JPH0471928B2 - - Google Patents

Info

Publication number
JPH0471928B2
JPH0471928B2 JP1015076A JP1507689A JPH0471928B2 JP H0471928 B2 JPH0471928 B2 JP H0471928B2 JP 1015076 A JP1015076 A JP 1015076A JP 1507689 A JP1507689 A JP 1507689A JP H0471928 B2 JPH0471928 B2 JP H0471928B2
Authority
JP
Japan
Prior art keywords
epoxy resin
weight
resin composition
composite materials
epoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1015076A
Other languages
Japanese (ja)
Other versions
JPH01287130A (en
Inventor
Yoshinobu Shiraishi
Takashi Tada
Shigeji Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Publication of JPH01287130A publication Critical patent/JPH01287130A/en
Publication of JPH0471928B2 publication Critical patent/JPH0471928B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Epoxy Resins (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は特定のポリグリシジル誘導体とエポキ
シ硬化剤を組み合わせた複合材料用エポキシ樹脂
組成物に関する。 〔従来の技術〕 炭素繊維、アルミナ繊維、全芳香族ポリアミド
繊維等の繊維を強化材とした繊維強化複合材料
は、優れた機械的性能を有しているため、種々の
産業において構造部品等、さらにはスポーツ、レ
ジヤー用品等に用いられている。マトリツクス樹
脂として種々のものが用いられているが、機械的
特性に優れていること、硬化時の揮発分がないこ
と、硬化時に収縮が小さいこと、炭素繊維との接
着性に優れていること等の理由から広くエポキシ
樹脂が用いられてきた(例えば特公昭58−40975
号、特開昭62−57416号各公報参照)。これらはい
ずれも一方向積層材の0°方向曲げ強度(繊維容積
含有率60%換算)は190Kg/mm2程度であり、かつ
層間剪断強度は10Kg/mm2程度であつた。これらの
現状に対して、機械的物性を向上させ、さらには
耐熱性の向上を目指した改良が種々行われてい
る。特公昭62−15570号公報には層間剪断強度の
高い組成物として、N,N−ジグリシジルアミノ
フエニルグリシジルエーテル及び/又はN,N−
ジグリシジルアニリンから成るエポキ樹脂とジア
ミノジフエニルスルホンとを主成分とするエポキ
シ樹脂組成物が挙げられている。この組成物は層
間剪断強度最高値12.8Kg/mm2が得られているが0°
方向曲げ強度は最高値でも192Kg/mm2であつた。
しかも硬化温度が170℃と高く、更に190℃という
高温で後処理する必要があり、汎用性に欠けてい
た。また特開昭62−183340〜183342号公報には、
機械的物性、耐熱性を向上させる組成物として、
4−アミノ−m−クレゾール及び/又は4−アミ
ノ−o−クレゾールのポリグリシジル誘導体と、
ジアミノジフエニルスルホン及び/又はジアミノ
ジフエニルメタンから成る組成物()、N,N,
N′,N′−テトラグリシジル(アミノフエニル)
メタン及び/又はその縮合生成物、4−アミノ−
m−クレゾール及び/又は4−アミノ−o−クレ
ゾール化合物のポリグリシジル誘導体及び/又は
その縮合物、及びジアミノジフエニルスルホン及
び/又は、ジアミノジフエニルメタンとから成る
組成物()、さらにはフエノールノボラツク型
エポキシ樹脂、クレゾールノボラツク型エポキシ
樹脂及び/又はビスフエノールAジグリシジルエ
ーテル型エポキシ樹脂、4−アミノ−m−クレゾ
ール及び/又は4−アミノ−o−クレゾール化合
物のポリグリシジル誘導体及び/又はその縮合物
及びジシアンジアミド又は酸ヒドラジド系化合物
から成る組成物()の3種が挙げられている。
0°方向曲げ強度215Kg/mm2、層間剪断強度13.6
Kg/mm2が組成物()で達成されているが、硬化
が150℃1時間、後硬化180℃4時間と高温、長時
間を要するし、硬化条件が120℃1時間、後硬化
130℃2時間である組成物()においては、0°
方向曲げ強度210Kg/mm2、層間剪断強度11.2Kg/
mm2とやや低い値となつている。 〔発明が解決しようとする問題点〕 前記のように、エポキシ化合物に4−アミノ−
m−クレゾール及び/又は4−アミノ−o−クレ
ゾールのポリグリシジル誘導体を用いても、ジア
ミノジフエニルスルホンを硬化剤として用いた場
合、150℃以上の高温で硬化、さらに180℃という
高温で後硬化しなくては十分な複合材料物性が得
られず、汎用性に欠ける。またジシアンジアミド
を硬化剤として用いた場合は120〜130℃という低
温で硬化可能であるが、得られる樹脂組成物を用
いた複合材料の0°方向曲げ強度、層間剪断強度が
低くなる。本発明者らは以上の現状に鑑み、検討
した結果、特定のエポキシ化合物、硬化剤及び硬
化促進剤を組み合わせることにより、150℃以下
の温度で硬化し、しかも0°方向曲げ強度220Kg/
mm2以上、かつ層間剪断強度が従来に比べ著しく高
い複合材料用エポキシ樹脂組成物が得られること
を見出し、本発明を完成した。 〔問題点を解決するための手段〕 本発明は、 (A) m−又はo−メチル−p−N,N−ジグリシ
ジルアミノフエニルグリシジルエーテル又はそ
のオリゴマーを10〜100重量%含有するエポキ
シ化合物、 (B) エポキシ化合物に対して、当量の50〜200%
のジアミノジフエニルスルホン及び/又はジア
ミノジフエニルメタン、 (C) エポキシ化合物100重量部に対して、1〜10
重量部のジシアンジアミド、2,6−キシレニ
ルビグアニド、o−トリルビグアニド、ジフエ
ニルグアニジン、アジピルジヒドラジド、アゼ
ライルジヒドラジド、イソフタル酸ジヒドラジ
ドから成る群から選ばれた少なくとも1種の化
合物、 (D) エポキシ化合物100重量部に対して、1.5〜15
重量部の一般式 (式中X1及びX2は同一でも異なつてもよく、
塩素原子、臭素原子、ニトロ基、メチル基、水素
原子、メトキシ基、エトキシ基又は基
[Industrial Field of Application] The present invention relates to an epoxy resin composition for composite materials in which a specific polyglycidyl derivative and an epoxy curing agent are combined. [Prior Art] Fiber-reinforced composite materials reinforced with fibers such as carbon fibers, alumina fibers, and fully aromatic polyamide fibers have excellent mechanical performance, so they are used for structural parts, etc. in various industries. Furthermore, it is used in sports and leisure products. Various matrix resins are used, but they have excellent mechanical properties, no volatile matter during curing, small shrinkage during curing, and excellent adhesion to carbon fibers. For this reason, epoxy resins have been widely used (for example, Japanese Patent Publication No. 58-40975
(Refer to Japanese Patent Application Laid-Open No. 62-57416). In all of these, the unidirectional laminated materials had a 0° direction bending strength (converted to a fiber volume content of 60%) of about 190 Kg/mm 2 , and an interlaminar shear strength of about 10 Kg/mm 2 . In response to these current conditions, various improvements have been made aimed at improving mechanical properties and further improving heat resistance. Japanese Patent Publication No. 62-15570 discloses N,N-diglycidylaminophenyl glycidyl ether and/or N,N- as a composition with high interlayer shear strength.
