JP2001348290A - 被覆複合焼結体 - Google Patents

被覆複合焼結体

Info

Publication number
JP2001348290A
JP2001348290A JP2000166264A JP2000166264A JP2001348290A JP 2001348290 A JP2001348290 A JP 2001348290A JP 2000166264 A JP2000166264 A JP 2000166264A JP 2000166264 A JP2000166264 A JP 2000166264A JP 2001348290 A JP2001348290 A JP 2001348290A
Authority
JP
Japan
Prior art keywords
sintered body
composite sintered
volume
coated
cbn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000166264A
Other languages
English (en)
Inventor
Kenji Noda
謙二 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000166264A priority Critical patent/JP2001348290A/ja
Publication of JP2001348290A publication Critical patent/JP2001348290A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)

Abstract

(57)【要約】 【課題】 機械的特性と熱的特性の双方に起因する耐摩
耗性に優れ、かつ耐欠損性にも優れた被覆複合焼結体を
提供する。 【解決手段】 炭化タングステン20〜80体積%と鉄
族金属から選ばれた少なくとも1種以上からなる結合相
0.5〜30体積%でと構成されるマトリックス中に立
方晶窒化硼素を20〜70体積%分散させて被覆層で被
覆した被覆複合焼結体であって、上記被覆層を(TiX
Al1-X)(CY1-Y)(0.2≦X≦0.95、0≦
Y≦0.5)の組成からなる層厚0.5〜10μmの被
覆層とした。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、切削工具や耐摩部
品等に使用される被覆複合焼結体に関し、特に耐摩耗性
や耐欠損性に優れた被覆複合焼結体に関する。
【0002】
【従来の技術】従来、金属の切削加工等に用いられてい
る超硬合金は、炭化タングステンを主体とする硬質相
と、コバルト等の鉄族金属の結合相からなるWC−Co
系合金、もしくは上記WC−Co系に周期律表第4a、
5a、6a族金属の炭化物、窒化物、炭窒化物等を添加
した系が知られている。また、最近ではこれらの超硬合
金の表面に、TiC、TiN、TiCN、あるいはAl
23等の硬質セラミックスを化学気相成長法(CVD
法)等で被覆した、いわゆる被覆超硬合金が主流となっ
ている。
【0003】一方、立方晶窒化硼素(Cubic Bo
ron Nitride、以下cBNという)はダイヤ
モンドに次ぐ硬度を有し、しかもダイヤモンドとは異な
って鉄系金属との親和性を有しないため、特に高硬度焼
入鋼の切削工具に使用されている。このようなcBNを
使用した工具としては、cBN粒子をCo等の金属で結
合したcBN焼結体、TiCやTiN等のセラミックス
で結合したcBN焼結体等で形成されたものが知られて
いる(特公昭52−43846号公報等)。
【0004】
【発明が解決しようとする課題】ところが、上記のよう
に超硬合金の表面を硬質セラミックスで被覆した被覆超
硬合金では、例えば高硬度焼入鋼(HRC50以上)の
切削加工において、その超硬合金母材の硬度不足(機械
的特性)等によって摩耗が著しく進行し、それに伴って
刃先の欠損が発生して切削不能になるという問題があっ
た。すなわち、このような被覆超硬合金では、機械的特
性に起因する耐摩耗性と耐欠損性に劣るものであった。
【0005】一方、上記のようなcBN焼結体では、機
械的特性に起因する耐摩耗性を損なわないようにするた
めに、結合材をできるだけ少量にし、残部のcBNが直
接結合した組織を形成するようにしているものの、この
ような焼結体からなる切削工具で高硬度焼入鋼や鋳鉄を
切削すると、切削中にcBN粒子が脱落し、熱的特性
(被削材に対する反応性、酸化性)に起因する摩耗(拡
散摩耗や酸化摩耗)が大きく進行し、また強度が低いた
めに、欠損するという問題があった。
