JP2001319681A - Control valve type sealed lead-acid storage battery - Google Patents

Control valve type sealed lead-acid storage battery

Info

Publication number
JP2001319681A
JP2001319681A JP2000139309A JP2000139309A JP2001319681A JP 2001319681 A JP2001319681 A JP 2001319681A JP 2000139309 A JP2000139309 A JP 2000139309A JP 2000139309 A JP2000139309 A JP 2000139309A JP 2001319681 A JP2001319681 A JP 2001319681A
Authority
JP
Japan
Prior art keywords
silica
fine silica
battery
control valve
silica particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000139309A
Other languages
Japanese (ja)
Other versions
JP2001319681A5 (en
Inventor
Kiyoshi Koyama
潔 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP2000139309A priority Critical patent/JP2001319681A/en
Publication of JP2001319681A publication Critical patent/JP2001319681A/en
Publication of JP2001319681A5 publication Critical patent/JP2001319681A5/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sealed type lead-acid storage battery that does not increase charge current in floating charge of long-term preservation or the like, and provide a production method that is simple in the structure as far as possible and corresponds to the conventional manufacturing process of batteries. SOLUTION: On the inner wall of a casing contacting with the reaction surface of a cathode plate arranged outside an electrode-group, aqueous solution of a hydrophilic polymer, in which fine silica powder is dispersed, is adhered, the silica layer excellent in liquid-retaining property is stuck and formed on the inner wall of the casing, the oxygen-reduction reaction on the cathode- reaction surface outside the electrode group contacting with the silica layer is restrained, and the closing-reaction efficiency is controlled within a proper range. The silica-mixture solution used in this case shall contain in the mixture liquid 5 weight % or more of fine silica powder with particle size of 100 nm or less, and the hydrophilic polymer to be added shall be a polymer composed of solely carbon, hydrogen and oxygen, and in particular, shall preferably be either of starch, CMC or PVA.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は制御弁式鉛蓄電池の
性能向上、特に浮動充電使用における寿命延長に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improving the performance of a lead-acid battery of a controlled valve type, and more particularly to extending the life of a lead-acid battery using a floating charge.

【0002】[0002]

【従来の技術】制御弁式鉛蓄電池は、無停電電源装置に
組み込まれ広範に使用されている。通常は停電時に供給
する電気量を確保するために、いわゆる浮動充電の条件
下で微小な電流で絶えず充電されている。
2. Description of the Related Art A control valve type lead-acid battery is widely used by being incorporated in an uninterruptible power supply. Usually, in order to secure an amount of electricity to be supplied at the time of a power failure, the battery is constantly charged with a minute current under a so-called floating charging condition.

【0003】ところで浮動充電のもとで長期、例えば5
年を越えて使用し続けると、しだいに充電電流が増え、
充電状態を維持するための電力消費量が増えて不経済で
あり、また電池の容量を劣化させる原因となる。この充
電電流が増える現象は、電池内の正極で水が分解されて
発生した酸素を負極で水に還元する、いわゆる密閉化反
応の効率が必要以上に高くなるために発生する。
[0003] By the way, under floating charging for a long time, for example, 5
If you continue to use it for more than a year, the charging current will gradually increase,
The power consumption for maintaining the charged state increases, which is uneconomical, and also causes the capacity of the battery to deteriorate. This phenomenon of an increase in the charging current occurs because the efficiency of the so-called sealing reaction, in which oxygen generated by the decomposition of water at the positive electrode in the battery and reduced to water at the negative electrode, becomes unnecessarily high.

【0004】[0004]

【発明が解決しようとする課題】上記従来の発生原因に
鑑み、本発明は、これを取り除き、長期保存の浮動充電
などにおいても、充電電流の増加のない密閉型鉛蓄電池
を提供し、その構成も出来るだけ簡単で、しかも従来の
電池の製造工程に合致する方法を提供することを目的と
するものである。
SUMMARY OF THE INVENTION In view of the above-mentioned conventional causes, the present invention has been developed to provide a sealed lead-acid battery which does not increase the charging current even in floating charging for long-term storage. It is another object of the present invention to provide a method which is as simple as possible and which is compatible with a conventional battery manufacturing process.