An epoxy resin composition whose main components are an epoxy resin consisting of diglycidylaniline and diaminodiphenylsulfone is mentioned. This composition has a maximum interlaminar shear strength of 12.8 Kg/ mm2 , but 0°
The maximum directional bending strength was 192 Kg/mm 2 .
Moreover, the curing temperature was high at 170°C, and it was necessary to post-process at a high temperature of 190°C, so it lacked versatility. Also, in Japanese Patent Application Laid-open No. 183340-183342,
As a composition that improves mechanical properties and heat resistance,
A polyglycidyl derivative of 4-amino-m-cresol and/or 4-amino-o-cresol;
Composition consisting of diaminodiphenyl sulfone and/or diaminodiphenylmethane (), N, N,
N′,N′-tetraglycidyl (aminophenyl)
Methane and/or its condensation products, 4-amino-
A composition () consisting of a polyglycidyl derivative of m-cresol and/or 4-amino-o-cresol compound and/or a condensate thereof, and diaminodiphenylsulfone and/or diaminodiphenylmethane; Lac type epoxy resin, cresol novolac type epoxy resin and/or bisphenol A diglycidyl ether type epoxy resin, polyglycidyl derivative of 4-amino-m-cresol and/or 4-amino-o-cresol compound and/or its Three types of compositions () are mentioned: a condensate and a dicyandiamide or acid hydrazide compound.
Bending strength in 0° direction 215Kg/mm 2 , interlaminar shear strength 13.6
Kg/mm 2 has been achieved with the composition (), but it requires high temperature and long time for curing at 150℃ for 1 hour and post-curing at 180℃ for 4 hours, and the curing conditions are 120℃ for 1 hour and post-curing for 1 hour.
In the composition () at 130°C for 2 hours, 0°
Directional bending strength 210Kg/mm 2 , interlaminar shear strength 11.2Kg/
mm 2 , which is a rather low value. [Problems to be solved by the invention] As mentioned above, 4-amino-
Even if polyglycidyl derivatives of m-cresol and/or 4-amino-o-cresol are used, when diaminodiphenylsulfone is used as a curing agent, curing occurs at a high temperature of 150°C or higher, and post-curing occurs at a high temperature of 180°C. Otherwise, the composite material will not have sufficient physical properties and will lack versatility. Furthermore, when dicyandiamide is used as a curing agent, it can be cured at a low temperature of 120 to 130°C, but the 0° bending strength and interlaminar shear strength of the composite material using the resulting resin composition will be low. In view of the above-mentioned current situation, the present inventors investigated and found that by combining a specific epoxy compound, curing agent, and curing accelerator, it can be cured at a temperature of 150°C or less, and has a bending strength of 220 kg/cm in the 0° direction.
The present invention was completed based on the discovery that it is possible to obtain an epoxy resin composition for composite materials that has an interlaminar shear strength of 2 mm 2 or more and a significantly higher interlaminar shear strength than conventional ones. [Means for Solving the Problems] The present invention provides: (A) an epoxy compound containing 10 to 100% by weight of m- or o-methyl-p-N,N-diglycidylaminophenyl glycidyl ether or an oligomer thereof; , (B) 50 to 200% of the equivalent weight relative to the epoxy compound
of diaminodiphenyl sulfone and/or diaminodiphenylmethane, (C) 1 to 10 parts per 100 parts by weight of the epoxy compound
Parts by weight of at least one compound selected from the group consisting of dicyandiamide, 2,6-xylenyl biguanide, o-tolyl biguanide, diphenylguanidine, adipyl dihydrazide, azelyl dihydrazide, isophthalic acid dihydrazide, (D) 1.5 to 15 per 100 parts by weight of epoxy compound
General formula for parts by weight (In the formula, X 1 and X 2 may be the same or different,
Chlorine atom, bromine atom, nitro group, methyl group, hydrogen atom, methoxy group, ethoxy group or group

