JPH05310890A - Epoxy resin composition and prepreg for composite material prepared therefrom - Google Patents

Epoxy resin composition and prepreg for composite material prepared therefrom

Info

Publication number
JPH05310890A
JPH05310890A JP4146520A JP14652092A JPH05310890A JP H05310890 A JPH05310890 A JP H05310890A JP 4146520 A JP4146520 A JP 4146520A JP 14652092 A JP14652092 A JP 14652092A JP H05310890 A JPH05310890 A JP H05310890A
Authority
JP
Japan
Prior art keywords
epoxy resin
bisphenol
resin composition
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4146520A
Other languages
Japanese (ja)
Other versions
JP3342710B2 (en
Inventor
Yoshinobu Shiraishi
義信 白石
Kazuya Goto
和也 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP14652092A priority Critical patent/JP3342710B2/en
Publication of JPH05310890A publication Critical patent/JPH05310890A/en
Application granted granted Critical
Publication of JP3342710B2 publication Critical patent/JP3342710B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Epoxy Resins (AREA)

Abstract

PURPOSE:To obtain an epoxy resin compsn. which cures at a low temp. and has an excellent storage stability at room temp. by compounding an epoxy resin with specified amts. of a bisphenol compd., a specific cure acclerator, and a curative. CONSTITUTION:100 pts.wt. epoxy resin (e.g. bisphenol A epoxy resin) is compounded with 5-100 pts.wt. bisphenol compd. (e.g. bisphenol A) or mixture thereof with a monoglycidyl ether of the bisphenol compd., 2-20 pts.wt. epoxy resin cure accelerator of the formula (wherein X1 and X2 are each H, Cl, or Br) (e.g. monochlorophenyl-N,N-dimethylurea), and 2-30 pts.wt. curative of an amine adduct type having an active hydrogen site and a catalytically functional site in the molecule, thereby giving an epoxy resin compsn., which is suitable for producing a prepreg for a fiber-reinforced composite material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、低温で硬化するエポキ
シ樹脂組成物及び該エポキシ樹脂組成物と補強用繊維と
を組み合わせた繊維強化複合材料用プリプレグに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an epoxy resin composition which cures at a low temperature and a prepreg for a fiber reinforced composite material which is a combination of the epoxy resin composition and a reinforcing fiber.

【0002】[0002]

【従来の技術】エポキシ樹脂は硬化後の樹脂の機械的特
性、電気的特性に優れるため広い分野に用いられてい
る。例えば、電子材料用封止剤、塗料・舗装材料、ある
いは接着剤と多岐に渡っている。さらに近年、機械特
性、耐熱性に優れることから繊維強化複合材料用マトリ
ックス樹脂として用いられるようになってきており、航
空機用から釣竿、ゴルフクラブシャフト等の汎用用途ま
で広く用いられている。
2. Description of the Related Art Epoxy resins are used in a wide variety of fields because they have excellent mechanical and electrical properties after curing. For example, it is widely used as a sealant for electronic materials, paints / paving materials, and adhesives. Further, in recent years, it has come to be used as a matrix resin for fiber-reinforced composite materials because of its excellent mechanical properties and heat resistance, and is widely used for various purposes such as aircrafts, fishing rods and golf club shafts.

【0003】この中で一般汎用用途に用いられるプリプ
レグ(マトリックス樹脂と補強繊維とを組み合わせた複
合材料用前駆体)用のマトリックス樹脂に対して、硬化
後の機械特性に優れること、プリプレグの室温における
安定性、取扱い性に優れることが要求される。また成形
サイクルの短縮化、エネルギーコスト低減のため低温硬
化、あるいは短時間硬化のマトリックス樹脂に対する要
求が高まっている。これらに対して室温から80〜90
℃の低温で硬化する樹脂は既にいくらか知られている。
しかしこれらの殆んどは、硬化直前に主剤と硬化剤とを
混合するいわゆるハンドレイアップ用の樹脂組成物であ
り、室温における安定性は悪くその可使時間は、分から
時間のオーダーである。また、混合直後の樹脂粘度が低
く取扱い性、作業環境ともに悪い。これらの欠点を改良
した低温で硬化し、かつ現行120℃硬化マトリックス
樹脂同様ホットメルトフィルム法によるプリプレグ化が
可能なマトリックス樹脂の出現は前記の問題をすべて解
決するものとして大きな期待がかけられている。
Among these, the matrix resin for a prepreg (a precursor for a composite material in which a matrix resin and a reinforcing fiber are combined) which is used for general purposes is excellent in mechanical properties after curing, and the prepreg at room temperature. It is required to have excellent stability and handleability. Further, in order to shorten the molding cycle and reduce the energy cost, there is an increasing demand for low-temperature curing or short-time curing matrix resins. 80 to 90 from room temperature
Some resins are already known which cure at low temperatures of ° C.
However, most of these are so-called hand layup resin compositions in which a main agent and a curing agent are mixed immediately before curing, and their stability at room temperature is poor, and their pot life is on the order of minutes to hours. In addition, the resin viscosity immediately after mixing is low and the handling and working environment are poor. The advent of a matrix resin which has improved these drawbacks and which can be cured at a low temperature and which can be prepregized by a hot melt film method like the existing 120 ° C. curable matrix resin is expected to solve all of the above problems. ..

【0004】これらの要求に対していくつかの発明が行
われている。特開昭61−43616号公報には、エポ
キシ樹脂と2塩基酸ジヒドラジド化合物、尿素化合物及
び融点が50℃以上のアルコール系、フェノール系化合
物との組み合わせが開示されている。ここに用いられて
いるエポキシ樹脂化合物は、30℃での安定性は14日
以上あるが、100℃で2時間という高温長時間の硬化
条件が要求され、90℃以下の温度では硬化不良のため
実用上用いることはできない。
Several inventions have been made to meet these needs. Japanese Patent Application Laid-Open No. 61-43616 discloses a combination of an epoxy resin, a dibasic acid dihydrazide compound, a urea compound and an alcohol-based or phenol-based compound having a melting point of 50 ° C. or higher. The epoxy resin compound used here has stability at 30 ° C. for 14 days or longer, but requires high temperature and long time curing conditions of 100 ° C. for 2 hours, and curing at 90 ° C. or lower causes poor curing. It cannot be used in practice.

