JP2001338680A - Secondary electric power source - Google Patents

Secondary electric power source

Info

Publication number
JP2001338680A
JP2001338680A JP2000155642A JP2000155642A JP2001338680A JP 2001338680 A JP2001338680 A JP 2001338680A JP 2000155642 A JP2000155642 A JP 2000155642A JP 2000155642 A JP2000155642 A JP 2000155642A JP 2001338680 A JP2001338680 A JP 2001338680A
Authority
JP
Japan
Prior art keywords
secondary power
power supply
positive electrode
activated carbon
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000155642A
Other languages
Japanese (ja)
Inventor
Manabu Tsushima
学 對馬
Takeshi Morimoto
剛 森本
Isamu Kuruma
勇 車
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2000155642A priority Critical patent/JP2001338680A/en
Publication of JP2001338680A publication Critical patent/JP2001338680A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a secondary electric power source with high reliability at charge and discharge cycle, which has high withstand voltage, high capacity, high energy density, preventing the deterioration of a negative pole material accompanied by repeated charge and discharge. SOLUTION: The secondary electric power source comprises a positive pole including activated carbon, a negative pole including carbon material capable of occluding and releasing lithium ion, and an organic electrolyte including lithium ion. The organic electrolyte includes at least one kind of cyclic carboxylester compound shown by the formula (A), (where; R1 and R2 represent H, F, CH3, or CF3, and they can be either same with or different from each other).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐電圧が高く、容
量が大きく、急速充放電サイクル信頼性の高い二次電源
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary power supply having a high withstand voltage, a large capacity, and a high rapid charge / discharge cycle reliability.

【0002】[0002]

【従来の技術】従来の電気二重層キャパシタの電極に
は、正極、負極ともに活性炭を主体とする分極性電極が
使用されている。電気二重層キャパシタの耐電圧は、水
系電解液を使用すると1.2V、有機系電解液を使用す
ると2.5〜3.3Vである。電気二重層キャパシタの
エネルギは耐電圧の2乗に比例するので、耐電圧の高い
有機電解液の方が水系電解液より高エネルギである。し
かし、有機電解液を使用した電気二重層キャパシタでも
そのエネルギ密度は鉛蓄電池等の二次電池の1/10以
下であり、さらなるエネルギ密度の向上が必要とされて
いる。電気二重層キャパシタのエネルギー密度向上には
電圧を高くすることが最も効果的であるが、電圧を高く
すると電解液の分解が起こり寿命に大きく影響を及ぼ
す。また、正極が活性炭、負極が黒鉛系炭素材料などの
リチウムイオンを吸蔵、脱離しうる炭素材料を主体に構
成され、電解液としてリチウムイオンを含む有機電解液
を使用した二次電源では、正極、負極ともに活性炭を主
体とする従来の電気二重層キャパシタよりも高電圧とす
ることができるが、充放電時に負極ではリチウムイオン
の炭素への吸蔵、脱離反応という電気化学反応が起こる
ため、それに伴う負極材料の劣化が見られる場合があっ
た。
2. Description of the Related Art Polarizable electrodes mainly composed of activated carbon are used for both positive and negative electrodes of conventional electric double layer capacitors. The withstand voltage of the electric double layer capacitor is 1.2 V when an aqueous electrolyte is used, and 2.5 to 3.3 V when an organic electrolyte is used. Since the energy of the electric double layer capacitor is proportional to the square of the withstand voltage, the organic electrolyte having a higher withstand voltage has higher energy than the aqueous electrolyte. However, even an electric double layer capacitor using an organic electrolyte has an energy density of 1/10 or less of a secondary battery such as a lead storage battery, and further improvement in energy density is required. Increasing the voltage is most effective for improving the energy density of the electric double layer capacitor. However, increasing the voltage causes decomposition of the electrolytic solution and greatly affects the life. In addition, the positive electrode is activated carbon, the negative electrode is mainly composed of a carbon material capable of absorbing and desorbing lithium ions such as a graphite-based carbon material, and a secondary power supply using an organic electrolytic solution containing lithium ions as an electrolytic solution includes a positive electrode, The negative electrode can have a higher voltage than a conventional electric double layer capacitor that mainly uses activated carbon.However, at the time of charge and discharge, an electrochemical reaction such as occlusion and desorption of lithium ions into carbon occurs at the negative electrode. In some cases, deterioration of the negative electrode material was observed.

【0003】[0003]

【発明が解決しようとする課題】本発明は、上記従来技
術における問題点を解決し、高耐電圧かつ高容量でエネ
ルギー密度が高く、充放電の繰り返しに伴う負極材料の
劣化を抑制した充放電サイクル信頼性の高い二次電源を
提供することを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems in the prior art, and has a high withstand voltage, a high capacity, a high energy density, and suppresses deterioration of the negative electrode material due to repetition of charge and discharge. An object is to provide a secondary power supply with high cycle reliability.

【0004】[0004]

【課題を解決するための手段】本発明は次の(1)〜
(4)の構成を採ることによって前記課題を解決するも
のである。 (1)活性炭を含む正極と、リチウムイオンを吸蔵、脱
離しうる炭素材料を含む負極と、リチウムイオンを含む
有機電解液と、を有する二次電源において、前記有機電
解液が式(A)(式中、R1 及びR2 はH、F、CH3
又はCF3 のいずれかであり、同一でも異なっていても
よい)で表される環状炭酸エステル化合物の少なくとも
1種類を含むことを特徴とする二次電源。
Means for Solving the Problems The present invention provides the following (1)-
The object is solved by adopting the configuration of (4). (1) In a secondary power supply including a positive electrode containing activated carbon, a negative electrode containing a carbon material capable of absorbing and desorbing lithium ions, and an organic electrolyte containing lithium ions, the organic electrolyte has a formula (A) ( Wherein R 1 and R 2 are H, F, CH 3
Or at least one of CF 3 , which may be the same or different).