【0005】すなわち、本発明は、密閉化反応効率を簡
単な方法で適切な範囲内に制御し、寿命性能を向上させ
た制御弁式鉛蓄電池およびその製造法を提供するもので
ある。
That is, the present invention is to provide a control valve type lead storage battery in which the sealing reaction efficiency is controlled within an appropriate range by a simple method and the life performance is improved, and a method of manufacturing the same.

【0006】[0006]

【課題を解決するための手段】鉛蓄電池に無害なシリカ
粉末は、保液力が大きいのに着目し、これと密閉型鉛電
池の極群構成の外側に配置する負極板を組合せて、酸素
還元反応の抑制を行った。すなわち、極群の外側に配置
された負極板の反応面に接する電槽内壁に、微細シリカ
粉末を分散させた親水性ポリマ−の水溶液を付着させ、
保液力が大きいシリカ層を該電槽内壁上に形成し、それ
と接触する極群外側の負極反応面での酸素還元反応を抑
え、密閉化反応効率を適切な範囲に制御することを特徴
とする。また、その際使用するシリカ混合液は、平均粒
子径100nm以下の微細シリカ粉末を該混合液の重量
の5〜12%とし、添加する親水性ポリマ−は、炭素、
水素、酸素のみで構成される高分子であること、特に好
ましくは、澱粉、CMC(カルボキシメチルセルロ−
ス)、PVA(ポリビニルアルコ−ル)のいずれかであ
ることを特徴とする。さらに、本発明は該シリカ層を形
成するために該電槽内壁に該シリカ混合液を乾燥状態で
150μm以上の厚みになるように塗布または噴布した
のち該電槽を乾燥させることを特徴とする。
Attention is paid to the fact that silica powder harmless to a lead storage battery has a large liquid retention capacity, and this is combined with a negative electrode plate disposed outside the electrode group structure of a sealed lead battery to form an oxygen powder. The reduction reaction was suppressed. That is, an aqueous solution of a hydrophilic polymer in which fine silica powder is dispersed is adhered to the inner wall of the battery case in contact with the reaction surface of the negative electrode plate disposed outside the electrode group,
Forming a silica layer having a large liquid holding capacity on the inner wall of the battery case, suppressing the oxygen reduction reaction on the negative electrode reaction surface outside the electrode group in contact with the silica layer, and controlling the sealing reaction efficiency to an appropriate range. I do. The silica mixture used in this case is a fine silica powder having an average particle diameter of 100 nm or less, 5 to 12% of the weight of the mixture, and the hydrophilic polymer to be added is carbon,
It is a polymer composed of only hydrogen and oxygen, particularly preferably starch, CMC (carboxymethylcellulo-
) And PVA (polyvinyl alcohol). Further, the present invention is characterized in that, in order to form the silica layer, the silica mixture is applied or sprayed on the inner wall of the battery case to a thickness of 150 μm or more in a dry state, and then the battery case is dried. I do.

【0007】負極板上の酸素還元反応は均一な速度で起
こるわけではなく、負極表面の電解液量や酸素の拡散し
やすさに大きく左右される。実験の結果、浮動充電電流
の増加時期には極群外側の負極板の外面上で酸素還元反
応が著しかった。その理由は、この部分が電解液リテ
−ナと接触せず、電解液を保持する力が負極板の他の部
分より小さいこと、電槽上下に極群の厚み方向の僅か
な寸法差があり、特に極群上部に隙間ができやすく、こ
の隙間に酸素が廻りやすいことにある。
The oxygen reduction reaction on the negative electrode plate does not occur at a uniform rate, but largely depends on the amount of electrolyte on the negative electrode surface and the ease of diffusion of oxygen. As a result of the experiment, the oxygen reduction reaction was remarkable on the outer surface of the negative electrode plate outside the electrode group when the floating charging current increased. The reason is that this part does not contact the electrolyte retainer, the force for holding the electrolyte is smaller than other parts of the negative electrode plate, and there is a slight dimensional difference in the thickness direction of the electrode group above and below the battery case. In particular, a gap is easily formed above the pole group, and oxygen is easily circulated in the gap.

【0008】従って、この面を絶えず電解液で覆えば密
閉化現象の速度を制御できる。その手段として微細シリ
カ粉末の層を予め電槽内壁に形成し、該シリカ層に該電
槽内壁と接触する負極板の酸素が拡散する隙間を埋め、
かつ電解液を負極外面に与えるために密閉化反応を制御
できる。
Therefore, if this surface is constantly covered with the electrolyte, the speed of the sealing phenomenon can be controlled. As a means, a layer of fine silica powder is previously formed on the inner wall of the battery case, and the silica layer is filled with a gap where oxygen of the negative electrode plate in contact with the inner wall of the battery case is diffused,
In addition, the sealing reaction can be controlled in order to apply the electrolytic solution to the outer surface of the negative electrode.

【0009】[0009]

【発明の実施の形態】以下、本発明の一実施例について
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below.

【0010】図1は、本発明電池の要部断面図であり、
負極板1と正極板2をセパレ−タ3で離隔された極群を
構成し、該極群外側に配置された負極板1の作用面が接
触する電槽4内壁の部分に隙間なくシリカ層5を付着さ
せている。
FIG. 1 is a sectional view of a main part of the battery of the present invention.
A negative electrode plate 1 and a positive electrode plate 2 are separated by a separator 3 to form a pole group, and a silica layer is formed without any gap on the inner wall of a battery case 4 where the working surface of the negative electrode plate 1 arranged outside the pole group contacts. 5 is attached.

【0011】次に、本発明のシリカ層の特性について、
次の試験を実施した。先ず、微細シリカ粉末を分散させ
た親水性ポリマ−水溶液が持つべき条件とその実施形態
を説明する。 (実施例1)シリカ粉末の一次粒子径を変化させ、その
影響を調べた。評価方法は長期に浮動充電を行った後の
状態に似せるため、電池のセルに注入する電解液量を通
常より7%少なくして、温度55°Cの環境下での加速
試験を行った。その結果を表1に示す。シリカ添加率が
同じ場合、一次粒子径が小さいほど期待する性能向上が
実現された。これは一次粒子径が小さいほどシリカ粒子
間の結合が強く、またシリカ粒子の比表面積が大きいの
で、保液力が大きいからである。試験の結果、一次粒子
径が平均100nm以下であれば略安定した結果が得ら
れた。
Next, regarding the characteristics of the silica layer of the present invention,
The following tests were performed. First, conditions to be possessed by an aqueous solution of a hydrophilic polymer in which fine silica powder is dispersed and embodiments thereof will be described. (Example 1) The primary particle diameter of silica powder was changed, and the effect was examined. In order to make the evaluation method similar to the state after performing floating charging for a long period of time, the amount of the electrolyte injected into the battery cell was reduced by 7% from the usual amount, and an acceleration test was performed in an environment at a temperature of 55 ° C. Table 1 shows the results. When the silica addition ratio was the same, the expected performance improvement was realized as the primary particle diameter was smaller. This is because the smaller the primary particle diameter is, the stronger the bond between the silica particles is, and the larger the specific surface area of the silica particles is, the larger the liquid retention power is. As a result of the test, when the primary particle diameter was 100 nm or less on average, substantially stable results were obtained.

【0012】[0012]

【表1】 [Table 1]

【0013】(実施例2)次に、適切と思われる一次粒
子径を持つ微細シリカ粉末を、親水性ポリマ−水溶液に
いくつかの割合で添加した。これによって作った試作電
池を実施例1と同じ条件で評価した結果を表2に示す。
粒子径が一定の場合、シリカ添加率の高い方が性能向上
が図れるが、一方では添加率を高めるとシリカ混合液の
粘度が高くなり、作業が困難になる。特に噴布する場
合、液の噴出口にシリカが詰まり易くなって作業性を著
しく低下させることがある。充電電流を抑える観点では
シリカ添加量5%以上であれば安定した効果を期待でき
るが、作業性の面では12%以下に抑えることが望まし
い。
(Example 2) Next, fine silica powder having a primary particle diameter considered appropriate was added to the hydrophilic polymer aqueous solution in several ratios. Table 2 shows the results of evaluation of the prototype battery manufactured in this manner under the same conditions as in Example 1.
When the particle diameter is constant, the higher the silica addition rate, the higher the performance. However, if the addition rate is high, the viscosity of the silica mixture becomes high, and the work becomes difficult. In particular, when spraying, the ejection port of the liquid tends to be clogged with silica, which may significantly reduce the workability. From the viewpoint of suppressing the charging current, a stable effect can be expected if the added amount of silica is 5% or more. However, from the viewpoint of workability, it is desirable to suppress the amount to 12% or less.

【0014】[0014]

【表2】 [Table 2]

【0015】(実施例3)該シリカ混合液より形成する
シリカ量の厚みは、微細シリカ粒子径やその添加量とと
もに重要な因子である。この適性値を決めるため、電槽
内壁に塗布または噴布し形成するシリカ層の厚みを変え
た試作電池を、実施例1と同じ条件で評価した。その結
果を表3で示す。表3より150μm以上の厚みで充電
電流抑制の効果が顕著であることがわかる。さらにシリ
カ層を厚くすると、電流はもう減少せず、一方電槽に極
群を挿入する際などに該シリカ層が剥がれ落ちることが
あり、必要以上に厚くしても有益な効果は見られない。
厚みの上限は、電槽内壁と極群外面の隙間を埋めるに必
要な厚み以上にシリカ層を厚く形成する必要はなく、電
池ごとに決定すればよい。
Example 3 The thickness of the amount of silica formed from the silica mixture is an important factor along with the fine silica particle diameter and the amount of silica added. In order to determine this appropriate value, a prototype battery in which the thickness of the silica layer formed by applying or spraying on the inner wall of the battery case was changed was evaluated under the same conditions as in Example 1. Table 3 shows the results. Table 3 shows that the effect of suppressing the charging current is remarkable at a thickness of 150 μm or more. When the silica layer is further thickened, the current does not decrease anymore, while the silica layer may be peeled off when inserting the electrode group in the battery case, and the beneficial effect is not seen even if it is made thicker than necessary. .
The upper limit of the thickness does not need to be greater than the thickness required to fill the gap between the inner wall of the battery case and the outer surface of the electrode group, and may be determined for each battery.

【0016】[0016]

【表3】 [Table 3]

【0017】(実施例4)親水性ポリマ−の選定の際に
は、乾燥状態で微細シリカ粉末を層状に保持し、かつシ
リカの保液力を阻害しないこと、および電池内の電池性
能に悪影響を及ぼす物質を生じさせないことが条件であ
る。このためには炭素、水素、酸素のみからなる高分子
を選ぶのが無難である。本実施例では、澱粉、CMC、
PVAの3種類を取り上げ、それぞれの添加量の最適値
を調査した。実施例1と同じ条件の実験では、PVAは
添加量が2.5%を越えるあたりから電流を増加させる
作用が現れ、電池の内部抵抗が顕著に大きくなり、電池
寿命を短縮させた。図2は浮動充電中の充電電流の推移
へのPVAの影響を示す曲線で、縦軸に充電電流(従来
品の240日目を100とする)をとり、横軸に浮動充
電日をとって、表4の結果を表した。また図3は浮動充
電中の内部抵抗へのPVAの影響を示す曲線で、縦軸に
内部抵抗(従来品の240日目を100とする)をと
り、横軸に浮動充電日をとって示している。
(Example 4) When selecting a hydrophilic polymer, the fine silica powder is kept in a layered state in a dry state, and the liquid retaining power of silica is not impaired, and the battery performance in the battery is adversely affected. Is a condition that does not produce a substance that causes For this purpose, it is safe to select a polymer consisting only of carbon, hydrogen and oxygen. In this example, starch, CMC,
Three types of PVA were picked up, and the optimum value of each added amount was investigated. In the experiment under the same conditions as in Example 1, the effect of increasing the current appeared when the amount of PVA added exceeded 2.5%, and the internal resistance of the battery was significantly increased, thereby shortening the battery life. FIG. 2 is a curve showing the effect of PVA on the transition of the charging current during floating charging. The vertical axis represents the charging current (100 on the 240th day of the conventional product), and the horizontal axis represents the floating charging date. , Table 4 are shown. FIG. 3 is a curve showing the effect of PVA on the internal resistance during floating charging. The vertical axis shows the internal resistance (100 on day 240 of the conventional product), and the horizontal axis shows the floating charging date. ing.

【0018】これは溶けだしたPVAが正極で酸化され
る過程でカルボン基を持つ物質が生じたためと思われ
る。他の高分子も添加率が高い領域で充電電流が時間の
経過とともに増加する傾向が見られたが、澱粉で8%以
下、CMCでは5.5%以下なら電池寿命に大きな影響
は見られなかった。
This is presumably because a substance having a carboxylic group was formed in the process of oxidizing the dissolved PVA at the positive electrode. The charge current of other polymers also tended to increase with time in the region where the addition rate was high, but if the starch was 8% or less and the CMC was 5.5% or less, there was no significant effect on the battery life. Was.

【0019】[0019]

【表4】 [Table 4]

【0020】(実施例5)以上の結果をもとに、電池N
o.AとNo.Cを40°Cの浮動充電に附し、充電電
流と容量測定を3年間続けた。その結果を図4に示す。
図4は縦軸に充電電流及び放電容量比(従来品の240
日目の測定値を100とした)をとり、横軸に浮動充電
期間(月)をとり、電池の特性性能の比較曲線を示した
もので、本発明電池Cは充電電流の増加が抑制され、ま
た放電容量も一定で安定していて、顕著な寿命の改良が
見られた。
(Embodiment 5) Based on the above results, the battery N
o. A and No. C was subjected to a 40 ° C. floating charge, and charge current and capacity measurements were continued for three years. FIG. 4 shows the results.
FIG. 4 shows the charge current and discharge capacity ratio (240
The measured value on the day is taken as 100), and the horizontal axis represents the floating charging period (month), showing a comparison curve of the characteristic performance of the battery. In the battery C of the present invention, the increase in the charging current is suppressed. Also, the discharge capacity was constant and stable, and a remarkable improvement in life was observed.

【0021】次に、本発明電池の製造方法の一実施例を
示す。
Next, an embodiment of the method for producing the battery of the present invention will be described.

【0022】図5のシリカ混合液噴布器の拡大図に示す
ように、先端をL字状に曲げた加圧気体細管7の先端ノ
ズルに近接してシリカ混合液細管6のノズル先端を少し
後方にして、加圧気体で混合液を勢いよく噴射させて塗
布する。予め電槽の内壁にシリカ混合液を塗布または噴
布するが、実際の工程では例えば図6に示すように細い
ノズルの先端を数本ほど電槽4内に挿入し、移動させな
がらシリカ混合液細管6から該混合液を吹き付ける方法
がシリカ層の厚みを調整し、能率よく加工する上で都合
がよい。シリカ混合液噴布の後、乾燥炉を通しシリカ層
を電槽内壁に定着させる。電槽内壁と極群外側の負極板
の間に厚み150μm以上の層があれば本発明の効果が
期待できる。
As shown in the enlarged view of the silica mixed liquid sprayer in FIG. 5, the nozzle end of the silica mixed liquid thin tube 6 is slightly moved close to the distal end nozzle of the pressurized gas thin tube 7 whose end is bent in an L shape. On the rear side, the mixed liquid is vigorously sprayed with a pressurized gas for application. The silica mixed solution is applied or sprayed on the inner wall of the battery case in advance. In the actual process, for example, as shown in FIG. 6, several tips of thin nozzles are inserted into the battery case 4 and moved while moving. The method of spraying the mixed solution from the thin tube 6 is convenient for adjusting the thickness of the silica layer and efficiently processing. After spraying the silica mixture, the silica layer is fixed on the inner wall of the battery case through a drying furnace. The effect of the present invention can be expected if there is a layer having a thickness of 150 μm or more between the inner wall of the battery case and the negative electrode plate outside the electrode group.