【0006】また、cBN粒子の脱落を抑制するために
結合材を多量に加えたcBN焼結体では、結合材中にc
BN粒子が分散した組織となり、結合材はcBN粒子に
比較して硬度(機械的特性)が低く、かつ熱的特性(被
削材に対する耐反応性、耐酸化性等)も劣るため、結合
材粒子の摩耗や脱落による工具の摩耗、すなわち機械的
特性と熱的特性の双方に起因する摩耗が大きく、また強
度が低いために、欠損するという問題があった。
【0007】従って、本発明は、機械的特性と熱的特性
の双方に起因する耐摩耗性に優れ、かつ耐欠損性にも優
れた被覆複合焼結体を提供することを目的とする。
【0008】
【課題を解決するための手段】本発明者は、上記課題を
解決するために鋭意研究を重ねた結果、高強度で靭性に
優れる超硬合金中に高硬度のcBN粒子を分散させるこ
とによって、耐欠損性と機械的特性に起因する耐摩耗性
を向上させ、さらにその焼結体を高硬度で熱的特性に優
れた厚み0.5〜10μmのB1型結晶構造の(Ti、
Al)(C、N)で被覆することによって、熱的特性に
起因する耐摩耗性(耐拡散摩耗や耐酸化摩耗)を向上さ
せ、もって総合的に工具寿命を延長させ、切削特性を向
上させることができるという新たな事実を見出し、本発
明を完成するに至った。
【0009】すなわち、本発明の被覆複合焼結体は、炭
化タングステン20〜80体積%と1種以上の鉄族金属
からなる結合相0.5〜30体積%とで構成されるマト
リックス中に、立方晶窒化硼素を20〜70体積%分散
させて、(TiXAl1-X)(CY1-Y)(0.2≦X≦
0.95、0≦Y≦0.5)の組成からなる層厚0.5
〜10μmの被覆層で被覆した。
【0010】また、本発明では、前記超硬合金マトリッ
クスに、周期律表の4a、5a、6a族金属の炭化物、
窒化物、炭窒化物およびその相互固溶体から選ばれた少
なくとも1種以上を40体積%以下含有させると、耐酸
化性、高温硬度が向上する。
【0011】また、本発明では、前記炭化タングステン
の平均粒径を1μm以下にすると、硬度および強度が一
層向上する。
【0012】また、本発明では、前記cBNの平均粒径
を10μm以下にすると、硬度および強度が一層向上す
る。
【0013】また、前記複合焼結体と被覆層の間にTi
NまたはTiCNからなる中間層を設けると、複合焼結
体と被覆層の付着力が一層向上する。
【0014】さらに、本発明の被覆複合焼結体は、炭化
タングステンと鉄族金属から選ばれた少なくとも1種以
上からなる結合相との超硬合金がマトリックスとなり、
従来のcBN焼結体の作製に用いられている超高圧焼結
に加えて、放電プラズマ焼結を用いて作製することが可
能である。放電プラズマ焼結では、超高圧焼結に比較し
て、消耗品コストの削減や製造容量の拡大による製造コ
ストの削減、あるいはチップブレーカーなどの形状の自
由度を向上させることができる。
【0015】
【発明の実施の形態】本発明の被覆複合焼結体は、炭化
タングステンと1種類以上の鉄族金属とから成るマトリ
ックス(超硬合金マトリックス)中に、cBN粒子を分
散させる。超硬合金マトリックス中の炭化タングステン
は高硬度であり、超硬合金の機械的摩耗に耐する抵抗力
が増強し、耐摩耗性が向上する。この炭化タングステン
は20〜80体積%の割合で焼結体内に含有される。含
有量が20体積%未満であると超硬合金マトリックスが
cBN粒子を保持できなくなり、切削中等にcBN粒子
の脱落が発生する。また含有量が80体積%を超える
と、より高硬度なcBN粒子を含有させる効果が発揮で
きなくなり、耐摩耗性の向上が認められないためであ
る。炭化タングステンは35〜70体積%で含有されて
いるのがより好ましい。
【0016】使用する炭化タングステン粒子は平均粒径
が1μm以下のものを用いると硬度および強度が一層向
上する。炭化タングステン粒子の平均粒径が1μmを越
えると、超硬合金マトリックスの硬度および強度の向上
の効果が十分に発揮できず、焼結体の耐摩耗性および耐
欠損性が低下するおそれがある。超硬合金マトリックス
中の炭化タングステンの平均粒径を1μm以下とするた
めには、平均粒径を1μm以下の炭化タングステン原料
を用い、焼成中に粒成長しないように超高圧装置あるい
は放電プラズマ焼結装置において低温および短時間で焼
結させることが効果的である。また、V、Crなどの炭
化物を添加することも炭化タングステンの粒成長抑制に
対して有効である。炭化タングステン粒子の平均粒径は
50〜500nmであるのがより好ましい。
【0017】本発明では、超硬合金マトリックス中に鉄
族金属から選ばれた少なくとも1種以上からなる結合相
を使用する。超硬合金マトリックス中の鉄族金属は、主
としてコバルトを用いることができる。超硬合金の強度