【式】CH32を示す)で表わされる尿 素化合物を含有する、複合材料用エポキシ樹脂組
成物である。 本発明の樹脂組成物は、一般式 (式中Xは水素原子、塩素原子、臭素原子又は
水酸基、Rは水素原子、基
This is an epoxy resin composition for composite materials containing a urea compound represented by the formula: CH 3 ) 2 . The resin composition of the present invention has the general formula (In the formula, X is a hydrogen atom, a chlorine atom, a bromine atom, or a hydroxyl group, and R is a hydrogen atom, a group

【式】又は[Formula] or

〔発明の効果〕〔Effect of the invention〕

本発明のエポキシ樹脂組成物をマトリツクス樹
脂とする炭素繊維複合材料は、0°方向曲げ強度
220Kg/mm2以上、層間剪断強度10Kg/mm2以上の物
性を有し、しかも150℃以下の低温硬化が可能で
ある。このため釣竿、ゴルフシヤフト等のスポー
ツ、レジヤー分野の他に、自動車、航空機、ロケ
ツト等の工業分野までの広い用途が期待できる。 参考例 1 m−メチル−p−N,N−ジグリシジルアミノ
フエニルグリシジルエーテル〔エポキシ化合物
(a)〕の合成 m−メチル−p−アミノフエノール54.6g
(0.444モル)、エピクロルヒドリン370g(4モ
ル)、95%エチルアルコール84g、水酸化リチウ
ム−水和物0.65g及び水6ml(フエノール水酸基
を基準にして3.7モル%)の混合物を、攪拌しな
がら室温(25℃)で137時間反応させた。この混
合物を55〜60℃に加熱し、50重量%水溶液の水酸
化ナトリウム66.5g(1.66モル)を加え3時間加
熱した。 残留物の温度が65℃になるまで減圧(30mmHg)
蒸留を行つて、水、アルコール及び過剰のエピク
トルヒドリンを除去した。残留物をベンゼンに溶
解し、塩及び過剰の水酸化ナトリウムを除くた
め、水洗を繰り返した。洗浄後のベンゼン溶液を
減圧(30mmHg)蒸留し、ベンゼンを除去した。
得られる黒褐色液状エポキシ化合物(a)のエポキシ
当量は105g/eqであつた。 参考例 2 o−メチル−p−N,N−ジグリシジルアミノ
フエニルグリシジルエーテル〔エポキシ化合物
(b)〕の合成 出発原料としてo−メチル−p−アミノフエノ
ールを用い、その他は参考例1と同様にしてエポ
キシ化合物(b)を得た。得られたエポキシ化合物(b)
はエポキシ当量は104g/eqであつた。 参考例 3 N−〔4−(2−ヒドロキシ−3−フエノキシプ
ロポキシ)−フエニル〕−アセトアミド〔(E)−1〕 p−ヒドロキシアセトアニリドとフエニルグリ
シジルエーテルを1:1.05(モル比)で混合し、
160℃で60分間加熱して反応させると、室温で粘
稠な液状の反応物が得られた。これを1mmHgの
減圧下で150℃に加熱し、未反応のフエニルグリ
シジルエーテルを除去し、反応物(E)−1を得た。
反応物(E)−1の赤外吸収スペクトルを測定し、エ
ポキシ基のないことを確認した。また反応物(E)−
1のクロロホルム溶液を用いてGPC(ゲル・パー
ミエーシヨン・クロマトグラフ)を測定したとこ
ろ、反応物(E)−1は、1:1の反応物のほかに、
反応の進んだ高分子化合物を含む反応混合物であ
つた。 参考例 4 N−フエニル−N−(2−ヒドロキシ−3−フ
エノキシプロピル)−アセトアセトアミド〔(E)−
2〕 アセトアセトアニリドとフエニルグリシジルエ
ーテルを参考例3と同様にして1:1.2(モル比)
で170℃で1時間加熱して反応させ、反応物(E)−
2を得た。この(E)−2は参考例3と同様に1:1
の反応物以外にさらに反応の進んだ高分子化合物
を含む反応混合物であつた。 参考例 5 N−(2−ヒドロキシ−2−シクロヘキセンオ
キシドエチル)−アニリン〔(E)−3〕 アニリン及びビニルシクロヘキセンを、参考例
3と同様にして、1:2.1(モル比)で、100℃で
45分間加熱して反応させ、粘稠な液状の反応物(E)
−3を得た。この(E)−3は参考例3と同様、1:
1の反応物以外にさらに反応の進んだ高分子化合
物を含む反応混合物であつた。実施例1〜16及び
比較例1〜15 第1表に示す樹脂組成物をマトリツクス樹脂と
して一方向炭素繊維複合材料を成形し、得られた
成形対の0°方向曲げ強度及び層間剪断強度を測定
した。その結果を表中に併せて示す。 表中の成形体は、下記の方法で作成した。エポ
キシ樹脂、硬化剤及び反応物(E)を表中の割合で、
60〜70℃の温度で均一混合し、マトリツクス用の
樹脂組成物とする。この樹脂組成物を加熱し、離
型紙上に薄膜を形成させ、いわゆるホツトメルト
フイルムを作成し、このフイルムをドラムに巻き
付け、炭素繊維(パイロフイルT−1、三菱レイ
ヨン社製)を加熱、含浸してプリプレグを作成し
た。得られたプリプレグを積層し、成形後の炭素
繊維の含有量が60Vol%になるように調製したの
ち、金型に仕込み、所定温度に加熱された熱プレ
スで一定時間加熱硬化して成形体を作成した。 表中の炭素繊維複合材料の物性測定方法は下記
のとおりである。 (1) 層間剪断強度 長さ15mm、幅10mm、厚さ2mmの板状試験片を
用い、スパン間隔8mmの支点(先端半径3.2mm)
においた試験片の中央を先端半径3.2mmの圧子
で押さえて3点曲げ試験を行い、クロスヘツド
速度は2mm/分とした。次式により層間剪断強
度を計算した。なおスパン間隔をL(mm)、試料
厚さをT(mm)、試料巾をW(mm)、破断荷重をP
(Kg)とした。 層間剪断強度=3P/4WT(Kg/mm2) (2) 曲げ強度 長さ100mm、幅10mm、厚さ2mmの板状試片を
用いて、スパン間隔80mmとし、その他は層間剪
断強度と同様にして試験を行い、次式により0°
方向曲げ強度を計算した。 曲げ速度=3PL/2WT2(Kg/mm2) なお表中の記号は下記の化合物を示す。 Ep.154:フエノールボラツク型エポキシ樹脂
(シエル化学社製) ELM−120:m−N,N−ジグリシジルアミ
ノフエニルグリシジルエーテル(住友化学社
製) MY−720:ジアミノジフエニルメタンテト
ラグリシジルアミン(チバガイギー社製) Ep.828:ビスフエノールA型エポキシ樹脂
(シエル化学社製) DADPS:ジアミノジフエニルスルホン DICY:ジシアンジアミド DCMU:3−(3,4−ジクロルフエニル)
−1,1−ジメチル尿素 また反応物(E)の添加量は、(A)〜(D)成分の全合
計量に対する重量%を示す。 これにより、本発明の樹脂組成部をマトリツク
ス樹脂として用いると、炭素繊維複合材料の0°方
向曲げ強度220Kg/mm2以上、かつ層間剪断強度10
Kg/mm2を容易に達成できることがわかる。これに
反して比較例では、150℃以下の温度での硬化物
物性が低くなつたり、硬化不十分で物性測定の困
難な樹脂組成もみられた。特に比較例9〜15に示
したジアミノジフエニルスルホンあるいはジシア
ンジアミドを単独で使用した場合、硬化不十分で
あり、たとえ硬化しても炭素繊維複合材料の曲げ
強度、層間剪断強度が低い。ジアミノジフエニル
スルホン、ジシアンジアミドを組み合わせること
により低温、短時間で硬化し、しかも得られる炭
素繊維複合材料の曲げ強度及び層間剪断強度が高
くなることがわかる。
The carbon fiber composite material using the epoxy resin composition of the present invention as a matrix resin has a bending strength in the 0° direction of