【0023】上記の工程では、該シリカ混合液には噴布
工程を阻害しない程度の流動性が必要で、シリカ組成が
12%以下、親水性ポリマ−は例えば澱粉の場合、6%
以下が好ましい。シリカ層形成後は通常の工程通りに極
群を挿入して電池を製造する。
In the above step, the silica mixture must have a fluidity that does not hinder the spraying step. The silica composition is 12% or less, and the hydrophilic polymer is, for example, 6% in the case of starch.
The following is preferred. After the formation of the silica layer, the battery is manufactured by inserting the electrode group in the usual manner.

【0024】[0024]

【発明の効果】以上説明した通り、本発明の請求項1
は、極群の外側に配置された負極板の反応面に接する電
槽内壁に、微細シリカ粒子の層が付着形成されているの
で、該層と接触する極群外側の負極反応面での酸素還元
反応が抑えられ、密閉化反応効率を適切な範囲に制御で
き、従来品に比べて浮動充電における充電電流を1/3
程度に抑制できる。従って、寿命性能に優れた制御弁式
鉛蓄電池を提供できる。
As described above, claim 1 of the present invention is provided.
Is formed on the inner wall of the battery case in contact with the reaction surface of the negative electrode plate disposed outside the electrode group. The reduction reaction is suppressed, the sealing reaction efficiency can be controlled in an appropriate range, and the charging current in floating charging is reduced to 1/3 of that of the conventional product.
It can be suppressed to the extent. Therefore, it is possible to provide a control valve type lead storage battery having excellent life performance.

【0025】また、請求項2によれば、微細シリカ粒子
の層の保液力が優れ、長期にわたって充電電流を抑制で
きる。従って、請求項1の効果を顕著にできる。
According to the second aspect, the layer of fine silica particles has an excellent liquid retaining ability, and the charging current can be suppressed for a long period of time. Therefore, the effect of claim 1 can be remarkably achieved.

【0026】また、請求項3によれば、充電電流を抑え
寿命性能が優れると共に微細シリカ粒子の層を形成する
上の作業性に優れる。
According to the third aspect, the charging current is suppressed, the life performance is excellent, and the workability in forming a layer of fine silica particles is excellent.

【0027】さらに、請求項4によれば、請求項1の効
果が優れる。
Furthermore, according to claim 4, the effect of claim 1 is excellent.

【0028】また、請求項5によれば、請求項1の効果
が充分に発揮できる。
According to the fifth aspect, the effect of the first aspect can be sufficiently exhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す要部断面図である。FIG. 1 is a sectional view of a main part showing an embodiment of the present invention.

【図2】本発明の一実施例における、充電電流に及ぼす
PVAの影響を示すグラフである。
FIG. 2 is a graph showing an influence of PVA on a charging current in one example of the present invention.

【図3】本発明の一実施例における、充電中の内部抵抗
に及ぼすPVAの影響を示すグラフである。
FIG. 3 is a graph showing the effect of PVA on the internal resistance during charging in one example of the present invention.

【図4】本発明品と従来品の充電電流と放電容量を比較
したグラフである。
FIG. 4 is a graph comparing the charge current and the discharge capacity of the product of the present invention and the conventional product.

【図5】本発明に係るシリカ混合液噴布器の要部拡大図
を示す。
FIG. 5 is an enlarged view of a main part of the silica mixed liquid sprayer according to the present invention.

【図6】本発明の製造方法を示す説明図である。FIG. 6 is an explanatory view showing a manufacturing method of the present invention.

【符号の説明】[Explanation of symbols]

1 負極板 2 正極板 4 電槽 5 微細シリカ粒子の層 Reference Signs List 1 negative electrode plate 2 positive electrode plate 4 battery case 5 layer of fine silica particles