【0005】特開平1−129084号公報にはエポキ
シ樹脂、ビスフェノールAとビスフェノールAのモノグ
リシジルエーテルとの反応生成物、及び硬化剤兼硬化促
進剤であるイミダゾール化合物から成る樹脂接着剤が開
示されている。この樹脂組成物も硬化に96℃で2時間
という高温、長時間を要すると共に、この樹脂組成物を
マトリックス樹脂とするCFRP特性は、一方向CFR
P0°方向曲げ強度FS//=1.17GPa,ILS
S=76MPaと、現行120℃硬化の汎用用途に用い
られているCFRP特性FS//=1.76GPa,I
LSS=98GPaと比較して極端に低い。また、本樹
脂組成物は樹脂調整時に粘度上昇が大きく、ホットメル
トフィルム化が困難である。
Japanese Unexamined Patent Publication No. 1-129084 discloses a resin adhesive comprising an epoxy resin, a reaction product of bisphenol A and a monoglycidyl ether of bisphenol A, and an imidazole compound which is a curing agent and a curing accelerator. There is. This resin composition also requires a high temperature of 96 ° C. for 2 hours and a long time, and the CFRP property of using this resin composition as a matrix resin is one-way CFR.
Bending strength in P0 ° direction FS //=1.17 GPa, ILS
S = 76 MPa and CFRP characteristics FS // = 1.76 GPa, I currently used for general-purpose curing at 120 ° C.
Extremely low compared to LSS = 98 GPa. Further, the resin composition has a large increase in viscosity during resin preparation, and it is difficult to form a hot melt film.

【0006】これら以外にも、P−ヒドロキシスチレン
を用いた樹脂組成物(特公昭32−18551号公報、
米国特許3,884,992号明細書)、あるいは三フ
ッ化ホウ素錯体を用いた樹脂組成物(欧州特許公告第1
65,230号公報)等が報告されているが、何れも室
温における安定性が悪かったり、硬化に高温長時間を要
するため、要求を十分に満足するものではない。
In addition to these, a resin composition using P-hydroxystyrene (Japanese Patent Publication No. 32-18551,
US Pat. No. 3,884,992) or a resin composition using a boron trifluoride complex (European Patent Publication No. 1)
No. 65,230), but none of them satisfy the requirements sufficiently because they have poor stability at room temperature or require a high temperature for a long time for curing.

【0007】[0007]

【発明が解決しようとする課題】本発明は、以上に鑑
み、室温における安定性が20日以上を有し、かつ70
〜90℃の温度では実用上十分な特性を有するまで硬化
し、現行汎用CFRP用プリプレグの硬化温度120〜
130℃では30分以内で硬化する樹脂組成物を目的と
している。
In view of the above, the present invention has a stability at room temperature of 20 days or more, and 70
At a temperature of ~ 90 ° C, it cures until it has practically sufficient characteristics, and the curing temperature of the current general-purpose CFRP prepreg is 120 ~.
The purpose is a resin composition that cures within 30 minutes at 130 ° C.

【0008】[0008]

【課題を解決するための手段】本発明は、(a)エポキ
シ樹脂100重量部、(b)ビスフェノール化合物、又
はビスフェノール化合物とビスフェノール化合物のモノ
グリシジルエーテルとの反応生成物5〜100重量部、
(c)下記一般式で示されるエポキシ樹脂硬化促進剤2
〜20重量部
The present invention comprises (a) 100 parts by weight of an epoxy resin, (b) 5 to 100 parts by weight of a bisphenol compound, or a reaction product of a bisphenol compound and a monoglycidyl ether of a bisphenol compound,
(C) Epoxy resin curing accelerator 2 represented by the following general formula
~ 20 parts by weight

【化3】 (d)分子内に活性水素部位と、触媒機能部位を有する
アミンアダクト型硬化剤2〜30重量部からなるエポキ
シ樹脂組成物及び該エポキシ樹脂組成物と強化繊維を組
み合わせた繊維強化複合材料用プリプレグにある。
[Chemical 3] (D) Epoxy resin composition comprising 2 to 30 parts by weight of an amine adduct type curing agent having an active hydrogen site in the molecule and a catalytic function site, and a prepreg for fiber reinforced composite material in which the epoxy resin composition is combined with a reinforcing fiber It is in.

【0009】本発明の樹脂組成物を構成する(a)成分
であるエポキシ樹脂としては、特に制限はなく、ビスフ
ェノールA型エポキシ樹脂、フェノールノボラック型エ
ポキシ樹脂、クレゾールノボラック型エポキシ樹脂、あ
るいはグリシジルアミン型エポキシ樹脂が挙げられる。
これらのうち取扱い性、得られるCFRP特性あるいは
経済性からバランスのとれたビスフェノールA型エポキ
シ樹脂の使用が好ましい。
The epoxy resin which is the component (a) constituting the resin composition of the present invention is not particularly limited, and is a bisphenol A type epoxy resin, a phenol novolac type epoxy resin, a cresol novolac type epoxy resin, or a glycidyl amine type. An epoxy resin can be used.
Among these, it is preferable to use a bisphenol A type epoxy resin that is well balanced in terms of handleability, CFRP characteristics to be obtained, and economy.

【0010】更に取扱い性の点から液状エポキシ樹脂と
固形状エポキシ樹脂を混合し使用上最適な粘度として用
いる。これにはエポキシ当量100〜200を有する液
状エポキシ樹脂と、エポキシ当量400〜4,000を
有する固形エポキシ樹脂との混合物が適する。又、前記
エポキシ樹脂をゲル化しない範囲でアミン化合物、ある
いは酸無水物と反応させた生成物を用いることも本発明
のより好ましい実施の態様である。
Further, from the viewpoint of handleability, a liquid epoxy resin and a solid epoxy resin are mixed to obtain the optimum viscosity for use. A mixture of a liquid epoxy resin having an epoxy equivalent of 100 to 200 and a solid epoxy resin having an epoxy equivalent of 400 to 4,000 is suitable for this. Further, it is a more preferable embodiment of the present invention to use a product obtained by reacting the epoxy resin with an amine compound or an acid anhydride within a range not gelling.

【0011】成分(b)であるビスフェノール化合物と
は、ビスフェノールA、ビスフェノールF、ビスフェノ
ールSを示し、これらは単独で用いても、混合して用い
てもよい。また、これらビスフェノール化合物とビスフ
ェノール化合物のモノグリシジルエーテルとの反応生成
物を用いることがより好ましい。この反応生成物は原料
化合物を混合し、トリフェニルフォスフィン等の触媒を
用いて100℃、1時間加熱することにより容易に合成
することが可能である。またダウ・ケミカル・カンパニ
ーからDEH−85としてビスフェノールAとビスフェ
ノールAモノグリシジルエーテルの反応物が上市されて
いる。本発明ではこれら化合物を5〜100重量部の範
囲で用いる。5重量部以下の添加量では得られる硬化樹
脂の伸度が低く、得られるCFRP特性にも悪影響を与
える。100重量部以上では樹脂組成物の低温での硬化
性能が悪くなり好ましくない。
The bisphenol compound as the component (b) means bisphenol A, bisphenol F and bisphenol S, and these may be used alone or in combination. Further, it is more preferable to use a reaction product of the bisphenol compound and a monoglycidyl ether of the bisphenol compound. This reaction product can be easily synthesized by mixing the raw material compounds and heating at 100 ° C. for 1 hour using a catalyst such as triphenylphosphine. Also, a reaction product of bisphenol A and bisphenol A monoglycidyl ether is marketed as DEH-85 by Dow Chemical Company. In the present invention, these compounds are used in the range of 5 to 100 parts by weight. When the amount added is 5 parts by weight or less, the elongation of the obtained cured resin is low and the CFRP characteristics obtained are also adversely affected. If the amount is 100 parts by weight or more, the curing performance of the resin composition at low temperature is deteriorated, which is not preferable.

【0012】成分(c)の硬化促進剤である尿素化合物
は、2〜20重量部の範囲で用いられる。2重量部以下
では樹脂硬化性が悪くなり、20重量部以上では樹脂組
成物の室温安定性が悪くなり好ましくない。4〜10重
量部の範囲がより好ましい。
The urea compound which is the curing accelerator of the component (c) is used in the range of 2 to 20 parts by weight. If it is 2 parts by weight or less, the resin curability is deteriorated, and if it is 20 parts by weight or more, the room temperature stability of the resin composition is deteriorated, which is not preferable. The range of 4 to 10 parts by weight is more preferable.

【0013】成分(d)で示されるアミンアダクト型の
硬化剤兼硬化促進剤は、市販のエポキシ樹脂とアミン化
合物とを反応させた化合物であり、アミン化合物を単独
で用いるよりも得られる樹脂組成物の安定性が格段に向
上する。このアミンアダクトの添加量は2〜30重量部
の範囲である。さらに2〜10重量部の範囲がより好ま
しい。添加量が2重量部以下では硬化性が悪く、30重
量部以上では得られる樹脂組成物の室温安定性が悪く好
ましくない。
The amine adduct type curing agent / curing accelerator represented by the component (d) is a compound obtained by reacting a commercially available epoxy resin with an amine compound, and is a resin composition obtained by using the amine compound alone. The stability of the object is significantly improved. The amount of this amine adduct added is in the range of 2 to 30 parts by weight. Further, the range of 2 to 10 parts by weight is more preferable. If the addition amount is 2 parts by weight or less, the curability is poor, and if it is 30 parts by weight or more, the room temperature stability of the obtained resin composition is poor, which is not preferable.

【0014】このような目的に合致する化合物の例とし
ては、ビスフェノールA型エポキシ樹脂、例えばEp8
28および活性水素部位を有する化合物、例えば2,
4,6−トリス(ジメチルアミノメチル)フェノールと
を100℃で1時間加熱して得られる反応生成物が挙げ
られる。この場合、反応させるエポキシ樹脂と、活性水
素部位を有する化合物の比は、エポキシ樹脂1モルに対
して活性水素部位を有する化合物を0.1〜1.5モル
の範囲で用いる。この量が0.1モル以下では、得られ
る樹脂組成物の硬化性が悪くなり、1.5モル以上で
は、未硬化樹脂安定性が悪化し、好ましくない。
An example of a compound which meets such an object is a bisphenol A type epoxy resin such as Ep8.
28 and compounds having an active hydrogen site, eg 2,
A reaction product obtained by heating 4,6-tris (dimethylaminomethyl) phenol at 100 ° C. for 1 hour can be mentioned. In this case, the ratio of the epoxy resin to be reacted with the compound having an active hydrogen site is such that the compound having an active hydrogen site is 0.1 to 1.5 mol per mol of the epoxy resin. If this amount is 0.1 mol or less, the curability of the resulting resin composition will be poor, and if it is 1.5 mol or more, the stability of the uncured resin will be poor, such being undesirable.

【0015】エポキシ樹脂としては前記の成分(a)に
挙げたエポキシ樹脂と同様なものが挙げられる。また、
活性水素部位を有する化合物としては、前記の2,4,
6−トリス(ジメチルアミノメチル)フェノールのほ
か、2−(ジメチルアミノメチル)フェノール、2−ジ
メチルアミノエタノールなどの−OH及び3級アミンを
有する化合物、あるいは2−フェニル−1−シアノエチ
ルイミダゾール、2−メチル−3−シアノエチルイミダ
ゾール等のイミダゾール類が挙げられる。また、味の素
(株)よりアミキュアーMY−24,PN−23、とし
て市販されている。
As the epoxy resin, the same epoxy resin as the above-mentioned component (a) can be used. Also,
Examples of the compound having an active hydrogen site include 2,4,
In addition to 6-tris (dimethylaminomethyl) phenol, 2- (dimethylaminomethyl) phenol, 2-dimethylaminoethanol, and other compounds having -OH and a tertiary amine, or 2-phenyl-1-cyanoethylimidazole, 2- Examples include imidazoles such as methyl-3-cyanoethylimidazole. Further, it is commercially available from Ajinomoto Co., Inc. as Amicure MY-24, PN-23.

【0016】これら(b)〜(d)で示される硬化剤
は、単独では既に使用されており、それ相応の性能を有
する樹脂組成物が得られている。しかし、本発明の目的
である低温で硬化し、しかも室温における貯蔵安定性に
優れた樹脂組成物は得られていない。本発明のここに示
した3つの硬化剤を用いることによりはじめてこれらの
目的が達成できたのであり、この硬化剤及び硬化促進剤
の選択、組み合わせが本発明の特徴とするところであ
る。
The curing agents represented by (b) to (d) have already been used alone, and a resin composition having a performance corresponding thereto has been obtained. However, a resin composition which is the object of the present invention and which is cured at a low temperature and has excellent storage stability at room temperature has not been obtained. These objects can be achieved only by using the three curing agents shown in the present invention, and the selection and combination of the curing agent and the curing accelerator are the features of the present invention.

【0017】以上、説明した樹脂組成物は、補強用繊維
を組合わせて繊維強化複合材料用プリプレグを与える。
エポキシ樹脂組成物と組合わせる補強繊維としては、炭
素繊維、ガラス繊維、アラミド繊維等が挙げられるが、
特に制限されるものではない。
The resin composition described above is combined with reinforcing fibers to give a prepreg for a fiber-reinforced composite material.
Examples of the reinforcing fiber to be combined with the epoxy resin composition include carbon fiber, glass fiber, and aramid fiber,
It is not particularly limited.

【0018】本発明のエポキシ樹脂組成物は、前述のご
とく優れた安定性を有するため樹脂を加熱して離型紙上
に樹脂の薄膜を形成するいわゆるホットメルトフィルム
が安定に調整可能である。このため従来の低温硬化樹脂
では不可能であったホットメルト法によるCFRP用前
駆体であるプリプレグの製造が可能となる。このことは
これまでの低温硬化樹脂において一般的であったハンド
レイアップ法、あるいは溶剤を用いるラッカー法によら
ないプリプレグの製造が可能となり、経済的にも作業環
境的にも非常に有利となる。さらに本発明の樹脂組成物
を用いて得られるプリプレグの室温安定性20日以上を
有し、さらにこのプリプレグを用いたCFRP特性は現
行120℃硬化品と同等の値が得られる。
Since the epoxy resin composition of the present invention has excellent stability as described above, a so-called hot melt film in which the resin is heated to form a thin film of the resin on the release paper can be stably prepared. For this reason, it becomes possible to manufacture a prepreg which is a precursor for CFRP by the hot melt method, which is impossible with the conventional low temperature curable resin. This makes it possible to produce a prepreg that does not require the hand lay-up method or the lacquer method using a solvent, which has been common in low-temperature curable resins up to now, which is very advantageous in terms of economy and working environment. .. Further, the room temperature stability of the prepreg obtained by using the resin composition of the present invention is 20 days or longer, and the CFRP characteristics using this prepreg have the same value as the current 120 ° C. cured product.

【0019】本発明のエポキシ樹脂組成物は、70〜9
0℃と言う低温で2〜6時間で実用上十分な程度に硬化
し、120〜140℃の温度では30分以内という極め
て短時間で実用上十分な程度に硬化する。また本発明の
樹脂組成物を用いたホットメルトフィルム法によるCF
RP用プリプレグは、室温で20日以上という十分な貯
蔵安定性を有しており、得られるCFRP特性も現行1
20℃硬化品と同等の性能が得られる。
The epoxy resin composition of the present invention contains 70 to 9
It cures to a practically sufficient degree at a low temperature of 0 ° C. in 2 to 6 hours, and at a temperature of 120 to 140 ° C. in an extremely short time of 30 minutes or less to a practically sufficient degree. In addition, the CF obtained by the hot melt film method using the resin composition of the present invention
The prepreg for RP has sufficient storage stability of 20 days or more at room temperature, and the obtained CFRP property is 1
The same performance as the 20 ° C cured product can be obtained.

【0020】このように、本発明の樹脂組成物は、生産
上、経済上、あるいは近年特に問題となっている作業環
境の問題においても、従来の低温硬化エポキシ樹脂組成
物に比べて大きな特徴を有している。このためこれまで
硬化条件、プリプレグの室温安定性、あるいは作業環境
上使用されていなかった分野への用途が期待される。
As described above, the resin composition of the present invention has a great feature as compared with the conventional low temperature curing epoxy resin composition even in the problems of production, economy, and working environment which have been particularly problematic in recent years. Have Therefore, it is expected to be used in fields that have not been used so far in curing conditions, room temperature stability of prepreg, or working environment.

【0021】[0021]

【実施例】以下実施例により本発明をさらに詳しく説明
する。実施例中の化合物の略号は以下の通りである。 Ep.1001;ビスフェノールA型固形エポキシ樹脂
(油化シェル社製) Ep.828;ビスフェノールA型液状エポキシ樹脂
(油化シェル社製) Ep.152;ビスフェノールノボラック型エポキシ樹
脂(油化シェル社製) LCB−100;Ep.828とジアミノジフェニルス
ルフォン(DDS)との反応物 ELM−120;m−アミノフェノールトリグリシジル
誘導体(住友化学社製) DEH−85;ビスフェノールAとビスフェノールAモ
ノグリシジルエーテルとの反応生成物(ダウケミカル社
製) DCMU;3,4−ジクロルフェニル−N,N−ジメチ
ル尿素 MCMU;モノクロルフェニル−N,N−ジメチル尿素 PMU;フェニル−N,N−ジメチル尿素 MY−24,PN−23;アミンアダクト(味の素社
製)
The present invention will be described in more detail with reference to the following examples. The symbol of the compound in an Example is as follows. Ep. 1001; Bisphenol A type solid epoxy resin (manufactured by Yuka Shell Co., Ltd.) Ep. 828; Bisphenol A type liquid epoxy resin (made by Yuka Shell Co., Ltd.) Ep. 152; Bisphenol novolac type epoxy resin (produced by Yuka Shell Co., Ltd.) LCB-100; Ep. Reaction product of 828 and diaminodiphenyl sulfone (DDS) ELM-120; m-aminophenol triglycidyl derivative (Sumitomo Chemical Co., Ltd.) DEH-85; Reaction product of bisphenol A and bisphenol A monoglycidyl ether (Dow Chemical Co., Ltd. Manufactured) DCMU; 3,4-dichlorophenyl-N, N-dimethylurea MCMU; monochlorophenyl-N, N-dimethylurea PMU; phenyl-N, N-dimethylurea MY-24, PN-23; amine adduct ( (Ajinomoto Co.)

【0022】実施例及び比較例中の物性測定方法は以下
の通りである。 (1)硬化樹脂3点曲げ試験 所定の硬化条件で硬化した長さ600mm、幅8mm、
厚さ2mmの板状試験片を用い、スパン間隔32mmの
支点(先端半径3.2mm)に置いた試験片の中央を先
端半径3.2mmの圧子で押さえ、クロスヘッド速度2
mm/分で3点曲げ試験を実施し、下記式により各特性
を計算した。 曲げ強度FS=3PL/2WT2 (kg/mm2 ) 曲げ弾性率FM=L3 3 /4WT3 a(kg/m
2 ) 曲げ伸度ε=6Tl(CHS)x100/L2 (CS)
(%) なお式中の略号は以下に示す値である。 P;破断最大荷重(kg) L;スパン長(mm) W;試験片幅(mm) T;試験片厚み(mm) a;ある一定歪(mm) P′;歪aにおける荷重(kg) l;破断までのチャートの読み(mm) (CS);チャートスピード(mm/min) (CHS);クロスヘッドスピード(mm/min)
The methods of measuring physical properties in Examples and Comparative Examples are as follows. (1) Cured resin three-point bending test Length 600 mm, width 8 mm, cured under prescribed curing conditions
Using a plate-shaped test piece with a thickness of 2 mm, press the center of the test piece placed on a fulcrum with a span interval of 32 mm (tip radius 3.2 mm) with an indenter with a tip radius 3.2 mm, and cross head speed 2
A 3-point bending test was performed at mm / min, and each characteristic was calculated by the following formula. Bending strength FS = 3PL / 2WT 2 (kg / mm 2 ) Bending elastic modulus FM = L 3 P 3 / 4WT 3 a (kg / m
m 2 ) Flexural elongation ε = 6Tl (CHS) × 100 / L 2 (CS)
(%) The abbreviations in the formula are the values shown below. P: Maximum load at break (kg) L: Span length (mm) W: Specimen width (mm) T: Specimen thickness (mm) a: Certain strain (mm) P ': Load at strain a (kg) l Reading of chart until breakage (mm) (CS); chart speed (mm / min) (CHS); crosshead speed (mm / min)

【0023】(2)硬化樹脂粘弾性特性 長さ60mm、幅10mm、厚さ2mmの板状試験片を
用いて下記条件で樹脂粘弾性特性と測定した。 機種;RD−7700(レオメトリック製) 測定条件;Heating Rate:2℃/min. Strain:0.5% Rate:1Hz 測定温度範囲:50℃〜 (3)CFRP層間せん断強度(ILSS) 所定の条件で硬化した厚さ2mmのCFRPを長さ15
mm、幅10mmに切断し、スパン間隔を8mmにした
以外は樹脂曲げ試験と同様にして試験を実施し、次式に
よりILSSを計算した。 ILSS=3P/4WT(kg/mm2 ) (4)CFRP0°曲げ強度(FS//) 所定の条件で硬化した厚さ2mmのCFRPを長さ10
0m、幅10mmに切断し、スパン間隔を80mmにし
た以外は樹脂曲げ試験と同様にして試験を実施し、次式
によりFS//を計算した。 FS//=3PL/2WT2 (kg/mm2 ) (5)CFRP90°曲げ強度(FS⊥) 所定の条件で硬化した厚さ2mmのCFRPを長さ60
mm、幅10mmに切断し、スパン間隔を32mmにし
た以外は樹脂曲げ試験と同様にして試験を実施し、次式
によりSF⊥を計算した。 SF⊥=3PL/2WT2 (kg/mm2
(2) Cured Resin Viscoelastic Property A resin viscoelastic property was measured under the following conditions using a plate test piece having a length of 60 mm, a width of 10 mm and a thickness of 2 mm. Model: RD-7700 (manufactured by Rheometrics) Measuring conditions: Heating Rate: 2 ° C / min. Strain: 0.5% Rate: 1 Hz Measurement temperature range: 50 ° C. to (3) CFRP interlaminar shear strength (ILSS) CFRP having a thickness of 2 mm and cured under predetermined conditions has a length of 15
mm, width 10 mm, the test was carried out in the same manner as the resin bending test except that the span interval was 8 mm, and ILSS was calculated by the following formula. ILSS = 3P / 4WT (kg / mm 2 ) (4) CFRP 0 ° bending strength (FS //) CFRP having a thickness of 2 mm and cured under predetermined conditions has a length of 10
The test was carried out in the same manner as in the resin bending test except that the test piece was cut into 0 m and a width of 10 mm, and the span interval was set to 80 mm, and FS // was calculated by the following formula. FS // = 3PL / 2WT 2 (kg / mm 2 ) (5) CFRP 90 ° bending strength (FS⊥) A 2 mm thick CFRP cured under prescribed conditions to a length of 60
mm and width 10 mm, the test was carried out in the same manner as the resin bending test except that the span interval was 32 mm, and SF⊥ was calculated by the following formula. SF⊥ = 3PL / 2WT 2 (kg / mm 2 )

【0024】〔実施例1〕エポキシ樹脂Ep.1001
を30重量部、Ep.828を70重量部及びフェノー
ル系硬化剤DEH−85を60重量部を、90℃に加熱
したニーダーに投入して均一に混合した。ニーダー加熱
温度を55℃に冷却、樹脂温度も低下したことを確認し
た後、DCMU10重量部、MY−24を5重量部添加
して混合し均一な樹脂組成物を得た。この樹脂組成物を
厚さ2mmのテフロン板をスペーサーとするガラスセル
の間に流し込んで所定の温度、時間で加熱硬化して透明
な硬化樹脂を得た。この樹脂板を用いて、3点曲げ試
験、粘弾性測定を実施した。結果を表1に示す。
Example 1 Epoxy resin Ep. 1001
30 parts by weight, Ep. 70 parts by weight of 828 and 60 parts by weight of a phenolic curing agent DEH-85 were put into a kneader heated to 90 ° C. and uniformly mixed. After cooling the kneader heating temperature to 55 ° C. and confirming that the resin temperature was also lowered, 10 parts by weight of DCMU and 5 parts by weight of MY-24 were added and mixed to obtain a uniform resin composition. This resin composition was poured into a glass cell having a Teflon plate having a thickness of 2 mm as a spacer and heat-cured at a predetermined temperature for a period of time to obtain a transparent cured resin. Using this resin plate, a three-point bending test and viscoelasticity measurement were carried out. The results are shown in Table 1.

【0025】[0025]

【表1】 [Table 1]

【0026】〔実施例2〕実施例1で調整した樹脂組成
物を50〜55℃に加熱軟化し、離型紙上に薄膜を形成
させてホットメルトフィルムを作成した。このフィルム
をドラムに巻き付け、一方向に引き揃えた炭素繊維(三
菱レイヨン社製、パイロフィルTR−40)を70℃で
約20秒加熱含浸してプリプレグを作成した。得られた
プリプレグは適当な粘着性と硬さを有しており、25℃
で1ケ月保管した後も粘着性や硬さに変化は少なく良好
な貯蔵安定性を有していた。なお、粘着性及び、硬さの
評価は、直径8mmの鉛筆にプリプレグを巻き付け、プ
リプレグの割れや巻き戻りが起こらないことを確認し、
良否の判断を行った。
Example 2 The resin composition prepared in Example 1 was heated and softened at 50 to 55 ° C. to form a thin film on a release paper to prepare a hot melt film. This film was wound around a drum, and carbon fibers (Pyrofil TR-40, manufactured by Mitsubishi Rayon Co., Ltd.) aligned in one direction were heat impregnated at 70 ° C. for about 20 seconds to prepare a prepreg. The obtained prepreg has suitable tackiness and hardness,
Even after storage for 1 month, there was little change in tackiness and hardness and it had good storage stability. The adhesiveness and hardness were evaluated by wrapping the prepreg around a pencil with a diameter of 8 mm and confirming that the prepreg was not cracked or rewound.
I made a pass / fail judgment.

【0027】さらにこのプリプレグを一方向に積層し、
成形後の炭素繊維の含有量が60体積%になるように調
整した後、真空成形法を用いて80℃で5時間加熱して
CFRPを得た。得られたCFRPの曲げ特性と層間せ
ん断強度を測定した結果はFS//=179kg/mm
2 、ILSS=8.9kg/mm2 、及びFS⊥=1
3.9kg/mm2 であった。
Further, the prepregs are laminated in one direction,
After the carbon fiber content after molding was adjusted to 60% by volume, it was heated at 80 ° C. for 5 hours using a vacuum molding method to obtain CFRP. The bending characteristics and the interlaminar shear strength of the obtained CFRP were measured and found to be FS // = 179 kg / mm.
2 , ILSS = 8.9 kg / mm 2 , and FS⊥ = 1
It was 3.9 kg / mm 2 .

【0028】〔実施例3〕〔比較例1〕 DEH−85の量を表2の如く変えた外は実施例1、及
び実施例2と同様にして樹脂組成物を調整、硬化して硬
化樹脂、及びCFRPを作成した。樹脂CFRPの各機
械特性を評価した。得られた結果を表2に併せて示し
た。硬化条件はすべて80℃で5時間とした。表から明
らかなように本発明の組成を用いると硬化樹脂、CFR
Pとも高い物性を示すことがわかる。
[Example 3] [Comparative Example 1] A resin composition was prepared and cured in the same manner as in Example 1 and Example 2 except that the amount of DEH-85 was changed as shown in Table 2. , And CFRP were created. Each mechanical property of the resin CFRP was evaluated. The obtained results are also shown in Table 2. All curing conditions were 80 ° C. for 5 hours. As is clear from the table, when the composition of the present invention is used, the cured resin, CFR
It can be seen that P exhibits high physical properties.

【0029】[0029]

【表2】 [Table 2]

【0030】〔実施例4〕(b)成分であるDEH−8
5を60重量部と一定にし、樹脂成分を表3の如く変え
た外は実施例1、及び2と同様にして樹脂組成物を調
整、硬化して、硬化樹脂、及びCFRPを作成した。硬
化樹脂、CFRPを切断して前述の方法に準じて、曲げ
試験を実施した。得られた結果を表3、表4に併せて示
した。硬化条件はすべて80℃で5時間とした。表中の
樹脂組成を用いたプリプレグはいずれも1ケ月以上の室
温貯蔵安定性を有していた。また、表からわかるように
本発明の樹脂組成物を用いると80℃で十分硬化し、得
られる樹脂、CFRP物性は現行120℃硬化樹脂を用
いたものと同等の値を示す。
[Example 4] DEH-8 which is the component (b)
A resin composition was prepared and cured in the same manner as in Examples 1 and 2 except that the amount of 5 was kept constant at 60 parts by weight and the resin components were changed as shown in Table 3, to prepare a cured resin and CFRP. The cured resin and CFRP were cut and a bending test was carried out according to the above method. The obtained results are also shown in Tables 3 and 4. All curing conditions were 80 ° C. for 5 hours. All the prepregs using the resin compositions in the table had room temperature storage stability of 1 month or more. Further, as can be seen from the table, when the resin composition of the present invention is used, it is sufficiently cured at 80 ° C., and the physical properties of the resin and CFRP obtained are the same as those using the current 120 ° C. cured resin.

【0031】[0031]

【表3】 [Table 3]

【0032】[0032]

【表4】 [Table 4]

【0033】〔比較例2〕実施例1の樹脂組成物からM
Y−24を抜いた樹脂組成物を調整した。樹脂の安定性
は高く作業は順調に進んだ。しかし、100℃以下では
硬化せず130℃1時間加熱で漸く硬化した。得られた
樹脂の機械特性は本発明の樹脂組成物と同等であったが
硬化条件において劣り、生産的にも経済的にも明らかに
不利である。
Comparative Example 2 From the resin composition of Example 1, M
A resin composition excluding Y-24 was prepared. The stability of the resin was high and the work went smoothly. However, it did not cure at 100 ° C. or lower and was gradually cured by heating at 130 ° C. for 1 hour. The mechanical properties of the obtained resin were equivalent to those of the resin composition of the present invention, but they were inferior in curing conditions and were clearly disadvantageous both in terms of productivity and economy.

【0034】〔比較例3〕DCMUを用いない外は実施
例1と同様にして樹脂組成物を調整した。この樹脂組成
物は70〜90℃では硬化しないか硬化しても硬化樹脂
の曲げ伸度が極端に低く実用上問題であった。また硬化
するためにはMY−24 25重量部以上が必要であ
り、樹脂安定性が悪くなり好ましくない。
Comparative Example 3 A resin composition was prepared in the same manner as in Example 1 except that DCMU was not used. This resin composition did not cure at 70 to 90 ° C., or the cured resin had an extremely low flexural elongation even when cured, which was a problem in practice. Further, 25 parts by weight or more of MY-24 is required for curing, which is not preferable because the resin stability is deteriorated.

【0035】〔実施例5〕2,4,6−トリス(ジメチ
ルアミノメチル)フェノール、1モル(265g)およ
び、エポキシ樹脂Ep.828 1モル(380g)を
100℃で2時間反応させて、反応物を得た(d−
1)。実施例1のMY−24の代わりに、本d−1を5
重量部添加した以外は実施例1と同様にして2mm厚の
樹脂を得た。80℃×5時間で硬化した樹脂の3点曲げ
試験を実施し、FS=15.8kg/mm2 、FM=3
70kg/mm2 、ε=7.1%を得た。また、本樹脂
組成物を用いて、実施例2と同様にして80℃×5時間
で硬化して作成した一方向CFRPは、FS//=17
2kg/mm2 、ILSS=8.8kg/mm2 および
FS⊥=12.9kg/mm2 という優れた値を有して
いた。
Example 5 2,4,6-Tris (dimethylaminomethyl) phenol, 1 mol (265 g) and epoxy resin Ep. 828 1 mol (380 g) was reacted at 100 ° C. for 2 hours to obtain a reaction product (d-
1). In place of MY-24 of Example 1, this d-1 was replaced by 5
A resin having a thickness of 2 mm was obtained in the same manner as in Example 1 except that parts by weight were added. The resin cured at 80 ° C. for 5 hours was subjected to a 3-point bending test, and FS = 15.8 kg / mm 2 and FM = 3.
70 kg / mm 2 , ε = 7.1% was obtained. In addition, a unidirectional CFRP prepared by curing the resin composition in the same manner as in Example 2 at 80 ° C. for 5 hours was FS // = 17.
2 kg / mm 2, and had a ILSS = 8.8kg / mm 2 and FS⊥ = excellent value of 12.9 kg / mm 2.

【0036】〔実施例6〕実施例5と同様にして、2−
(ジメチルアミノメチル)フェノール1モル、エポキシ
樹脂Ep.828を1モルを反応させて、反応生成物d
−2を得た。実施例1のMY−24の代わりに、本反応
生成物d−2を4重量部添加した以外は同様にして2m
m厚樹脂板を得た。80℃×5時間で硬化した樹脂の3
点曲げ試験を実施し、FS=16.1kg/mm2 、F
M=366kg/mm2 、ε=7.3%を得た。
[Embodiment 6] In the same manner as in Embodiment 5,
(Dimethylaminomethyl) phenol 1 mol, epoxy resin Ep. 1 mol of 828 is reacted to give a reaction product d
-2 was obtained. 2 m in the same manner except that 4 parts by weight of this reaction product d-2 was added instead of MY-24 of Example 1.
An m-thick resin plate was obtained. 3 of resin cured at 80 ℃ for 5 hours
A point bending test was carried out, and FS = 16.1 kg / mm 2 , F
M = 366 kg / mm 2 and ε = 7.3% were obtained.

【0037】また、本樹脂組成物をマトリックス樹脂と
するプリプレグを実施例2と同様にして作成した。80
℃×5時間で硬化したCFRPは、FS//=178k
g/mm2 、ILSS=8.9kg/mm2 、およびF
S⊥=13.1kg/mm2という優れた値を有してい
た。
A prepreg containing the resin composition as a matrix resin was prepared in the same manner as in Example 2. 80
CFRP cured at ℃ × 5 hours, FS // 178k
g / mm 2 , ILSS = 8.9 kg / mm 2 , and F
It had an excellent value of S⊥ = 13.1 kg / mm 2 .

【0038】〔実施例7〕(b)成分であるDEH−8
5を60重量部と一定にし、樹脂成分を表5の如く変え
た以外は実施例1、及び2と同様にして樹脂組成物を調
整、硬化して、硬化樹脂及びCFRPを作成した。硬化
樹脂およびCFRPを切断して、前述の方法により曲げ
試験を実施して、得られた結果を表5に示した。硬化は
すべて80℃で3時間加熱して行なった。
[Example 7] DEH-8 which is the component (b)
A resin composition was prepared and cured in the same manner as in Examples 1 and 2 except that the amount of 5 was kept constant at 60 parts by weight and the resin components were changed as shown in Table 5, to prepare a cured resin and CFRP. The cured resin and CFRP were cut, and a bending test was performed by the method described above. The obtained results are shown in Table 5. All curing was performed by heating at 80 ° C. for 3 hours.

【0039】[0039]

【表5】 [Table 5]

【0040】表5に示した樹脂組成物は、室温で3週間
と実用上十分な安定性を有している。また、表5からわ
かるように、本樹脂組成物の硬化物、および本樹脂を用
いたCFRPの機械特性は、現行120℃硬化樹脂と同
等である。
The resin compositions shown in Table 5 have a practically sufficient stability of 3 weeks at room temperature. Further, as can be seen from Table 5, the mechanical properties of the cured product of the present resin composition and CFRP using the present resin are equivalent to those of the current 120 ° C. cured resin.

【0041】[0041]

【発明の効果】本発明の樹脂組成物は70℃〜90℃と
いう低い温度で硬化し、しかも、本発明樹脂組成物を用
いたプリプレグの安定性は、室温で20日以上と十分な
安定性を有している。また、得られるCFRP特性は現
行120℃硬化樹脂を用いたCFRPと同等の機械特性
が得られる。
EFFECTS OF THE INVENTION The resin composition of the present invention cures at a low temperature of 70 ° C. to 90 ° C., and the prepreg using the resin composition of the present invention has a sufficient stability of 20 days or more at room temperature. have. Further, the obtained CFRP characteristics are the same as those of the CFRP using the current 120 ° C. curable resin.

【0042】このため、これまで硬化温度が高く使用で
きなかった、高強力ポリエステル繊維等の低耐熱強力繊
維の使用が可能となる。またハンドレイアップ法で成形
した分野、CFRP成形品の補修用として、更には、型
用材料として広い分野での使用が可能となる。特にハン
ドレイアップ法で成形した分野では、作業環境の改善が
計れ非常に有利となる。
For this reason, it becomes possible to use low heat-resistant and strong fibers such as high-strength polyester fibers which could not be used because of high curing temperature. Further, it can be used in a wide range of fields such as the field molded by the hand lay-up method, the repair of CFRP molded products, and the mold material. Especially in the field of molding by the hand lay-up method, the working environment can be improved, which is very advantageous.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 (a)エポキシ樹脂100重量部、
(b)ビスフェノール化合物、またはビスフェノール化
合物とビスフェノール化合物のモノグリシジルエーテル
との反応生成物5〜100重量部、(c)下記一般式で
示されるエポキシ樹脂硬化促進剤2〜20重量部 【化1】 (d)分子内に活性水素部位と、触媒機能部位を有する
アミンアダクト型硬化剤2〜30重量部からなることを
特徴とするエポキシ樹脂組成物。
1. (a) 100 parts by weight of an epoxy resin,
(B) 5-100 parts by weight of a reaction product of a bisphenol compound or a monoglycidyl ether of a bisphenol compound and a bisphenol compound, (c) 2-20 parts by weight of an epoxy resin curing accelerator represented by the following general formula: (D) An epoxy resin composition comprising 2 to 30 parts by weight of an amine adduct type curing agent having an active hydrogen site in the molecule and a catalytic function site.
【請求項2】 エポキシ樹脂がエポキシ当量100〜2
00を有する液状エポキシ樹脂と、エポキシ当量400
〜4000を有する固形エポキシ樹脂との混合物である
請求項1のエポキシ樹脂組成物。
2. The epoxy resin has an epoxy equivalent of 100 to 2.
Liquid epoxy resin having 00 and an epoxy equivalent of 400
The epoxy resin composition according to claim 1, which is a mixture with a solid epoxy resin having ˜4000.
【請求項3】 (b)成分の硬化剤がビスフェノールA
とビスフェノールAのモノグリシジルエーテルとの反応
生成物である請求項1のエポキシ樹脂組成物。
3. The curing agent as component (b) is bisphenol A.
The epoxy resin composition according to claim 1, which is a reaction product of bisphenol A and a monoglycidyl ether of bisphenol A.
【請求項4】 (a)エポキシ樹脂100重量部、
(b)ビスフェノール化合物、又はビスフェノール化合
物とビスフェノール化合物のモノグリシジルエーテルと
の反応生成物5〜100重量部、(c)下記一般式で示
されるエポキシ樹脂硬化促進剤2〜20重量部、 【化2】 (d)分子内に活性水素部位と、触媒機能部位を有する
アミンアダクト型硬化剤2〜30重量部及び(e)補強
繊維からなることを特徴とする複合材料用プリプレグ。
4. (a) 100 parts by weight of epoxy resin,
(B) 5 to 100 parts by weight of a bisphenol compound or a reaction product of a bisphenol compound and a monoglycidyl ether of a bisphenol compound, (c) 2 to 20 parts by weight of an epoxy resin curing accelerator represented by the following general formula, ] A prepreg for a composite material comprising (d) 2 to 30 parts by weight of an amine adduct type curing agent having an active hydrogen site in the molecule and a catalytic function site, and (e) a reinforcing fiber.
【請求項5】 補強繊維が炭素繊維である請求項4のプ
リプレグ。
5. The prepreg according to claim 4, wherein the reinforcing fiber is carbon fiber.
JP14652092A 1992-05-12 1992-05-12 Epoxy resin composition and prepreg for composite material therefrom Expired - Lifetime JP3342710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14652092A JP3342710B2 (en) 1992-05-12 1992-05-12 Epoxy resin composition and prepreg for composite material therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14652092A JP3342710B2 (en) 1992-05-12 1992-05-12 Epoxy resin composition and prepreg for composite material therefrom

Publications (2)

Publication Number Publication Date
JPH05310890A true JPH05310890A (en) 1993-11-22
JP3342710B2 JP3342710B2 (en) 2002-11-11

Family

ID=15409513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14652092A Expired - Lifetime JP3342710B2 (en) 1992-05-12 1992-05-12 Epoxy resin composition and prepreg for composite material therefrom

Country Status (1)

Country Link
JP (1) JP3342710B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0753673A (en) * 1993-06-08 1995-02-28 Mitsubishi Rayon Co Ltd Epoxy resin composition and prepreg
JP2003073456A (en) * 2001-09-03 2003-03-12 Mitsubishi Rayon Co Ltd Epoxy resin composition and prepreg using the same composition
WO2017179359A1 (en) * 2016-04-12 2017-10-19 三菱瓦斯化学株式会社 Epoxy resin curing agent, epoxy resin composition, and carbon fiber-reinforced composite material
WO2017179358A1 (en) * 2016-04-12 2017-10-19 三菱瓦斯化学株式会社 Epoxy resin curing agent, epoxy resin composition, and carbon fiber-reinforced composite material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0753673A (en) * 1993-06-08 1995-02-28 Mitsubishi Rayon Co Ltd Epoxy resin composition and prepreg
JP2003073456A (en) * 2001-09-03 2003-03-12 Mitsubishi Rayon Co Ltd Epoxy resin composition and prepreg using the same composition
WO2017179359A1 (en) * 2016-04-12 2017-10-19 三菱瓦斯化学株式会社 Epoxy resin curing agent, epoxy resin composition, and carbon fiber-reinforced composite material
WO2017179358A1 (en) * 2016-04-12 2017-10-19 三菱瓦斯化学株式会社 Epoxy resin curing agent, epoxy resin composition, and carbon fiber-reinforced composite material
JP6256666B1 (en) * 2016-04-12 2018-01-10 三菱瓦斯化学株式会社 Epoxy resin curing agent, epoxy resin composition, carbon fiber reinforced composite material
JPWO2017179359A1 (en) * 2016-04-12 2019-02-21 三菱瓦斯化学株式会社 Epoxy resin curing agent, epoxy resin composition, carbon fiber reinforced composite material
US10767001B2 (en) 2016-04-12 2020-09-08 Mitsubishi Gas Chemical Company, Inc. Epoxy resin curing agent, epoxy resin composition, and carbon fiber-reinforced composite material

Also Published As

Publication number Publication date
JP3342710B2 (en) 2002-11-11

Similar Documents

Publication Publication Date Title
JP3796176B2 (en) Epoxy resin composition and prepreg using the epoxy resin composition
AU2001266730B2 (en) Low moisture absorption epoxy resin systems
JP2006131920A (en) Epoxy resin composition and prepreg made with the epoxy resin composition
AU2001266730A1 (en) Low moisture absorption epoxy resin systems
JP5269278B2 (en) Epoxy resin composition and fiber reinforced composite material using the epoxy resin composition
JPH0639519B2 (en) Epoxy resin composition and prepreg
JP4859081B2 (en) Manufacturing method of composite material
JP2002145986A (en) Epoxy resin composition and prepreg using the epoxy resin composition
JP3342710B2 (en) Epoxy resin composition and prepreg for composite material therefrom
JPH06166765A (en) Prepreg
JPS5817535B2 (en) Epoxy resin composition for carbon fiber reinforcement
JP2736443B2 (en) Epoxy resin composition for composite materials
JPH072975A (en) Epoxy resin composition and prepreg
JPS62275123A (en) Resin composition for prepreg
JPS6143616A (en) Epoxy resin composition
JP3342709B2 (en) Epoxy resin composition and prepreg therefrom
JPS62177016A (en) Epoxy resin composition
JP3349556B2 (en) Epoxy resin composition and prepreg
JP3345963B2 (en) Epoxy resin composition for yarn prepreg and yarn prepreg
JP2003096163A (en) Epoxy resin composition and prepreg made by using the epoxy resin composition
JPH069802A (en) Prepreg
JPH043770B2 (en)
JP7230433B2 (en) Epoxy resin composition, method for producing molding material, molding material, fiber-reinforced composite material, and method for producing fiber-reinforced composite material
JP2736442B2 (en) Epoxy resin composition for carbon fiber composite material
JPH0641396A (en) Epoxy resin composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090823

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090823

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100823

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100823

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110823

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110823

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110823

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120823

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120823

Year of fee payment: 10