JP2736442B2 - Epoxy resin composition for carbon fiber composite material - Google Patents
Epoxy resin composition for carbon fiber composite materialInfo
- Publication number
- JP2736442B2 JP2736442B2 JP15602689A JP15602689A JP2736442B2 JP 2736442 B2 JP2736442 B2 JP 2736442B2 JP 15602689 A JP15602689 A JP 15602689A JP 15602689 A JP15602689 A JP 15602689A JP 2736442 B2 JP2736442 B2 JP 2736442B2
- Authority
- JP
- Japan
- Prior art keywords
- epoxy resin
- resin composition
- composite material
- carbon fiber
- reaction product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Reinforced Plastic Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は新規な炭素繊維複合材料用エポキシ樹脂組成
物に関する。The present invention relates to a novel epoxy resin composition for a carbon fiber composite material.
炭素繊維複合材料(以下CFRPと略記)は優れた機械的
性能を有しているため、種々の分野において構造部品等
さらにはスポーツ、レジヤー用品等に用いられている。
マトリツクス樹脂としては種々のものが用いられている
が機械的特性に優れていること、硬化時の揮発分がない
こと、硬化時の収縮が少ないこと、炭素繊維との接着性
が優れていること等の理由により、広くエポキシ樹脂が
用いられてきた。BACKGROUND ART Since carbon fiber composite materials (hereinafter abbreviated as CFRP) have excellent mechanical performance, they are used in various fields for structural parts and the like, as well as sports and registrar goods.
Various types of matrix resins are used, but they have excellent mechanical properties, no volatile components during curing, little shrinkage during curing, and excellent adhesion to carbon fibers. For such reasons, epoxy resins have been widely used.
しかるに、近年炭素繊維複合材料の軽量化薄肉化が進
む中、パイプ等の成形品の成形終了時の反りによる欠陥
品の増大が大きな問題となつてきている。これらに対
し、複合材料の偏肉の低減、炭素繊維分散の適性化等の
製造条件の変更あるいはマトリツクス樹脂架橋度を低
減、加塑剤の添加等により界面に発生する残留熱応力を
低減する等の種々の検討が行なわれているが複合材料の
機械的強度を維持したまま反りを少なくする簡便でかつ
経済的な方法は実現されていない。However, as carbon fiber composite materials have become lighter and thinner in recent years, an increase in defective products due to warpage at the end of molding of molded products such as pipes has become a major problem. On the other hand, reduction of uneven thickness of composite material, change of manufacturing conditions such as optimization of carbon fiber dispersion or reduction of matrix resin crosslinking degree, reduction of residual thermal stress generated at the interface due to addition of plasticizer, etc. Although various studies have been made, a simple and economical method for reducing the warpage while maintaining the mechanical strength of the composite material has not been realized.
本発明者らは以上の現状に鑑み種々検討した結果、特
定のエポキシ化合物、硬化剤、硬化促進剤および特定の
化合物を反応して得られる反応生成物を組み合わせた樹
脂をマトリツクスに用いることにより複合材料の機械特
性、特に直交積層体の機械的特性が高くかつ成形品の反
りが少ない複合材料用エポキシ樹脂組成物が得られるこ
とを見出し、本発明を完成した。The present inventors have conducted various studies in view of the above situation, and as a result, have developed a composite by using a resin that combines a specific epoxy compound, a curing agent, a curing accelerator, and a reaction product obtained by reacting a specific compound in a matrix. The present inventors have found that an epoxy resin composition for a composite material having high mechanical properties of a material, particularly high mechanical properties of an orthogonal laminate and less warpage of a molded product can be obtained, and completed the present invention.
本発明の要旨は下記成分(A)(B)(C)(D)
(E)を必須成分として含有する炭素繊維複合材料用エ
ポキシ樹脂組成物にある。The gist of the present invention is the following components (A) (B) (C) (D)
An epoxy resin composition for a carbon fiber composite material containing (E) as an essential component.