およびcBN粒子の保持力が向上し、耐欠損性、耐摩耗
性が向上する。この鉄族金属は0.5〜30体積%の割
合で焼結体内に含有される。含有量が0.5体積%未満
であると超硬合金マトリックスがcBN粒子を保持でき
なくなり、切削中等にcBN粒子の脱落が発生する。ま
た含有量が30体積%を超えると、より高硬度なcBN
粒子を含有させる効果が発揮できなくなり、耐摩耗性の
向上が認められない。鉄族金属は2〜10体積%で含有
するのがより好ましい。
【0018】本発明では、超硬合金マトリックス中にc
BN粒子を20〜70体積%分散させる。cBN粒子が
20体積%未満であると、相対的に超硬合金マトリック
スの割合が多くなるため、超硬合金マトリックスの摩耗
によって耐摩耗性が低下し、またcBN本来の高硬度、
高熱伝導性等に優れた特性を発揮させることができなく
なる。一方、cBN粒子が70体積%を超えると、超硬
合金マトリックスがcBN粒子を保持できなくなり、切
削中等にcBN粒子の脱落が発生する。cBN粒子は3
0〜60体積%で含有されているのがより好ましい。
【0019】使用するcBN粒子は平均粒径が10μm
以下のものが好ましい。cBN粒子の平均粒径が10μ
mを越えると、超硬合金マトリックスによるcBN保持
力が低下し、cBN粒子の脱落が生じるおそれがある。
このcBN粒子の平均粒径は0.2〜6.0μmである
のがより好ましい。
【0020】本発明では、複合焼結体表面に(TiX
1-X)(CY1-Y)(0.2、≦X≦0.95、0≦
Y≦0.5)の組成からなる被覆層を設ける。(TiX
Al1-X)(CY1-Y)被覆層は、硬度および熱的安定
性(被削材に対する耐反応性、耐酸化性等)が高く、超
硬合金マトリックスの熱的特性に起因する摩耗(拡散摩
耗、酸化摩耗)を抑制する。(TiXAl1-X)(CY
1-Y)被覆層において0.2≦X≦0.95であるの
は、X<0.2であるとB1型結晶構造化合物の減少に
よって硬度が低下するおそれがある。一方、X>0.9
5であるとAl(またはAlN)の固溶による高硬度化
および熱的特性向上の効果が小さくなり、耐摩耗性を向
上できないおそれがある。また、0≦Y≦0.5である
のは、Y>0.5であると熱的安定性(被削材に対する
耐反応性、耐酸化性等)が低下するおそれがあるからで
ある。(TiXAl1-X)(CY1-Y)被覆層は、0.4
≦X≦0.6、0≦Y≦0.2であるのがより好まし
い。
【0021】また、その(TiXAl1-X)(CY1-Y
(0.2≦X≦0.95、0≦Y≦0.5)で示される
化学組成からなる被覆層は層厚を0.5〜10μmとす
る。層厚を0.5〜10μmとするのは、層厚が0.5
μm未満であるとその被覆層としての効果が十分に発揮
できないためであり、層厚が10μmを超えると複合焼
結体と被覆層との付着力が低下し、切削中に被覆層が剥
がれるおそれがあるためである。(TiXAl1-X)(C
Y1-Y)から成る被覆層は層厚が2〜6μmであること
がより好ましい。
【0022】さらに、本発明では、上記超硬合金マトリ
ックスに、周期律表の4a、5a、6a族金属の炭化
物、窒化物、炭窒化物およびその相互固溶体から選ばれ
た少なくとも1種以上を40体積%以下含有させると耐
酸化、高温硬度が向上し、耐摩耗性が一層向上する。4
0体積%以下含有させるのは、40体積%を超えて含有
させると超硬合金マトリックスにおいて高硬度な炭化タ
ングステン粒子を含有させる効果が低下するためであ
る。周期律表4a、5a、6a族元素としては、W以外
に、Ti、V、Cr、Zr、Nb、Mo、Hf、Taが
あり、特にTi、Taが好ましい。
【0023】また、複合焼結体と被覆層の間にTiNま
たはTiCNからなる中間層を設けることにより、複合
焼結体と被覆層の付着力を向上させる効果がある。
【0024】本発明の被覆複合焼結体を製造するには、
まず平均粒径10μm以下のcBN粉末と、平均粒径が
1μm以下の炭化タングステン粉末と、鉄族金属の少な
くとも1種と、周期律表の4a、5a、6a族金属の炭
化物、窒化物、炭窒化物およびその相互固溶体の少なく
とも1種とを準備し、これらをそれぞれ所定量に秤量
し、例えば超硬合金製のボールミルで混合し、ついで必
要に応じて所定形状に成形する。成形には、プレス成
形、射出成形、鋳込み成形、押出し成形等の周知の成形
手段を用いることができる。
【0025】しかる後、成形体を高温高圧で焼成して焼
結体を得る。焼成には、超高圧焼結あるいは放電プラズ
マ焼結を用いる。超高圧焼結では、圧力4GPa以上、
温度1300℃以上で5〜60分間保持して行う。ただ
し、圧力が低いと、cBNからhBNへの相変態が発生
し、圧力が高いと、超高圧金型の寿命が急激に低下する