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 極群の外側に負極板が配置されている制
御弁式鉛蓄電池において、前記負極板の反応面が接触す
る電槽内壁に、微細シリカ粒子の層を付着形成したこと
を特徴とする制御弁式密閉型鉛蓄電池。
1. A control valve type lead-acid battery in which a negative electrode plate is disposed outside a group of electrodes, wherein a layer of fine silica particles is attached and formed on an inner wall of a battery case where a reaction surface of the negative electrode plate contacts. Control valve type sealed lead-acid battery.
【請求項2】 請求項1記載の微細シリカ粒子は、一次
粒子径が平均100nm以下であることを特徴とする制
御弁式密閉型鉛蓄電池。
2. A control valve-type sealed lead-acid battery according to claim 1, wherein the fine silica particles have a primary particle diameter of 100 nm or less on average.
【請求項3】 請求項1または2記載の微細シリカ粒子
の層は、親水性ポリマ−が添加された水溶液に5〜12
重量%の微細シリカ粒子を添加した混合液を付着させて
形成されてなることを特徴とする制御弁式密閉型鉛蓄電
池。
3. A layer of fine silica particles according to claim 1 or 2, wherein the layer of fine silica particles is added to an aqueous solution to which a hydrophilic polymer is added in an amount of 5 to 12%.
A sealed valve-type lead-acid storage battery characterized by being formed by adhering a mixed solution to which fine silica particles of weight% are added.
【請求項4】 請求項3記載の親水性ポリマ−は、炭
素、水素、酸素のみで構成される高分子であることを特
徴とする制御弁式密閉型鉛蓄電池。
4. A control valve-type sealed lead-acid battery according to claim 3, wherein the hydrophilic polymer is a polymer composed of only carbon, hydrogen and oxygen.
【請求項5】 前記微細シリカ粒子の層は、乾燥状態で
150μm以上であることを特徴とする請求項1〜4の
いずかに記載の制御弁式密閉型鉛蓄電池。
5. The sealed lead-acid storage battery according to claim 1, wherein the layer of the fine silica particles is 150 μm or more in a dry state.
JP2000139309A 2000-05-12 2000-05-12 Control valve type sealed lead-acid storage battery Pending JP2001319681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000139309A JP2001319681A (en) 2000-05-12 2000-05-12 Control valve type sealed lead-acid storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000139309A JP2001319681A (en) 2000-05-12 2000-05-12 Control valve type sealed lead-acid storage battery

Publications (2)

Publication Number Publication Date
JP2001319681A true JP2001319681A (en) 2001-11-16
JP2001319681A5 JP2001319681A5 (en) 2005-02-24

Family

ID=18646777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000139309A Pending JP2001319681A (en) 2000-05-12 2000-05-12 Control valve type sealed lead-acid storage battery

Country Status (1)

Country Link
JP (1) JP2001319681A (en)

Similar Documents

Publication Publication Date Title
US20090123837A1 (en) Lithium rechargeable electrochemical cell
CN109671943A (en) A kind of Gao Shouxiao silicon-carbon composite cathode material and preparation method thereof
JP2001319681A (en) Control valve type sealed lead-acid storage battery
JP2002141066A (en) Control valve type lead acid battery
JPS5935359A (en) Zinc electrode
JP4984430B2 (en) Method for producing paste active material for negative electrode
JP2584280B2 (en) Alkaline storage battery and method of manufacturing the same
KR102458871B1 (en) Zinc metal electrode, method of manufacturing the same, and secondary battery having the same
US20200227720A1 (en) Method for forming lead-carbon compound interface layer on lead-based substrate
JP3733037B2 (en) Paste type cadmium negative electrode for alkaline storage battery
CN116387646A (en) Zinc cathode, preparation method thereof and water-based zinc-based electrochemical energy storage device
CN100470891C (en) Nickel-hydrogen secondary battery negative electrode and battery and producing method thereof
JPH10275619A (en) Paste type cadmium electrode
JPH06275257A (en) Manufacture of paste type lead-acid battery
JPH10199562A (en) Sealed lead-acid battery
JP2686136B2 (en) Cadmium negative electrode for alkaline storage batteries
JPH0560220B2 (en)
CN108611676A (en) A kind of the electrochemical corrosion preparation method and its micropore copper foil of micropore battery copper foil
JP2771584B2 (en) Manufacturing method of non-sintering type sealed alkaline storage battery
JP2001266858A (en) Negative electrode for alkaline battery and its manufacturing method
JPH0822820A (en) Manganese battery with mercury unadded
CN108977875A (en) A kind of the electrochemical corrosion preparation method and its micropore copper foil of micropore battery copper foil
JP2003173779A (en) Anode for battery and alkaline battery
JP2008091189A (en) Sealed lead acid storage battery
JP2009231253A (en) Lead-acid battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040316

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060105