JP2001302760A - Epoxy resin composition - Google Patents

Epoxy resin composition

Info

Publication number
JP2001302760A
JP2001302760A JP2000121162A JP2000121162A JP2001302760A JP 2001302760 A JP2001302760 A JP 2001302760A JP 2000121162 A JP2000121162 A JP 2000121162A JP 2000121162 A JP2000121162 A JP 2000121162A JP 2001302760 A JP2001302760 A JP 2001302760A
Authority
JP
Japan
Prior art keywords
epoxy resin
curing
resin composition
temperature
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000121162A
Other languages
Japanese (ja)
Other versions
JP2001302760A5 (en
JP4859081B2 (en
Inventor
Shigeji Hayashi
繁次 林
Kazuya Goto
和也 後藤
Yasushi Suzumura
靖 鈴村
Kazutami Mitani
和民 三谷
Katsumi Wakabayashi
巧己 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2000121162A priority Critical patent/JP4859081B2/en
Publication of JP2001302760A publication Critical patent/JP2001302760A/en
Publication of JP2001302760A5 publication Critical patent/JP2001302760A5/en
Application granted granted Critical
Publication of JP4859081B2 publication Critical patent/JP4859081B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an epoxy resin composition which is stable at room temperature, can be primarily cured at a relatively low temperature, e.g. at 70-100 deg.C, in a short time, e.g. within 10 h, exhibits a glass transition temperature of 150 deg.C or higher when secondarily cured at 130 deg.C or higher, and gives a cured item excellent in high-temperature mechanical properties, especially an epoxy resin composition which can be suitably used as a matrix resin for a fiber- reinforced composite material. SOLUTION: This composition mainly comprises (a) 100 pts.wt. epoxy resin containing a trifunctional or higher epoxy resin and (b) 3-40 pts.wt. heat-curing- type latent curing agent activated at 70-100 deg.C and satisfies the requirements (1) to (3): (1) the viscosity increase when left standing at 25 deg.C for 3 weeks after the preparation is not higher than 2 times the viscosity just after the preparation; (2) after the primary curing at 100 deg.C or lower for 10 h or shorter, the degree of curing is 70% or higher or the tensile shear strength (adhesive strength) according to JIS K 6848 and 6850 is 10 MPa or higher; and (3) the glass transition temperature of a cured item obtained by the secondary curing at 130 deg.C or higher is 150 deg.C or higher.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、100℃以下の温
度で短時間で1次硬化でき、次に1次硬化温度より高温
で2次硬化することで耐熱性の高い硬化物が得られるエ
ポキシ樹脂組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an epoxy which can be cured in a short time at a temperature of 100 ° C. or less and then cured at a temperature higher than the primary curing temperature to obtain a cured product having high heat resistance. It relates to a resin composition.

【0002】[0002]

【従来の技術】繊維強化複合材料(以下FRPと記す)
は、スポーツレジャーから航空機、産業用途まで広く用
いられるに至っている。一般的なFRPの成形法として
成形型を使用して成形する方法がある。例えば、クロス
等の強化繊維材を成形型に添って樹脂を含浸しながら貼
り付け、これを繰り返し、次に硬化し、型から脱型して
成形物を得る、或いは予め強化繊維材に樹脂を含浸した
いわゆるプリプレグを成形型に添って貼り付け、これを
繰り返し次に硬化し、型から脱型して成型物を得るハン
ドレイアップ法や、成形型にクロス等の強化繊維材をセ
ットし、型に樹脂を注入した後硬化し、脱型して成型物
を得るレジントランスファーモールディング(RTM)
法、あるいは強化繊維を短繊維にカットし、樹脂と混ぜ
合わせたモールディングコンパウンドを成形型に注入し
硬化して成形物を得る方法等が知られている。
2. Description of the Related Art Fiber reinforced composite materials (hereinafter referred to as FRP)
Is widely used in sports and leisure, aircraft, and industrial applications. As a general FRP molding method, there is a method of molding using a molding die. For example, a reinforcing fiber material such as a cloth is attached to a molding die while impregnating the resin, and this is repeated, then cured, and then removed from the mold to obtain a molded product. The impregnated so-called prepreg is attached to the molding die and attached, and this is repeated and then cured, and the hand lay-up method of obtaining the molded product by releasing from the die, or setting the reinforcing fiber material such as cloth in the molding die, Resin transfer molding (RTM) that cures after injecting resin into a mold and removes the mold to obtain a molded product
There is known a method or a method of cutting a reinforcing fiber into short fibers, injecting a molding compound mixed with a resin into a molding die, and curing the molding compound to obtain a molded product.

【0003】成形型にはさまざまな材質のものが使用されて
いる。金属製の成形型は耐熱性、耐久性には優れるが、
型の作製に手間と労力を要し高価である。一方樹脂製の
成形型は耐熱性、耐久性には劣るが、安価である。近年
の多様なニーズに対応するため、少量多品種生産が増え
てきており、樹脂製の成形型を使用するケースも多い。
ところが樹脂製の成形型を使用した場合は、成形型自体
の耐熱性が十分でないため、これを用いた高温でのFR
Pの成形が困難であり、耐熱性の高い成形品の成形には
適用できないといった問題がある。
[0003] Molds of various materials are used. Metal molds are excellent in heat resistance and durability,
The production of the mold requires time and effort and is expensive. On the other hand, resin molds are inferior in heat resistance and durability, but are inexpensive. In order to respond to various needs in recent years, small-quantity multi-product production has been increasing, and in many cases, a resin mold is used.
However, when a resin mold is used, the heat resistance of the mold at high temperatures using the mold is not sufficient because the mold itself has insufficient heat resistance.
There is a problem that it is difficult to mold P and cannot be applied to the molding of a molded article having high heat resistance.

【0004】又、FRP製の成形型を作製する場合では、実
物からマスター型をおこし、マスター型の上にプリプレ
グ等を積層し硬化してFRP型を作製するが、耐熱性の
高い成形品を得るためには、高温での成形する必要があ
り、耐熱性の高いFRP型が必要である。耐熱性の高い
FRP型を成形するにはマスター型も耐熱性が求められ
ることになり、その結果これまでマスター型の作製には
多大の費用と労力を要していた。
[0004] In the case of producing a FRP mold, a master mold is raised from a real product, and a prepreg or the like is laminated on the master mold and cured to produce an FRP mold. In order to obtain it, it is necessary to mold at a high temperature, and an FRP mold having high heat resistance is required. In order to mold the FRP mold having high heat resistance, the master mold also needs to have heat resistance. As a result, the production of the master mold has required a great deal of cost and labor.

【0005】そこで樹脂製等の耐熱性の低い成形型を使用し
て耐熱性の高いFRP成形品を得る方法として、樹脂製
等耐熱性の低い成形型を用いて比較的低温(100℃以
下)で1次硬化して、型から脱型可能で、形状を十分保
持出来るほどに硬化し、その後、型から脱型して更に高
い温度で加熱放置して2次硬化させて耐熱性の高いFR
P成形品を得る方法が注目されている。耐熱性の低いマ
スター型を用いて耐熱性の高いFRP型を作製する場合
も同様である。
[0005] Therefore, as a method of obtaining an FRP molded product having high heat resistance using a molding die having low heat resistance such as resin, a relatively low temperature (100 ° C. or less) using a molding die having low heat resistance such as resin is used. FR is hardened so that it can be removed from the mold and retains its shape sufficiently. Then, it is removed from the mold and heated and left at a higher temperature for secondary curing to achieve high heat resistance.
Attention has been paid to a method for obtaining a P-shaped product. The same applies to the case where an FRP mold having high heat resistance is manufactured using a master mold having low heat resistance.