ために、圧力は4〜10GPaであるのがよい。温度が
低いと、焼結不良が発生し、温度が高いと、cBNから
hBNへの相変態が発生するために、温度は1300〜
1800℃、好ましくは1300〜1500℃であるの
がよい。
【0026】一方、放電プラズマ焼結は、粒子間結合部
に積極的に高エネルギーの電流・電圧を印加することに
より、粒子表面を活性化し、粒子間の物質移動を促進さ
せるため、従来の焼結法に比べて、低温、短時間で焼結
体が得られる。放電プラズマ焼結では、圧力10MPa
以上、温度1100℃以上で1〜15分間保持して行
う。ただし、圧力が低いと、焼結不良が発生し、圧力が
高いと、カーボン型の寿命が急激に低下するために、圧
力は30〜100MPaであるのがよい。温度が低い
と、焼結不良が発生し、温度が高いと、cBNからhB
Nへの相変態が発生するために、温度は好ましくは12
00〜1300℃であるのがよい。
【0027】得られた焼結体を所定の形状に加工し、
(TiXAl1-X)(CY1-Y)膜を被覆する。(TiX
Al1-X)(CY1-Y)から成る被覆層は、物理的蒸着
(PVD)法、化学的蒸着(CVD)法等の種々の方法
で作製することができる。
【0028】PVD法で(TiXAl1-X)(CY1-Y
から成る被覆層を作製する場合には、例えばTiAlの
金属間化合物をターゲットにして、窒素ガス、CH4
ス、C22ガスを導入した減圧雰囲気下で所定の基材表
面に(TiXAl1-X)(CY1-Y)を蒸着させる。この
ようなPVD法には、スパッタリング法やイオンプレー
ティング法等が使用可能である。TiとAlの量比を制
御するには、PVD法の場合、組成が上記範囲内となる
ようにTiAlの金属間化合物を作成し、成膜条件等を
調整する方法等が挙げられる。
【0029】また、CVD法で(TiXAl1-X)(CY
1-Y)被覆層を作製する場合には、例えば原料ガスと
してTiCl4、AlCl3およびNH3、N2、CH4
ス、C22ガスを用い、キヤリアガスとしてAr、H2
を用いるプラズマCVD法等が採用可能である。
【0030】
【実施例】以下、実施例をあげて、本発明の被覆複合焼
結体を詳細に説明する。
【0031】原料粉末として、cBN粉末と、炭化タン
グステン粉末と、Co、Niなどの鉄族金属粉末と、T
i、V、Cr、Zr、Nb、Mo、Hf、Taの窒化
物、炭化物、炭窒化物とをそれぞれ準備した。これらの
原料粉末を表1に示す組成となるように秤量した後、超
硬合金製のボールミルで10時間混合した。ついで、混
合した粉体を圧力1トン/cm2で加圧成形し、得られ
た成形体を超高圧焼結装置を用いて、圧力5GPa、温
度1400℃で30分間保持することによって焼成し、
複合焼結体を得た。また、放電プラズマ焼結装置を用い
て、圧力50MPa、温度1200℃で5分間保持する
ことによって焼成し、複合焼結体を得た。得られた複合
焼結体を研削後、鏡面加工し、走査型電子顕微鏡(SE
M)で組織を観察し、cBN粒子と炭化タングステン粒
子のそれぞれの平均粒子径を測定した。
【0032】また、得られた複合焼結体を切削工具形状
に加工し、アークイオンプレーティング装置を用いて
(TiXAl1-X)(CY1-Y)膜を被覆した。(TiX
Al1-X)(CY1-Y)被覆層は、X線光電子分光分析
の結果よりXおよびYを算出した。
【0033】さらに、得られた被覆複合焼結体切削工具
を用いて、下記の条件で連続切削試験を行い、摩耗幅を
測定した。その結果を表1に示す。
【0034】被削材:合金鋼SCM415(焼入部の
み、HRC50〜60) 切削速度:100m/分 切込み量:0.1mm 送り:0.1mm/rev 切削時間:30分
【0035】
【表1】
【0036】表1から明らかなように、本発明品である
試料(※印なし)は、全く欠損がなく、また、摩耗幅が
0.20mm以下と小さかった。これに対して、本発明
の比較例となる試料(※印)の焼結体は、摩耗幅が0.
20mmを超え、または欠損が発生しており、耐摩耗
性、耐欠損性に劣っていた。
【0037】
【発明の効果】以上のように、本発明の被覆複合焼結体
では、炭化タングステン20〜80体積%と鉄族金属か
ら選ばれた少なくとも1種以上からなる結合相0.5〜
30体積%とで構成されるマトリックス中に立方晶窒化
硼素を20〜70体積%分散させて、(TiXAl1-X
(CY1-Y)(0.2≦X≦0.95、0≦Y≦0.
5)の組成からなる層厚0.5〜10μmの被覆層で被
覆することから、機械的特性と熱的特性の双方に起因す
る耐摩耗性、耐欠損性を発揮し、特に切削工具等の用途
に使用した場合に、その優れた耐摩耗性、耐欠損性によ
って高硬度材料の切削作業が可能となり、作業効率が向
上する。