【化2】 (2)前記有機電解液中に含まれる式(A)で表される
環状炭酸エステル化合物の割合が0.5〜10質量%で
あることを特徴とする前記(1)の二次電源。 (3)前記炭素材料がX線回折による[002]面の面
間隔が0.334〜0.410nmの炭素材料であるこ
とを特徴とする前記(1)又は(2)の二次電源。 (4)前記正極が活性炭に加えてリチウム含有遷移金属
酸化物を含むことを特徴とする前記(1)〜(3)のい
ずれか1つの二次電源。
Embedded image (2) The secondary power source according to (1), wherein the proportion of the cyclic carbonate compound represented by the formula (A) contained in the organic electrolyte is 0.5 to 10% by mass. (3) The secondary power source according to (1) or (2), wherein the carbon material is a carbon material having a [002] plane spacing of 0.334 to 0.410 nm by X-ray diffraction. (4) The secondary power supply according to any one of (1) to (3), wherein the positive electrode contains a lithium-containing transition metal oxide in addition to activated carbon.

【0005】本明細書において、活性炭を含む正極と集
電体とを接合して一体化させたものを正極体という。同
様にリチウムイオンを吸蔵、脱離しうる炭素材料を主体
とする負極と集電体とを接合して一体化させたものを負
極体という。また、二次電池も電気二重層キャパシタも
二次電源の1種であるが、本明細書では、正極に活性炭
を含み、負極にリチウムイオンを吸蔵、脱離しうる炭素
を含む特定の構成の二次電源を単に二次電源という。リ
チウムイオン二次電池は、正極はリチウム含有遷移金属
酸化物を主体とする電極、負極はリチウムイオンを吸
蔵、脱離しうる炭素材料を主体とする電極であり、充電
によりリチウムイオンが正極のリチウム含有遷移金属酸
化物から脱離し、負極のリチウムイオンを吸蔵、脱離し
うる炭素材料へ吸蔵され、放電により負極からリチウム
イオンが脱離し、正極にリチウムイオンが吸蔵される。
したがって、本質的には電解液中のリチウムイオンは電
池の充放電に関与しない。
[0005] In the present specification, a positive electrode containing a positive electrode containing activated carbon and a current collector are joined together to form a positive electrode. Similarly, a negative electrode body is formed by joining and integrating a negative electrode mainly composed of a carbon material capable of absorbing and desorbing lithium ions with a current collector. Further, both the secondary battery and the electric double layer capacitor are one kind of secondary power supply. In this specification, however, the specific configuration of the secondary battery includes activated carbon in the positive electrode and carbon capable of absorbing and desorbing lithium ions in the negative electrode. The secondary power supply is simply called a secondary power supply. In a lithium ion secondary battery, the positive electrode is an electrode mainly composed of a transition metal oxide containing lithium, and the negative electrode is an electrode mainly composed of a carbon material capable of absorbing and desorbing lithium ions. Lithium ions are desorbed from the transition metal oxide and stored in a carbon material capable of occluding and desorbing lithium ions of the negative electrode, lithium ions are desorbed from the negative electrode by discharge, and lithium ions are stored in the positive electrode.
Therefore, lithium ions in the electrolyte do not essentially participate in charging and discharging of the battery.

【0006】一方、本発明に係る二次電源は、正極は電
気二重層キャパシタで用いられる活性炭を含む電極と
し、負極はリチウムイオン二次電池で用いられるリチウ
ムイオンを吸蔵、脱離しうる炭素材料を含む電極とした
ハイブリッド型であり、充電により電解液中のアニオン
が正極の活性炭に吸着し、電解液中のリチウムイオンが
負極のリチウムイオンを吸蔵、脱離しうる炭素材料へ吸
蔵される。そして放電により負極からリチウムイオンが
脱離し、正極ではアニオンが脱着する。すなわち、本発
明の二次電源では充放電に電解液の溶質が本質的に関与
しており、リチウムイオン二次電池とは正極での充放電
の機構が異なっている。そしてリチウムイオン二次電池
のように、正極活物質自体にリチウムイオンが吸蔵、脱
離することがなく、リチウムイオンの吸蔵、脱離にとも
なう正極の劣化がないため、本発明の二次電源は充放電
サイクルによる劣化が少なく、長期的信頼性に優れてい
る。本明細書では、吸着とは充電時に電気二重層形成に
よるイオンの活性炭への吸着をいい、吸蔵とは電荷移動
を伴う反応をいう。また、放電時に活性炭からイオンが
離れることを脱着といい、電荷移動を伴うものを脱離と
いう。
On the other hand, in the secondary power supply according to the present invention, the positive electrode is an electrode containing activated carbon used in an electric double layer capacitor, and the negative electrode is a carbon material capable of inserting and extracting lithium ions used in a lithium ion secondary battery. It is a hybrid type of electrode containing electrodes. Anions in the electrolyte are adsorbed on the activated carbon of the positive electrode by charging, and lithium ions in the electrolyte are occluded in a carbon material capable of occluding and desorbing lithium ions of the negative electrode. Then, lithium ions are desorbed from the negative electrode by discharge, and anions are desorbed from the positive electrode. That is, in the secondary power supply of the present invention, the solute of the electrolytic solution is essentially involved in charging and discharging, and the charging and discharging mechanism at the positive electrode differs from that of the lithium ion secondary battery. And, unlike a lithium ion secondary battery, lithium ions do not occlude and desorb in the positive electrode active material itself, and there is no deterioration of the positive electrode due to occlusion and desorption of lithium ions. Deterioration due to charge / discharge cycles is small and long-term reliability is excellent. In the present specification, the term "adsorption" refers to the adsorption of ions to activated carbon by the formation of an electric double layer during charging, and the term "occlusion" refers to a reaction involving charge transfer. In addition, detachment of ions from activated carbon during discharge is called desorption, and that accompanied by charge transfer is called desorption.

【0007】本発明者らは、充放電サイクルにおける容
量劣化を抑制する手段について種々検討する中で、有機
電解液中に溶媒として使用されるエチレンカーボネート
やプロピレンカーボネートなどに類似した構造を有する
特定の化合物を添加することにより、容量劣化を抑制で
きることを見出した。すなわち、本発明に係る二次電源
は、活性炭を含む正極と、リチウムイオンを吸蔵、脱離
しうる炭素材料を含む負極と、リチウムイオンを含む有
機電解液と、を有する二次電源であって、前記有機電解
液が前記の式(A)で表される環状炭酸エステル化合物
の少なくとも1種類を含むことを特徴とする。
The inventors of the present invention have studied various means for suppressing capacity deterioration during charge / discharge cycles, and have found that a specific method having a structure similar to ethylene carbonate or propylene carbonate used as a solvent in an organic electrolyte is used. It has been found that capacity deterioration can be suppressed by adding a compound. That is, the secondary power supply according to the present invention is a secondary power supply having a positive electrode including activated carbon, a negative electrode including a carbon material capable of absorbing and desorbing lithium ions, and an organic electrolyte including lithium ions, The organic electrolytic solution contains at least one kind of the cyclic carbonate compound represented by the formula (A).

【0008】有機電解液に式(A)で表される化合物を
添加すると、充放電サイクル特性を向上させることがで
きる。さらに、充放電電流密度が10mA/cm2 以上
の急速充放電においても容量低下を小さくすることがで
きる。従来の添加物を含まない有機電解液の場合には充
放電サイクルにおける容量劣化が著しかったが、この原
因の一つとして充電時に負極炭素に生成する被膜が安定
でないことが考えられている。すなわち、充電時に炭素
材料表面に不動態被膜のような被膜が形成されることに
よって、炭素材料にリチウムイオンが吸蔵されるが、充
放電サイクルを繰り返すと被膜の部分的な破壊が起こ
り、本来充電に使用されるべき電気量がそれを補償する
ために使用され、結果として容量劣化をきたすものと考
えられる。したがって、式(A)で表される化合物の添
加による効果は充電において負極炭素に生成する被膜を
安定にすることができるためと推定される。
When the compound represented by the formula (A) is added to the organic electrolyte, the charge / discharge cycle characteristics can be improved. Further, even in rapid charge / discharge with a charge / discharge current density of 10 mA / cm 2 or more, a decrease in capacity can be reduced. In the case of the conventional organic electrolyte containing no additive, the capacity was significantly deteriorated in the charge / discharge cycle. One of the causes is considered that a film formed on the negative electrode carbon during charging is not stable. In other words, when a film such as a passive film is formed on the surface of the carbon material during charging, lithium ions are occluded in the carbon material. Is used to compensate for it, and it is considered that the capacity is deteriorated as a result. Therefore, it is presumed that the effect of the addition of the compound represented by the formula (A) is because the film formed on the negative electrode carbon during charging can be stabilized.

【0009】[0009]

【発明の実施の形態】本発明に係る二次電源を構成する
有機電解液は溶媒中に支持電解質(リチウム塩)及び前
記式(A)で表される環状炭酸エステル化合物を含むも
のである。有機電解液の溶媒としては、エチレンカーボ
ネート、プロピレンカーボネート、ブチレンカーボネー
ト、ジメチルカーボネート、エチルメチルカーボネー
ト、ジエチルカーボネート、スルホラン及びジメトキシ
エタン等が挙げられ、これらを単独で、又は2種以上の
混合溶媒として使用できる。また、有機電解液に含まれ
る支持電解質はカチオンがリチウムイオンであり、アニ
オンがPF6 - 、BF4 - 、ClO4 - 、N(SO2
3 2 - 、CF3SO3 - 、C(SO2
3 3 - 、AsF6 - 及びSbF6 - からなる群から
選ばれる1種以上が好ましい。電解液中の支持電解質
(リチウム塩)の濃度は0.5〜2モル/リットルとす
るのが電気伝導度が高く好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The organic electrolyte constituting the secondary power supply according to the present invention contains a supporting electrolyte (lithium salt) and a cyclic carbonate compound represented by the above formula (A) in a solvent. Examples of the solvent for the organic electrolyte include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, sulfolane, dimethoxyethane, and the like.These may be used alone or as a mixed solvent of two or more kinds. it can. The supporting electrolyte contained in the organic electrolyte has a cation of lithium ion and an anion of PF 6 , BF 4 , ClO 4 , N (SO 2 C
F 3 ) 2 , CF 3 SO 3 , C (SO 2 C
One or more members selected from the group consisting of F 3 ) 3 , AsF 6 and SbF 6 are preferred. The concentration of the supporting electrolyte (lithium salt) in the electrolyte is preferably 0.5 to 2 mol / l because of its high electric conductivity.

【0010】有機電解液に添加する式(A)で表される
化合物の割合は、電解液中の式(A)で表される化合物
の濃度が0.5〜10質量%となるようにするのが好ま
しい。濃度が0.5質量%未満では効果が小さくなり、
また、10質量%を超えると添加する化合物の量が多く
なり、高コストになり、実用的でなくなってしまう。
The ratio of the compound represented by the formula (A) to be added to the organic electrolyte is such that the concentration of the compound represented by the formula (A) in the electrolyte is 0.5 to 10% by mass. Is preferred. If the concentration is less than 0.5% by mass, the effect is small,
On the other hand, if it exceeds 10% by mass, the amount of the compound to be added increases, which increases the cost and makes the compound impractical.

【0011】負極に用いられるリチウムイオンを吸蔵、
脱離しうる炭素材料としては、X線回折法によって得ら
れる[002]面の面間隔が0.334〜0.410n
mの天然黒鉛、人造黒鉛、ハードカーボン、石油又は石
炭のピッチ、コークスの熱処理品などが好ましい。これ
らには結晶性が発達した黒鉛、非晶質炭素、ホウ素を添
加した炭素などが含まれ、いずれも好んで用いることが
できる。負極体の作製は、例えば、これらの炭素材料に
ポリフッ化ビニリデン、ポリアミドイミド、ポリイミド
などの結着材(バインダ)と溶媒を加えてペースト化
し、集電体上に塗布、乾燥するなどの方法によって行う
ことができる。
Occludes lithium ions used for the negative electrode,
As a desorbable carbon material, the [002] plane obtained by the X-ray diffraction method has a plane spacing of 0.334 to 0.410 n.
m, natural graphite, artificial graphite, hard carbon, oil or coal pitch, heat-treated coke, and the like. These include graphite with improved crystallinity, amorphous carbon, carbon to which boron is added, and the like, and any of them can be preferably used. The negative electrode body is manufactured by, for example, adding a binder (binder) such as polyvinylidene fluoride, polyamide imide, or polyimide and a solvent to these carbon materials to form a paste, applying the paste on a current collector, and drying the paste. It can be carried out.

【0012】正極には活性炭が使用されるが、この活性
炭としては比表面積が300〜3000m2 /gのもの
が好ましい。活性炭の原料、賦活条件は限定されない
が、例えば原料としてはやしがら、フェノール樹脂、石
油コークス等が挙げられ、賦活方法としては水蒸気賦活
法、溶融アルカリ賦活法等が挙げられる。電極の抵抗を
低くするために、電極中に導電性のカーボンブラック又
は黒鉛などの導電材を含ませておくのも好ましく、この
とき導電材は正極中に0.1〜20質量%とするのが好
ましい。
Activated carbon is used for the positive electrode. The activated carbon preferably has a specific surface area of 300 to 3000 m 2 / g. The raw material and activation conditions of the activated carbon are not limited. For example, the raw material includes bean, phenol resin, petroleum coke and the like, and the activation method includes a steam activation method and a molten alkali activation method. In order to reduce the resistance of the electrode, it is also preferable to include a conductive material such as conductive carbon black or graphite in the electrode. In this case, the conductive material should be 0.1 to 20% by mass in the positive electrode. Is preferred.

【0013】また、本発明に係る二次電源では、正極の
活性炭にはリチウム含有遷移金属酸化物を添加してもよ
い。この場合、充電時に負極で起こる反応は、電解液中
のリチウムイオンと正極から脱離したリチウムイオンの
吸蔵である。この場合のリチウム含有遷移金属酸化物
は、充放電サイクルに伴って起こる活性なリチウムイオ
ンの減少を補う働きがある。正極に含まれるリチウム含
有遷移金属酸化物としては、V、Fe、Co、Mn、N
i、W及びZnからなる群から選ばれる1種以上の遷移
金属とリチウムとの複合酸化物が好ましい。特に好まし
いのは、Co、Mn及びNiからなる群から選ばれる1
種以上とリチウムとの複合酸化物であり、さらにはLi
x Coy Ni (1-y) 2 又はLiz Mn2 4 (ただ
し、0<x<2、0≦y≦1、0<z<2)が好まし
い。正極中のリチウム含有遷移金属酸化物の含有量は1
〜30質量%が好ましく、より好ましくは5〜20質量
%である。1質量%未満では、供給できるリチウムイオ
ン量が少なくなり効果が小さく、また、30質量%を超
えると、相対的に正極中の活性炭量が少なくなるため、
充放電サイクルにおける容量減少が大きくなるので好ま
しくない。
Further, in the secondary power supply according to the present invention,
Activated carbon may contain lithium-containing transition metal oxides.
No. In this case, the reaction that occurs at the negative electrode during charging is
Of lithium ions and lithium ions desorbed from the positive electrode
It is occlusion. Lithium-containing transition metal oxide in this case
Is the active lithium ion that accompanies the charge / discharge cycle.
Work to compensate for the decrease in energy consumption. Lithium contained in positive electrode
V, Fe, Co, Mn, N
One or more transitions selected from the group consisting of i, W, and Zn
A composite oxide of a metal and lithium is preferred. Especially preferred
Is selected from the group consisting of Co, Mn and Ni.
Complex oxide of at least one species and lithium, and further Li
xCoyNi (1-y)OTwoOr LizMnTwoOFour(However
0 <x <2, 0 ≦ y ≦ 1, 0 <z <2)
No. The content of the lithium-containing transition metal oxide in the positive electrode is 1
-30% by mass, more preferably 5-20% by mass
%. If less than 1% by mass, lithium ion
And the effect is small, and more than 30% by mass.
The amount of activated carbon in the positive electrode is relatively small,
It is preferable because the capacity decrease in the charge / discharge cycle increases.
Not good.

