JPS62183340A - Fiber reinforced composite material - Google Patents

Fiber reinforced composite material

Info

Publication number
JPS62183340A
JPS62183340A JP2660186A JP2660186A JPS62183340A JP S62183340 A JPS62183340 A JP S62183340A JP 2660186 A JP2660186 A JP 2660186A JP 2660186 A JP2660186 A JP 2660186A JP S62183340 A JPS62183340 A JP S62183340A
Authority
JP
Japan
Prior art keywords
composite material
reinforced composite
fibers
fiber
amino
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2660186A
Other languages
Japanese (ja)
Other versions
JPH0437856B2 (en
Inventor
森井 章
宏 中村
康久 斉藤
神尾 邦政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2660186A priority Critical patent/JPS62183340A/en
Priority to DE3689783T priority patent/DE3689783T2/en
Priority to EP19860307453 priority patent/EP0217657B1/en
Publication of JPS62183340A publication Critical patent/JPS62183340A/en
Priority to US07/174,703 priority patent/US4900848A/en
Priority to US07/402,663 priority patent/US4957995A/en
Publication of JPH0437856B2 publication Critical patent/JPH0437856B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は特定のポリグリシジル誘導体とエポキシ硬化剤
を必須成分とするエポキシ樹脂組成物の硬化物をマトリ
ックスとし、繊維を強化材とした繊維強化複合材料に関
するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention provides a fiber-reinforced material using a cured product of an epoxy resin composition containing a specific polyglycidyl derivative and an epoxy curing agent as essential components as a matrix and fiber as a reinforcing material. It concerns composite materials.

〔従来の技術〕[Conventional technology]

エポキシ樹脂組成物の硬化物をマトリックスとし、炭素
繊維、アルミナ繊維、ポリアミド繊維等の繊維を強化材
とした繊維強化複合材料は優れた機械的性質を有してい
るため、種々の産業において構造部品等、さらにはスポ
ーツ、レジャー用品等に使用されている。
Fiber-reinforced composite materials, which have a cured epoxy resin composition as a matrix and reinforced with carbon fibers, alumina fibers, polyamide fibers, etc., have excellent mechanical properties and are used for structural parts in various industries. It is also used in sports and leisure goods.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、近年複合材料の応用分野が拡大するにつ
れていままでの使用環境よりもさらに高温、高温といっ
たように過酷な環境下において化学的安定性、機械的性
質を維持する材料が要望されるようになってきた。
However, as the field of application of composite materials has expanded in recent years, there has been a demand for materials that maintain chemical stability and mechanical properties under harsher environments such as higher temperatures and temperatures than those in which they have been used up until now. It's here.

繊維強化複合材料は強化繊維の特性を最大限に発揮させ
るにはマトリックスとして用いる樹脂が重要であり、そ
れ故、種々のエポキシ樹脂組成物についての開発が盛ん
に行われており、エポキシ樹脂組成物をマトリックスと
した繊維強化複合材料として、例えば特公昭55−25
217号公報においてはトリグリシジルアミノフェノー
ル等とジフェニルジアミノスルホンからなるエポキシ樹
脂をマトリックスとした炭素繊維強化複合材料が提案さ
れている。この複合材料は比較的高い眉間剪断強度を有
しているが 用途によってはより眉間剪断強度が高く、
また耐熱性、耐水性に優れた複合材料が要望されている
現状からして必ずしも満足すべきものではない。
In fiber-reinforced composite materials, the resin used as a matrix is important to maximize the properties of the reinforcing fibers, and therefore, various epoxy resin compositions are being actively developed. As a fiber-reinforced composite material with a matrix of
No. 217 proposes a carbon fiber-reinforced composite material using an epoxy resin matrix consisting of triglycidylaminophenol and diphenyldiaminosulfone. This composite material has a relatively high glabellar shear strength, but depending on the application, the glabellar shear strength may be even higher.
Furthermore, given the current demand for composite materials with excellent heat resistance and water resistance, this is not necessarily satisfactory.

またこれらエポキシ樹脂は粘度が高いため成形法によっ
ては問題がある。
Furthermore, since these epoxy resins have a high viscosity, there are problems depending on the molding method.

本発明の目的はより高い眉間剪断強度、耐熱性、耐水性
を有する繊維強化複合材料を提供することにある。
An object of the present invention is to provide a fiber-reinforced composite material having higher glabellar shear strength, heat resistance, and water resistance.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は芳香環に少なくとも1個のアルキル基が置換し
たアミノフェノール化合物のポリグリシジル誘導体とエ
ポキシ硬化剤を必須成分とするエポキシ樹脂組成物の硬
化物をマトリックスとし、繊維を強化材としたことを特
徴とする繊維強化複合材料を提供する。
The present invention uses a cured product of an epoxy resin composition containing a polyglycidyl derivative of an aminophenol compound whose aromatic ring is substituted with at least one alkyl group and an epoxy curing agent as essential components, and fibers as a reinforcing material. Provides a fiber-reinforced composite material with characteristics.

本発明は上記の実情に鑑み鋭意検討の結果、特定のポリ
グリシジル誘導体とエポキシ硬化剤と組み合わせたエポ
キシ樹脂組成物をマトリックス材料として用いたとき高
い眉間剪断強度、耐熱性、耐水性を有する繊維強化複合
材料が得られることを見出したものである。
The present invention was developed as a result of intensive studies in view of the above-mentioned circumstances.The present invention has been developed as a result of intensive studies in which an epoxy resin composition in combination with a specific polyglycidyl derivative and an epoxy curing agent is used as a matrix material. It was discovered that a composite material can be obtained.

以下、本発明について詳述する。The present invention will be explained in detail below.

本発明において用いられるポリグリシジル誘導体は芳香
環に1個以上のアルキル基が置換したアミノフェノール
のポリグリシジル誘導体である。このポリグリシジル誘
導体はアルキル基が無置換のアミノフェノールのポリグ
リシジル誘導体と比較して、製造上精製を特に必要とせ
ずに純度の高いものが得られるので低い粘度を有し、成
形性が優れており、また層間剪断強度、耐熱性、耐水性
の優れた繊維強化複合材料を得ることができる。特に成
形性の面から好ましくは25℃の粘度が15ボイズ以下
のポリグリシジル誘導体である。
The polyglycidyl derivative used in the present invention is a polyglycidyl derivative of aminophenol in which the aromatic ring is substituted with one or more alkyl groups. Compared to polyglycidyl derivatives of aminophenols in which the alkyl group is unsubstituted, this polyglycidyl derivative does not require any particular purification during production and can be obtained with high purity, so it has a low viscosity and excellent moldability. Furthermore, a fiber-reinforced composite material with excellent interlaminar shear strength, heat resistance, and water resistance can be obtained. Particularly from the viewpoint of moldability, polyglycidyl derivatives having a viscosity at 25° C. of 15 voids or less are preferred.

ポリグリシジル誘導体を製造する方法については特に限
定されないが、−例を述べればアルキル基置換アミノフ
ェノールを過剰(例工ば5倍モル、好ましくは10倍モ
ル以上)のエピハロヒドリン(例えばエピクロルヒドリ
ン)中で100℃以下の温度でアミノ基ヘエピハロヒド
リンを付加反応させた後、40〜100℃の温度で減圧
下に苛性アルカリの水溶液を滴下し、同時に反応系内の
水を共沸で留去しながらエポキシ化反応させる方法が挙
げられる。上記の反応においては既存のエポキシ化反応
と違ってエポキシ化反応以外の副反応が極めて抑制され
ているのが特徴である。このためエポキシ基含有量の高
い低分子量のポリグリシジル誘導体が得られる。
The method for producing the polyglycidyl derivative is not particularly limited, but to give an example, an alkyl group-substituted aminophenol is prepared in an excess (for example, 5 times the mole, preferably 10 times or more) of epihalohydrin (e.g., epichlorohydrin) at 100% After the addition reaction of epihalohydrin to amino groups at a temperature below ℃, an aqueous solution of caustic alkali is added dropwise under reduced pressure at a temperature of 40 to 100 ℃, and at the same time water in the reaction system is distilled off azeotropically, resulting in epoxidation. Examples include a method of reacting. The above reaction is characterized in that side reactions other than the epoxidation reaction are extremely suppressed, unlike existing epoxidation reactions. Therefore, a low molecular weight polyglycidyl derivative with a high content of epoxy groups can be obtained.

特に好ましくはエピハロヒドリンを約15モル倍以上使
用することにより25℃で15ボイズないしそれ以下の
粘度のポリグリシジル誘導体が得られる。これは三官能
性のポリグリシジル誘導体としては極めて低い値である
Particularly preferably, a polyglycidyl derivative having a viscosity of 15 voids or less at 25° C. can be obtained by using about 15 moles or more of epihalohydrin. This is an extremely low value for a trifunctional polyglycidyl derivative.

本発明で用いられるポリグリシジル誘導体は、1個の芳
香環に3個程度のポリグリシジル基が結合しており、さ
らに既存のポリグリシジル誘導体と比較してエポキシ基
含有量が高いので、その硬化物は架橋密度が高くなり、
高度の耐熱性を発現すると考えられる。
The polyglycidyl derivative used in the present invention has about three polyglycidyl groups bonded to one aromatic ring, and has a higher epoxy group content than existing polyglycidyl derivatives, so its cured product has a higher crosslinking density,
It is thought to exhibit a high degree of heat resistance.

本発明で用いられるポリグリシジル誘導体の原料である
アルキル基置換のアミノフェノール化合物のアルキル基
の炭素数は1〜5のもので1個のアルキル基置換のもの
が好ましく、具体的には4−アミノ−m−クレゾール、
4−アミノ−0−クレゾール、6−アミノ−m−クレゾ
ール、5−アミノ−m−クレゾール、3−エチル−4−
アミノフェノール、2−エチル−4−アミノフェノール
等の1種または2種以上が好ましく使用される。特に好
ましくは4−アミノ−m−クレゾール、4−アミノ−0
−クレゾールである。
The alkyl group of the alkyl group-substituted aminophenol compound, which is the raw material for the polyglycidyl derivative used in the present invention, has 1 to 5 carbon atoms, and preferably has one alkyl group substitution.Specifically, 4-amino -m-cresol,
4-amino-0-cresol, 6-amino-m-cresol, 5-amino-m-cresol, 3-ethyl-4-
One or more of aminophenol, 2-ethyl-4-aminophenol and the like are preferably used. Particularly preferably 4-amino-m-cresol, 4-amino-0
-It is a cresol.

本発明で用いられるポリグリシジル誘導体は既存のエポ
キシ樹脂との併用も可能である。これらエポキシ樹脂と
しては、ビスフェノールF。
The polyglycidyl derivative used in the present invention can also be used in combination with existing epoxy resins. These epoxy resins include bisphenol F;

ハイドロキノン、レゾルシン、フロログリシン、トリス
−(4−ヒドロキシフェニル)メタン、1,1,2.2
−テトラキス(4−ヒドロキシフェニル)エタン等の二
価あるいは三価以上のフェノール類またはテトラブロム
ビスフェノールA等のハロゲン化ビスフェノール類から
誘導されるグリシジルエーテル化合物2、アニリン、p
−アミノフェノール、m−アミノフェノール、4.4°
−ジアミノジフェニルエーテル、3,4゛−ジアミノジ
フェニルエーテル、1.4−ビス(4−アミノフェノキ
シ)ベンゼン、1.4−ビス(3−アミノフェノキシ)
ベンゼン、1.3−ビス(4−アミノフェノキシ)ベン
ゼン、1.3−ビス(3−アミノフェノキシ)ベンゼン
、2.2−ビス(4−アミノフェノキシフェニル)プロ
パン、p−フェニレンジアミン、m−フェニレンジアミ
ン、2゜4−トルエンジアミン、2.6−トルエンジア
ミン、p−キシリレンジアミン、m−キシリレンジアミ
ン、1.4−シクロヘキサン−ビス(メチルアミン) 
 、1.3−シクロヘキサン−ビス(メチルアミン)、
5−アミノ−1−(4’−アミノフェニル)−1,3,
3−トリメチルインダン、6−アミノ−1−(4”−ア
ミノフェニル) −1,3゜3−トリメチルインダン系
から誘導されるアミン系エポキシ樹脂、p−オキシ安息
香酸、m −オキシ安息香酸、テレフタル酸、イソフタ
ル酸等の芳香族カルボン酸から誘導されるグリシジルエ
ステル系化合物、5,5−ジメチル・ヒダントイン等か
ら誘導されるヒダントイン系エポキシ樹jL2.2°−
ビス(3,4−エポキシシクロヘキシル)プロパン、 
212゛−ビス(4−(2,3−エポキシプロビル)シ
クロヘキシル〕プロパン、ビニルシクロヘキセンジオキ
サイド、3.4−エポキシシクロヘキシルメチル−3,
4−エポキシシクロヘキサンカルボキシレート等の脂環
式エポキシ樹脂、その他トリグリシジルイソシアヌレー
ト、2,4.6− )リグリシドキシーs−)リアジン
等の1種または2種以上を挙げることができる。
Hydroquinone, resorcinol, phloroglycin, tris-(4-hydroxyphenyl)methane, 1,1,2.2
- Glycidyl ether compound 2 derived from divalent or trivalent or higher hydric phenols such as tetrakis(4-hydroxyphenyl)ethane or halogenated bisphenols such as tetrabromobisphenol A, aniline, p
-aminophenol, m-aminophenol, 4.4°
-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 1,4-bis(4-aminophenoxy)benzene, 1,4-bis(3-aminophenoxy)
Benzene, 1.3-bis(4-aminophenoxy)benzene, 1.3-bis(3-aminophenoxy)benzene, 2.2-bis(4-aminophenoxyphenyl)propane, p-phenylenediamine, m-phenylene Diamine, 2゜4-toluenediamine, 2,6-toluenediamine, p-xylylene diamine, m-xylylene diamine, 1,4-cyclohexane-bis(methylamine)
, 1,3-cyclohexane-bis(methylamine),
5-amino-1-(4'-aminophenyl)-1,3,
3-trimethylindane, 6-amino-1-(4”-aminophenyl)-1,3° Amine-based epoxy resin derived from 3-trimethylindane, p-oxybenzoic acid, m-oxybenzoic acid, terephthal Glycidyl ester compounds derived from acids, aromatic carboxylic acids such as isophthalic acid, hydantoin epoxy resins derived from 5,5-dimethyl hydantoin, etc.
bis(3,4-epoxycyclohexyl)propane,
212゛-bis(4-(2,3-epoxypropyl)cyclohexyl)propane, vinylcyclohexene dioxide, 3,4-epoxycyclohexylmethyl-3,
Examples include alicyclic epoxy resins such as 4-epoxycyclohexanecarboxylate, and one or more of triglycidyl isocyanurate, 2,4.6-)liglycidoxys-)lyazine, and the like.

芳香環に1個以上のアルキル基が置換したアミノフェノ
ールのポリグリシジル誘導体と他のエポキシ樹脂を混合
して使用する場合、上記のポリグリシジル誘導体が30
重量%以上、好ましくは50重量%以上含有されている
ことが望ましい。
When using a polyglycidyl derivative of aminophenol whose aromatic ring is substituted with one or more alkyl groups and another epoxy resin, the above polyglycidyl derivative
It is desirable that the content is at least 50% by weight, preferably at least 50% by weight.

本発明で用いられるエポキシ硬化剤としては従来公知の
エポキシ硬化剤、例えばジアミノジフェニルスルホン、
ジアミノジフェニルメタン化合物、ジシアンジアミド、
テトラメチルグアニジン、フェノールノボラック樹脂、
酸無水物、芳香族アミン、脂肪族アミン、および三フン
化硼素錯体等を挙げることができる。
The epoxy curing agent used in the present invention includes conventionally known epoxy curing agents, such as diaminodiphenylsulfone,
Diaminodiphenylmethane compound, dicyandiamide,
Tetramethylguanidine, phenol novolac resin,
Examples include acid anhydrides, aromatic amines, aliphatic amines, and boron trifluoride complexes.

これら硬化剤の中ではジアミノジフェニルスルホン化合
物、ジアミノジフェニルメタン化合物、酸無水物が好ま
しい。
Among these curing agents, diaminodiphenyl sulfone compounds, diaminodiphenylmethane compounds, and acid anhydrides are preferred.

ジアミノジフェニルスルホン、ジアミノジフェニルメタ
ン化合物としては4.4°−ジアミノジフェニルスルホ
ン、3.3′−ジアミノジフェニルスルホン、4.4’
−ジアミノジフェニルメタン、3.3°−ジアミノジフ
ェニルメタンが挙げられ、酸無水物としてはテトラヒド
ロ無水フタル酸、メチルテトラヒドロ無水フタル酸、ヘ
キサヒドロ無水フタル酸、メチルへキサヒト無水フタル
酸、ドデセニル無水コハク酸、無水ナジック酸、無水メ
チルナジック酸、無水フタル酸、無水とロメリット酸、
無水ベンゾフェノンテトラカルボン酸、メチルシクロヘ
キセンテトラカルボン酸無水物、3.4−ジ−カルボキ
シ−1,2,3,4−テトラヒドロ−1−ナフタレンコ
ハク酸二無水物、1−メチル−3,4−ジ−カルボキシ
−1゜2、3.4−テトラヒドロ−1−ナフタレンコハ
ク酸二無水物が例示される。これらは単独または2種以
上の混合物で使用される。
Diaminodiphenylsulfone, diaminodiphenylmethane compounds include 4.4°-diaminodiphenylsulfone, 3.3'-diaminodiphenylsulfone, 4.4'
Examples of acid anhydrides include tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahyphthalic anhydride, dodecenylsuccinic anhydride, and nadic anhydride. acids, methylnadic anhydride, phthalic anhydride, romellitic anhydride,
Benzophenonetetracarboxylic anhydride, methylcyclohexenetetracarboxylic anhydride, 3,4-di-carboxy-1,2,3,4-tetrahydro-1-naphthalenesuccinic dianhydride, 1-methyl-3,4-dicarboxylic anhydride -Carboxy-1°2,3,4-tetrahydro-1-naphthalenesuccinic dianhydride is exemplified. These may be used alone or in a mixture of two or more.

より好ましいのはジアミノジフェニルスルホンおよび/
またはジアミノジフェニルメタン化合物であり、これら
を30重量%以上、特に50重量%以上含む硬化剤が好
ましい。
More preferred are diaminodiphenylsulfone and/or
or a diaminodiphenylmethane compound, and a curing agent containing 30% by weight or more, particularly 50% by weight or more of these is preferable.

本発明で用いられるポリグリシジル誘導体は特にジアミ
ノジフェニルスルホンおよびジアミノジフェニルメタン
化合物との親和性に優れ、得られる樹脂は取り扱い性が
良好で、物性の面で均質性が良好である。
The polyglycidyl derivative used in the present invention has particularly excellent affinity with diaminodiphenylsulfone and diaminodiphenylmethane compounds, and the resulting resin is easy to handle and has good homogeneity in terms of physical properties.

エポキシ硬化剤の使用割合はポリグリシジル誘導体また
はこれとエポキシ樹脂の混合物中の全エポキシ基量から
理論的に計算される量を1とした場合、0.4〜1.4
倍量、好ましくは0.5〜1.2倍量の範囲である。
The usage ratio of the epoxy curing agent is 0.4 to 1.4, assuming that the amount theoretically calculated from the total amount of epoxy groups in the polyglycidyl derivative or the mixture of this and the epoxy resin is 1.
The amount is preferably in the range of 0.5 to 1.2 times.

更に必要により硬化促進剤として、従来より公知である
三級アミン、フェノール化合物、イミダゾール類、ルイ
ス酸等を添加してもよい。
Furthermore, if necessary, conventionally known tertiary amines, phenol compounds, imidazoles, Lewis acids, etc. may be added as curing accelerators.

例えば三弗化硼素アミン錯体との併用は好ましい。For example, combination use with a boron trifluoride amine complex is preferred.

本発明で強化材として使用される繊維としては炭素繊維
、黒鉛繊維、ガラス繊維、炭化ケイ素繊維、アルミナ繊
維、チタニア繊維、窒化硼素繊維、芳香族ポリアミド繊
維、芳香族ポリエステル繊維、ポリベンツイミダゾール
繊維等、引張強度0.5GPa以上、ヤング率50GP
a以上の無機質または育機質繊維を例示することができ
る。
Examples of fibers used as reinforcing materials in the present invention include carbon fibers, graphite fibers, glass fibers, silicon carbide fibers, alumina fibers, titania fibers, boron nitride fibers, aromatic polyamide fibers, aromatic polyester fibers, and polybenzimidazole fibers. , tensile strength 0.5 GPa or more, Young's modulus 50 GPa
Examples include inorganic or nucleating fibers of a or more.

これら繊維は連続トウ、織布、短繊維、ボイスカーなど
の形で用いることができる。
These fibers can be used in the form of continuous tows, woven fabrics, short fibers, voice cars, and the like.

また、使用目的によっては2種以上の繊維、形状の異な
った繊維を併用することも可能である。さらに強化繊維
の他にタルク、マイカ、炭酸カルシウム、アルミナ水和
物、炭化ケイ素、カーボンブラック、シリカ等の粒状物
を混用することも樹脂組成物の粘性を改良して複合材料
の成形を容易にしたり、あるいは得られる複合材料の物
性、例えば圧縮強度などを改良するために有効である。
Furthermore, depending on the purpose of use, it is also possible to use two or more types of fibers or fibers with different shapes. Furthermore, in addition to reinforcing fibers, mixing granular materials such as talc, mica, calcium carbonate, alumina hydrate, silicon carbide, carbon black, and silica improves the viscosity of the resin composition and makes it easier to mold the composite material. It is also effective for improving the physical properties of the resulting composite material, such as compressive strength.

本発明の複合材料の製造法としては従来公知のエポキシ
樹脂をマトリックスとした繊維強化複合材料の製造法等
いずれの方法も採用できる。
As a method for manufacturing the composite material of the present invention, any method such as a method for manufacturing a fiber-reinforced composite material using an epoxy resin as a matrix can be employed.

−例としてはシート状プリプレグの複数枚を積層してオ
ートクレーブ中で加熱、加圧して複合材料を得る方法が
挙げられる。
- An example is a method of laminating a plurality of sheet prepregs and heating and pressurizing them in an autoclave to obtain a composite material.

ここでいうプリプレグとは強化繊維に該樹脂組成物を含
浸させたものであり、シート状、連続トウ、ストランド
およびヤーンの形またはペレット状の形をとる。シート
状のものでは強化繊維が連続トウが引き揃えられた形、
短繊維がマット状に絡まった形、あるいは織布の形をと
っている。またこれら構造の異なるシートを数枚重ね合
わせた積層シート状プリプレグ、また連続トウプリプレ
グを数本束ねたものも有用な材料である。
The prepreg herein refers to reinforcing fibers impregnated with the resin composition, and is in the form of sheets, continuous tows, strands, yarns, or pellets. In sheet-like products, the reinforcing fibers are arranged in continuous tows,
It takes the form of a mat of short fibers or a woven fabric. Also useful are laminated sheet prepregs made by stacking several of these sheets with different structures, and a bundle of several continuous tow prepregs.

これらプリプレグの繊維含有率は一般に5〜70体積%
、特に10〜60体積%が好ましい。
The fiber content of these prepregs is generally 5 to 70% by volume.
, particularly preferably 10 to 60% by volume.

これらプリプレグを重ね、または巻きつけること等によ
り所望の形状に賦形した後、加熱、加圧することにより
繊維強化複合材料を得ることができる。また低粘度のポ
リグリシジル誘導体を用いた場合、フィラメントワイン
ディング法において成形性の面で特に有効である。
A fiber-reinforced composite material can be obtained by forming these prepregs into a desired shape by stacking or winding them, and then heating and pressurizing them. Furthermore, when a low-viscosity polyglycidyl derivative is used, it is particularly effective in terms of moldability in the filament winding method.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の繊維強化複合材料は従来
のエポキシ樹脂を使用した繊維強化複合材料よりも優れ
た耐熱性、耐水性を有し、また曲げ強度、曲げ弾性率、
眉間剪断強度においても優れた性質を示す。
As explained above, the fiber-reinforced composite material of the present invention has better heat resistance and water resistance than conventional fiber-reinforced composite materials using epoxy resin, and also has bending strength, bending modulus,
It also shows excellent properties in terms of glabella shear strength.

〔実施例〕〔Example〕

実施例 1 第1表に示すエポキシ樹脂および硬化剤を第1表に示す
割合で配合し、固形物含量60重量%のメチルエチルケ
トン溶液を調製した。この樹脂溶液に炭素繊維(マグナ
マイト・AS−4、住化ハーキエレス■製)を連続的に
含浸し、次いでシリコーン剥離紙を巻きつけたドラムに
巻き取った。樹脂溶液の付着量は含浸後の炭素繊維を間
隔を調節した2本のステンレス型棒、で挟むことにより
調節した。
Example 1 The epoxy resin and curing agent shown in Table 1 were blended in the proportions shown in Table 1 to prepare a methyl ethyl ketone solution with a solids content of 60% by weight. This resin solution was continuously impregnated with carbon fibers (Magnamite AS-4, manufactured by Sumika Harkieless), and then wound up on a drum wrapped with silicone release paper. The amount of resin solution deposited was controlled by sandwiching the impregnated carbon fiber between two stainless steel rods with an adjusted interval.

ドラムから、剥離紙上に巻き取られた樹脂溶液を含浸し
た炭素繊維を切り開いて取り外し、熱風乾燥機中で12
0℃に10分程度保ち乾燥プリプレグを作製した。
The resin solution-impregnated carbon fiber wound on release paper was cut open and removed from the drum, and dried in a hot air dryer for 12 hours.
A dried prepreg was produced by keeping it at 0°C for about 10 minutes.

この炭素繊維のプリプレグ中から絞り出したエポキシ樹
脂組成物は本発明に用いられるトリグリシジル−4−ア
ミノーーークレゾールとジアミノジフェニルスルホン(
以下DDSと称する。
The epoxy resin composition squeezed out of this carbon fiber prepreg is the triglycidyl-4-amino-cresol and diaminodiphenylsulfone (
Hereinafter referred to as DDS.

)との樹脂組成物の場合、いずれも50℃で10ボィズ
以下の低粘性を示し、容易に制御できる低温反応挙動の
ために容易に適度の可とう性を有するプリプレグが得ら
れ、Tgは265℃を示し、ポットライフは24時間以
上であった。
), all exhibit a low viscosity of 10 voids or less at 50°C, and prepregs with moderate flexibility can be easily obtained due to the easily controllable low-temperature reaction behavior, and the Tg is 265. ℃, and the pot life was more than 24 hours.

なお、プリプレグ中の炭素繊維含有率は60体積%に調
節した。
Note that the carbon fiber content in the prepreg was adjusted to 60% by volume.

得られたプリプレグを成形後の炭素繊維含有率が60体
積%になるようにマンチドダイ金型に仕込み、所定温度
に加熱された熱プレスで1時間加熱加圧成形し、得られ
た成形体を更に熱風循環オーブン中で所定の条件でボス
トキエアーを行った。その後、眉間剪断強度ならびに曲
げ強度をASTM D−2344ならびにASTM D
−790に準拠して測定した。結果を第1表に示す。
The obtained prepreg was charged into a mantido die mold so that the carbon fiber content after molding was 60% by volume, and heated and pressure molded for 1 hour using a hot press heated to a predetermined temperature. Vostky air was performed under predetermined conditions in a hot air circulation oven. After that, the glabellar shear strength and bending strength were measured according to ASTM D-2344 and ASTM D.
-790. The results are shown in Table 1.

実施例 2 第2表に示すポリグリシジル化合物および4.4’−ジ
アミノジフェニルスルホンを、同表に示す量使用した以
外は実施例1と同様にして炭素繊維強化複合材料を作成
し、その物性を測定した。結果を第2表に示す。
Example 2 A carbon fiber reinforced composite material was prepared in the same manner as in Example 1 except that the polyglycidyl compound and 4,4'-diaminodiphenylsulfone shown in Table 2 were used in the amounts shown in the same table, and its physical properties were evaluated. It was measured. The results are shown in Table 2.

実施例 3 第3表にしめずエポキシ樹脂と4,4°−ジアミノジフ
ェニルスルホンを用いて実施例2と同様にして炭素繊維
複合材料成形体を作製し、48時間沸騰水中に浸漬した
後の物性を測定した。
Example 3 Table 3 shows the physical properties of a carbon fiber composite material molded article prepared in the same manner as in Example 2 using Shimezu epoxy resin and 4,4°-diaminodiphenylsulfone and immersed in boiling water for 48 hours. was measured.

結果を第3表に示す。The results are shown in Table 3.

実施例 4 トリグリシジル−4−アミノ−m−クレゾール200重
量部と4.4“−ジアミノジフェニルスルホンを94.
4重量部の割合で混合し、100℃で30分間攪拌し、
4,4゛−ジアミノジフェニルスルホンを完全に溶解し
、均一な液状組成物を得た。
Example 4 200 parts by weight of triglycidyl-4-amino-m-cresol and 94% of 4.4"-diaminodiphenylsulfone were mixed.
Mixed at a ratio of 4 parts by weight, stirred at 100°C for 30 minutes,
4,4'-diaminodiphenylsulfone was completely dissolved to obtain a homogeneous liquid composition.

これをフィラメントワインディング成形用組成物とした
。この樹脂は室温において粘ちょうな液体で100℃に
おいてコーンプレート型粘度計で測定した粘度がlOボ
イズ以下であり、かつポットライフは24時間以上であ
った。
This was used as a filament winding molding composition. This resin was a viscous liquid at room temperature, the viscosity measured with a cone-plate viscometer at 100° C. was less than 1O voids, and the pot life was 24 hours or more.

次いで100℃に保持した該液状樹脂組成物に炭素繊維
(実施例1と同じ)を連続的に含浸させながらフィラメ
ントワインディング法により、離型剤を充分に塗布した
円筒状マンドレルに巻き付けた。巻き付は角度はマンド
レル軸に対して90度となるようにした。この樹脂組成
物が含浸された炭素繊維とマンドレルからなる管状物を
180℃のオープン中で連続的に回転させながら4時間
効果を行った。徐冷後マンドレルを抜き取り、繊維強化
管状体を得た。
Next, the liquid resin composition maintained at 100° C. was continuously impregnated with carbon fibers (same as in Example 1) and wound around a cylindrical mandrel sufficiently coated with a mold release agent by a filament winding method. The winding angle was 90 degrees with respect to the mandrel axis. The effect was carried out for 4 hours while continuously rotating a tubular article made of carbon fiber and a mandrel impregnated with this resin composition in an open environment at 180°C. After slow cooling, the mandrel was removed to obtain a fiber-reinforced tubular body.

得られた硬化物を切断し、その断面を走査電子顕微鏡で
観察した結果、気孔のないことが確認された。また、炭
素繊維の体積含有率は58%であった。得られた管状体
をマンドレルの軸方向に対して直角に切断し、ノルリン
グ法により試験を行った。結果を第4表に示す。
As a result of cutting the obtained cured product and observing its cross section with a scanning electron microscope, it was confirmed that there were no pores. Further, the volume content of carbon fiber was 58%. The obtained tubular body was cut at right angles to the axial direction of the mandrel and tested by the Norring method. The results are shown in Table 4.

ノルリング引張強度測定はASTM D−2290に準
拠した。
Norring tensile strength measurement was based on ASTM D-2290.

第    4    表 (21完)Table 4 (21 completed)

Claims (3)

【特許請求の範囲】[Claims] (1)芳香環に少なくとも1個のアルキル基が置換した
アミノフェノール化合物のポリグリシジル誘導体とエポ
キシ硬化剤を必須成分とするエポキシ樹脂組成物の硬化
物をマトリックスとし繊維を強化材としたことを特徴と
する繊維強化複合材料。
(1) The matrix is a cured product of an epoxy resin composition containing a polyglycidyl derivative of an aminophenol compound whose aromatic ring is substituted with at least one alkyl group and an epoxy curing agent as essential components, and fibers are used as a reinforcing material. fiber-reinforced composite material.
(2)アミノフェノール化合物が4−アミノ−m−クレ
ゾールおよび/または4−アミノ−o−クレゾールであ
る特許請求の範囲第1項記載の繊維強化複合材料。
(2) The fiber reinforced composite material according to claim 1, wherein the aminophenol compound is 4-amino-m-cresol and/or 4-amino-o-cresol.
(3)エポキシ硬化剤がジアミノジフェニルスルホン化
合物および/またはジアミノジフェニルメタン化合物で
ある特許請求の範囲第1項または第2項記載の繊維強化
複合材料。
(3) The fiber reinforced composite material according to claim 1 or 2, wherein the epoxy curing agent is a diaminodiphenylsulfone compound and/or a diaminodiphenylmethane compound.
JP2660186A 1985-09-27 1986-02-07 Fiber reinforced composite material Granted JPS62183340A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2660186A JPS62183340A (en) 1986-02-07 1986-02-07 Fiber reinforced composite material
DE3689783T DE3689783T2 (en) 1985-09-27 1986-09-29 Low viscosity epoxy resin, this resin-containing composition and fiber-containing composite based on this hardened composition.
EP19860307453 EP0217657B1 (en) 1985-09-27 1986-09-29 Low-viscosity epoxy resin, resin composition containing it, and fibre-reinforced composite material containing cured product of the composition
US07/174,703 US4900848A (en) 1985-09-27 1988-03-29 Low-viscosity epoxy resin, and fiber-reinforced composite material from triglycidyl m-aminophenols
US07/402,663 US4957995A (en) 1985-09-27 1989-09-05 Low-viscosity epoxy resin, and fiber-reinforced composite material based on m-alkyl triglycidylaminophenols

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2660186A JPS62183340A (en) 1986-02-07 1986-02-07 Fiber reinforced composite material

Publications (2)

Publication Number Publication Date
JPS62183340A true JPS62183340A (en) 1987-08-11
JPH0437856B2 JPH0437856B2 (en) 1992-06-22

Family

ID=12198038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2660186A Granted JPS62183340A (en) 1985-09-27 1986-02-07 Fiber reinforced composite material

Country Status (1)

Country Link
JP (1) JPS62183340A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287130A (en) * 1988-02-05 1989-11-17 Mitsubishi Rayon Co Ltd Epoxy resin composition for composite material
JPH02218714A (en) * 1989-02-20 1990-08-31 Mitsubishi Kasei Corp Sealing medium for separation membrane
US4956411A (en) * 1988-02-05 1990-09-11 Mitsubishi Rayon Company, Ltd. Epoxy resin composition for composite material from m- or o-substituted triglycidylaminophenols, diaminodiphenylsulfone and latent curing agents
WO2019177131A1 (en) * 2018-03-16 2019-09-19 帝人株式会社 Epoxy resin composition, prepreg, fiber-reinforced composite material, and production methods therefor
JP2019157096A (en) * 2018-03-16 2019-09-19 帝人株式会社 Epoxy resin composition, prepreg and fiber-reinforced composite material
JP2019157095A (en) * 2018-03-16 2019-09-19 帝人株式会社 Epoxy resin composition, prepreg and fiber-reinforced composite material
JP2019163438A (en) * 2018-03-16 2019-09-26 帝人株式会社 Epoxy resin composition, prepreg, fiber-reinforced composite material, and method for producing them

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5964007B2 (en) 2009-04-02 2016-08-03 コニカミノルタ株式会社 Active energy ray-curable inkjet ink, inkjet recording method, and printed matter

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287130A (en) * 1988-02-05 1989-11-17 Mitsubishi Rayon Co Ltd Epoxy resin composition for composite material
US4956411A (en) * 1988-02-05 1990-09-11 Mitsubishi Rayon Company, Ltd. Epoxy resin composition for composite material from m- or o-substituted triglycidylaminophenols, diaminodiphenylsulfone and latent curing agents
JPH0471928B2 (en) * 1988-02-05 1992-11-17 Mitsubishi Rayon Co
JPH02218714A (en) * 1989-02-20 1990-08-31 Mitsubishi Kasei Corp Sealing medium for separation membrane
WO2019177131A1 (en) * 2018-03-16 2019-09-19 帝人株式会社 Epoxy resin composition, prepreg, fiber-reinforced composite material, and production methods therefor
JP2019157096A (en) * 2018-03-16 2019-09-19 帝人株式会社 Epoxy resin composition, prepreg and fiber-reinforced composite material
JP2019157095A (en) * 2018-03-16 2019-09-19 帝人株式会社 Epoxy resin composition, prepreg and fiber-reinforced composite material
JP2019163438A (en) * 2018-03-16 2019-09-26 帝人株式会社 Epoxy resin composition, prepreg, fiber-reinforced composite material, and method for producing them

Also Published As

Publication number Publication date
JPH0437856B2 (en) 1992-06-22

Similar Documents

Publication Publication Date Title
EP0217657B1 (en) Low-viscosity epoxy resin, resin composition containing it, and fibre-reinforced composite material containing cured product of the composition
EP0127198B1 (en) Preimpregnated reinforcements and high strength composites therefrom
US4645803A (en) Curable epoxy resin compositions
KR930007698B1 (en) Curable epoxy resin composition
EP0225174A2 (en) Thermosetting resin composition and a composite material comprising the cured product of the resin composition as its matrix
JPS60243113A (en) Epoxy resin composition having improved toughness
JPH11302507A (en) Epoxy resin composition for fiber-reinforced composite material, intermediate substrate for fiber-reinforced composite material and fiber-reinforced composite material
CA2936522A1 (en) Curing agents for epoxy resins
JPS6015420A (en) Epoxy composition containing oligomeric diamine curing agentand high power composite material therefrom
JPS62183340A (en) Fiber reinforced composite material
EP0133281A2 (en) Curable fibre reinforced epoxy resin composition
US4794148A (en) Fiber-reinforced composite material
JP6555006B2 (en) Epoxy resin composition, cured resin, prepreg and fiber reinforced composite material
JPH0519567B2 (en)
JPH0347848A (en) Production of prepreg
JPS6333413A (en) Epoxy resin composition
JP2002020459A (en) Epoxy resin composition
JPS62265277A (en) Epoxy resin based on tetraglycidylamine
KR101462449B1 (en) Glycidylamine epoxy curing composition
JPS62183341A (en) Heat-resistant composite material
JPH01125374A (en) Epoxy resin based on tetraglycidyldiamine
JPS62161816A (en) Epoxy resin composition
US4558078A (en) Curable epoxy resin compositions
JPS6274918A (en) Low-viscosity polyglycidyl derivative
JPH03111420A (en) Epoxy resin composition