Claims (5)

    【特許請求の範囲】
  1. 【請求項1】 炭化タングステン20〜80体積%と1
    種以上の鉄族金属からなる結合相0.5〜30体積%と
    で構成されるマトリックス中に、立方晶窒化硼素を20
    〜70体積%分散させて、(TiXAl1-X)(C
    Y1-Y)(0.2≦X≦0.95、0≦Y≦0.5)の
    組成からなる層厚0.5〜10μmの被覆層で被覆した
    被覆複合焼結体。
  2. 【請求項2】 前記マトリックス中に周期律表の4a、
    5a、6a族金属の炭化物、窒化物、炭窒化物およびそ
    の相互固溶体から選ばれた少なくとも1種以上を40体
    積%以下含有する請求項1に記載の被覆複合焼結体。
  3. 【請求項3】 前記炭化タングステンの平均粒径が1μ
    m以下である請求項1または2に記載の被覆複合焼結
    体。
  4. 【請求項4】 前記立方晶窒化硼素の平均粒径が10μ
    m以下である請求項1〜3のいずれかに記載の被覆複合
    焼結体。
  5. 【請求項5】 前記複合焼結体と被覆層の間にTiNま
    たはTiCNからなる層厚0.1〜5μmの中間層を有
    する請求項1〜4のいずれかに記載の被覆複合焼結体。
JP2000166264A 2000-06-02 2000-06-02 被覆複合焼結体 Pending JP2001348290A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000166264A JP2001348290A (ja) 2000-06-02 2000-06-02 被覆複合焼結体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000166264A JP2001348290A (ja) 2000-06-02 2000-06-02 被覆複合焼結体

Publications (1)

Publication Number Publication Date
JP2001348290A true JP2001348290A (ja) 2001-12-18

Family

ID=18669609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000166264A Pending JP2001348290A (ja) 2000-06-02 2000-06-02 被覆複合焼結体

Country Status (1)

Country Link
JP (1) JP2001348290A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008121046A (ja) * 2006-11-09 2008-05-29 Mitsubishi Materials Corp 高硬度高密度立方晶窒化ホウ素系焼結体およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008121046A (ja) * 2006-11-09 2008-05-29 Mitsubishi Materials Corp 高硬度高密度立方晶窒化ホウ素系焼結体およびその製造方法

Similar Documents

Publication Publication Date Title
KR100555640B1 (ko) 입방결정 질화붕소 소결체 및 그것을 이용한 절삭 공구
JPH08119774A (ja) 工具用複合高硬度材料
WO2012105710A1 (ja) cBN焼結体工具および被覆cBN焼結体工具
KR19990082049A (ko) 고압상형 질화붕소기 소결체
JP3476507B2 (ja) 立方晶窒化ホウ素含有焼結体の製造方法
JP2000247746A (ja) 立方晶窒化硼素質焼結体切削工具
JPH10114575A (ja) 工具用高硬度焼結体
US20030054940A1 (en) Sintered body
JP4191663B2 (ja) 工具用複合高硬度材料
JPS644988B2 (ja)
JP2004223666A (ja) 荒加工用切削工具
JPS644989B2 (ja)
JP2000218411A (ja) 立方晶窒化硼素質焼結体切削工具
JP2001348290A (ja) 被覆複合焼結体
JP2003236710A (ja) 耐チッピング性のすぐれた立方晶窒化ほう素基超高圧焼結材料製切削チップ
JP2910293B2 (ja) 硬質層被覆炭化タングステン基超硬合金製切削工具の製造法
JP2001179508A (ja) 切削工具
JPH07172924A (ja) 工具用高靭性焼結体およびその製造方法
JP2001114562A (ja) セラミックス焼結体部品および被覆セラミックス焼結体部品
JP2003236707A (ja) 耐チッピング性のすぐれた立方晶窒化ほう素基超高圧焼結材料製切削チップ
JPH10226575A (ja) 切削工具用高圧相窒化硼素焼結体
JPH0132193B2 (ja)
JP2782524B2 (ja) 高密度相窒化ホウ素基反応焼結体及びその製造方法
JP3615634B2 (ja) 高靱性窒化珪素質焼結体及びその製造方法
JPH0610089A (ja) 被覆超硬合金

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080722