(A)フエノールノボラツク型エポキシ樹脂 (B)ビスフエノールAジグリシジルエーテル型エポキ
シ樹脂 (C)N,N,O−トリグリシジルアミノフエノールもしく
はその誘導体 (D)ジシアンジアミド、2,6−キシレニルビグアニ
ド、0−トリルビグアニド、ジフエニルグアニジン、ア
ジピルジヒドラジド、アゼライルジヒドラジド及びイソ
フタル酸ジヒドラジドから選ばれた少なくとも1種の硬
化剤および硬化促進剤 (E)一般式 (式中Xは水素、塩素、臭素又は水酸基、Rは水素、 を示す)で表わされるアミド又はアミンを 一般式 (式中Xは前記と同じ)で表わされるエポキシ化合物と
を反応させることにより得られる反応生成物。(A) phenol novolak type epoxy resin (B) bisphenol A diglycidyl ether type epoxy resin (C) N, N, O-triglycidylaminophenol or a derivative thereof (D) dicyandiamide, 2,6-xylenyl biguanide At least one curing agent and curing accelerator selected from the group consisting of, 0-tolylbiguanide, diphenylguanidine, adipyl dihydrazide, azelyl dihydrazide and isophthalic dihydrazide; (Where X is hydrogen, chlorine, bromine or a hydroxyl group, R is hydrogen, Amide or amine represented by the general formula (Wherein X is the same as described above), and a reaction product obtained by reacting with an epoxy compound represented by the formula:
(A)成分のフエノールノボラツク型エポキシ樹脂は、
多官能エポキシ化合物を主成分とする反応生成物であ
り、油化シエルエポキシ(株)より市販されているエピ
コート152(以下Ep152と略す)、Ep154,Ep157などを具
体例として挙げることができる。The phenol novolak type epoxy resin of the component (A)
Specific examples thereof include Epicoat 152 (hereinafter abbreviated as Ep152), Ep154, and Ep157, which are reaction products containing a polyfunctional epoxy compound as a main component and commercially available from Yuka Shell Epoxy Co., Ltd.
(B)成分のビスフエノールAジグリシジルエーテル型
エポキシ樹脂は、エポキシ当量、粘度等に特別な制限は
ないが、樹脂組成物の粘度、プリプレグとした場合のタ
ツク等を考慮して適当に選べばよい。具体的には油化シ
エルエポキシ(株)のEp807,Ep808,Ep827,Ep828,Ep100
1,Ep1002,Ep1004,Ep1007,Ep1009などを挙げることがで
きる。これらは単独でもしくは併用して用いることがで
きる。以上に挙げた(A)成分と(B)成分の混合比は
(A)/(B)=80/20〜50/50の範囲が好ましい。
(A)成分が80部を超えると低温硬化性が悪くなりやす
く、50部未満では硬化性は良好であるが、この樹脂系を
用いたCFRPの物性が低下するため好ましくない。The bisphenol A diglycidyl ether type epoxy resin as the component (B) is not particularly limited in terms of epoxy equivalent weight, viscosity, etc., but may be appropriately selected in consideration of the viscosity of the resin composition, the tack when prepreg is used, and the like. Good. Specifically, Yuka Shell Epoxy Co., Ltd.'s Ep807, Ep808, Ep827, Ep828, Ep100
1, Ep1002, Ep1004, Ep1007, Ep1009 and the like. These can be used alone or in combination. The mixing ratio of the components (A) and (B) described above is preferably in the range of (A) / (B) = 80/20 to 50/50.
When the amount of the component (A) exceeds 80 parts, the low-temperature curability tends to deteriorate, and when the amount is less than 50 parts, the curability is good, but the physical properties of CFRP using this resin system are unfavorably deteriorated.
(C)成分のN,N,O−トリグリシジルアミノフエノール
もしくはその誘導体は(4)式に示される化合物を主成
分とする反応生成物である。The component (C), N, N, O-triglycidylaminophenol or a derivative thereof, is a reaction product containing a compound represented by the formula (4) as a main component.
(Rは水素あるいは-CH3を示す) 一般式(4)で示される化合物の中で、特に の3者が好しい。 (R represents hydrogen or —CH 3 ) Among the compounds represented by the general formula (4), The three are preferred.
(C)成分の添加量は、(A)成分,(B)成分のエ
ポキシ樹脂100重量部当り5〜100重量部である。この
(C)成分の配合割合が5重量部より少なくなると、
(C)成分の重要な添加効果である低温硬化性の改善、
硬化樹脂弾性率の向上の2点が不十分となり、一方100
重量部を超えると得られるCFRPの耐水性が低下し、実用
性能上問題になるため好ましくない。The amount of the component (C) added is 5 to 100 parts by weight per 100 parts by weight of the epoxy resin of the components (A) and (B). When the compounding ratio of the component (C) is less than 5 parts by weight,
(C) improvement of low-temperature curability, which is an important addition effect of the component,
The two points of improvement of the cured resin elastic modulus became insufficient, while 100
If the amount is more than 10 parts by weight, the water resistance of the obtained CFRP is reduced, which causes a problem in practical performance.