【0014】正極体の作製方法としては、例えば活性炭
粉末に必要によりリチウム含有遷移金属酸化物粉末及び
/又はカーボンブラックなどの導電剤を混合し、ポリテ
トラフルオロエチレンなどのバインダを混合し、混練し
た後、シート状に成形して正極とし、これを集電体に導
電性接着剤を用いて固定する方法がある。また、バイン
ダとしてポリフッ化ビニリデン、ポリアミドイミド、ポ
リイミド等を溶解したワニスに活性炭粉末、必要にりさ
らにリチウム含有遷移金属酸化物粉末及び/又は導電剤
を分散させ、この液をドクターブレード法等によって集
電体上に塗工し、乾燥して得てもよい。正極中に含まれ
るバインダの量は、正極体の強度と容量等の特性とのバ
ランスから1〜20質量%であることが好ましい。
As a method for producing a positive electrode body, for example, an activated carbon powder is mixed with a lithium-containing transition metal oxide powder and / or a conductive agent such as carbon black as necessary, and a binder such as polytetrafluoroethylene is mixed and kneaded. Thereafter, there is a method in which the positive electrode is formed into a sheet shape and the positive electrode is fixed to a current collector using a conductive adhesive. In addition, activated carbon powder, and if necessary, lithium-containing transition metal oxide powder and / or a conductive agent are dispersed in a varnish in which polyvinylidene fluoride, polyamide imide, polyimide, etc. are dissolved as a binder, and this liquid is collected by a doctor blade method or the like. It may be obtained by coating on an electric body and drying. The amount of the binder contained in the positive electrode is preferably 1 to 20% by mass in view of the balance between the strength of the positive electrode body and characteristics such as capacity.

【0015】本発明に係る二次電源において正極体と負
極体を隔てるセパレータの材質としては、有機電解液に
不溶で、強度があるポリエチレン、ポリプロピレン、レ
ーヨン、ポリブチレンフタレート、ポリフェニレンサル
ファイドなどが使用可能である。形態は多孔質フィルム
状、不織布状などが好んで使用される。ポリエチレン
製、ポリプロピレン製、レーヨン製がコストの面で有利
であるが、ポリブチレンフタレート製及びポリフェニレ
ンサルファイド製のものは耐熱の面で有利である。
In the secondary power supply according to the present invention, as a material of the separator separating the positive electrode body and the negative electrode body, polyethylene, polypropylene, rayon, polybutylene phthalate, polyphenylene sulfide, and the like, which are insoluble in an organic electrolyte and have strength, can be used. It is. As the form, a porous film, a non-woven fabric, or the like is preferably used. Polyethylene, polypropylene and rayon are advantageous in terms of cost, while those made of polybutylene phthalate and polyphenylene sulfide are advantageous in terms of heat resistance.

【0016】[0016]

【実施例】次に、実施例(例1〜6)及び比較例(例
7)により本発明をさらに具体的に説明するが、本発明
はこれらにより限定されるものではない。なお、例1〜
7におけるセルの作製及び測定はすべて露点が−60℃
以下のアルゴングローブボックス中で行った。セルは径
が10.8mm、高さ1.7mmのコインセルを用い
た。作製したセルはいずれも従来の正極、負極ともに活
性炭の電気二重層キャパシタより高電圧(従来の正極、
負極ともに活性炭の電気二重層キャパシタでは2.5〜
3.3V)で使用可能で、従来の正極、負極ともに活性
炭の電気二重層キャパシタキャパシタよりも高いエネル
ギ密度を有していた。なお、X線回折による[002]
面の面間隔の測定は、理学電機株式会社製RINT10
00を用いて行った。
Next, the present invention will be described in more detail with reference to Examples (Examples 1 to 6) and Comparative Examples (Example 7), but the present invention is not limited thereto. In addition, Examples 1 to
The dew point was -60 ° C for all cell fabrication and measurements in 7
Performed in the following argon glove box. The cell used was a coin cell having a diameter of 10.8 mm and a height of 1.7 mm. All of the fabricated cells have higher voltages (conventional positive electrode,
Activated carbon electric double layer capacitor for both negative electrode is 2.5 ~
3.3 V), and both the positive electrode and the negative electrode had a higher energy density than the activated carbon electric double layer capacitor. [002] by X-ray diffraction
The measurement of the surface spacing was performed by RINT10 manufactured by Rigaku Corporation.
00 was used.