【0006】近年、室温で比較的安定で70〜100℃の比
較的低温で硬化する樹脂の技術が、例えば特開平11−
302412号公報に開示されているが、いずれの技術
も低温で硬化し、優れた機械物性が得られるものの、そ
の後、高温で2次硬化しても十分な耐熱性が得られな
い。一方耐熱性が良好な硬化物を与える樹脂は、100
℃以下の比較的低温での硬化で脱型可能なまでに硬化さ
せるのに長時間を要するといった課題があった。
[0006] In recent years, the technology of a resin which is relatively stable at room temperature and which cures at a relatively low temperature of 70 to 100 ° C.
Although disclosed in Japanese Patent No. 302412, any of the techniques cures at low temperatures and provides excellent mechanical properties, but does not provide sufficient heat resistance even after secondary curing at high temperatures. On the other hand, a resin giving a cured product having good heat resistance is 100
There is a problem that it takes a long time to cure the resin at a relatively low temperature of not more than ℃ until it can be released from the mold.

【0007】[0007]

【発明が解決しようとする課題】室温で安定で比較的低
温(100℃以下)で短時間(10時間以内)で1次硬
化でき、且つ高温(130℃以上)での2次硬化で耐熱
性の高い硬化物(Tgが150℃以上)が得られ、高温
での機械物性に優れたエポキシ樹脂組成物を提供するこ
とであり、特に繊維強化複合材料用のマトリックス樹脂
として用いることの出来るエポキシ樹脂組成物を提供す
るものである。
The present invention is stable at room temperature, can be primary-cured at a relatively low temperature (100 ° C. or less) in a short time (within 10 hours), and has heat resistance at a high temperature (130 ° C. or more) with secondary curing. To provide an epoxy resin composition having a high cured product (Tg of 150 ° C. or higher) and excellent mechanical properties at high temperatures, and particularly an epoxy resin which can be used as a matrix resin for a fiber-reinforced composite material. It provides a composition.

【0008】[0008]

【課題を解決するための手段】すなわち、本発明の要旨
は、(a)3官能以上のエポキシ樹脂を含むエポキシ樹
脂100重量部及び(b)70〜100℃で活性化する
加熱硬化型の潜在性硬化剤3〜40重量部を主成分とす
るエポキシ樹脂組成物であって、次の(1)から(3)
を満足することを特徴とするエポキシ樹脂組成物であ
る。 (1)調製後25℃で3週間放置後の粘度上昇が調製直
後の2倍以下である。 (2)100℃以下の温度での10時間以内の1次硬化
で、硬化度が70%以上又はJIS−K−6848、6
850準拠の引張せん断強度(接着強さ)が10MPa
以上である。 (3)130℃以上での2次硬化で硬化物のガラス転移
温度が150℃以上である。
That is, the gist of the present invention is to provide (a) 100 parts by weight of an epoxy resin containing a trifunctional or higher functional epoxy resin and (b) a heat-curable latent resin activated at 70 to 100 ° C. An epoxy resin composition containing 3 to 40 parts by weight of a curable curing agent as a main component, comprising the following (1) to (3):
Is an epoxy resin composition characterized by satisfying the following conditions. (1) The viscosity increase after standing at 25 ° C. for 3 weeks after preparation is not more than twice that immediately after preparation. (2) In primary curing at a temperature of 100 ° C. or less within 10 hours, the degree of curing is 70% or more or JIS-K-6848, 6
Tensile shear strength (bonding strength) based on 850 is 10 MPa
That is all. (3) The glass transition temperature of the cured product in secondary curing at 130 ° C. or higher is 150 ° C. or higher.

【0009】特に、成分(a)の3官能以上のエポキシ樹脂
を含むエポキシ樹脂が、構造式(1)のノボラック型エ
ポキシ樹脂及び/又はテトラグリシジルジアミノジフェ
ニルメタンを含むエポキシ樹脂であり、成分(b)の7
0〜100℃で活性化する加熱硬化型の潜在性硬化剤と
して、アミンアダクト型或いはマイクロカプセル型の潜
在性硬化剤であるエポキシ樹脂組成物である。
In particular, the epoxy resin containing a trifunctional or higher functional epoxy resin of the component (a) is a novolak type epoxy resin of the structural formula (1) and / or an epoxy resin containing tetraglycidyldiaminodiphenylmethane, and the component (b) Of 7
An epoxy resin composition which is an amine adduct type or microcapsule type latent curing agent as a heat curing type latent curing agent activated at 0 to 100 ° C.

【0010】本発明のエポキシ樹脂組成物は、室温での安定
性に優れ、100℃以下の温度での10時間以内の1次
硬化で脱型可能な程度に硬化するものである。100℃
以下の温度で5時間以内であれば成形サイクルが短縮で
き更に好ましい。
[0010] The epoxy resin composition of the present invention has excellent stability at room temperature, and is cured to such an extent that it can be demolded by primary curing within 10 hours at a temperature of 100 ° C or less. 100 ℃
It is more preferable that the molding temperature be within 5 hours at the following temperature because the molding cycle can be shortened.

【0011】室温で安定であるとは、樹脂を調製後25℃で
3週間放置後の粘度上昇が、調製直後の2倍以下である
ということである。25℃で3週間放置後の粘度上昇が
1.5倍以下の場合はワーキングライフが更に長くなり
より好ましい。粘度上昇率は、以下の方法で導かれる。
調製直後の樹脂の40℃での粘度ηiをレオメトリック
社製DSR−200又は同等の性能を有する装置を用い
て、周波数10ラジアン/秒、パラレルプレートで測定
する。次に該樹脂を25℃の恒温器中に3週間放置し、
その後同様にして40℃での粘度ηを測定し、η/ηi
により粘度上昇倍率を求める。
[0011] The term "stable at room temperature" means that the viscosity increase of the resin after standing at 25 ° C for 3 weeks after preparation is not more than twice that of immediately after preparation. When the increase in viscosity after standing at 25 ° C. for 3 weeks is 1.5 times or less, the working life is further increased, which is more preferable. The rate of increase in viscosity is derived by the following method.
The viscosity ηi at 40 ° C. of the resin immediately after preparation is measured with a parallel plate at a frequency of 10 radians / sec using DSR-200 manufactured by Rheometrics or an apparatus having equivalent performance. Next, the resin was left in a thermostat at 25 ° C. for 3 weeks,
Thereafter, the viscosity η at 40 ° C. was measured in the same manner, and η / ηi
To determine the viscosity increase ratio.