(D)成分中の硬化剤としてはジシアンジアミドが好
ましく、また(D)成分の硬化剤群と併用される硬化促
進剤としては一般式(5)で示される尿素化合物、イミ
ダゾール、イミダゾール誘導体が挙げられるが、好まし
くはモノまたはジクロロフエニル−1,1−ジメチルウレ
アが好ましい。As the curing agent in the component (D), dicyandiamide is preferable, and as the curing accelerator used in combination with the curing agent group of the component (D), a urea compound, imidazole, or an imidazole derivative represented by the general formula (5) can be given. However, mono- or dichlorophenyl-1,1-dimethylurea is preferred.
(式中X1,X2は同一でも異なつていてもよく水素、塩
素、臭素、ニトロ基、メチル基、メトキシ基、エトキシ
基、又は を示す。) 硬化剤および硬化促進剤の添加量は(A)(B)
(C)で示されるエポキシ樹脂100重量部に対して硬化
剤1〜10重量部、硬化促進剤1.5〜15重量部の範囲であ
る。この添加量が該範囲より少いと低温硬化性が悪くな
り、逆に添加量が多いとプリプレグの室温安定性が悪く
なり好ましくない。 (Wherein X 1 and X 2 may be the same or different and may be hydrogen, chlorine, bromine, nitro, methyl, methoxy, ethoxy, or Is shown. The amounts of the curing agent and the curing accelerator are (A) and (B).
The curing agent ranges from 1 to 10 parts by weight and the curing accelerator from 1.5 to 15 parts by weight based on 100 parts by weight of the epoxy resin shown in (C). If the amount is less than the above range, the low-temperature curability is deteriorated, and if the amount is large, the stability of the prepreg at room temperature is unfavorably deteriorated.
本発明ではさらに(E)成分を配合せしめる。(E)
成分は式(1)のアミン又はアミドを式(2)又は
(3)のエポキシ化合物と反応させることにより得られ
る。この添加により初めて低反りの複合材料が実現でき
る。In the present invention, the component (E) is further blended. (E)
The component is obtained by reacting an amine or amide of formula (1) with an epoxy compound of formula (2) or (3). Only by this addition, a low-warpage composite material can be realized.
前記の反応生成物(以下反応物という)(E)は式
(1)と式(2)又は(3)の化合物を1:0.9〜1.1のモ
ル比で100〜200℃の温度範囲で反応させることにより容
易に得られる。この反応生成物をそのまま用いてもよい
が、未反応成分を反応後に加熱(50〜200℃)、減圧下
(1mmHg以下)で留去し、精製して用いることが好まし
い。反応物(E)の添加量は(A)〜(D)で示される
エポキシ樹脂組成物に対して5〜100重量%の範囲であ
る。反応物(E)の添加量が5重量%より少ないと複合
材料の反りに対する改善効果が低く、100重量%を超え
ると複合材料の機械的物性が低下し好ましくない。The above reaction product (hereinafter referred to as "reactant") (E) is obtained by reacting the compound of the formula (1) with the compound of the formula (2) or (3) at a molar ratio of 1: 0.9 to 1.1 in a temperature range of 100 to 200C. Can be easily obtained. Although the reaction product may be used as it is, it is preferable to use the product after unreacted components are distilled off under reduced pressure (1 mmHg or less) by heating (50 to 200 ° C.) after the reaction, and then purified. The addition amount of the reactant (E) is in the range of 5 to 100% by weight based on the epoxy resin composition shown in (A) to (D). If the amount of the reactant (E) is less than 5% by weight, the effect of improving the warpage of the composite material is low, and if it exceeds 100% by weight, the mechanical properties of the composite material are undesirably reduced.
本発明の樹脂組成物は炭素繊維複合材料用中間材とし
て有用である。炭素繊維の形状は一方向に配列されたテ
ープ、シート状物の他、マツト状物、布状物など、どの
ような形状でもよい。また用途によりガラス繊維、有機
繊維、金属繊維と炭素繊維とを併用してもよい。The resin composition of the present invention is useful as an intermediate for a carbon fiber composite material. The shape of the carbon fiber may be any shape such as a tape-like material, a sheet-like material, a mat-like material, a cloth-like material, and the like. Depending on the application, glass fibers, organic fibers, metal fibers and carbon fibers may be used in combination.
以下実施例により本発明を具体的に説明する。 Hereinafter, the present invention will be described specifically with reference to examples.
複合材料の物性は次の方法により測定した。 The physical properties of the composite material were measured by the following methods.
(1)層間剪断強度(ILSS) 長さ15mm、巾10mm、厚さ2mmの板状試片を用いてスパ
ン間隔8mmの支点(先端半径3.2mm)においた試片の中央
を先端半径3.2mmの圧子で押えて3点曲げ試験を行い、
クロスヘツド速度は2mm/分とした。次式によりILSSを計
算した。なおスパン間隔をL(mm)、試料厚さをT(m
m)、試料巾をW(mm)、破断強度をP(kg)とした。(1) Interlaminar shear strength (ILSS) Using a 15 mm long, 10 mm wide, and 2 mm thick plate-like specimen at a fulcrum (tip radius of 3.2 mm) with a span interval of 8 mm, the center of the specimen has a tip radius of 3.2 mm. Perform a three-point bending test by pressing with an indenter,
The crosshead speed was 2 mm / min. ILSS was calculated by the following equation. Note that the span interval is L (mm) and the sample thickness is T (m
m), the sample width was W (mm), and the breaking strength was P (kg).
ILSS=3P/4WT(kg/mm2) (2)曲げ試験 (i)0°曲げ試験 長さ100mm(0°方向)、幅10mm、厚さ2mmの板状試片
を用いてスパン間隔80mmとし、その他はILSSと同様にし
て試験を行ない次式により曲げ強度および曲げ弾性率を
計算した。δはある荷重P′(kg)におけるクロスヘツ
ドの降下量(mm)を示す。ILSS = 3P / 4WT (kg / mm 2 ) (2) Bending test (i) 0 ° bending test A span interval of 80 mm was used using a plate-like specimen with a length of 100 mm (0 ° direction), a width of 10 mm, and a thickness of 2 mm. The other tests were performed in the same manner as in the ILSS, and the bending strength and the flexural modulus were calculated by the following equations. δ indicates the amount of crosshead descent (mm) at a certain load P ′ (kg).
0°曲げ強度(FM)=3PL/2WT2(kg/mm2) 0°曲げ弾性率(FM)=P′・L3・10-3/4WT3・δ
(t/mm2) (ii)90°曲げ試験 長さ60mm、幅10mm(0°方向)厚さ2mmの板状試片を
用い、かつスパン間隔32mmとした以外は(i)の0°曲
げ試験と全く同様にして、90°曲げ強度(FS⊥)、90°
曲げ弾性率(FM⊥)を計算した。0 ° flexural strength (FM) = 3PL / 2WT 2 (kg / mm 2) 0 ° flexural modulus (FM) = P '· L 3 · 10 -3 / 4WT 3 · δ
(T / mm 2 ) (ii) 90 ° bending test A 0 ° bending test of (i) except that a plate specimen having a length of 60 mm, a width of 10 mm (0 ° direction) and a thickness of 2 mm was used, and the span interval was 32 mm. 90 ° bending strength (FS⊥), 90 °
The flexural modulus (FM⊥) was calculated.
参考例1 N−〔4−(2−ヒドロキシ−3−フエノキシプロポ
キシ)−フエニル〕−アセトアミド〔(E)−1〕の合
成 P−ヒドロキシアセトアニリドとフエニルグリシジル
エーテルを1:1.05(モル比)で混合し、160℃で60分間
加熱して反応させると室温で粘稠な液状の反応物が得ら
れた。これを1mmHgで150℃に加熱し、未反応のフエニル
グリシジルエーテルを除去し、反応物(E)−1を得
た。反応物(E)−1の赤外吸収スペクトルを測定し、
エポキシ基のないことを確認した。また反応物(E)−
1のクロロホルム溶液を用いてゲルパーミエーシヨンク
ロマトグロフイーを測定したところ、反応物(E)−1
は1:1の表記の化合物のほかに−NH−基との反応物、さ
らに反応の進んだ高分子化合物を含む反応混合物であつ
た。Reference Example 1 Synthesis of N- [4- (2-hydroxy-3-phenoxypropoxy) -phenyl] -acetamide [(E) -1] When P-hydroxyacetanilide and phenylglycidyl ether were mixed at a molar ratio of 1: 1.05 and heated at 160 ° C. for 60 minutes, a viscous liquid reaction product was obtained at room temperature. This was heated to 150 ° C. at 1 mmHg to remove unreacted phenylglycidyl ether to obtain a reaction product (E) -1. The infrared absorption spectrum of the reaction product (E) -1 was measured,
It was confirmed that there was no epoxy group. The reactant (E)-
The gel permeation chromatograph was measured using the chloroform solution of No. 1 to find that the reaction product (E) -1
Was a reaction mixture containing a compound having the formula of 1: 1 as well as a reaction product with an —NH— group, and a polymer compound which had further advanced the reaction.
参考例2 N−フエニル−N−(2−ヒドロキシ−3−フエノキ
シプロピル)−アセトアセトアミド〔(E)−2〕の合
成 アセトアセトアニリドとフエニルグリシジルエーテル
を参考例1と同様にして1:1.2(モル比)で170℃、1時
間加熱して反応させ、反応物(E)−2を得た。この
(E)−2は表記の1:1化合物以外にさらに反応の進ん
だ高分子化合物を含む反応混合物であつた。Reference Example 2 Synthesis of N-phenyl-N- (2-hydroxy-3-phenoxypropyl) -acetoacetamide [(E) -2] Acetoacetanilide and phenylglycidyl ether were reacted at 170 ° C. for 1 hour at a molar ratio of 1: 1.2 in the same manner as in Reference Example 1 to obtain a reaction product (E) -2. This (E) -2 was a reaction mixture containing a polymer compound that had further reacted in addition to the indicated 1: 1 compound.
参考例3 N−(2−ヒドロキシ−2−シクロヘキセンオキシド
エチル)−アニリン〔(E)−3〕の合成 アニリンおよびビニルシクロヘキセンジオキシサイド
を参考例1と同様にして1:2.1(モル比)で100℃、45分
間加熱して反応させ粘稠な液状の反応物(E)−3を得
た。この(E)−3は参考例1と同様1:1の反応物以外
に、さらに反応の進んだ高分子化合物を含む反応混合物
であつた。Reference Example 3 Synthesis of N- (2-hydroxy-2-cyclohexeneoxideethyl) -aniline [(E) -3] Aniline and vinylcyclohexenedioxyside were reacted in the same manner as in Reference Example 1 by heating at 1: 2.1 (molar ratio) at 100 ° C. for 45 minutes to obtain a viscous liquid reactant (E) -3. This (E) -3 was a reaction mixture containing a further advanced polymer compound in addition to the 1: 1 reactant as in Reference Example 1.
実施例1 Ep154 60重量部とEp828 20重量部を混合均一化した
後、Ep1004 20重量部およびトリグリシジル−m−アミ
ノフエノール(住友化学工業(株)製ELM−120)を30重
量部添加し、十分攪拌混合した後、DICY4部、DCMU5部お
よび前記(A)〜(D)成分全混合物に対して30重量%
の(E)−1を添加して攪拌混合して、プリブレグ用エ
ポキシ樹脂組成物を得た。Example 1 After homogenizing 60 parts by weight of Ep154 and 20 parts by weight of Ep828, 20 parts by weight of Ep1004 and 30 parts by weight of triglycidyl-m-aminophenol (ELM-120 manufactured by Sumitomo Chemical Co., Ltd.) were added. After sufficiently stirring and mixing, 30 parts by weight based on 4 parts of DICY, 5 parts of DCMU and the total mixture of the above components (A) to (D)
(E) -1 was added and mixed by stirring to obtain an epoxy resin composition for prepreg.
次にこの樹脂組成物を加熱して離型紙上に薄膜を形成
させたホツトメルトフイルムを作成した。このフイルム
をドラムに巻き付け、1方向に引き揃えた炭素繊維(三
菱レイヨン(株)製パイロフイルT−1)を加熱、含浸
してプリブレグを作成した。得られたプリブレグは適当
な粘着性とかたさを有しており、25℃で1.5ヶ月保管し
た後もプリブレグの粘着性やかたさに変化は少なく、良
好な貯蔵安定性を有していた。Next, this resin composition was heated to form a hot melt film having a thin film formed on release paper. This film was wound around a drum and heated and impregnated with carbon fibers (Pyrofilm T-1 manufactured by Mitsubishi Rayon Co., Ltd.) which were aligned in one direction to prepare a prepreg. The obtained prepreg had appropriate tackiness and hardness, and even after being stored at 25 ° C. for 1.5 months, the prepreg had little change in tackiness and hardness, and had good storage stability.
さらに、このプリブレグを一方向に積層し、成形後の
炭素繊維の含有量が60体積%になるように調整した後、
金型に仕込み、130℃、6kg/cm2加圧下で1時間加熱硬化
して成形体を作成した。Furthermore, after laminating this prepreg in one direction and adjusting so that the carbon fiber content after molding becomes 60% by volume,
The mixture was charged in a mold and cured by heating at 130 ° C. under a pressure of 6 kg / cm 2 for 1 hour to form a molded body.
得られたCFRPを測定した結果を第1表に示した。 The results of measuring the obtained CFRP are shown in Table 1.
良好なコンポジツト物性を有していることがわかる。 It can be seen that the composite has good physical properties.
実施例2 実施例1で作成したプリブレグを用いて(0゜90゜)6の構
成で12枚を直交積層し、130℃,6kg/cm2圧力下1時間プ
レスを用いて加熱し、1mm厚板のCFRPを得た。試片厚み1
mm、スパン長40mmとした以外は全く同様にして0°曲げ
試験を実施した。曲げ強度168kg/cm2、曲げ弾性率6.3t/
mm2を得た。Example 2 Using the prepreg prepared in Example 1, 12 sheets were orthogonally laminated in a configuration of (0 ゜ 90 ゜) 6 and heated at 130 ° C. under a pressure of 6 kg / cm 2 for 1 hour using a press to obtain a 1 mm thick sheet. CFRP of the board was obtained. Specimen thickness 1
A 0 ° bending test was carried out in exactly the same manner except that the length was set to 40 mm and the span length was set to 40 mm. Bending strength 168 kg / cm 2, the flexural modulus 6.3T /
mm 2 was obtained.
比較例1 実施例1および2の樹脂組成中(E)−1を添加しな
いほかは全く同様にして、樹脂組成物を調整して成形体
を製造し、実施例1と同様に測定した。結果を第2表に
示す。Comparative Example 1 In the same manner as in Examples 1 and 2 except that (E) -1 was not added, a resin composition was prepared to produce a molded product, and measurement was performed in the same manner as in Example 1. The results are shown in Table 2.
実施例1,2の結果と比較すると本発明の樹脂組成物を
用いたCFRP物性がいづれも高く特に実用上重要である直
交積層板物性が著しく高いことが明らかである。 Compared with the results of Examples 1 and 2, it is clear that the CFRP using the resin composition of the present invention has high physical properties, and that the physical properties of the orthogonal laminate, which is particularly important in practical use, are extremely high.
実施例3,比較例2 実施例1、比較例1と全く同様にして作成したプリプ
レグをそれぞれ直交に貼着した後、5φの鉄製マンドレ
ルに3周巻き付けポリプロピレン製テープ(巾15mm)を
テープ張力3kg/15mmでラツピングし、硬化炉で130℃,2
時間の条件で硬化し、硬化終了後、炉密閉状態で徐冷し
て室温まで冷却、長さ600mmのパイプを成形した。Example 3 and Comparative Example 2 The prepregs prepared in exactly the same manner as in Example 1 and Comparative Example 1 were each adhered orthogonally, and then wrapped around a 5φ iron mandrel three times and a polypropylene tape (15 mm wide) with a tape tension of 3 kg. / 15mm, wrapping at 130 ℃, 2 in curing oven
After curing, the mixture was gradually cooled in a furnace-closed state and cooled to room temperature to form a pipe having a length of 600 mm.
本発明の樹脂組成物を用いたパイプは成形中の曲が
り、クラツク等による欠陥の発生したものは4%以下で
あつたのに比べ比較例1に示した樹脂組成物を用いたパ
イプは反りが発生し、欠陥品52%という著しく高い値を
示した(パイプ50本で評価)。The pipe using the resin composition shown in Comparative Example 1 was warped, while the pipe using the resin composition of the present invention was bent during molding and the number of defects caused by cracks was 4% or less. It occurred and showed a remarkably high value of 52% of defective products (evaluated with 50 pipes).
なお曲がりはパイプを500mm巾の2点で支えて回転さ
せ、中央部の振れ巾を測定し、この値が0.5mm以上のも
のを欠陥品とした。The bend was made by rotating the pipe while supporting it at two points with a width of 500 mm, and measuring the deflection at the center.
実施例4 実施例1において(E)−1の代わりに、(E)−2
を25wt%添加した樹脂組成物および(E)−3を30wt%
添加した樹脂組成物の2種を用いて実施例1,2と全く同
様にしてCFRP板を得た。得られたCFRP板の物性測定結果
を第3表に示した。Example 4 (E) -2 in Example 1 instead of (E) -1
30% by weight of a resin composition containing 25% by weight of (E) -3
A CFRP plate was obtained in exactly the same manner as in Examples 1 and 2 using the two types of the added resin compositions. Table 3 shows the measurement results of the physical properties of the obtained CFRP plate.
