to form a recrystallized structure having a crystal grain size of 5 μm or less, and then subjected to final cold working. Excellent copper alloy for electronic and electrical equipment.
JP2000184341A 2000-06-20 2000-06-20 Copper alloy for electronic and electrical equipment with excellent bending workability and stress relaxation resistance Expired - Fee Related JP3989161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000184341A JP3989161B2 (en) 2000-06-20 2000-06-20 Copper alloy for electronic and electrical equipment with excellent bending workability and stress relaxation resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000184341A JP3989161B2 (en) 2000-06-20 2000-06-20 Copper alloy for electronic and electrical equipment with excellent bending workability and stress relaxation resistance

Publications (2)

Publication Number Publication Date
JP2002003965A true JP2002003965A (en) 2002-01-09
JP3989161B2 JP3989161B2 (en) 2007-10-10

Family

ID=18684798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000184341A Expired - Fee Related JP3989161B2 (en) 2000-06-20 2000-06-20 Copper alloy for electronic and electrical equipment with excellent bending workability and stress relaxation resistance

Country Status (1)

Country Link
JP (1) JP3989161B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100651303B1 (en) 2004-01-23 2006-11-29 가부시키 가이샤 고베세이코쇼 High-strength high-conductivity copper alloy
EP1803829A1 (en) * 2004-08-17 2007-07-04 Kabushiki Kaisha Kobe Seiko Sho Copper alloy plate for electric and electronic parts having bending workability
WO2010071220A1 (en) * 2008-12-19 2010-06-24 古河電気工業株式会社 Copper alloy material for electrical/electronic components, and method for producing same
CN113106290A (en) * 2021-03-23 2021-07-13 宁波金田铜业(集团)股份有限公司 High-performance tin-phosphor bronze strip and preparation method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100651303B1 (en) 2004-01-23 2006-11-29 가부시키 가이샤 고베세이코쇼 High-strength high-conductivity copper alloy
EP1803829A1 (en) * 2004-08-17 2007-07-04 Kabushiki Kaisha Kobe Seiko Sho Copper alloy plate for electric and electronic parts having bending workability
EP1803829A4 (en) * 2004-08-17 2009-09-30 Kobe Steel Ltd Copper alloy plate for electric and electronic parts having bending workability
US8715431B2 (en) 2004-08-17 2014-05-06 Kobe Steel, Ltd. Copper alloy plate for electric and electronic parts having bending workability
WO2010071220A1 (en) * 2008-12-19 2010-06-24 古河電気工業株式会社 Copper alloy material for electrical/electronic components, and method for producing same
EP2374907A1 (en) * 2008-12-19 2011-10-12 Furukawa Electric Co., Ltd. Copper alloy material for electrical/electronic components, and method for producing same
JP4875772B2 (en) * 2008-12-19 2012-02-15 古河電気工業株式会社 Copper alloy sheet for electrical and electronic parts and method for producing the same
EP2374907A4 (en) * 2008-12-19 2012-07-04 Furukawa Electric Co Ltd Copper alloy material for electrical/electronic components, and method for producing same
CN113106290A (en) * 2021-03-23 2021-07-13 宁波金田铜业(集团)股份有限公司 High-performance tin-phosphor bronze strip and preparation method thereof
CN113106290B (en) * 2021-03-23 2022-04-26 宁波金田铜业(集团)股份有限公司 High-performance tin-phosphor bronze strip and preparation method thereof

Also Published As

Publication number Publication date
JP3989161B2 (en) 2007-10-10

Similar Documents

Publication Publication Date Title
KR101027840B1 (en) Copper alloy plate material for electrical/electronic equipment and process for producing the same
CN101842506B (en) Copper alloy material excellent in strength, bending workability and stress relaxation resistance, and method for producing the same
JP3699701B2 (en) Easy-to-process high-strength, high-conductivity copper alloy
JP3962751B2 (en) Copper alloy sheet for electric and electronic parts with bending workability
JP3510469B2 (en) Copper alloy for conductive spring and method for producing the same
JP2006265731A (en) Copper alloy
JP3977376B2 (en) Copper alloy
WO2017170699A1 (en) Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relays
US20080011396A1 (en) Copper alloy and method of producing the same
JP3408021B2 (en) Copper alloy for electronic and electric parts and method for producing the same
JP4393663B2 (en) Copper-based alloy strip for terminal and manufacturing method thereof
JP2007291518A (en) Cu-Fe-P-Mg BASED COPPER ALLOY, ITS PRODUCTION METHOD, AND CONDUCTIVE COMPONENT
WO2012043170A1 (en) Cu-Co-Si-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING SAME
JP2002180161A (en) High strength copper alloy
JP2000256814A (en) Manufacture of copper-based alloy bar for terminal
JP2844120B2 (en) Manufacturing method of copper base alloy for connector
JPH10195562A (en) Copper alloy for electrical and electronic equipment, excellent in blanking workability, and its production
JP5202812B2 (en) Copper alloy and its manufacturing method
JP2001214226A (en) Copper base alloy for terminal, alloy bar thereof and producing method for the alloy bar
JP2002003965A (en) Copper alloy for electronic and electric apparatus excellent in bending workability and stress relaxation property
JP2001262297A (en) Copper-base alloy bar for terminal, and its manufacturing method
TWI639163B (en) Cu-Co-Ni-Si alloy for electronic parts, and electronic parts
JP4721067B2 (en) Manufacturing method of copper alloy material for electric and electronic parts
JPH10265873A (en) Copper alloy for electrical/electronic parts and its production
JP7145847B2 (en) Copper alloy sheet material and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070425

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070717

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees