JP2004292594A - Epoxy resin composition, prepreg, and fiber-reinforced composite material - Google Patents

Epoxy resin composition, prepreg, and fiber-reinforced composite material Download PDF

Info

Publication number
JP2004292594A
JP2004292594A JP2003086131A JP2003086131A JP2004292594A JP 2004292594 A JP2004292594 A JP 2004292594A JP 2003086131 A JP2003086131 A JP 2003086131A JP 2003086131 A JP2003086131 A JP 2003086131A JP 2004292594 A JP2004292594 A JP 2004292594A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
component
prepreg
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003086131A
Other languages
Japanese (ja)
Inventor
Kazuya Goto
和也 後藤
Hisao Koba
久雄 木場
Yasushi Suzumura
靖 鈴村
Yohei Miwa
陽平 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2003086131A priority Critical patent/JP2004292594A/en
Publication of JP2004292594A publication Critical patent/JP2004292594A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an epoxy resin composition and a prepreg which are used for manufacturing an FRP having high resistance to firing and high mechanical strength, and which can be prepared under simple and easy processing conditions. <P>SOLUTION: The epoxy resin composition consists of (a) an epoxy resin, (b) a thermoplastic resin which is soluble in the epoxy resin being the component (a) and is free from phase separation after curing, and (c) a curing agent, wherein the content of the component (b) is 15-100 pts.mass based on 100 pts.mass of the component (a). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、耐着火性に優れた強化繊維複合材料(以下、FRPと略記する)を得るためのプリプレグおよびこのプリプレグに用いるエポキシ樹脂組成物に関する。
【0002】
【従来の技術】
FRPは、軽量かつ高強度、高剛性の特徴を生かし、スポーツ・レジャー用途から産業用途まで、幅広く活用されている。
【0003】
FRPの製造方法として、強化繊維からなる補強基材にマトリックス樹脂を含浸させたプリプレグを用いる方法が良く知られている。このプリプレグについては、様々な検討が行われており、特許文献1に記載されたような特徴あるプリプレグがすでに見出されている。
【0004】
近年は、特に産業用途の自動車や鉄道車両、航空機などの材料には、軽量化が要求されていることから、比強度の高いFRPの使用が拡大している。
これらの材料に用いるFRPには、その用途から、機械的強度のほかに、難燃性が求められていれる。特に、鉄道車両に用いられるFRPには、まず着火しないことが重要視されており、高い耐着火性が要求される。しかし、特許文献1に記載されたプリプレグでは、その耐着火性については検討されていない。
【0005】
一方、特許文献2には、ハロゲンを含有しないエポキシ樹脂と金属酸化物、ガラス転移温度が120℃以上の熱可塑性樹脂を含有したエポキシ樹脂組成物を強化繊維に含浸した難燃性を向上させたプリプレグが記載されている。
【0006】
しかし、ガラス転移温度120℃以上の熱可塑性樹脂は、エポキシ樹脂と混合するのに非常に手間がかかる。例えば、エポキシ樹脂に均一に溶解して混合する場合、特許文献2にも記載があるポリエーテルイミドやポリエーテルスルフォンなど、ガラス転移温度が120℃以上の熱可塑性樹脂はエポキシ樹脂に溶解しないか、あるいは溶解するには、高温、長時間を必要とする。また熱可塑性樹脂を微粒子状にして添加する場合でも、特にガラス転移温度が120℃以上の熱可塑性樹脂を微粒子状に粉砕するのは、非常に手間がかかる。
【0007】
【特許文献1】
特開昭63−162732号公報
【特許文献2】
特開平11−147965号公報
【0008】
【発明が解決しようとする課題】
したがって、本発明の課題は、すぐれた耐着火性、高い機械的強度を有するFRPを容易に提供するために必要であり、かつ上述のような問題がなく製造が容易な、FRPの製造に用いるエポキシ樹脂組成物、またはプリプレグを得ることである。
【0009】
【課題を解決するための手段】
上記課題を解決するために本発明のエポキシ樹脂組成物は以下の構成からなる。すなわち、本発明のエポキシ樹脂組成物は、以下の(a)成分、(b)成分および(c)成分からなるエポキシ樹脂組成物であって、エポキシ樹脂組成物中に(b)成分が(a)成分100質量部に対して、15質量部〜100質量部含まれているエポキシ樹脂組成物である。
(a)エポキシ樹脂
(b)(a)成分であるエポキシ樹脂に溶解可能で、かつ硬化後に相分離しない熱可塑性樹脂
(c)硬化剤
【0010】
【発明の実施の形態】
(エポキシ樹脂)
本発明のエポキシ樹脂組成物に用いる(a)成分のエポキシ樹脂の種類としては、特に制限はなく、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、アミノグリシジル型エポキシ樹脂、アミノフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、脂肪族、脂環式エポキシ樹脂、等が用いられるが、中でもビスフェノールA型、ビスフェノールF型およびビスフェノールS型などのビスフェノール型エポキシ樹脂や分子内にオキサゾリドン環を有するエポキシ樹脂は得られるFRPの耐着火性とともに機械的強度物性も良好となるため特に好ましい。ビスフェノール型エポキシ樹脂の添加量としては、(a)成分全体に対して50質量%以上であることが好ましく、70質量%以上は更に好ましい。
【0011】
本発明のエポキシ樹脂組成物で用いる(b)成分は、(a)成分となるエポキシ樹脂に溶解可能でかつ硬化後に相分離しない熱可塑性樹脂である必要がある。発明者らはFRPの耐着火性について鋭意検討した結果、エポキシ樹脂に溶解可能であり、なおかつ硬化後に相分離しない熱可塑性樹脂を用いた場合、その熱可塑性樹脂のガラス転移温度に係わらず、耐着火性が向上することを見出し、本発明に至ったものである。これまでの常識からすれば、特に難燃成分を添加していないこのような組成で、耐着火性が向上することなど想像もできなかったが、検討の結果、意外な効果が明らかとなり、本発明を完成するに至ったのである。本発明のエポキシ樹脂組成物がもたらす耐着火性の機構は現在のところ明確にはなっていないが、硬化後にも相分離していないことから、(a)成分のエポキシ樹脂と(b)成分の熱可塑性樹脂が硬化後にセミIPN(網目進入構造)を形成しており、そのことが耐着火性に何らかの好影響を与えているものと推定される。
【0012】
(b)成分は上述の規定を満足すればよく、特に制限はないが、ガラス転移温度が110℃以下の場合は、エポキシ樹脂への溶解が比較的容易であるので好ましい。
【0013】
また、エポキシ樹脂組成物中の(b)成分の含有量を(a)成分100質量部に対して、15質量部以上とすると、耐着火性が更に向上するので好ましい。さらに20質量部以上、なかでも25質量部以上とすると特に好ましい。上限としては100質量部を超えて添加すると、粘度が高くなりすぎて補強基材への含浸時に悪影響を及ぼすので好ましくない。80質量部以下は更に好ましく、60質量部以下は特に好ましい。
【0014】
さらに、(b)成分として、フェノキシ樹脂を用いると、耐着火性が特に良好となるので特に好ましい。フェノキシ樹脂としては、例えば、エスポキシSP−50(新日鐵化学製),エピコートOL−53−B−40,エピコートOL−55−B40(油化シェルエポキシ製),DER684EK40(ダウケミカル製),フェノトートYP70、フェノトートYP50、フェノトートYP50S、フェノトートYP55(東都化成製),PKHH,PKHJおよびPKHM−30(UCC製)等が例示される。これらのフェノキシ樹脂も単独で用いてもよいし、二種以上を組み合わせて用いることもできる。しかし、ポリビニルフォルマール(PVF)や、ポリエーテルスルフォン(PES)は、未硬化のエポキシ樹脂中には溶解して均一となるが、エポキシ樹脂が硬化すると相分離を起こしてしまうため好ましくない。
【0015】
本発明の(b)成分の、エポキシ樹脂組成物への添加方法としては、特に制限はないが、あらかじめ(a)成分に溶解しておくことが、工程の簡便さから好ましい。ただし、あらかじめ溶解しておかなくても硬化過程で溶解する場合も問題はない。重要な点は、(b)成分が(a)成分に溶解し、かつ、硬化終了後も(b)成分が相分離していないことである。相分離しているか否かは、硬化後のエポキシ樹脂組成物が透明か否かで簡単に判定でき、硬化後のエポキシ樹脂組成物が透明ならば(b)成分は相分離していないと判断できる。また相分離の要因としては反応速度も関与している可能性はあるが、組成の方が大きく影響するので、組成が決まれば相分離するか否かは判断可能である。
【0016】
本発明のエポキシ樹脂組成物に用いられる(c)成分の硬化剤としては特に制限はなく、アミン系硬化剤、酸無水物系硬化剤、アミド系硬化剤、イミダゾール系硬化剤、グアニジン系硬化剤、尿素系硬化剤、フェノール系硬化剤等のエポキシ樹脂用の硬化剤として用いられているものであれば、特に制限なく用いることができる。
【0017】
また本発明のエポキシ樹脂組成物には、さらに(a)成分〜(c)成分に加えて、(d)成分として金属酸化物を添加すると、耐着火性が更に良好となるので好ましい。金属酸化物としては酸化アルミニウム、酸化マグネシウム、酸化鉄等が例示できるが、特に酸化マグネシウムを用いるとより好ましい。エポキシ樹脂組成物中の(d)成分は、(a)成分100質量部に対して、10質量部以上含まれていると特に耐着火性が向上できる。20質量部以上は更に好ましく、30質量部以上は特に好ましい。一方、上限としては特に制限はないが、(a)成分100質量部に対して、(d)成分が100質量部以下であることが好ましく特に、50質量部以下であることが好ましい。(d)成分が、100質量部を超えて添加すると、プリプレグを製造する際のエポキシ樹脂組成物のフィルム化する工程や強化繊維に含浸する工程での通過性が悪くなる恐れがある。
【0018】
本発明のエポキシ樹脂組成物には、耐着火性に悪影響を与えない範囲で、その他の添加剤を添加することができる。特に、無機微粒子を添加すると耐着火性以外の難燃特性が好影響を与えるので好ましい。このような無機微粒子の例としては、炭酸カルシウム、炭酸アルミニウム、炭酸マグネシウム、などの金属炭酸化物、水酸化アルミニウム、水酸化マグネシウム、などの金属水酸化物などが挙げられる。
【0019】
(エポキシ樹脂組成物の製造方法)
本発明のエポキシ樹脂組成物の製造方法としては、特に制限はないが、上述のように、あらかじめ(a)成分に(b)成分を加熱して溶解しておくことが工程の容易さから好ましい。これは、まだ(c)成分の硬化剤を添加していないので、ある程度の高温にすることができるからである。その後、硬化剤が反応しない程度にまで温度を下げ、(c)成分の硬化剤を添加し均一に混合することで本発明のエポキシ樹脂組成物が得られる。(d)成分を添加する場合は、樹脂の調整のどの段階で添加してもかまわないが、エポキシ樹脂組成物に均一に分散させるためにニーダー、プラネタリーミキサー、3本ロールなどで混合するのが好ましい。
【0020】
(強化繊維)
上述のエポキシ樹脂組成物をコーターなどを用いてシート状にしたのち、強化繊維に含浸することで、プリプレグが得られる。本発明のプリプレグに用いられる補強基材を構成する強化繊維としては、本発明のエポキシ樹脂組成物自体に優れた耐着火性があるので特に制限はなく、炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、スチール繊維、PBO繊維、高強度ポリエチレン繊維などが例示できる。特に、弾性率が280GPa以下の炭素繊維が、得られるFRPの耐着火性、機械的強度物性のバランスに優れるため好適に使用される。耐着火性の面からは無機強化繊維が好ましく、炭素繊維は、比強度および比弾性が高く、特に好適である。本発明では、炭素繊維にはPAN系、ピッチ系いずれも使用でき、中でも、通常耐着火性を考慮すると熱伝導性に優れる高弾性炭素繊維、特にピッチ系の高弾性炭素繊維が有利である。
【0021】
また強化繊維がなす補強基材の形態としても特に制限はなく、一方向材、織物、ステッチングシート、マットなどが例示できる。プリプレグ中の強化繊維の含有量としては、プリプレグ中40体積%以上であることが機械的強度の面から好ましく、50体積%以上は更に好ましい。また上限は75体積%以下が好ましい。75体積%を超えると、かえって機械的強度特性が低下する。70体積%以下は更に好ましい。
【0022】
(プリプレグの製造方法)
本発明のプリプレグの製造方法としてはホットメルト法が好適である。プリプレグの調製方法としては、溶剤を含まず加温してマトリックス樹脂の粘度を下げ補強基材に含浸させるホットメルト法と、マトリックス樹脂に溶剤を加えて低粘度化し、補強基材に含浸後脱溶剤するラッカー法(溶剤法ともいう)に大別されるが、ラッカー法の場合は残存溶剤が耐着火性に悪影響を与えることが懸念されるため、ホットメルト法が好適である。ホットメルト法は溶剤を使用しないので、硬化後のFRPの耐着火性が良好となるためである。特に、マトリックス樹脂に金属酸化物を添加する場合には、ラッカー法では、溶剤で低粘度化したマトリックス樹脂中で金属酸化物が沈殿し、含浸させる際のマトリックス樹脂の組成が不均一になることが懸念されるので、ホットメルト法が好ましい。
【0023】
(FRPの製造方法)
本発明のプリプレグを用いたFRPの製造方法としては特に制限はなく、オートクレーブ成形、オーブン成形、シートラップ成形、プレス成形、等、あらゆる成形方法に適用できる。特にプレス成形の場合は、高圧力で成形するので表面平滑性の高い成形物が短時間で得られるので、好適である。
【0024】
このようにして得られる本発明のFRPは、耐着火性に優れている。耐着火性の試験では、FRPの厚みが厚いほど着火しにくくなると言える。言い換えれば、より薄い厚みでも着火しないということは、それだけそのFRPの耐着火性が優れていることを示している。
【0025】
本発明のFRPは、厚さ3mm以下の薄いFRPであっても良好な耐着火性を有する。特に、フェノキシ樹脂を(a)成分100質量部に対して20質量部以上加えたエポキシ樹脂組成物を用いたFRPは、2mm以下の厚みであっても耐着火性がみられ、更に(d)成分を(a)成分100質量部に対して20質量部以上加えたエポキシ樹脂組成物を用いたFRPは、1.4mm以下の厚みであっても耐着火性が発現する。
【0026】
(FRPの用途)
本発明の用途としては特に制限はないが、本発明のプリプレグを成形して得られるFRPは耐着火性に優れ、かつ機械的強度にも優れているので、特に鉄道車両用途に好適である。本発明のプリプレグは接着性にも優れており、発泡体やハニカム構造体などをコア材とするサンドイッチ構造体の表層材として特に好ましく用いられる。その場合は、接着剤なしでも良好な接着性が得られる。
【0027】
【実施例】
以下、本発明を実施例および比較例により詳細に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例および比較例のエポキシ樹脂組成物に使用した各成分は、下記の略字で示す通りである。
【0028】
<エポキシ樹脂>
Ep828:ジャパンエポキシレジン社製、室温で液状をなすビスフェノールA型エポキシ樹脂「エピコート828」
Ep1002:ジャパンエポキシレジン社製、室温で固形ビスフェノールA型エポキシ樹脂「エピコート1002」
N−673:大日本インキ化学工業社製、クレゾールノボラック型エポキシ樹脂「エピクロンN−673」
AER4152:旭化成社製、オキサゾリドン環を有するイソシアネート変性エポキシ樹脂「AER4152」
<硬化剤>
Dicy:ジャパンエポキシレジン社製ジシアンジアミド「Dicy7」
DCMU:保土ヶ谷化学社製3,4−ジクロロフェニル−N,N−ジメチルウレア「DCMU9」
PDMU:PTIジャパン社製フェニルジメチルウレア「オミキュア94」
DDS:和歌山精化社製ジアミノジフェニルスルホン「セイカキュアS」
HX3722:旭チバ社製「ノバキュア HX3722」
<エポキシ樹脂に溶解可能で、かつ硬化後に相分離しない熱可塑性樹脂>
YP−50:東都化成社製フェノキシ樹脂「YP−50」
YP−70:東都化成社製フェノキシ樹脂「YP−70」
<その他の熱可塑性樹脂>
PVF:チッソ社製、ポリビニルフォルマール樹脂「ビニレックE」
PES:住友化学社製、ポリエーテルスルフォン樹脂「PES 5003P」(ガラス転移温度、223℃)
<無機微粒子>
MgO:協和化学工業社製酸化マグネシウム「マグミック」
【0029】
(実施例1〜7)
表1に示す組成で、エポキシ樹脂組成物を調製した。調製方法は、(a)成分に(b)成分を150℃で、3時間かけて溶解し、溶解を確認後、温度を50℃に下げ、その他の成分を加えて均一に混合した。こうして得られたエポキシ樹脂組成物を離型紙に塗工し、三菱レイヨン社製炭素繊維織物「パイロフィルTR3110(強化繊維目付200g/m)」に含浸してプリプレグを得た。プリプレグの強化繊維の含有量は55体積%であった。
得られたプリプレグを実施例1では12プライ、実施例2〜6では10プライ、実施例7は7プライ、実施例8は5プライ積層して、表1に示した厚みのFRPを成形した。成形条件は、実施例6のみ90℃×1時間、その他は130℃×1時間で、真空バッグによるオーブン成形で実施した。昇温速度はすべて0.5℃/分とした。
得られたFRPの耐着火性の評価は、国土交通省鉄運81号に、曲げ試験はASTM D790に、層間せん断試験(ILSS)をASTM D2344を準拠して実施した。結果をあわせて表1に示した。いずれのFRPも着火は認められず、高い耐着火性と、高い機械的強度を併せ持っていることが確認された。
【表1】

Figure 2004292594
【0030】
(比較例1)
(b)成分を用いない例を示す。表1に示す組成で実施例1と同様にして樹脂調製、プリプレグを製造し、FRPの成形、評価を実施した。ところ、機械的強度は良好であったが、着火が認められた。
【0031】
(比較例2、3)
(b)成分の代わりに、(a)成分のエポキシ樹脂に溶解はするが、硬化後に相分離する熱可塑性樹脂(PVF、PES)を用いた例をそれぞれ示す。表1に示した組成で、実施例1と同様にしてエポキシ樹脂組成物およびプリプレグ製造し、FRPの成形、評価を実施した。溶解工程は実施例1と同様としたが、PESは溶解が不十分だったのでさらに温度を180℃に上げて3時間攪拌して溶解させた。また評価結果を表1に示したが、いずれも着火が認められた。
【0032】
(実施例8)
実施例7に示した組成で、実施例7と同様にしてプリプレグを調製した。ただし補強強化繊維含有率は50体積%となるように調製した。
得られたプリプレグを表面材として表裏に10プライずつ用い、10mmの厚みのノーメックスハニカム(セルサイズ1/8インチ、密度3.0ポンド/立方フィート)をコア材として用い、サンドイッチパネルを成形した。成形条件は実施例7と同様のオーブン成形で実施した.この成形では、接着剤を用いずに直接コア材にプリプレグを表裏面に積層して一体成形が可能であった。FRPとコア材の接着は良好であり、本発明のプリプレグの接着性が良好であることが確認された。
【0033】
【発明の効果】
本発明のエポキシ樹脂組成物は、高い耐着火性と、高い機械的強度有しているFRPを得ることができ、工程的にも簡便な条件で調製可能である。さらに本発明のエポキシ樹脂組成物は(d)成分として金属酸化物を含有することにより、FRPにいっそう高い耐着火性を発現できる。
また、本発明のプリプレグは本発明のエポキシ樹脂組成物を強化繊維からなる補強基材に含浸してなるプリプレグであるので、高い耐着火性と、高い機械的強度特性を有しているFRPを得ることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a prepreg for obtaining a reinforced fiber composite material (hereinafter, abbreviated as FRP) having excellent ignition resistance and an epoxy resin composition used for the prepreg.
[0002]
[Prior art]
FRP is widely used in sports and leisure applications to industrial applications by utilizing the features of light weight, high strength, and high rigidity.
[0003]
As a method for producing FRP, a method using a prepreg in which a matrix resin is impregnated into a reinforcing substrate made of reinforcing fibers is well known. Various studies have been made on this prepreg, and a characteristic prepreg as described in Patent Document 1 has already been found.
[0004]
In recent years, the use of FRP having a high specific strength has been expanding, especially since materials such as automobiles, railway vehicles, and aircraft for industrial use are required to be reduced in weight.
The FRP used for these materials is required to have not only mechanical strength but also flame retardancy from the application. In particular, FRP used for railway vehicles is firstly regarded as not ignition, and is required to have high ignition resistance. However, in the prepreg described in Patent Literature 1, its ignition resistance has not been studied.
[0005]
On the other hand, in Patent Document 2, the flame retardancy is improved by impregnating reinforcing fibers with an epoxy resin composition containing a halogen-free epoxy resin and a metal oxide, and a thermoplastic resin having a glass transition temperature of 120 ° C. or higher. A prepreg is described.
[0006]
However, a thermoplastic resin having a glass transition temperature of 120 ° C. or more takes a lot of trouble to mix with an epoxy resin. For example, when uniformly dissolved and mixed in an epoxy resin, a thermoplastic resin having a glass transition temperature of 120 ° C. or more, such as polyetherimide and polyethersulfone described in Patent Document 2, does not dissolve in the epoxy resin, Alternatively, melting requires a high temperature and a long time. Even when the thermoplastic resin is added in the form of fine particles, it is extremely troublesome to pulverize the thermoplastic resin having a glass transition temperature of 120 ° C. or higher into fine particles.
[0007]
[Patent Document 1]
JP-A-63-162732 [Patent Document 2]
JP-A-11-147965 [0008]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to provide an FRP having excellent ignition resistance and high mechanical strength, which is necessary for easily producing the FRP without the above-described problems. The purpose is to obtain an epoxy resin composition or prepreg.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, the epoxy resin composition of the present invention has the following constitution. That is, the epoxy resin composition of the present invention is an epoxy resin composition comprising the following components (a), (b) and (c), wherein the component (b) is (a) The epoxy resin composition is contained in an amount of 15 parts by mass to 100 parts by mass with respect to 100 parts by mass of the component).
(A) an epoxy resin (b) a thermoplastic resin that is soluble in the epoxy resin (a) and does not undergo phase separation after curing (c) a curing agent
BEST MODE FOR CARRYING OUT THE INVENTION
(Epoxy resin)
The type of the epoxy resin (a) used in the epoxy resin composition of the present invention is not particularly limited, and bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol S epoxy resin, aminoglycidyl epoxy resin, Aminophenol-type epoxy resins, novolak-type epoxy resins, naphthalene-type epoxy resins, aliphatic and alicyclic epoxy resins, and the like are used. Among them, bisphenol-type epoxy resins such as bisphenol A type, bisphenol F type and bisphenol S type are used. Epoxy resins having an oxazolidone ring in the molecule are particularly preferred because the resulting FRP has good ignition resistance and good mechanical strength properties. The addition amount of the bisphenol-type epoxy resin is preferably at least 50% by mass, more preferably at least 70% by mass, based on the entire component (a).
[0011]
The component (b) used in the epoxy resin composition of the present invention needs to be a thermoplastic resin that is soluble in the epoxy resin as the component (a) and does not undergo phase separation after curing. The present inventors have conducted intensive studies on the ignition resistance of FRP. As a result, when a thermoplastic resin that can be dissolved in an epoxy resin and does not undergo phase separation after curing is used, regardless of the glass transition temperature of the thermoplastic resin, The inventors have found that the ignitability is improved, and have reached the present invention. From the common sense to date, it was impossible to imagine that such a composition without the addition of a flame-retardant component would improve the ignition resistance, but as a result of the examination, an unexpected effect was clarified. The invention was completed. Although the mechanism of ignition resistance provided by the epoxy resin composition of the present invention has not been clarified at present, phase separation does not occur even after curing, so that the epoxy resin (a) and the epoxy resin (b) It is presumed that the thermoplastic resin forms a semi-IPN (mesh ingress structure) after curing, which has some positive effect on the ignition resistance.
[0012]
The component (b) is not particularly limited as long as it satisfies the above-mentioned rules, but a glass transition temperature of 110 ° C. or lower is preferred because it can be relatively easily dissolved in an epoxy resin.
[0013]
Further, it is preferable that the content of the component (b) in the epoxy resin composition is 15 parts by mass or more based on 100 parts by mass of the component (a), because the ignition resistance is further improved. It is particularly preferable that the amount be 20 parts by mass or more, and especially 25 parts by mass or more. As an upper limit, if it is added in excess of 100 parts by mass, the viscosity becomes too high, which is unfavorable when impregnating the reinforcing substrate. It is more preferably at most 80 parts by mass, particularly preferably at most 60 parts by mass.
[0014]
Further, it is particularly preferable to use a phenoxy resin as the component (b) because the ignition resistance is particularly improved. Examples of the phenoxy resin include Espoxy SP-50 (manufactured by Nippon Steel Chemical), Epicoat OL-53-B-40, Epicoat OL-55-B40 (manufactured by Yuka Shell Epoxy), DER684EK40 (manufactured by Dow Chemical), and pheno resin. Examples include tote YP70, phenotote YP50, phenotote YP50S, phenotote YP55 (manufactured by Toto Kasei), PKHH, PKHJ, and PKHM-30 (manufactured by UCC). These phenoxy resins may be used alone or in combination of two or more. However, polyvinyl formal (PVF) and polyethersulfone (PES) dissolve in the uncured epoxy resin and become uniform, but when the epoxy resin is cured, phase separation is not preferable.
[0015]
The method for adding the component (b) of the present invention to the epoxy resin composition is not particularly limited, but it is preferable to dissolve it in the component (a) in advance in terms of simplicity of the process. However, there is no problem in dissolving in the curing process without dissolving in advance. The important point is that the component (b) is dissolved in the component (a), and the component (b) does not undergo phase separation even after the completion of curing. Whether or not the phase is separated can be easily determined by whether or not the cured epoxy resin composition is transparent. If the cured epoxy resin composition is transparent, it is determined that the component (b) is not phase-separated. it can. Further, although the reaction rate may also be involved as a factor of the phase separation, the composition has a greater effect, so that once the composition is determined, it can be determined whether or not the phase separation occurs.
[0016]
The curing agent of component (c) used in the epoxy resin composition of the present invention is not particularly limited, and includes amine curing agents, acid anhydride curing agents, amide curing agents, imidazole curing agents, and guanidine curing agents. As long as it is used as a curing agent for epoxy resins such as a urea-based curing agent and a phenol-based curing agent, it can be used without any particular limitation.
[0017]
Further, it is preferable to add a metal oxide as the component (d) to the epoxy resin composition of the present invention, in addition to the components (a) to (c), since the ignition resistance is further improved. Examples of the metal oxide include aluminum oxide, magnesium oxide, iron oxide and the like, and it is particularly preferable to use magnesium oxide. When the component (d) in the epoxy resin composition is contained in an amount of 10 parts by mass or more based on 100 parts by mass of the component (a), the ignition resistance can be particularly improved. 20 parts by mass or more is more preferable, and 30 parts by mass or more is particularly preferable. On the other hand, the upper limit is not particularly limited, but the component (d) is preferably 100 parts by mass or less, more preferably 50 parts by mass or less, based on 100 parts by mass of the component (a). If the component (d) is added in excess of 100 parts by mass, there is a possibility that the permeability of the epoxy resin composition in the step of forming a film or in the step of impregnating the reinforcing fibers during the production of the prepreg may be deteriorated.
[0018]
Other additives can be added to the epoxy resin composition of the present invention within a range that does not adversely affect the ignition resistance. In particular, it is preferable to add inorganic fine particles since flame retardancy other than ignition resistance has a favorable effect. Examples of such inorganic fine particles include metal carbonates such as calcium carbonate, aluminum carbonate, and magnesium carbonate, and metal hydroxides such as aluminum hydroxide and magnesium hydroxide.
[0019]
(Production method of epoxy resin composition)
The method for producing the epoxy resin composition of the present invention is not particularly limited, but as described above, it is preferable to previously dissolve the component (b) by heating the component (a) in view of the ease of the process. . This is because the curing agent of the component (c) has not been added yet, so that the temperature can be raised to a certain degree. Thereafter, the temperature is lowered to such an extent that the curing agent does not react, and the curing agent of the component (c) is added and uniformly mixed to obtain the epoxy resin composition of the present invention. When the component (d) is added, it may be added at any stage of the preparation of the resin. However, in order to uniformly disperse the resin in the epoxy resin composition, the components are mixed using a kneader, a planetary mixer, a three-roll mill, or the like. Is preferred.
[0020]
(Reinforced fiber)
A prepreg is obtained by forming the above-mentioned epoxy resin composition into a sheet using a coater or the like, and then impregnating the reinforcing fibers. The reinforcing fiber constituting the reinforcing base material used in the prepreg of the present invention is not particularly limited because the epoxy resin composition itself of the present invention has excellent ignition resistance, and is not particularly limited. Carbon fiber, glass fiber, aramid fiber, boron Fiber, steel fiber, PBO fiber, high-strength polyethylene fiber and the like can be exemplified. In particular, carbon fibers having an elastic modulus of 280 GPa or less are preferably used because the obtained FRP has an excellent balance between ignition resistance and mechanical strength physical properties. From the viewpoint of ignition resistance, inorganic reinforcing fibers are preferable, and carbon fibers are particularly suitable because of their high specific strength and specific elasticity. In the present invention, any of a PAN-based carbon fiber and a pitch-based carbon fiber can be used. Among them, a high-elasticity carbon fiber having excellent thermal conductivity, particularly a pitch-type high-elasticity carbon fiber is particularly advantageous in consideration of ignition resistance.
[0021]
The form of the reinforcing substrate formed by the reinforcing fibers is not particularly limited, and examples thereof include a unidirectional material, a woven fabric, a stitched sheet, and a mat. The content of the reinforcing fibers in the prepreg is preferably 40% by volume or more in the prepreg from the viewpoint of mechanical strength, and more preferably 50% by volume or more. The upper limit is preferably 75% by volume or less. If the content exceeds 75% by volume, the mechanical strength characteristics are rather deteriorated. 70 vol% or less is more preferable.
[0022]
(Prepreg manufacturing method)
As a method for producing the prepreg of the present invention, a hot melt method is preferable. The prepreg is prepared by a hot-melt method in which the viscosity of the matrix resin is lowered by heating without a solvent to impregnate the reinforcing base material, or a solvent is added to the matrix resin to reduce the viscosity, and the reinforcing base material is removed after impregnation. The lacquer method is roughly classified into a solvent-based lacquer method, and in the case of the lacquer method, there is a concern that the residual solvent may adversely affect the ignition resistance. This is because the hot melt method does not use a solvent, so that the ignition resistance of the cured FRP is improved. In particular, when a metal oxide is added to the matrix resin, the lacquer method causes the metal oxide to precipitate in the matrix resin reduced in viscosity by the solvent, and the composition of the matrix resin to be impregnated becomes non-uniform. Therefore, the hot melt method is preferred.
[0023]
(FRP manufacturing method)
The method for producing FRP using the prepreg of the present invention is not particularly limited, and can be applied to any molding method such as autoclave molding, oven molding, sheet wrap molding, and press molding. In particular, press molding is preferable because molding is performed under high pressure, and a molded product having high surface smoothness can be obtained in a short time.
[0024]
The thus obtained FRP of the present invention has excellent ignition resistance. In the ignition resistance test, it can be said that the thicker the FRP, the more difficult it is to ignite. In other words, the fact that no ignition occurs even at a thinner thickness indicates that the FRP has an excellent ignition resistance.
[0025]
The FRP of the present invention has good ignition resistance even with a thin FRP having a thickness of 3 mm or less. In particular, FRP using an epoxy resin composition in which a phenoxy resin is added in an amount of 20 parts by mass or more with respect to 100 parts by mass of the component (a) exhibits ignition resistance even at a thickness of 2 mm or less. FRP using an epoxy resin composition in which the component is added in an amount of 20 parts by mass or more with respect to 100 parts by mass of the component (a) exhibits ignition resistance even at a thickness of 1.4 mm or less.
[0026]
(Use of FRP)
The use of the present invention is not particularly limited, but the FRP obtained by molding the prepreg of the present invention is excellent in ignition resistance and mechanical strength, so that it is particularly suitable for railway vehicles. The prepreg of the present invention has excellent adhesiveness, and is particularly preferably used as a surface layer material of a sandwich structure having a foam or a honeycomb structure as a core material. In that case, good adhesiveness can be obtained without an adhesive.
[0027]
【Example】
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. In addition, each component used for the epoxy resin composition of the Example and the comparative example is as showing with the following abbreviation.
[0028]
<Epoxy resin>
Ep828: Bisphenol A type epoxy resin "Epicoat 828" which is liquid at room temperature, manufactured by Japan Epoxy Resin Co., Ltd.
Ep1002: Bisphenol A type epoxy resin "Epicoat 1002" manufactured by Japan Epoxy Resin at room temperature
N-673: Cresol novolac epoxy resin "Epiclon N-673" manufactured by Dainippon Ink and Chemicals, Inc.
AER4152: an isocyanate-modified epoxy resin having an oxazolidone ring “AER4152” manufactured by Asahi Kasei Corporation
<Curing agent>
Dicy: Dicyandiamide “Dicy7” manufactured by Japan Epoxy Resin
DCMU: 3,4-Dichlorophenyl-N, N-dimethylurea “DCMU9” manufactured by Hodogaya Chemical Co., Ltd.
PDMU: Phenyldimethylurea “Omicure 94” manufactured by PTI Japan
DDS: diaminodiphenyl sulfone “Seika Cure S” manufactured by Wakayama Seika
HX3722: “NOVACURE HX3722” manufactured by Asahi Ciba
<A thermoplastic resin that is soluble in epoxy resin and does not phase separate after curing>
YP-50: Phenoxy resin "YP-50" manufactured by Toto Kasei Co., Ltd.
YP-70: Phenoxy resin "YP-70" manufactured by Toto Kasei Co., Ltd.
<Other thermoplastic resins>
PVF: Polyvinyl formal resin "Vinilec E" manufactured by Chisso
PES: Sumitomo Chemical Co., Ltd., polyether sulfone resin "PES 5003P" (glass transition temperature, 223 ° C)
<Inorganic fine particles>
MgO: Kyowa Chemical Industry's magnesium oxide "Magmic"
[0029]
(Examples 1 to 7)
An epoxy resin composition having the composition shown in Table 1 was prepared. In the preparation method, the component (b) was dissolved in the component (a) at 150 ° C. over 3 hours. After confirming dissolution, the temperature was lowered to 50 ° C., and other components were added and mixed uniformly. The epoxy resin composition thus obtained was coated on release paper, and impregnated into Mitsubishi Rayon Co., Ltd. carbon fiber fabric “Pyrofil TR3110 (reinforcement fiber basis weight: 200 g / m 2 )” to obtain a prepreg. The prepreg had a reinforcing fiber content of 55% by volume.
The obtained prepreg was laminated with 12 plies in Example 1, 10 plies in Examples 2 to 6, 7 plies in Example 7, and 5 plies in Example 8, to form an FRP having a thickness shown in Table 1. The molding conditions were 90 ° C. × 1 hour only for Example 6, and 130 ° C. × 1 hour for the others, and were carried out by oven molding using a vacuum bag. All the heating rates were 0.5 ° C./min.
The ignition resistance of the obtained FRP was evaluated in accordance with the Ministry of Land, Infrastructure, Transport and Tourism, and the bending test was performed in accordance with ASTM D790, and the interlayer shear test (ILSS) was performed in accordance with ASTM D2344. The results are shown in Table 1. No ignition was observed in any of the FRPs, and it was confirmed that both FRP had high ignition resistance and high mechanical strength.
[Table 1]
Figure 2004292594
[0030]
(Comparative Example 1)
The example which does not use a (b) component is shown. In the same manner as in Example 1, a resin was prepared and a prepreg was prepared using the composition shown in Table 1, and FRP was molded and evaluated. Although the mechanical strength was good, ignition was observed.
[0031]
(Comparative Examples 2 and 3)
Examples using thermoplastic resins (PVF, PES) that dissolve in the epoxy resin of the component (a) but separate after curing, instead of the component (b), are shown below. With the compositions shown in Table 1, an epoxy resin composition and a prepreg were produced in the same manner as in Example 1, and FRP was molded and evaluated. The dissolving step was the same as in Example 1, but the PES was insufficiently dissolved, so the temperature was further raised to 180 ° C. and stirred for 3 hours to dissolve. The evaluation results are shown in Table 1, and ignition was recognized in each case.
[0032]
(Example 8)
With the composition shown in Example 7, a prepreg was prepared in the same manner as in Example 7. However, the content of the reinforcing fiber was adjusted to be 50% by volume.
Using the obtained prepreg as a surface material, 10 plies each on the front and back, a 10 mm thick Nomex honeycomb (cell size 1/8 inch, density 3.0 pounds / cubic foot) was used as a core material to form a sandwich panel. Molding conditions were the same oven molding as in Example 7. In this molding, the prepreg was directly laminated on the front and back surfaces of the core material without using an adhesive, so that integral molding was possible. The adhesion between the FRP and the core material was good, and it was confirmed that the prepreg of the present invention had good adhesion.
[0033]
【The invention's effect】
ADVANTAGE OF THE INVENTION The epoxy resin composition of this invention can obtain FRP which has high ignition resistance and high mechanical strength, and can be prepared on simple conditions also in a process. Further, the epoxy resin composition of the present invention can exhibit higher ignition resistance to FRP by containing a metal oxide as the component (d).
Further, since the prepreg of the present invention is a prepreg obtained by impregnating the epoxy resin composition of the present invention with a reinforcing base material made of reinforcing fibers, a high ignition resistance and a FRP having high mechanical strength characteristics are used. Obtainable.

Claims (12)

以下の(a)成分、(b)成分および(c)成分からなるエポキシ樹脂組成物であって、エポキシ樹脂組成物中に(b)成分が(a)成分100質量部に対して、15質量部〜100質量部含まれているエポキシ樹脂組成物。
(a)エポキシ樹脂
(b)(a)成分であるエポキシ樹脂に溶解可能で、かつ硬化後に相分離しない熱可塑性樹脂
(c)硬化剤
An epoxy resin composition comprising the following components (a), (b), and (c), wherein the component (b) is contained in the epoxy resin composition in an amount of 15 parts by mass with respect to 100 parts by mass of the component (a). Parts to 100 parts by mass of the epoxy resin composition.
(A) an epoxy resin (b) a thermoplastic resin which is soluble in the epoxy resin as the component (a) and which does not undergo phase separation after curing (c) a curing agent
(b)成分がフェノキシ樹脂である請求項1記載のエポキシ樹脂組成物。The epoxy resin composition according to claim 1, wherein the component (b) is a phenoxy resin. (a)成分〜(c)成分に加えて(d)金属酸化物を含む、請求項1または2記載のエポキシ樹脂組成物。The epoxy resin composition according to claim 1, further comprising (d) a metal oxide in addition to the components (a) to (c). エポキシ樹脂組成物中の(d)成分が(a)成分100質量部に対して、10質量部〜100質量部含まれている請求項3記載のエポキシ樹脂組成物。The epoxy resin composition according to claim 3, wherein the component (d) in the epoxy resin composition is contained in an amount of 10 to 100 parts by mass based on 100 parts by mass of the component (a). (a)成分中に分子内にオキサゾリドン環を有するエポキシ樹脂が含まれている請求項1〜4いずれか一項記載のエポキシ樹脂組成物。The epoxy resin composition according to any one of claims 1 to 4, wherein the component (a) contains an epoxy resin having an oxazolidone ring in the molecule. 請求項1〜5いずれか一項記載のエポキシ樹脂組成物を、強化繊維に含浸してなるプリプレグ。A prepreg obtained by impregnating reinforcing fibers with the epoxy resin composition according to any one of claims 1 to 5. プリプレグ中の強化繊維の含有量が40〜75体積%である請求項7記載のプリプレグ。The prepreg according to claim 7, wherein the content of the reinforcing fibers in the prepreg is 40 to 75% by volume. 強化繊維の弾性率が280GPa以下である請求項5または6記載のプリプレグ。The prepreg according to claim 5 or 6, wherein the reinforcing fiber has an elastic modulus of 280 GPa or less. 強化繊維が炭素繊維である請求項5〜7いずれか一項記載のプリプレグ。The prepreg according to any one of claims 5 to 7, wherein the reinforcing fiber is a carbon fiber. 請求項5〜8いずれか一項記載のプリプレグを用いて得られる強化繊維複合材料。A reinforced fiber composite material obtained by using the prepreg according to any one of claims 5 to 8. 耐着火性を有し、厚みが3mm以下である請求項9記載の強化繊維複合材料。The reinforced fiber composite material according to claim 9, which has ignition resistance and has a thickness of 3 mm or less. 請求項9〜11のプリプレグを表面材としてハニカムコアと一体成形したハニカムサンドイッチ構造体。A honeycomb sandwich structure formed integrally with a honeycomb core using the prepreg according to any one of claims 9 to 11 as a surface material.
JP2003086131A 2003-03-26 2003-03-26 Epoxy resin composition, prepreg, and fiber-reinforced composite material Pending JP2004292594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003086131A JP2004292594A (en) 2003-03-26 2003-03-26 Epoxy resin composition, prepreg, and fiber-reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003086131A JP2004292594A (en) 2003-03-26 2003-03-26 Epoxy resin composition, prepreg, and fiber-reinforced composite material

Publications (1)

Publication Number Publication Date
JP2004292594A true JP2004292594A (en) 2004-10-21

Family

ID=33400877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003086131A Pending JP2004292594A (en) 2003-03-26 2003-03-26 Epoxy resin composition, prepreg, and fiber-reinforced composite material

Country Status (1)

Country Link
JP (1) JP2004292594A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008081722A (en) * 2006-09-26 2008-04-10 Polytronics Technology Corp Thermally conductive dielectric polymer material and heat-dissipating substrate containing the same
JP2009001768A (en) * 2007-06-22 2009-01-08 Meian Kokusai Gigyo Kofun Yugenkoshi Prepreg
WO2011027815A1 (en) 2009-09-04 2011-03-10 株式会社スリーボンド Organic el element sealing member
US8828500B2 (en) 2008-11-28 2014-09-09 Three Bond Co., Ltd. Photocurable resin composition for sealing organic EL device
WO2016104314A1 (en) * 2014-12-25 2016-06-30 三菱レイヨン株式会社 Epoxy resin composition, and film, prepreg, and fiber-reinforced plastic using same
JP1565920S (en) * 2015-08-21 2016-12-19
WO2019167288A1 (en) 2018-03-02 2019-09-06 株式会社有沢製作所 Prepreg and manufacturing method for prepreg molded article
CN112851987A (en) * 2015-03-26 2021-05-28 日铁化学材料株式会社 Material for fiber-reinforced plastic molding, method for producing same, and molded article

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008081722A (en) * 2006-09-26 2008-04-10 Polytronics Technology Corp Thermally conductive dielectric polymer material and heat-dissipating substrate containing the same
US8003216B2 (en) 2006-09-26 2011-08-23 Polytronics Technology Corporation Heat-conductive dielectric polymer material and heat dissipation substrate containing the same
JP2009001768A (en) * 2007-06-22 2009-01-08 Meian Kokusai Gigyo Kofun Yugenkoshi Prepreg
US8828500B2 (en) 2008-11-28 2014-09-09 Three Bond Co., Ltd. Photocurable resin composition for sealing organic EL device
WO2011027815A1 (en) 2009-09-04 2011-03-10 株式会社スリーボンド Organic el element sealing member
KR101950627B1 (en) 2014-12-25 2019-02-20 미쯔비시 케미컬 주식회사 Epoxy resin composition, and film, prepreg, and fiber-reinforced plastic using same
JPWO2016104314A1 (en) * 2014-12-25 2017-04-27 三菱レイヨン株式会社 Epoxy resin composition for carbon fiber reinforced plastic, and film, prepreg and carbon fiber reinforced plastic using the same
KR20170085573A (en) * 2014-12-25 2017-07-24 미쯔비시 케미컬 주식회사 Epoxy resin composition, and film, prepreg, and fiber-reinforced plastic using same
WO2016104314A1 (en) * 2014-12-25 2016-06-30 三菱レイヨン株式会社 Epoxy resin composition, and film, prepreg, and fiber-reinforced plastic using same
CN112851987A (en) * 2015-03-26 2021-05-28 日铁化学材料株式会社 Material for fiber-reinforced plastic molding, method for producing same, and molded article
JP1565920S (en) * 2015-08-21 2016-12-19
WO2019167288A1 (en) 2018-03-02 2019-09-06 株式会社有沢製作所 Prepreg and manufacturing method for prepreg molded article
KR20200123235A (en) 2018-03-02 2020-10-28 가부시키가이샤 아리사와 세이사쿠쇼 Prepreg and manufacturing method of prepreg molded products
US11865794B2 (en) 2018-03-02 2024-01-09 Arisawa Mfg. Co., Ltd. Prepreg and method for manufacturing molded prepreg article

Similar Documents

Publication Publication Date Title
US6838176B2 (en) Epoxy resin composition and prepreg made with the epoxy resin composition
JP6007914B2 (en) Pre-preg for vacuum forming, fiber reinforced composite material and method for producing the same
JP5768893B2 (en) Epoxy resin composition and film, prepreg, fiber reinforced plastic using the same
EP3102621B1 (en) Amino benzoates or benzamides as curing agents for epoxy resins
US9776341B2 (en) Low density composite materials, their production and use
EP2886576A1 (en) Epoxy resin composition and film, prepreg, and fiber-reinforced plastic using same
JP2010525102A (en) Pre-impregnated composite material with improved performance
WO2007125925A1 (en) Epoxy resin composition for fiber-reinforced composite material
JP4821163B2 (en) Epoxy resin composition for fiber reinforced composite materials
JP2006131920A (en) Epoxy resin composition and prepreg made with the epoxy resin composition
JP4986627B2 (en) Heat resistant composite material
JP2006265458A (en) Resin composition for prepregs, and prepreg
JP4475880B2 (en) Epoxy resin composition
TW201943772A (en) Prepreg and fiber-reinforced composite material using same
JPS585925B2 (en) Epoxy resin composition for carbon fiber prepreg
JPH0639519B2 (en) Epoxy resin composition and prepreg
JP2004292594A (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP4859081B2 (en) Manufacturing method of composite material
JPH05239317A (en) Epoxy resin composition, prepreg and production of prepreg
JPH04249544A (en) Resin composition, prepreg and production of prepreg
JP2021528526A (en) Epoxy resin formulation
JP2006219513A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JPS6236421A (en) Epoxy resin composition for prepreg
JP5078208B2 (en) Epoxy resin composition and prepreg using the epoxy resin composition
JPH0643508B2 (en) Prepreg and manufacturing method thereof