(E)−1を添加した実施例1と同様、一方向CFRP物
性、直交積層CFRP物性とも良好な値を有していることが
わかる。 As in Example 1 in which (E) -1 was added, it can be seen that the unidirectional CFRP physical properties and the cross-laminated CFRP physical properties have good values.
比較例3 実施例1のエポキシ樹脂組成物中、ELM−120 30重量
部を含まない他は全く同様の樹脂組成物を用いて実施例
1と全く同様にして一方向炭素繊維プリプレグを作成し
た。得られたプリプレグのタツク、ドレープ性は実施例
1とほとんど差はなく25℃の貯蔵安定性も1.5ヶ月あり
良好であつた。しかし130℃の硬化性が悪く、特にILSS
が9.5kg/mm2と他に比較し、著しく低くなつた。Comparative Example 3 A unidirectional carbon fiber prepreg was prepared in exactly the same manner as in Example 1 except that 30 parts by weight of ELM-120 were not used in the epoxy resin composition of Example 1. The tack and drape properties of the obtained prepreg were almost the same as those of Example 1, and the storage stability at 25 ° C was good for 1.5 months. However, the curability at 130 ℃ is poor, especially for ILSS
Was 9.5 kg / mm 2, which was significantly lower than the others.
比較例4 Ep154 30重量部、Ep828 35重量部、Ep1004 35重量部
を添加した以外は実施例1と全く同様にしてプリプレグ
を得た。このプリプレグはタツク,ドレープ性とも良好
な範囲にあり、かつ130℃における硬化性も良好であつ
た。Comparative Example 4 A prepreg was obtained in exactly the same manner as in Example 1 except that 30 parts by weight of Ep154, 35 parts by weight of Ep828, and 35 parts by weight of Ep1004 were added. This prepreg had good tack and drape properties, and also had good curability at 130 ° C.
そこで、このプリプレグを用いて一方向の成形体を作
成し、曲げ試験を実施したがFS=188kg/mm2、ILSS=
9.3kg/mm2と本発明の樹脂を用いた場合に比較して低い
ものであつた。Therefore, a unidirectional compact was prepared using this prepreg, and a bending test was performed. FS = 188 kg / mm 2 , ILSS =
It was 9.3 kg / mm 2 , which was lower than when the resin of the present invention was used.
本発明で得られる炭素繊維複合材料は室温の貯蔵安定
性が良好かつ低温硬化が可能であり、しかも複合材料の
機械的物性に優れ、特に実用上重要である直交積層体、
擬似等方体等の機械特性に優れる。The carbon fiber composite material obtained in the present invention has good storage stability at room temperature and is capable of being cured at low temperature, and has excellent mechanical properties of the composite material, and is particularly important for practical use in the orthogonal laminate,
Excellent mechanical properties such as pseudo-isotropic bodies.
パイプ、釣竿穂先等の成形品の反りが低下し歩留りが
向上し生産性、経済性が著しく向上する という大きな特徴を有する。It has the major feature that the warpage of molded products such as pipes and fishing rod ears is reduced, yield is improved, and productivity and economic efficiency are significantly improved.
このため釣竿、ゴルフシヤフト等のスポーツ、レジヤ
ー分野の他に自動車、航空機、ロケツト等の工業分野ま
での広い用途への適用が可能である。Therefore, the present invention can be applied to a wide range of uses such as fishing rods, golf shafts, and other sports, as well as industrial fields such as automobiles, aircraft, and rockets, in addition to fields of registrars.