It has physical properties of 220Kg/mm 2 or more, interlaminar shear strength 10Kg/mm 2 or more, and can be cured at low temperatures of 150°C or less. Therefore, it can be expected to have a wide range of applications, from sports and leisure fields such as fishing rods and golf shafts to industrial fields such as automobiles, aircraft, and rockets. Reference example 1 m-methyl-p-N,N-diglycidylaminophenyl glycidyl ether [epoxy compound
(a)] synthesis m-methyl-p-aminophenol 54.6g
(0.444 mol), 370 g (4 mol) of epichlorohydrin, 84 g of 95% ethyl alcohol, 0.65 g of lithium hydroxide hydrate, and 6 ml of water (3.7 mol % based on phenolic hydroxyl groups) were stirred at room temperature ( The reaction was carried out at 25°C for 137 hours. This mixture was heated to 55-60°C, and 66.5 g (1.66 mol) of 50% by weight aqueous sodium hydroxide was added and heated for 3 hours. Reduce pressure (30mmHg) until the temperature of the residue is 65℃
Distillation was performed to remove water, alcohol and excess epictorhydrin. The residue was dissolved in benzene and washed repeatedly with water to remove salts and excess sodium hydroxide. The washed benzene solution was distilled under reduced pressure (30 mmHg) to remove benzene.
The epoxy equivalent of the obtained dark brown liquid epoxy compound (a) was 105 g/eq. Reference example 2 o-methyl-p-N,N-diglycidylaminophenyl glycidyl ether [epoxy compound
(b)] synthesis Epoxy compound (b) was obtained in the same manner as in Reference Example 1 except that o-methyl-p-aminophenol was used as the starting material. Obtained epoxy compound (b)
The epoxy equivalent was 104 g/eq. Reference example 3 N-[4-(2-hydroxy-3-phenoxypropoxy)-phenyl]-acetamide [(E)-1] Mix p-hydroxyacetanilide and phenyl glycidyl ether at a ratio of 1:1.05 (mole ratio),
When the reaction was carried out by heating at 160°C for 60 minutes, a viscous liquid reaction product was obtained at room temperature. This was heated to 150° C. under a reduced pressure of 1 mmHg to remove unreacted phenyl glycidyl ether to obtain reaction product (E)-1.
The infrared absorption spectrum of reaction product (E)-1 was measured, and it was confirmed that there was no epoxy group. Also, reactant (E)−
When GPC (gel permeation chromatography) was measured using a chloroform solution of 1, reactant (E)-1 was found to contain, in addition to the 1:1 reactant,
The reaction mixture contained a highly reacted polymer compound. Reference example 4 N-phenyl-N-(2-hydroxy-3-phenoxypropyl)-acetoacetamide [(E)-
2] Acetoacetanilide and phenyl glycidyl ether were prepared in the same manner as in Reference Example 3 to 1:1.2 (molar ratio).
was heated at 170°C for 1 hour to react, and the reaction product (E)-
I got 2. This (E)-2 is 1:1 as in Reference Example 3.
The reaction mixture contained, in addition to the above reactants, a polymer compound that had undergone further reaction. Reference example 5 N-(2-hydroxy-2-cyclohexene oxide ethyl)-aniline [(E)-3] Aniline and vinylcyclohexene were mixed at 100°C in the same manner as in Reference Example 3 at a molar ratio of 1:2.1.
After heating for 45 minutes to react, a viscous liquid reactant (E)
I got -3. This (E)-3 is similar to Reference Example 3, 1:
The reaction mixture contained a polymer compound in which the reaction had further progressed in addition to the first reactant. Examples 1 to 16 and Comparative Examples 1 to 15 A unidirectional carbon fiber composite material was molded using the resin composition shown in Table 1 as a matrix resin, and the 0° direction bending strength and interlaminar shear strength of the resulting molded pair were measured. did. The results are also shown in the table. The molded bodies in the table were created by the following method. Epoxy resin, curing agent and reactant (E) in the proportions shown in the table,
Mix uniformly at a temperature of 60 to 70°C to obtain a resin composition for matrix. This resin composition is heated to form a thin film on release paper to create a so-called hot melt film, and this film is wound around a drum, and carbon fiber (Pyrofil T-1, manufactured by Mitsubishi Rayon Co., Ltd.) is heated and impregnated. prepreg was created. The obtained prepregs are laminated and adjusted so that the carbon fiber content after molding is 60 Vol%, and then placed in a mold and cured by heating for a certain period of time in a heat press heated to a predetermined temperature to form a molded body. Created. The method for measuring the physical properties of the carbon fiber composite materials in the table is as follows. (1) Interlaminar shear strength Using a plate-shaped specimen with a length of 15 mm, width of 10 mm, and thickness of 2 mm, a fulcrum with a span interval of 8 mm (tip radius of 3.2 mm)
A three-point bending test was performed by pressing the center of the sample with an indenter with a tip radius of 3.2 mm, and the crosshead speed was 2 mm/min. The interlaminar shear strength was calculated using the following formula. The span interval is L (mm), the sample thickness is T (mm), the sample width is W (mm), and the breaking load is P.
(Kg). Interlaminar shear strength = 3P/4WT (Kg/mm 2 ) (2) Bending strength Using a plate specimen with a length of 100 mm, a width of 10 mm, and a thickness of 2 mm, the span spacing was 80 mm, and the other conditions were the same as for the interlaminar shear strength. 0° by the following formula.
The directional bending strength was calculated. Bending speed = 3PL/2WT 2 (Kg/mm 2 ) The symbols in the table indicate the following compounds. Ep.154: Phenolborak type epoxy resin (manufactured by Schiel Chemical Co., Ltd.) ELM-120: m-N,N-diglycidylaminophenyl glycidyl ether (manufactured by Sumitomo Chemical Co., Ltd.) MY-720: Diaminodiphenylmethane tetraglycidylamine (manufactured by Ciba Geigy) Ep.828: Bisphenol A epoxy resin (manufactured by Schiel Chemical) DADPS: Diaminodiphenylsulfone DICY: Dicyandiamide DCMU: 3-(3,4-dichlorophenyl)
-1,1-dimethylurea The amount of reactant (E) added indicates the weight % based on the total amount of components (A) to (D). As a result, when the resin composition of the present invention is used as a matrix resin, the bending strength in the 0° direction of carbon fiber composite materials is 220 Kg/mm 2 or more, and the interlaminar shear strength is 10
It can be seen that Kg/mm 2 can be easily achieved. On the other hand, in Comparative Examples, the physical properties of the cured products were poor at temperatures below 150°C, and some resin compositions were insufficiently cured, making it difficult to measure the physical properties. In particular, when diaminodiphenylsulfone or dicyandiamide shown in Comparative Examples 9 to 15 is used alone, curing is insufficient, and even if cured, the bending strength and interlaminar shear strength of the carbon fiber composite material are low. It can be seen that the combination of diaminodiphenylsulfone and dicyandiamide cures at low temperatures and in a short time, and also increases the bending strength and interlaminar shear strength of the resulting carbon fiber composite material.

【表】【table】

【表】 実施例17〜27及び比較例16,17 エポキシ化合物として、エポキシ化合物(a)/
Ep.154=40/60(重量%)組成のものを用い、4,
4′−ジアミノジフエニルスルホン及び反応物(E)−
1の添加量を変えて、エポキシ樹脂組成物を調製
し、その他は実施例1〜16と同様にして130℃で
1時間加熱し、炭素繊維複合材料を得た。成形品
の0°方向曲げ強度及び層間剪断強度の測定結果を
第2表及び第3表に示す。
[Table] Examples 17 to 27 and Comparative Examples 16 and 17 As epoxy compounds, epoxy compound (a)/
Ep.154 = 40/60 (weight%) composition, 4,
4'-Diaminodiphenyl sulfone and reactant (E)-
Epoxy resin compositions were prepared by changing the amount of 1 added, and otherwise heated at 130° C. for 1 hour in the same manner as in Examples 1 to 16 to obtain carbon fiber composite materials. Tables 2 and 3 show the measurement results of the 0° direction bending strength and interlaminar shear strength of the molded product.

【表】【table】

【表】 実施例28及び比較例18 反応生成物(E)−3を用いて得られる炭素繊維複
合材料を50℃の温水中に24時間浸漬し、吸湿前後
の0°方向曲げ強度及び層間剪断強度を測定した結
果を第4表に示す。本発明の樹脂組成物を用いた
炭素繊維複合材料は吸水量も低く、このため吸湿
による物性低下が小さいことが明らかである。
[Table] Example 28 and Comparative Example 18 Carbon fiber composite materials obtained using reaction product (E)-3 were immersed in hot water at 50°C for 24 hours, and the bending strength in the 0° direction and interlaminar shear were measured before and after moisture absorption. Table 4 shows the results of measuring the strength. It is clear that the carbon fiber composite material using the resin composition of the present invention has a low amount of water absorption, and therefore the deterioration of physical properties due to moisture absorption is small.

【表】 実施例 29〜32 参考例1に示したエポキシ化合物(1)100重量部
に対して、0.1重量部のトリメチルアミンを添加、
100℃で30分間加熱して粘稠の樹脂を得た。得ら
れたエポキシ樹脂のエポキシ当量は、196であり、
エポキシ基の一部が反応したオリゴマーが得られ
た。 このオリゴマーを利用して、実施例1〜16と同
様にして、一方向炭素繊維複合材料を成形した。
用いたマトリツクス樹脂組成と成形体の0°方向曲
げ強度及び層間剪断強度を第5表に示す。
[Table] Examples 29 to 32 0.1 part by weight of trimethylamine was added to 100 parts by weight of the epoxy compound (1) shown in Reference Example 1,
A viscous resin was obtained by heating at 100°C for 30 minutes. The epoxy equivalent of the obtained epoxy resin is 196,
An oligomer with some of the epoxy groups reacted was obtained. Using this oligomer, unidirectional carbon fiber composite materials were molded in the same manner as in Examples 1 to 16.
Table 5 shows the matrix resin composition used, the 0° direction bending strength, and the interlaminar shear strength of the molded product.

【表】 実施例 33〜48 エポキシ樹脂としてエポキ化合物(1)を、反応物
Eとして(E)−1を用いて、成分(B),(C)及び(D)の割
合を変えたエポキシ樹脂とマトリツクス樹脂とし
て、実施例1〜16と同様にして炭素繊維複合材料
を得た。用いたマトリツクス樹脂組成及び0°方向
曲げ強度、層間剪断強度の測定結果を第6表に示
す。
[Table] Examples 33 to 48 Epoxy resins using epoxy compound (1) as the epoxy resin and (E)-1 as the reactant E, with varying proportions of components (B), (C), and (D) A carbon fiber composite material was obtained as a matrix resin in the same manner as in Examples 1 to 16. Table 6 shows the composition of the matrix resin used and the measurement results of 0° direction bending strength and interlaminar shear strength.

【表】 *3 エポキシ化合物(a)、成分(B)、(C)及び(D)の
混合物に対する添加重量%を示す。
[Table] *3 Indicates the weight percent added to the mixture of epoxy compound (a), components (B), (C) and (D).

Claims (1)

【特許請求の範囲】 1 (A) m−又はo−メチル−p−N,N−ジグ
リシジルアミノフエニルグリシジルエーテル又
はそのオリゴマーを10〜100重量%含有するエ
ポキシ化合物、 (B) エポキシ化合物に対して、当量の50〜200%
のジアミノジフエニルスルホン及び/又はジア
ミノジフエニルメタン、 (C) エポキシ化合物100重量部に対して、1〜10
重量部のジシアンジアミド、2,6−キシレニ
ルビグアニド、o−トリルビグアニド、ジフエ
ニルグアニジン、アジピルジヒドラジド、アゼ
ライルジヒドラジド、イソフタル酸ジヒドラジ
ドから成る群から選ばれた少なくとも1種の化
合物、 (D) エポキシ化合物100重量部に対して、1.5〜15
重量部の一般式 (式中X1及びX2は同一でも異なつてもよく、
塩素原子、臭素原子、ニトロ基、メチル基、水素
原子、メトキシ基、エトキシ基又は基
【式】を示す)で表わされる尿 素化合物を含有する、複合材料用エポキシ樹脂組
成物。 2 (A)成分であるm−又はo−メチル−p−N,
N−ジグリシジルアミノフエニルグリシジルエー
テル又はそのオリゴマーと併用するエポキシ化合
物がフエノールノボラツク型エポキシ樹脂及び/
又はクレゾールノボラツク型エポキシ樹脂である
ことを特徴とする、第1請求項に記載の複合材料
用エポキシ樹脂組成物。 3 (C)成分がジシアンジアミドである第1請求項
に記載の複合材料用エポキシ樹脂組成物。 4 (D)成分が3−(3,4−ジクロルフエニル)−
1,1−ジメチル尿素である、第1請求項に記載
の複合材料用エポキシ樹脂組成物。 5 一般式 (式中Xは水素原子、塩素原子、臭素原子又は
水酸基、Rは水素原子、基【式】又は 【式】を示す)で表わされるア ミド又はアミンを一般式 又は (式中Xは前記の意味を有する)で表わされる
エポキシ化合物と反応させることにより得られる
反応生成物を成分(A)〜(D)の合計量に対して100重
量%以下の量で含有することを特徴とする、第1
請求項に記載の複合材料用エポキシ樹脂組成物。 6 p−ヒドロキシアセトアニリド又はアセトア
セトアニリドとフエニルグリシジルエーテルとの
反応生成物を含有することを特徴とする、第5請
求項に記載の複合材料用エポキシ樹脂組成物。 7 アニリンと4−ビニルシクロヘキセンジオキ
サイド(4)との反応生成物を含有することを特徴と
する、第5請求項に記載の複合材料用エポキシ樹
脂組成物。
[Claims] 1 (A) an epoxy compound containing 10 to 100% by weight of m- or o-methyl-p-N,N-diglycidylaminophenyl glycidyl ether or an oligomer thereof; (B) an epoxy compound containing 10 to 100% by weight of m- or o-methyl-p-N,N-diglycidylaminophenyl glycidyl ether; vs. 50-200% of equivalent weight
of diaminodiphenyl sulfone and/or diaminodiphenylmethane, (C) 1 to 10 parts per 100 parts by weight of the epoxy compound
Parts by weight of at least one compound selected from the group consisting of dicyandiamide, 2,6-xylenyl biguanide, o-tolyl biguanide, diphenylguanidine, adipyl dihydrazide, azelyl dihydrazide, isophthalic acid dihydrazide, (D) 1.5 to 15 per 100 parts by weight of epoxy compound
General formula for parts by weight (In the formula, X 1 and X 2 may be the same or different,
An epoxy resin composition for composite materials containing a urea compound represented by a chlorine atom, a bromine atom, a nitro group, a methyl group, a hydrogen atom, a methoxy group, an ethoxy group, or a group (representing the formula). 2 (A) component m- or o-methyl-p-N,
The epoxy compound used in combination with N-diglycidylaminophenyl glycidyl ether or its oligomer is a phenol novolak type epoxy resin and/or
The epoxy resin composition for composite materials according to claim 1, which is a cresol novolak type epoxy resin. 3. The epoxy resin composition for composite materials according to claim 1, wherein the component (C) is dicyandiamide. 4 Component (D) is 3-(3,4-dichlorophenyl)-
The epoxy resin composition for composite materials according to claim 1, which is 1,1-dimethylurea. 5 General formula (In the formula, or Contains a reaction product obtained by reacting with an epoxy compound represented by (wherein X has the above meaning) in an amount of 100% by weight or less based on the total amount of components (A) to (D). The first, characterized by
The epoxy resin composition for composite materials according to the claims. 6. The epoxy resin composition for composite materials according to claim 5, which contains p-hydroxyacetanilide or a reaction product of acetoacetanilide and phenyl glycidyl ether. 7. The epoxy resin composition for composite materials according to claim 5, which contains a reaction product of aniline and 4-vinylcyclohexene dioxide (4).
JP1015076A 1988-02-05 1989-01-26 Epoxy resin composition for composite material Granted JPH01287130A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP63-25206 1988-02-05
JP2520488 1988-02-05
JP63-25204 1988-02-05
JP63-25205 1988-02-05

Publications (2)

Publication Number Publication Date
JPH01287130A JPH01287130A (en) 1989-11-17
JPH0471928B2 true JPH0471928B2 (en) 1992-11-17

Family

ID=12159422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1015076A Granted JPH01287130A (en) 1988-02-05 1989-01-26 Epoxy resin composition for composite material

Country Status (1)

Country Link
JP (1) JPH01287130A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7591973B2 (en) 2002-11-28 2009-09-22 Mitsubishi Rayon Co., Ltd. Method for producing a fiber-reinforced composite material plate
JP5326435B2 (en) * 2008-08-29 2013-10-30 東レ株式会社 Epoxy resin composition, prepreg, fiber reinforced composite material, and method for producing fiber reinforced composite material
JP2013159696A (en) * 2012-02-03 2013-08-19 Mitsubishi Rayon Co Ltd Epoxy resin composition and prepreg using the same, and fiber-reinforced composite resin molding produced from the prepreg

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59207920A (en) * 1983-05-12 1984-11-26 Toho Rayon Co Ltd Heat-resistant epoxy resin composition
JPS62183340A (en) * 1986-02-07 1987-08-11 住友化学工業株式会社 Fiber reinforced composite material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59207920A (en) * 1983-05-12 1984-11-26 Toho Rayon Co Ltd Heat-resistant epoxy resin composition
JPS62183340A (en) * 1986-02-07 1987-08-11 住友化学工業株式会社 Fiber reinforced composite material

Also Published As

Publication number Publication date
JPH01287130A (en) 1989-11-17

Similar Documents

Publication Publication Date Title
JP6187586B2 (en) Benzoxazine resin composition, prepreg, and fiber reinforced composite material
EP0127198B1 (en) Preimpregnated reinforcements and high strength composites therefrom
EP0327125B1 (en) Epoxy resin composition, use and composite material comprising it
EP0311349B1 (en) Polymer composition
JPH0693103A (en) High-modulus silicone as reinforcement for epoxy resin
JPH0554503B2 (en)
US10344117B2 (en) Epoxy resin composition, prepreg, and fiber reinforced composite material
KR101878128B1 (en) Epoxy resin composition, prepreg and fiber reinforced composite material
JP5729023B2 (en) Epoxy resin composition for fiber reinforced composite material, prepreg and fiber reinforced composite material
WO2019167579A1 (en) Heat-curable resin composition, prepreg, and fiber-reinforced composite material
US5231150A (en) Polymer composition
NO840294L (en) EPOXY PREPARATIONS CONTAINING OLIGOMER DIAMOND HARDENERS AND COMPOSITION MATERIALS USING THESE
US5434224A (en) Thermoset and polyarylsulfone resin system that forms an interpenetrating network
JP2736443B2 (en) Epoxy resin composition for composite materials
JPH0471928B2 (en)
JPH036215A (en) 1-isopropyl-2-methylimidazole as epoxy curing agent
JPS6215570B2 (en)
JP2736442B2 (en) Epoxy resin composition for carbon fiber composite material
KR100194365B1 (en) Polymer Compositions and Their Components
JP3342710B2 (en) Epoxy resin composition and prepreg for composite material therefrom
JP2736444B2 (en) Epoxy resin composition
JPH0480226A (en) Epoxy resin composition for composite material
JPH01110524A (en) Resin composition for composite material
JP7537161B2 (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP3342709B2 (en) Epoxy resin composition and prepreg therefrom

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081117

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081117

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 17

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 17