【0017】[例1]フェノール樹脂を原料として水蒸
気賦活法によって得られた比表面積2000m2 /gの
活性炭を70質量%、導電性カーボンブラックを20質
量%、及びバインダとしてポリテトラフルオロエチレン
を10質量%からなる混合物にエタノールを加えて混練
し、圧延した後、200℃で2時間真空乾燥して電極シ
ートを得た。このシートをポリアミドイミドをバインダ
とする導電性接着剤を用いてコインセルキャップに接着
し、減圧下で300℃で2時間熱処理し、正極体とし
た。また、フェノール樹脂を原料として800℃で熱処
理した、X線回折による[002]面の面間隔が0.3
73nmの炭素材料(ハードカーボン)と、導電剤とし
て2800℃で処理した気相成長炭素(VGCF)と
を、バインダ成分であるポリフッ化ビニリデン(PVD
F)が溶解しているN−メチル−2−ピロリドンに分散
させ、銅集電体に塗工、乾燥し、コインセルケースに溶
接して負極体を得た。電極の質量組成比は炭素材料:V
GCF:PVDF=7:1:2とした。
Example 1 70% by mass of activated carbon having a specific surface area of 2000 m 2 / g, 20% by mass of conductive carbon black, and 10% by mass of polytetrafluoroethylene as a binder were obtained by using a phenol resin as a raw material by a steam activation method. Ethanol was added to the mixture consisting of mass%, kneaded and rolled, and then vacuum dried at 200 ° C. for 2 hours to obtain an electrode sheet. This sheet was adhered to a coin cell cap using a conductive adhesive having polyamideimide as a binder, and heat-treated under reduced pressure at 300 ° C. for 2 hours to obtain a positive electrode body. Further, a heat treatment was performed at 800 ° C. using a phenol resin as a raw material.
A 73 nm carbon material (hard carbon) and a vapor grown carbon (VGCF) treated at 2800 ° C. as a conductive agent were mixed with polyvinylidene fluoride (PVD) as a binder component.
F) was dispersed in N-methyl-2-pyrrolidone in which F was dissolved, applied to a copper current collector, dried, and welded to a coin cell case to obtain a negative electrode body. The mass composition ratio of the electrode is carbon material: V
GCF: PVDF = 7: 1: 2.

【0018】このようにして得られた正極体及び負極体
をポリプロピレン製のセパレータを介してそれぞれの電
極面を対向させ、1.0モル/リットルのLiBF4
式(B)で示される化合物を1.0質量%含むエチルメ
チルカーボネートとエチレンカーボネート(体積比1:
1)を電解液としてコインセルを作製した。この二次電
源について4.2Vから2.75Vまでの範囲で初期容
量を測定し、その後、充放電電流10mA/cm2 で、
4.2Vから2.75Vの範囲で、25℃の雰囲気で充
放電サイクルを1000回行い、容量を測定し初期との
容量変化率を算出した。結果を表1に示す。
The positive electrode body and the negative electrode body obtained in this manner are opposed to each other with a polypropylene separator interposed therebetween, and 1.0 mol / l of LiBF 4 and the compound represented by the formula (B) are reacted with each other. 1.0% by mass of ethyl methyl carbonate and ethylene carbonate (volume ratio 1:
A coin cell was prepared using 1) as an electrolytic solution. The initial capacity of this secondary power supply was measured in a range from 4.2 V to 2.75 V, and thereafter, at a charge / discharge current of 10 mA / cm 2 ,
The charge and discharge cycle was performed 1,000 times in an atmosphere of 25 ° C. in the range of 4.2 V to 2.75 V, the capacity was measured, and the rate of change in capacity from the initial stage was calculated. Table 1 shows the results.

【化3】 Embedded image

【0019】[例2]正極体、負極体及びセパレータは
例1と同様のものを用いた。1.0モル/リットルのL
iBF4 と式(C)で示される化合物を1.0質量%含
むエチルメチルカーボネートとエチレンカーボネート
(体積比1:1)を電解液としてコインセルを作製し
た。この二次電源について例1と同様に評価した。結果
を表1に示す。
[Example 2] The same positive electrode, negative electrode and separator as in Example 1 were used. 1.0 mol / liter L
A coin cell was prepared using ethyl methyl carbonate and ethylene carbonate (volume ratio 1: 1) each containing iBF 4 and the compound represented by the formula (C) in an amount of 1.0% by mass. This secondary power supply was evaluated in the same manner as in Example 1. Table 1 shows the results.

【化4】 Embedded image

【0020】[例3]正極体、負極体及びセパレータは
例1と同様のものを用いた。1.0モル/リットルのL
iBF4 と式(D)で示される化合物を1.0質量%含
むエチルメチルカーボネートとエチレンカーボネート
(体積比1:1)を電解液としてコインセルを作製し
た。この二次電源について例1と同様に評価した。結果
を表1に示す。
Example 3 The same positive electrode, negative electrode and separator as in Example 1 were used. 1.0 mol / liter L
A coin cell was prepared using, as electrolytes, ethyl methyl carbonate and ethylene carbonate (volume ratio 1: 1) containing iBF 4 and the compound represented by the formula (D) at 1.0% by mass. This secondary power supply was evaluated in the same manner as in Example 1. Table 1 shows the results.

【化5】 Embedded image

【0021】[例4]正極体、負極体及びセパレータは
例1と同様のものを用いた。1.0モル/リットルのL
iBF4 と式(E)で示される化合物を1.0質量%含
むエチルメチルカーボネートとエチレンカーボネート
(体積比1:1)を電解液としてコインセルを作製し
た。この二次電源について例1と同様に評価した。結果
を表1に示す。
Example 4 The same positive electrode, negative electrode and separator as in Example 1 were used. 1.0 mol / liter L
A coin cell was manufactured using ethyl methyl carbonate and ethylene carbonate (volume ratio 1: 1) containing iBF 4 and the compound represented by the formula (E) in an amount of 1.0% by mass. This secondary power supply was evaluated in the same manner as in Example 1. Table 1 shows the results.

【化6】 Embedded image

【0022】[例5]正極体及びセパレータは例1と同
様のものを用いた。負極炭素材料として2800℃で熱
処理したメソカーボンマイクロビーズ(大阪ガス社製、
商品名:MCMB6−28)を用いて例1と同様の方法
で負極体を作製した。1.0モル/リットルのLiBF
4 と前記式(B)で示される化合物を1.0質量%含む
エチルメチルカーボネートとエチレンカーボネート(体
積比1:1)を電解液としてコインセルを作製した。こ
の二次電源について例1と同様に評価した。結果を表1
に示す。
Example 5 The same positive electrode body and separator as in Example 1 were used. Mesocarbon microbeads heat-treated at 2800 ° C (available from Osaka Gas Co., Ltd.
A negative electrode body was produced in the same manner as in Example 1 using trade name: MCMB6-28). 1.0 mol / L LiBF
A coin cell was prepared using ethyl methyl carbonate and ethylene carbonate (volume ratio 1: 1) containing 1.0 and 4% by mass of the compound represented by Formula 4 and the compound represented by the formula (B) as electrolytes. This secondary power supply was evaluated in the same manner as in Example 1. Table 1 shows the results
Shown in

【0023】[例6]70質量%の活性炭、20質量%
の導電性カーボンブラック、及び10質量%のポリテト
ラフルオロエチレンを含む混合物の代わりに、63質量
%の同じ活性炭、7質量%のLiCoO2 、20質量%
の導電性カーボンブラック、及び10質量%のポリテト
ラフルオロエチレンを含む混合物を使用した他は例1と
同様に操作してコインセルを作製した。この二次電源に
ついて例1と同様に評価した。結果を表1に示す。
Example 6 70% by mass of activated carbon, 20% by mass
Of a conductive carbon black and 10% by weight of polytetrafluoroethylene, instead of 63% by weight of the same activated carbon, 7% by weight of LiCoO 2 , 20% by weight
A coin cell was produced in the same manner as in Example 1, except that a mixture containing conductive carbon black of the formula (1) and 10% by mass of polytetrafluoroethylene was used. This secondary power supply was evaluated in the same manner as in Example 1. Table 1 shows the results.

【0024】[例7]電解液に前記式(B)で示される
化合物を添加しない以外、例1と同様の方法でコインセ
ルを作製した。この二次電源について例1と同様に評価
した。結果を表1に示す。
Example 7 A coin cell was prepared in the same manner as in Example 1, except that the compound represented by the formula (B) was not added to the electrolytic solution. This secondary power supply was evaluated in the same manner as in Example 1. Table 1 shows the results.

【0025】[0025]

【表1】 [Table 1]

【0026】表1から本発明に係る有機電解液中に環状
炭酸エステル化合物を含む二次電源(例1〜6)は、有
機電解液中に環状炭酸エステル化合物を含まない以外は
本発明の二次電源と同じ構成の二次電源(例7)に比較
して同等の初期容量を有していながら、4.2Vまでの
高電圧での充放電による1000サイクル後の容量変化
率が大幅に小さくなっており、耐電圧が高く、容量が大
きくかつ急速充放電サイクル信頼性の高い二次電源であ
ることがわかる。
From Table 1, it can be seen that the secondary power source containing the cyclic carbonate compound in the organic electrolyte according to the present invention (Examples 1 to 6) is the same as the secondary power source according to the present invention except that the organic carbonate does not contain the cyclic carbonate compound. While having the same initial capacity as the secondary power supply (Example 7) having the same configuration as the secondary power supply, the capacity change rate after 1000 cycles due to charging and discharging at a high voltage up to 4.2 V is significantly smaller. It can be seen that the secondary power supply has a high withstand voltage, a large capacity and a high reliability of rapid charge / discharge cycles.

【0027】[0027]

【発明の効果】本発明によれば、有機電解液中に特定の
構造の環状炭酸エステル化合物を含有させることによっ
て、耐電圧が高く、容量が大きく、かつ急速充放電サイ
クル信頼性の高い二次電源を提供することができる。
According to the present invention, by including a cyclic carbonate compound having a specific structure in an organic electrolytic solution, a secondary voltage having a high withstand voltage, a large capacity and a high charge-discharge cycle reliability can be improved. Power can be provided.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 車 勇 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社内 Fターム(参考) 5H029 AJ03 AJ05 AK03 AK08 AK18 AL06 AM03 AM05 AM07 DJ08 DJ16 DJ17 EJ12 HJ01 HJ13 5H050 AA07 AA08 BA17 CA08 CA16 CA29 CB07 EA10 EA24 FA19 HA01 HA13  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Car Isamu 1150 Hazawa-cho, Kanagawa-ku, Yokohama-shi, Kanagawa Prefecture Asahi Glass Co., Ltd. F-term (reference) 5H029 AJ03 AJ05 AK03 AK08 AK18 AL06 AM03 AM05 AM07 DJ08 DJ16 DJ17 EJ12 HJ01 HJ13 5H050 AA07 AA08 BA17 CA08 CA16 CA29 CB07 EA10 EA24 FA19 HA01 HA13

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 活性炭を含む正極と、リチウムイオンを
吸蔵、脱離しうる炭素材料を含む負極と、リチウムイオ
ンを含む有機電解液と、を有する二次電源において、前
記有機電解液が式(A)(式中、R1 及びR2 はH、
F、CH3 又はCF3 のいずれかであり、同一でも異な
っていてもよい)で表される環状炭酸エステル化合物の
少なくとも1種類を含むことを特徴とする二次電源。 【化1】
1. A secondary power supply comprising a positive electrode containing activated carbon, a negative electrode containing a carbon material capable of inserting and extracting lithium ions, and an organic electrolytic solution containing lithium ions, wherein the organic electrolytic solution has the formula (A) Wherein R 1 and R 2 are H,
F, CH 3, or CF 3 , which may be the same or different). Embedded image
【請求項2】 前記有機電解液中に含まれる式(A)で
表される環状炭酸エステル化合物の割合が0.5〜10
質量%であることを特徴とする請求項1に記載の二次電
源。
2. The organic electrolytic solution according to claim 1, wherein the proportion of the cyclic carbonate compound represented by the formula (A) is 0.5 to 10%.
2. The secondary power supply according to claim 1, wherein the secondary power supply is mass%. 3.
【請求項3】 前記炭素材料がX線回折による[00
2]面の面間隔が0.334〜0.410nmの炭素材
料であることを特徴とする請求項1又は2に記載の二次
電源。
3. The method according to claim 1, wherein the carbon material is [00] by X-ray diffraction.
2] The secondary power supply according to claim 1 or 2, wherein the surface spacing is 0.334 to 0.410 nm.
【請求項4】 前記正極が活性炭に加えてリチウム含有
遷移金属酸化物を含むことを特徴とする請求項1〜3の
いずれか1項に記載の二次電源。
4. The secondary power supply according to claim 1, wherein the positive electrode contains a transition metal oxide containing lithium in addition to activated carbon.
JP2000155642A 2000-05-26 2000-05-26 Secondary electric power source Pending JP2001338680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000155642A JP2001338680A (en) 2000-05-26 2000-05-26 Secondary electric power source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000155642A JP2001338680A (en) 2000-05-26 2000-05-26 Secondary electric power source

Publications (1)

Publication Number Publication Date
JP2001338680A true JP2001338680A (en) 2001-12-07

Family

ID=18660557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000155642A Pending JP2001338680A (en) 2000-05-26 2000-05-26 Secondary electric power source

Country Status (1)

Country Link
JP (1) JP2001338680A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006331933A (en) * 2005-05-27 2006-12-07 Toyota Motor Corp Lithium secondary battery and its manufacturing method
JP2009170384A (en) * 2008-01-21 2009-07-30 Nec Tokin Corp Lithium secondary battery
WO2016080484A1 (en) * 2014-11-21 2016-05-26 ダイキン工業株式会社 Novel fluorinated unsaturated cyclic carbonate and process for producing same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006331933A (en) * 2005-05-27 2006-12-07 Toyota Motor Corp Lithium secondary battery and its manufacturing method
JP2009170384A (en) * 2008-01-21 2009-07-30 Nec Tokin Corp Lithium secondary battery
WO2016080484A1 (en) * 2014-11-21 2016-05-26 ダイキン工業株式会社 Novel fluorinated unsaturated cyclic carbonate and process for producing same
JPWO2016080484A1 (en) * 2014-11-21 2017-08-03 ダイキン工業株式会社 Novel fluorinated unsaturated cyclic carbonate and process for producing the same
CN107108550A (en) * 2014-11-21 2017-08-29 大金工业株式会社 New fluoro unsaturated cyclic carbonic ester and its manufacture method
JP2019024016A (en) * 2014-11-21 2019-02-14 ダイキン工業株式会社 Novel fluorinated unsaturated cyclic carbonate and method for manufacturing the same
US10287263B2 (en) 2014-11-21 2019-05-14 Daikin Industries, Ltd. Fluorinated unsaturated cyclic carbonate and process for producing same
CN110204525A (en) * 2014-11-21 2019-09-06 大金工业株式会社 Novel fluoro unsaturated cyclic carbonic ester and its manufacturing method
US10464916B2 (en) 2014-11-21 2019-11-05 Daikin Industries, Ltd. Fluorinated unsaturated cyclic carbonate and process for producing the same
EP3667804A1 (en) * 2014-11-21 2020-06-17 Daikin Industries, Limited Electrolyte solution containing unsaturated cyclic carbonates, electrochemical device and lithium-ion secondary battery comprising the same
JP2020145199A (en) * 2014-11-21 2020-09-10 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium ion secondary battery and module
CN110204525B (en) * 2014-11-21 2022-01-28 大金工业株式会社 Novel fluorinated unsaturated cyclic carbonate and method for producing same
JP6989805B2 (en) 2014-11-21 2022-02-03 ダイキン工業株式会社 Electrolytes, electrochemical devices, lithium-ion secondary batteries, and modules

Similar Documents

Publication Publication Date Title
JP4096438B2 (en) Secondary power supply
JP2002270175A (en) Secondary power source
JP2002251992A (en) Electrode material for nonaqueous solvent secondary battery, electrode and secondary battery
JP5472755B2 (en) Non-aqueous electrolyte type lithium ion secondary battery
JP2018107108A (en) Lithium ion battery
JP2000228222A (en) Secondary power supply
KR20150016072A (en) Positive electrode for lithium ion capacitor and lithium ion capacitor comprising the same
JP2003031220A (en) Secondary power source
CN109888176A (en) A kind of anode of lithium-sulfur rechargeable battery
JP2001345122A (en) Secondary power source and method of manufacturing secondary power source
JPH1154383A (en) Electric double layer capacitor
JP2000138074A (en) Secondary power supply
JP2000036325A (en) Secondary power supply
CN112863898A (en) Lithium supplement additive for positive electrode of lithium ion capacitor and application of lithium supplement additive
JP2000306609A (en) Secondary power supply
JPH1154384A (en) Electric double layer capacitor
JP2008283161A (en) Electrochemical capacitor and electrolyte therefor
JP4284934B2 (en) Secondary power supply
JP2001338679A (en) Secondary electric power source
CN102938328A (en) Electrochemical capacitor and preparation method thereof
CN102938322A (en) Super-capacitance battery and preparation method thereof
JP4099970B2 (en) Secondary power supply
CN102945754A (en) Super electrochemical capacitor and preparation method thereof
JP2001338680A (en) Secondary electric power source
JP2002033102A (en) Secondary power source and method for manufacturing negative electrode for secondary power source