Claims (3)
を必須成分として含有することを特徴とする炭素繊維複
合材料用エポキシ樹脂組成物。 (A)フエノールノボラツク型エポキシ樹脂 (B)ビスフエノールAジグリシジルエーテル型エポキ
シ樹脂 (C)N,N,O−トリグリシジルアミノフエノールもしく
はその誘導体 (D)ジシアンジアミド、2,6−キシレニルビグアニ
ド、0−トリルビグアニド、ジフエニルグアニジン、ア
ジピルジヒドラジド、アゼライルジヒドラジド及びイソ
フタル酸ジヒドラジドから選ばれた少なくとも1種の硬
化剤および硬化促進剤 (E)一般式 (式中Xは水素、塩素、臭素又は水酸基、Rは水素、 を示す)で表わされるアミド又はアミンを一般式 (式中Xは前記と同じ)で表わされるエポキシ化合物と
を反応させることにより得られる反応生成物。1. The following components (A) (B) (C) (D) (E)
An epoxy resin composition for a carbon fiber composite material, comprising: (A) phenol novolak type epoxy resin (B) bisphenol A diglycidyl ether type epoxy resin (C) N, N, O-triglycidylaminophenol or a derivative thereof (D) dicyandiamide, 2,6-xylenyl biguanide At least one curing agent and curing accelerator selected from the group consisting of, 0-tolylbiguanide, diphenylguanidine, adipyl dihydrazide, azelyl dihydrazide and isophthalic dihydrazide; (Where X is hydrogen, chlorine, bromine or a hydroxyl group, R is hydrogen, Amide or amine represented by the general formula (Wherein X is the same as described above), and a reaction product obtained by reacting with an epoxy compound represented by the formula:
ド又はアセトアセトアニリドとフエニルグリシジルエー
テルとの反応生成物であることを特徴とする請求項1記
載の組成物。2. The composition according to claim 1, wherein the component (E) is P-hydroxyacetanilide or a reaction product of acetoacetanilide with phenylglycidyl ether.
ヘキセンジオキサイドとの反応生成物であることを特徴
とする請求項1記載の組成物。3. The composition according to claim 1, wherein the component (E) is a reaction product of aniline and 4-vinylcyclohexenedioxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15602689A JP2736442B2 (en) | 1989-06-19 | 1989-06-19 | Epoxy resin composition for carbon fiber composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15602689A JP2736442B2 (en) | 1989-06-19 | 1989-06-19 | Epoxy resin composition for carbon fiber composite material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0321631A JPH0321631A (en) | 1991-01-30 |
JP2736442B2 true JP2736442B2 (en) | 1998-04-02 |
Family
ID=15618690
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15602689A Expired - Lifetime JP2736442B2 (en) | 1989-06-19 | 1989-06-19 | Epoxy resin composition for carbon fiber composite material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2736442B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10829587B2 (en) | 2015-09-29 | 2020-11-10 | Toray Industries, Inc. | Epoxy resin composition, epoxy resin cured product, prepreg and fiber-reinforced composite material |
JP6079943B1 (en) * | 2015-09-29 | 2017-02-15 | 東レ株式会社 | Epoxy resin composition, cured epoxy resin, prepreg and fiber reinforced composite material |
-
1989
- 1989-06-19 JP JP15602689A patent/JP2736442B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0321631A (en) | 1991-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6292345B2 (en) | Molding materials and fiber reinforced composite materials | |
JP5349143B2 (en) | Resin composition for fiber reinforced composite material and fiber reinforced composite material using the same | |
JP6771883B2 (en) | Epoxy resin compositions, prepregs and fiber reinforced composites | |
JP6665702B2 (en) | Epoxy resin composition, prepreg and fiber reinforced composite material | |
TW201632579A (en) | Epoxy resin composition, prepreg, and fiber-reinforced composite material | |
WO2019167579A1 (en) | Heat-curable resin composition, prepreg, and fiber-reinforced composite material | |
JP2003026768A (en) | Epoxy resin composition, prepreg, and fiber-reinforced composite material | |
JP3363927B2 (en) | Resin composition and prepreg | |
JP2736443B2 (en) | Epoxy resin composition for composite materials | |
JP2736442B2 (en) | Epoxy resin composition for carbon fiber composite material | |
JPH08337707A (en) | Epoxy resin composition, prepreg and fiber-reinforced composite material | |
JP2736444B2 (en) | Epoxy resin composition | |
JPS5817535B2 (en) | Epoxy resin composition for carbon fiber reinforcement | |
JPH11279261A (en) | Heat-resistant epoxy resin composition for fiber-reinforced composite material | |
JPH0618835B2 (en) | Curable resin composition | |
JPS6215570B2 (en) | ||
JP3342710B2 (en) | Epoxy resin composition and prepreg for composite material therefrom | |
JP2011057851A (en) | Epoxy resin composition, prepreg and fiber-reinforced composite material | |
JPH05186667A (en) | Epoxy resin composition and prepreg | |
JPH07228716A (en) | Prepreg | |
JP3342709B2 (en) | Epoxy resin composition and prepreg therefrom | |
JPH072975A (en) | Epoxy resin composition and prepreg | |
JP2020007409A (en) | Epoxy resin composition, prepreg and fiber-reinforced composite material | |
JPH0471928B2 (en) | ||
JPS6313444B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090116 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 12 Free format text: PAYMENT UNTIL: 20100116 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 12 Free format text: PAYMENT UNTIL: 20100116 |