【0012】1次硬化で脱型可能な程度に硬化するとは、樹
脂調製直後の樹脂の硬化発熱量(Ei)及び一次硬化さ
せた樹脂の硬化発熱量(E1)をそれぞれ示差走査熱量
計(DSC)で測定し、 硬化度(%)=(Ei−E1)/Ei×100 により硬化度を出し、この硬化度が、70%以上である
ことが1つに指標にできる。
[0012] Curing to the extent that the mold can be removed by primary curing means that the calorific value of the resin immediately after resin preparation (Ei) and the calorific value of the first-cured resin (E1) are respectively measured by a differential scanning calorimeter (DSC). ), And the degree of curing is calculated by the following equation: Curing degree (%) = (Ei−E1) / Ei × 100. One of the indices is that the curing degree is 70% or more.

【0013】あるいは、1次硬化させた樹脂のJIS−K−
6848、6850で定める方法で求めた引張せん断強
度(接着強さ)が10MPa以上であることが指標とで
きる。
[0013] Alternatively, JIS-K-
It can be used as an index that the tensile shear strength (adhesive strength) determined by the method specified in 6848 and 6850 is 10 MPa or more.

【0014】測定用サンプルとしては、まず25×100×
1.5mmのアルミニウム板(JIS H4000に規
定するA2024P)の12.5mmラップ部分をサン
ドペーパー(#240)により研磨し、アセトンで脱脂
する。次にラップ部分に樹脂を均一に塗布し、同様に処
理したアルミニウム板のラップ部分を重ね合わせる。最
後に1kgf/cmの圧力で固定して1次硬化させた
後、室温まで徐冷して作製する。
As a measurement sample, first, 25 × 100 ×
A 12.5 mm wrap portion of a 1.5 mm aluminum plate (A2024P specified in JIS H4000) is polished with sandpaper (# 240) and degreased with acetone. Next, the resin is uniformly applied to the lap portion, and the lap portions of the aluminum plate treated in the same manner are overlapped. Finally, it is fixed at a pressure of 1 kgf / cm 2 , cured first, and then gradually cooled to room temperature.

【0015】更に本発明のエポキシ樹脂組成物は2次硬化に
より高い耐熱性の成形物が得るものであり、130℃以
上の硬化温度で2次硬化して得られる硬化物のガラス転
移温度が150℃以上であるものである。特に150℃
以上(例えば180℃)での2次硬化によりガラス転移
温度が180℃以上である場合には更に耐熱性に優れる
ために好ましい。2次硬化の時間は、特に制限ないが、
10時間以内が好ましく、5時間以内がより好ましい。
[0015] Further, the epoxy resin composition of the present invention obtains a molded article having high heat resistance by secondary curing. The cured product obtained by secondary curing at a curing temperature of 130 ° C or more has a glass transition temperature of 150. C. or higher. Especially 150 ° C
When the glass transition temperature is 180 ° C. or higher due to the secondary curing at the above (for example, 180 ° C.), it is preferable because the heat resistance is further improved. The time for the secondary curing is not particularly limited,
It is preferably within 10 hours, more preferably within 5 hours.

【0016】硬化物のガラス転移温度は以下の方法で測定す
る。レオメトリック社製RDA−700又は同等の性能
を有する粘弾性測定装置を用いて、温度を段階的にステ
ップ状で上げていったときの貯蔵弾性率(G')を各温
度において測定する。昇温は5℃/ステップで行い、各
ステップでは温度安定後1分間その温度で保持してから
測定する。周波数は10ラジアン/秒で測定する。温度
に対してG'の対数値をプロットし、得られたG'曲線の
各接線の交点での温度をガラス転移温度とする。(図1
参照)
The glass transition temperature of the cured product is measured by the following method. Using RDA-700 manufactured by Rheometric Co., Ltd. or a viscoelasticity measuring device having the same performance, the storage elastic modulus (G ′) when the temperature is raised stepwise in steps is measured at each temperature. The temperature is raised at a rate of 5 ° C./step. In each step, the temperature is maintained for 1 minute after the temperature is stabilized before measurement. The frequency is measured at 10 radians / second. The logarithmic value of G ′ is plotted against the temperature, and the temperature at the intersection of each tangent of the obtained G ′ curve is defined as the glass transition temperature. (Figure 1
reference)

【0017】本発明のエポキシ樹脂組成物では成分(a)と
して3官能以上のエポキシ樹脂を含むエポキシ樹脂が用
いられる。これによって、2次硬化後に耐熱性に優れた
成形硬化物が得られるのである。特に成分(a)中に3
官能以上のエポキシ樹脂が40重量%以上より好ましく
は60重量%以上含まれる場合がより好ましい。このよ
うな3官能以上のエポキシ樹脂としてはテトラグリシジ
ルジアミノジフェニルメタン、アミノフェノール型エポ
キシ樹脂、アミノクレゾール型エポキシ樹脂、フェノー
ルノボラック型エポキシ樹脂、クレゾールノボラック型
エポキシ樹脂、下記構造式(1)で示されるエポキシ樹
脂等を例示できる。
In the epoxy resin composition of the present invention, an epoxy resin containing a trifunctional or higher functional epoxy resin is used as the component (a). As a result, a molded cured product having excellent heat resistance after the secondary curing can be obtained. In particular, 3 in component (a)
It is more preferable that the epoxy resin having a functionality of not less than 40% by weight, more preferably 60% by weight or more is contained. Examples of such trifunctional or higher functional epoxy resins include tetraglycidyl diaminodiphenylmethane, aminophenol type epoxy resin, aminocresol type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, and epoxy represented by the following structural formula (1). Resins and the like can be exemplified.

【0018】[0018]

【化2】 Embedded image

【0019】構造式中nは0以上の整数である。In the structural formula, n is an integer of 0 or more.

【0020】特に、構造式(1)で示されるノボラック型エ
ポキシ樹脂及び/又はテトラグリシジルジアミノジフェ
ニルメタンを含むエポキシ樹脂を好適に用いることがで
きる。又、3官能未満のエポキシ樹脂を含んでいても良
く、例えばビスフェノール型エポキシ樹脂、水添ビスフ
ェノール型エポキシ樹脂、ビフェノール型エポキシ樹
脂、ナフタレンジオール型エポキシ樹脂等があげられ
る。耐熱性をできるだけ確保したい場合は、3官能未満
のエポキシ樹脂としても、ビフェノール型エポキシ樹
脂、ナフタレンジオール型エポキシ樹脂等比較的剛直な
骨格構造を有するエポキシを使用すれば、好適な結果を
もたらすことができる。
In particular, a novolak type epoxy resin represented by the structural formula (1) and / or an epoxy resin containing tetraglycidyldiaminodiphenylmethane can be suitably used. It may also contain an epoxy resin having less than three functions, such as a bisphenol-type epoxy resin, a hydrogenated bisphenol-type epoxy resin, a biphenol-type epoxy resin, and a naphthalene diol-type epoxy resin. If it is desired to ensure heat resistance as much as possible, even if the epoxy resin has a relatively rigid skeleton structure such as a biphenol-type epoxy resin or a naphthalene diol-type epoxy resin as an epoxy resin having less than three functions, favorable results can be obtained. it can.

【0021】SO構造を有する例えばビスフェノールS
型エポキシ樹脂や芳香族ジアミンとビスフェノール型エ
ポキシ樹脂の予備反応物を用いた場合には、比較的高い
耐熱性と靱性の硬化物が得られるメリットがあり好まし
い。
For example, bisphenol S having an SO 2 structure
The use of a pre-reacted product of a type epoxy resin or an aromatic diamine and a bisphenol type epoxy resin is advantageous in that a cured product having relatively high heat resistance and toughness can be obtained.

【0022】成分(b)の70〜100℃で活性化する加熱
硬化型の潜在性硬化剤としては、ジシアンジアミド等の
シアノ化合物、シアノ化合物とジクロルフェニルジメチ
ル尿素やフェニルジメチル尿素等のウレア化合物の併用
系の他、アミンアダクト型の硬化剤があげられる。アミ
ンアダクト型の硬化剤としては味の素(株)より“アミ
キュア”の商標で市販されており、例えばアミキュアP
N−23、MY−24をあげることができる。
Examples of the heat-curable latent curing agent which is activated at 70 to 100 ° C. of the component (b) include cyano compounds such as dicyandiamide, cyano compounds and urea compounds such as dichlorophenyldimethylurea and phenyldimethylurea. In addition to the combination system, an amine adduct-type curing agent can be used. As an amine adduct-type curing agent, it is commercially available from Ajinomoto Co. under the trademark "Amicure".
N-23 and MY-24.

【0023】更に、マイクロカプセル型硬化剤があげられ旭
チバ(株)より“ノバキュア”の商標で市販されてい
る。例えばノバキュアHX3721、HX3722をあ
げることができる。
Further, a microcapsule type curing agent is mentioned and is commercially available from Asahi Ciba Co., Ltd. under the trademark "NOVACURE". For example, Novacure HX3721 and HX3722 can be given.

【0024】又、分子内に活性水素部と触媒部位とをもつも
のとして富士化成工業(株)製のフジキュアーFXE−
1000、FXR―1030、エー・シー・アール
(株)社製のACRハードナーH−3615、H−40
70、H−3293、H−3366、H−3849、H
―3670、四国化成工業(株)社製のキュアダクトP
−0505、キュアゾール2E4MZ−CNS、C11
Z−CNS、C11Z−A、等が例示できる。
[0024] Further, Fujicure FXE- manufactured by Fuji Kasei Kogyo Co., Ltd. has an active hydrogen part and a catalyst part in the molecule.
1000, FXR-1030, ACR Hardener H-3615, H-40 manufactured by AC R Co., Ltd.
70, H-3293, H-3366, H-3849, H
-3670, Cure duct P manufactured by Shikoku Chemicals Co., Ltd.
-0505, Cureazole 2E4MZ-CNS, C11
Z-CNS and C11Z-A can be exemplified.

【0025】アミンアダクト型の硬化剤やマイクロカプセル
型硬化剤はエポキシ樹脂と混合しても、室温〜50℃付
近では比較的安定でほとんど反応しないが、70〜10
0℃で活性化し反応が始まるものであり、特に好ましく
使用できる。
The amine adduct-type curing agent and the microcapsule-type curing agent are relatively stable at room temperature to about 50 ° C. and hardly react when mixed with the epoxy resin.
It is activated at 0 ° C. to start the reaction, and is particularly preferably used.

【0026】これらの潜在性硬化剤の添加量としては、成分
(a)のエポキシ樹脂100重量部に対して3〜40重
量部が適当であり、3重量部より少ないと1次硬化が不
十分となる場合が多く、40重量部を越えると室温での
樹脂の安定性が低下し好ましくない。
The addition amount of these latent curing agents is suitably from 3 to 40 parts by weight based on 100 parts by weight of the epoxy resin of the component (a), and if less than 3 parts by weight, the primary curing is insufficient. When the amount exceeds 40 parts by weight, the stability of the resin at room temperature decreases, which is not preferable.

【0027】これらの潜在性硬化剤は単独で用いて良いし、
あるいはこれらの潜在性硬化剤とウレア化合物、シアノ
化合物、ジヒドラジド化合物、酸無水物等を併用して用
いても良い。特に芳香族系ウレア化合物が好ましく、下
記の構造式(2)で表される化合物が好ましい。
These latent curing agents may be used alone,
Alternatively, these latent curing agents may be used in combination with a urea compound, a cyano compound, a dihydrazide compound, an acid anhydride, or the like. Particularly, an aromatic urea compound is preferable, and a compound represented by the following structural formula (2) is preferable.

【0028】[0028]

【化3】 Embedded image

【0029】X1、X2はH又はClを示し、同一であって
も異なっていてもよい。
X1 and X2 represent H or Cl, which may be the same or different.

【0030】又、本発明のエポキシ樹脂組成物には、本発明
の特性を損なうことのない範囲で添加剤を添加すること
ができる。例えば熱可塑性樹脂を溶解して添加すること
は、樹脂のべたつきを抑えたり、プリプレグのタックを
適正レベルに調整したりタックの経時変化を抑制する働
きが得られ好ましい。このような熱可塑性樹脂としては
フェノキシ樹脂、ポリビニルフォルマール、ポリエーテ
ルスルホン、等が例示できる。
[0030] Additives can be added to the epoxy resin composition of the present invention as long as the properties of the present invention are not impaired. For example, it is preferable to dissolve and add a thermoplastic resin, since the effects of suppressing the stickiness of the resin, adjusting the tack of the prepreg to an appropriate level, and suppressing the secular change of the tack are obtained. Examples of such a thermoplastic resin include a phenoxy resin, polyvinyl formal, and polyether sulfone.

【0031】又、硬化物の靱性を向上する目的で微粒子状や
短繊維状の熱可塑性樹脂やゴム成分を添加してもよく、
添加剤としてポリアミド、ポリイミド、ポリウレタン、
ポリエーテルスルホン、等の熱可塑性樹脂やアクリルゴ
ム、ブタジエンゴム、ブチルゴム等のゴム成分やその分
子末端変性品等が例示できる。さらにまた、硬化物の剛
性向上を目的としてタルクやシリカ、スチール等の金属
等の無機成分の微粒子等を添加してもよい。
[0031] For the purpose of improving the toughness of the cured product, a fine particle or short fiber thermoplastic resin or a rubber component may be added.
Polyamide, polyimide, polyurethane,
Examples thereof include thermoplastic resins such as polyethersulfone, rubber components such as acrylic rubber, butadiene rubber, and butyl rubber, and molecular terminal modified products thereof. Furthermore, fine particles of an inorganic component such as talc, silica, metal such as steel, etc. may be added for the purpose of improving the rigidity of the cured product.

【0032】本発明のエポキシ樹脂組成物の用途としては、
特に制限はなく、本エポキシ樹脂組成物の特性が活かせ
るところであればいかなるところにも使用可能である
が、繊維強化複合材料用のマトリックス樹脂として好適
に使用できる。この場合強化繊維としては、特に制限は
なく、炭素繊維、ガラス繊維、高強度有機繊維、金属繊
維、無機繊維等、一般に繊維強化複合材料の強化繊維と
して用いられるもの全てが使用できる。
The use of the epoxy resin composition of the present invention includes:
There is no particular limitation, and it can be used anywhere as long as the properties of the present epoxy resin composition can be utilized. However, it can be suitably used as a matrix resin for a fiber-reinforced composite material. In this case, the reinforcing fibers are not particularly limited, and all fibers generally used as reinforcing fibers of fiber-reinforced composite materials, such as carbon fibers, glass fibers, high-strength organic fibers, metal fibers, and inorganic fibers, can be used.

【0033】特に本発明のエポキシ樹脂組成物において60
℃での粘度が10Pa・sec以上で700Pa・se
c以下である場合には、強化繊維にマトリックス樹脂を
含浸してシート状にしたいわゆるプリプレグ用のマトリ
ックス樹脂として好適に用いることができる。
Particularly, in the epoxy resin composition of the present invention, 60
700Pa · sec when viscosity at 10 ℃ is 10Pa · sec or more
When the value is equal to or less than c, it can be suitably used as a so-called prepreg matrix resin in which reinforcing fibers are impregnated with a matrix resin to form a sheet.

【0034】60℃の粘度が10Pa・secを下回る場合
には、プリプレグのタック、べたつきが強くなりすぎて
好ましくない。一方60℃での粘度が700Pa・se
cを越える場合は、プリプレグのドレープ性が乏しく、
堅くなり過ぎて好ましくない。プリプレグ用のマトリッ
クス樹脂としては60℃での粘度が、30Pa・sec
以上で500Pa・sec以下の範囲であることがより
好ましい。粘度の測定方法は、測定温度が60℃である
以外は、先に述べた通りである。
If the viscosity at 60 ° C. is less than 10 Pa · sec, the prepreg is undesirably too tacky and sticky. On the other hand, the viscosity at 60 ° C. is 700 Pa · se
If it exceeds c, the drape property of the prepreg is poor,
It is not preferable because it is too hard. As a matrix resin for prepreg, the viscosity at 60 ° C. is 30 Pa · sec.
More preferably, the pressure is in the range of 500 Pa · sec or less. The method for measuring the viscosity is as described above, except that the measurement temperature is 60 ° C.

【0035】又、フィルム状にして、樹脂フローを抑え目に
設定したり、又ガラスクロス等に樹脂を含浸するなどす
れば、シート状の接着剤として使用することも可能であ
る。更には添加剤としてマイクロバルーンや発泡剤を加
えて、軽量化副資材として使用することも可能である。
Further, if the film is formed into a film and the resin flow is set to a small value, or if a glass cloth or the like is impregnated with a resin, it can be used as a sheet-like adhesive. Furthermore, a microballoon or a foaming agent may be added as an additive to use as a lightweight auxiliary material.

【0036】[0036]

【実施例】以下実施例により本発明をさらに詳しく説明
する。実施例及び比較例中の化合物の略号は、以下の通
りである。
The present invention will be described in more detail with reference to the following examples. Abbreviations of compounds in Examples and Comparative Examples are as follows.

【0037】Ep604:油化シェル社製、テトラグリシジ
ルジアミノジフェニルメタン「エピコート604」 Tactix742:ダウケミカル社製、固形3官能エ
ポキシ樹脂「TACTIX742」構造式(1)でn=
0であるエポキシ樹脂 Ep1032:油化シェル社製、特殊ノボラック型エポ
キシ樹脂「エピコート1032S50」構造式(1)の
エポキシ樹脂 N740:大日本インキ社製、フェノールノボラック型
エポキシ樹脂「エピクロンN−740」 Ep828:油化シェル社製、液状ビスフェノールA型
エポキシ樹脂「エピコート828」 Ep1001:油化シェル社製、半固形ビスフェノール
A型エポキシ樹脂「エピコート1001」 EXA1514:大日本インキ社製、ビスフェノールS
型エポキシ樹脂「エピクロンEXA−1514」 HX3722:旭チバ社製、潜在性硬化剤「ノバキュア
HX3722」 FXE1000:富士化成社製、潜在性硬化剤「フジキ
ュアー FXE−1000」 PN23:味の素社製、潜在性硬化剤「アミキュア P
N−23」 Dicy:油化シェル社製、ジシアンジアミド「Dic
y7」 PDMU:ビー・ティー・アールジャパン社製、フェニ
ルジメチルウレア「オミキュア94」 PES:住友化学社製、ポリエーテルスルホン「スミカ
エクセルPES 3600P」 DDS:和歌山精化社製、ジアミノジフェニルスルホン
「セイカキュアS」 アエロジル300:日本アエロジル社製、「アエロジル
300」 BF3MEA:橋本化成工業社製 三フッ化ホウ素モノ
メチルアミン
Ep604: Tetraglycidyl diaminodiphenylmethane “Epicoat 604” manufactured by Yuka Shell Co., Ltd. Tactix742: Solid trifunctional epoxy resin “TACTIX742” manufactured by Dow Chemical Company n = n in structural formula (1)
Epoxy resin Ep1032: Epoxy shell resin, special novolak type epoxy resin "Epicoat 1032S50" Epoxy resin of structural formula (1) N740: Dainippon Ink Co., Ltd., phenol novolak type epoxy resin "Epiclon N-740" Ep828 : Yuka Shell Co., Ltd., liquid bisphenol A type epoxy resin "Epicoat 828" Ep1001: Yuka Shell Co., semi-solid bisphenol A type epoxy resin "Epicoat 1001" EXA1514: Dainippon Ink Co., Ltd., bisphenol S
Type epoxy resin "Epiclon EXA-1514" HX3722: manufactured by Asahi Ciba, latent curing agent "NOVACURE HX3722" FXE1000: manufactured by Fuji Chemical Co., Ltd., latent curing agent "Fujicure FXE-1000" PN23: manufactured by Ajinomoto, latent curing Agent "Amicure P"
N-23 "Dicy: Yuka Shell Co., Ltd., dicyandiamide" Dic
y7 "PDMU: manufactured by BTR Japan, phenyldimethylurea" Omicure 94 "PES: manufactured by Sumitomo Chemical Co., Ltd., polyether sulfone" Sumika Excel PES 3600P "DDS: manufactured by Wakayama Seika Co., Ltd., diaminodiphenyl sulfone" Seika Cure S " Aerosil 300: Nippon Aerosil Co., Ltd., "Aerosil 300" BF3MEA: Hashimoto Chemical Industries, Ltd. Boron trifluoride monomethylamine

【0038】(実施例1〜11)表1、2に示した組成(数
値は重量部)で、まず成分(a)を150℃で均一に混
合した。熱可塑性樹脂などの添加剤がある場合には、こ
の時に添加し、溶解或いは混合した。次ぎに50〜60
℃まで冷却し、成分(b)を添加し、均一に混合し、本
発明のエポキシ樹脂組成物を調製した。樹脂組成物の安
定性を前述した方法で評価した。
Examples 1 to 11 The components (a) having the compositions shown in Tables 1 and 2 (the numerical values are parts by weight) were first uniformly mixed at 150 ° C. If there was an additive such as a thermoplastic resin, it was added at this time and dissolved or mixed. Next 50-60
After cooling to ℃, component (b) was added and mixed uniformly to prepare the epoxy resin composition of the present invention. The stability of the resin composition was evaluated by the method described above.

【0039】樹脂組成物を60℃に加熱脱胞後、2mmの厚
みで離型処理を施したガラス板上にキャストし、同様の
処理を施したガラス板で挟みこみ、各1次硬化条件で硬
化した。1次硬化後の硬化度を前述の方法で測定した。
一方、1次硬化後の樹脂の引張せん断強度(接着強さ)
を前述の方法で測定した。
After the resin composition was heated to 60 ° C. and evacuated, it was cast on a glass plate having a thickness of 2 mm and subjected to a mold release treatment, sandwiched between glass plates subjected to the same treatment, and subjected to primary curing conditions. Cured. The degree of curing after the primary curing was measured by the method described above.
On the other hand, tensile shear strength (adhesion strength) of resin after primary curing
Was measured by the method described above.

【0040】更に各2次硬化条件でフリースタンドで熱風炉
中で硬化し、その後、ガラス転移温度を前述した方法で
測定した。更に高温での樹脂物性発現の目安として、高
温(150℃、180℃)でのG’の値を求めた。これ
は複合材料としたときの高温での物性発現の目安になる
ものである。
Further, the composition was cured in a hot air oven in a free stand under each of the secondary curing conditions, and then the glass transition temperature was measured by the method described above. Furthermore, the value of G ′ at a high temperature (150 ° C., 180 ° C.) was determined as a standard for expressing resin properties at a high temperature. This is a measure of the development of physical properties at a high temperature when a composite material is formed.

【0041】(比較例1)表3の組成で130℃でEp60
4にDDSを溶解混合し、すぐに70℃に温度を下げ、
BF3MEAを溶解混合し、樹脂組成物を調製した。本
樹脂組成物は、室温では安定であり、180℃、2時間
での硬化ではガラス転移温度が205℃で良好な耐熱性
を有していたが、100℃×10時間の1次硬化では、
硬化不良であった。
(Comparative Example 1) Ep 60 at 130 ° C with the composition shown in Table 3.
Dissolve and mix DDS into 4, immediately reduce the temperature to 70 ° C,
BF3MEA was dissolved and mixed to prepare a resin composition. The present resin composition was stable at room temperature and had good heat resistance at a glass transition temperature of 205 ° C. when cured at 180 ° C. for 2 hours. However, in primary curing at 100 ° C. × 10 hours,
Poor curing.

【0042】(比較例2)表3の組成でEp828、Ep1
001を120℃で均一に混合した。その後60℃でH
X3722とPDMUを混合し、樹脂組成物を得た。実
施例1と同様にして、樹脂及び樹脂板を評価した。評価
結果を表3に示した。2次硬化後、十分な耐熱性を有し
ていなかった。
(Comparative Example 2) Ep828, Ep1
001 was uniformly mixed at 120 ° C. Then, at 60 ° C, H
X3722 and PDMU were mixed to obtain a resin composition. In the same manner as in Example 1, the resin and the resin plate were evaluated. Table 3 shows the evaluation results. After the secondary curing, it did not have sufficient heat resistance.

【0043】(比較例3)表3の組成でEp1032、Ep
828、Ep1001を120℃で均一に混合した。そ
の後、70℃でPDMU、Dicyを添加し、分散混合
した。実施例1と同様にして、樹脂及び樹脂板を評価し
た。評価結果を表3に示した。2次硬化後、十分な耐熱
性を有していなかった。
(Comparative Example 3) Ep1032, Ep10
828 and Ep1001 were uniformly mixed at 120 ° C. Thereafter, PDMU and Dicy were added at 70 ° C. and dispersed and mixed. In the same manner as in Example 1, the resin and the resin plate were evaluated. Table 3 shows the evaluation results. After the secondary curing, it did not have sufficient heat resistance.

【0044】(実施例12、13)実施例2、5と同様にし
てそれぞれ樹脂組成物を調製した。60℃での樹脂粘度
は、それぞれ80Pa・sec及び40Pa・secで
あった。これらの樹脂組成物を60℃で離型工程紙上に
均一に塗工し、目付80g/mの樹脂フィルムをそれ
ぞれ作製した。次に樹脂フィルム上に三菱レイヨン
(株)製炭素繊維 TR50S−12Lを炭素繊維目付
が150g/mとなるように一方向に引き揃え、並べ
て、更に加熱、圧力をかけることで樹脂を炭素繊維に含
浸させてそれぞれ一方向プリプレグを得た。これらのプ
リプレグは良好なタックとドレープ性を有していた。
Examples 12 and 13 Resin compositions were prepared in the same manner as in Examples 2 and 5. The resin viscosities at 60 ° C. were 80 Pa · sec and 40 Pa · sec, respectively. These resin compositions were uniformly applied on release paper at 60 ° C. to prepare resin films having a basis weight of 80 g / m 2 . Next, on a resin film, carbon fiber TR50S-12L manufactured by Mitsubishi Rayon Co., Ltd. is aligned and arranged in one direction so that the carbon fiber weight is 150 g / m 2, and the resin is further heated and pressed to apply the carbon fiber to the carbon fiber. To obtain unidirectional prepregs. These prepregs had good tack and drape properties.

【0045】これらのプリプレグを25℃で3週間放置し、
プリプレグのタック、ドレープ性の経時変化を触感で評
価した。3週間放置後もタック。ドレープ性の変化は少
なく、良好なライフを有していた。
[0045] These prepregs were left at 25 ° C for 3 weeks,
The change with time of tack and drape of the prepreg was evaluated by touch. Tack after leaving for 3 weeks. There was little change in the drapability, and it had a good life.

【0046】これらプリプレグを一方向に14プライ積層
し、真空バッグ成形で1次硬化した。1次硬化の温度条
件としては、室温から100℃まで1時間で昇温し10
0℃で4時間放置とした。1次硬化後、成形板は、脱型
が十分可能な程度に、且つダイヤモンド湿式カッターで
切断しても割れが生じない程度に十分硬化していた。
G’を測定してガラス転移温度を測定したところ、それ
ぞれ115℃、102℃であった。1次成形板を更に熱
風炉中に放置(フリースタンド)して、2次硬化を実施
した。2次硬化の温度条件は、室温から180℃まで3
時間で昇温し、180℃で4時間維持し更に室温まで3
時間かけて冷却する条件とした。得られた約2mm厚み
の硬化成形板の超音波探傷を実施したところ前者ではボ
イドがほとんどなく、後者では多少ボイド発生が認めら
れたが、これらのプリプレグは良好な成形性を有してい
ることが分かった。硬化板から試験体を切り出し、G’
を測定してガラス転移温度を測定したところ、それぞれ
185℃、186℃であった。ASTM D 2344
に準拠して室温(23℃)、100℃、160℃、18
0℃で層間せん断強度を測定した。その結果を表4に示
した。
[0046] These prepregs were laminated in 14 plies in one direction and primary cured by vacuum bag molding. The temperature condition of the primary curing is as follows.
It was left at 0 ° C. for 4 hours. After the primary curing, the formed plate was sufficiently cured to such an extent that the mold could be released sufficiently and no cracks would occur when cut with a diamond wet cutter.
G ′ was measured to determine the glass transition temperature, which was 115 ° C. and 102 ° C., respectively. The primary molded plate was further left in a hot air oven (free stand) to perform secondary curing. The temperature condition for the secondary curing is 3 from room temperature to 180 ° C.
Temperature, maintain at 180 ° C for 4 hours, and further to room temperature for 3 hours.
The cooling conditions were set over time. When the obtained cured molded plate having a thickness of about 2 mm was subjected to ultrasonic inspection, almost no voids were found in the former and some voids were found in the latter, but these prepregs had good moldability. I understood. Cut out the specimen from the hardened plate and G '
Was measured and the glass transition temperature was 185 ° C. and 186 ° C., respectively. ASTM D 2344
Room temperature (23 ° C), 100 ° C, 160 ° C, 18
The interlayer shear strength was measured at 0 ° C. Table 4 shows the results.

【0047】[0047]

【表1】 [Table 1]

【0048】[0048]

【表2】 [Table 2]

【0049】[0049]

【表3】 [Table 3]

【0050】[0050]

【表4】 [Table 4]

【発明の効果】本発明のエポキシ樹脂組成物は、室温で
安定であって100℃以下の比較的低温(70〜100
℃)で短時間(10時間以内)で1次硬化でき、且つ1
次硬化温度以上の高温(130℃以上)での2次硬化で
得られた硬化物は、ガラス転移温度が高く(150℃以
上)、更に高温での機械物性に優れている。特に耐熱性
が要求される用途での繊維強化複合材料のマトリックス
樹脂として好適に用いることが出来る。
The epoxy resin composition of the present invention is stable at room temperature and relatively low in temperature of 100 ° C. or less (70 to 100 ° C.).
℃) in a short time (within 10 hours)
A cured product obtained by secondary curing at a high temperature (130 ° C. or higher) higher than the secondary curing temperature has a high glass transition temperature (150 ° C. or higher) and further has excellent mechanical properties at a higher temperature. In particular, it can be suitably used as a matrix resin of a fiber-reinforced composite material in applications requiring heat resistance.

【手続補正書】[Procedure amendment]

【提出日】平成12年5月29日(2000.5.2
9)
[Submission date] May 29, 2000 (2005.2
9)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Correction target item name] Brief description of drawings

【補正方法】追加[Correction method] Added

【補正内容】[Correction contents]

【図面の簡単な説明】[Brief description of the drawings]

【図1】 温度と貯蔵弾性率の関係を示す概略図であ
る。
FIG. 1 is a schematic diagram showing the relationship between temperature and storage modulus.

【符号の説明】 G‘:貯蔵弾性率[Explanation of Signs] G ‘: Storage elastic modulus

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三谷 和民 愛知県名古屋市東区砂田橋四丁目1番60号 三菱レイヨン株式会社商品開発研究所内 (72)発明者 若林 巧己 愛知県名古屋市東区砂田橋四丁目1番60号 三菱レイヨン株式会社商品開発研究所内 Fターム(参考) 4J036 AD07 AD08 AD21 AF06 AF08 AF15 AF36 AH07 AH09 DA10 DC18 DC25 DC31 FA05 FB03 FB10 FB13 FB14 FB15 HA07 JA06 JA11  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kazumi Mitani 4-160 Sunadabashi, Higashi-ku, Nagoya City, Aichi Prefecture Inside the Product Development Laboratory of Mitsubishi Rayon Co., Ltd. (72) Inventor Takumi Wakabayashi 4-Chome Sunadabashi, Higashi-ku, Nagoya City, Aichi Prefecture No. 1-60 F term in Mitsubishi Rayon Co., Ltd. Product Development Laboratory (reference) 4J036 AD07 AD08 AD21 AF06 AF08 AF15 AF36 AH07 AH09 DA10 DC18 DC25 DC31 FA05 FB03 FB10 FB13 FB14 FB15 HA07 JA06 JA11

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 (a)3官能以上のエポキシ樹脂を含む
エポキシ樹脂100重量部及び(b)70〜100℃で
活性化する加熱硬化型の潜在性硬化剤3〜40重量部を
主成分とするエポキシ樹脂組成物であって、次の(1)
から(3)を満足することを特徴とするエポキシ樹脂組
成物。 (1)調製後25℃で3週間放置後の粘度上昇が調製直
後の2倍以下である。 (2)100℃以下の温度での10時間以内の1次硬化
で、硬化度が70%以上又はJIS−K−6848、6
850準拠の引張せん断強度(接着強さ)が10MPa
以上である。 (3)130℃以上での2次硬化で硬化物のガラス転移
温度が150℃以上である。
The main components are (a) 100 parts by weight of an epoxy resin containing a trifunctional or higher epoxy resin, and (b) 3 to 40 parts by weight of a heat-curable latent curing agent activated at 70 to 100 ° C. An epoxy resin composition comprising the following (1)
An epoxy resin composition characterized by satisfying (3) to (3). (1) The viscosity increase after standing at 25 ° C. for 3 weeks after preparation is not more than twice that immediately after preparation. (2) In primary curing at a temperature of 100 ° C. or less within 10 hours, the degree of curing is 70% or more or JIS-K-6848, 6
Tensile shear strength (bonding strength) based on 850 is 10 MPa
That is all. (3) The glass transition temperature of the cured product in secondary curing at 130 ° C. or higher is 150 ° C. or higher.
【請求項2】 成分(a)の3官能以上のエポキシ樹脂
を含むエポキシ樹脂が、下記構造式(1)のノボラック
型エポキシ樹脂及び/又はテトラグリシジルジアミノジ
フェニルメタンを含むエポキシ樹脂であることを特徴と
する請求項1記載のエポキシ樹脂組成物。
2. The epoxy resin containing a trifunctional or higher functional epoxy resin as the component (a) is a novolak epoxy resin of the following structural formula (1) and / or an epoxy resin containing tetraglycidyldiaminodiphenylmethane. The epoxy resin composition according to claim 1,
【請求項3】 成分(b)の潜在性硬化剤がアミンアダ
クト型の潜在性硬化剤であることを特徴とする請求項1
記載のエポキシ樹脂組成物。
3. The latent curing agent of component (b) is an amine adduct-type latent curing agent.
The epoxy resin composition according to the above.
【請求項4】 成分(b)の潜在性硬化剤がマイクロカ
プセル型の潜在性硬化剤であることを特徴とする請求項
1記載のエポキシ樹脂組成物。 【化1】 構造式中nは0以上の整数である。
4. The epoxy resin composition according to claim 1, wherein the latent curing agent of the component (b) is a microcapsule-type latent curing agent. Embedded image In the structural formula, n is an integer of 0 or more.
JP2000121162A 2000-04-21 2000-04-21 Manufacturing method of composite material Expired - Fee Related JP4859081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000121162A JP4859081B2 (en) 2000-04-21 2000-04-21 Manufacturing method of composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000121162A JP4859081B2 (en) 2000-04-21 2000-04-21 Manufacturing method of composite material

Publications (3)

Publication Number Publication Date
JP2001302760A true JP2001302760A (en) 2001-10-31
JP2001302760A5 JP2001302760A5 (en) 2007-05-31
JP4859081B2 JP4859081B2 (en) 2012-01-18

Family

ID=18631856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000121162A Expired - Fee Related JP4859081B2 (en) 2000-04-21 2000-04-21 Manufacturing method of composite material

Country Status (1)

Country Link
JP (1) JP4859081B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005014380A (en) * 2003-06-25 2005-01-20 Somar Corp Multi-layer adhesive sheet, material for forming heat exchanger, and heat exchanger
JP2009161751A (en) * 2007-12-12 2009-07-23 Hitachi Chem Co Ltd One-pack epoxy resin composition
CN101962436A (en) * 2010-08-27 2011-02-02 东华大学 High-temperature-resistant modified polyfunctional epoxy matrix resin for advanced composite material and preparation thereof
JP2011057984A (en) * 2009-09-11 2011-03-24 Air Products & Chemicals Inc Epoxy composition with low-temperature curability containing urea curing agent blocked with phenol
US8715543B2 (en) 2011-03-31 2014-05-06 Ocv Intellectual Capital, Llc Microencapsulated curing agent
US9315655B2 (en) 2011-12-08 2016-04-19 Ocv Intellectual Capital, Llc Fiber reinforced resin molding compound and manufacturing method for fiber reinforced resin molded article therefrom
JP2017203142A (en) * 2016-05-13 2017-11-16 三菱ケミカル株式会社 Epoxy resin composition, prepreg, fiber-reinforced composite material, and method for producing the same
JPWO2017179359A1 (en) * 2016-04-12 2019-02-21 三菱瓦斯化学株式会社 Epoxy resin curing agent, epoxy resin composition, carbon fiber reinforced composite material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104672431B (en) * 2015-02-10 2017-11-14 北京化工大学 A kind of tetra functional epoxy resin and preparation method and application
CN108863988B (en) * 2017-05-10 2020-07-24 北京化工大学 Sulfone group-containing four-functional epoxy, and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812861A (en) * 1994-06-30 1996-01-16 Mitsubishi Chem Corp Epoxy resin composition and prepreg
WO1996017006A1 (en) * 1994-12-02 1996-06-06 Toray Industries, Inc. Prepreg and fiber-reinforced composite material
JPH09100358A (en) * 1995-10-04 1997-04-15 Mitsubishi Rayon Co Ltd Epoxy resin composition for carbon-fiber reinforced composite material
JPH09227700A (en) * 1996-02-21 1997-09-02 Toray Ind Inc Preparation of fiber-reinforced composite material
JPH11302507A (en) * 1998-02-17 1999-11-02 Toray Ind Inc Epoxy resin composition for fiber-reinforced composite material, intermediate substrate for fiber-reinforced composite material and fiber-reinforced composite material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812861A (en) * 1994-06-30 1996-01-16 Mitsubishi Chem Corp Epoxy resin composition and prepreg
WO1996017006A1 (en) * 1994-12-02 1996-06-06 Toray Industries, Inc. Prepreg and fiber-reinforced composite material
JPH09100358A (en) * 1995-10-04 1997-04-15 Mitsubishi Rayon Co Ltd Epoxy resin composition for carbon-fiber reinforced composite material
JPH09227700A (en) * 1996-02-21 1997-09-02 Toray Ind Inc Preparation of fiber-reinforced composite material
JPH11302507A (en) * 1998-02-17 1999-11-02 Toray Ind Inc Epoxy resin composition for fiber-reinforced composite material, intermediate substrate for fiber-reinforced composite material and fiber-reinforced composite material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005014380A (en) * 2003-06-25 2005-01-20 Somar Corp Multi-layer adhesive sheet, material for forming heat exchanger, and heat exchanger
DE102004031930B4 (en) * 2003-06-25 2017-08-10 Somar Corp. Heat exchanger material, method of manufacturing a heat exchanger and heat exchanger
JP2009161751A (en) * 2007-12-12 2009-07-23 Hitachi Chem Co Ltd One-pack epoxy resin composition
JP2011057984A (en) * 2009-09-11 2011-03-24 Air Products & Chemicals Inc Epoxy composition with low-temperature curability containing urea curing agent blocked with phenol
CN101962436A (en) * 2010-08-27 2011-02-02 东华大学 High-temperature-resistant modified polyfunctional epoxy matrix resin for advanced composite material and preparation thereof
US8715543B2 (en) 2011-03-31 2014-05-06 Ocv Intellectual Capital, Llc Microencapsulated curing agent
US9725575B2 (en) 2011-03-31 2017-08-08 Ocv Intellectual Capital, Llc Microencapsulated curing agent
US9315655B2 (en) 2011-12-08 2016-04-19 Ocv Intellectual Capital, Llc Fiber reinforced resin molding compound and manufacturing method for fiber reinforced resin molded article therefrom
JPWO2017179359A1 (en) * 2016-04-12 2019-02-21 三菱瓦斯化学株式会社 Epoxy resin curing agent, epoxy resin composition, carbon fiber reinforced composite material
JP7074053B2 (en) 2016-04-12 2022-05-24 三菱瓦斯化学株式会社 Epoxy resin curing agent, epoxy resin composition, carbon fiber reinforced composite material
JP2017203142A (en) * 2016-05-13 2017-11-16 三菱ケミカル株式会社 Epoxy resin composition, prepreg, fiber-reinforced composite material, and method for producing the same

Also Published As

Publication number Publication date
JP4859081B2 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
JP3796176B2 (en) Epoxy resin composition and prepreg using the epoxy resin composition
EP2794735B1 (en) Improvements in or relating to fibre reinforced composites
KR101825247B1 (en) Epoxy resin composition for fiber reinforced composite material, prepreg, and fiber reinforced composite material
JP2006131920A (en) Epoxy resin composition and prepreg made with the epoxy resin composition
JPWO2003040206A1 (en) Epoxy resin composition for fiber reinforced composite material, method for producing fiber reinforced composite material, and fiber reinforced composite material
WO2007125925A1 (en) Epoxy resin composition for fiber-reinforced composite material
WO2018043490A1 (en) Thermosetting resin composition, prepreg, fiber-reinforced plastic molded body and method for producing same
JPH10330513A (en) Prepreg and fiber-reinforced composite material
US11319435B2 (en) Heat-curable resin composition, prepreg, and fiber-reinforced composite material
JP2006265458A (en) Resin composition for prepregs, and prepreg
EP3024649B1 (en) Improvements in or relating to fibre reinforced composites
JP6710972B2 (en) Epoxy resin composition, prepreg, cured resin and fiber reinforced composite material
JP4859081B2 (en) Manufacturing method of composite material
JP2018012797A (en) Epoxy resin composition, prepreg, resin cured product and fiber-reinforced composite material
JP2002145986A (en) Epoxy resin composition and prepreg using the epoxy resin composition
JP5078208B2 (en) Epoxy resin composition and prepreg using the epoxy resin composition
JP2004292594A (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP2006104403A (en) Epoxy resin composition
JP2003073456A (en) Epoxy resin composition and prepreg using the same composition
JP4480854B2 (en) Prepreg and manufacturing method thereof
JP7014153B2 (en) Epoxy resin compositions, prepregs and fiber reinforced composites
JPH072975A (en) Epoxy resin composition and prepreg
JP2018012798A (en) Epoxy resin composition, prepreg, resin cured product and fiber-reinforced composite material
JPS6244772B2 (en)
JPH05310890A (en) Epoxy resin composition and prepreg for composite material prepared therefrom

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20000529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070410

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111028

R151 Written notification of patent or utility model registration

Ref document number: 4859081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees