JPS6244772B2 - - Google Patents

Info

Publication number
JPS6244772B2
JPS6244772B2 JP58092979A JP9297983A JPS6244772B2 JP S6244772 B2 JPS6244772 B2 JP S6244772B2 JP 58092979 A JP58092979 A JP 58092979A JP 9297983 A JP9297983 A JP 9297983A JP S6244772 B2 JPS6244772 B2 JP S6244772B2
Authority
JP
Japan
Prior art keywords
epoxy resin
cfrp
elongation
resin
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58092979A
Other languages
Japanese (ja)
Other versions
JPS59217722A (en
Inventor
Tadahide Sato
Kuniaki Tobukuro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP9297983A priority Critical patent/JPS59217722A/en
Publication of JPS59217722A publication Critical patent/JPS59217722A/en
Publication of JPS6244772B2 publication Critical patent/JPS6244772B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(技術分野) 本発明は、耐熱性及び疎水性の優れた炭素繊維
強化プラスチツク(以下CFRPと略す)を与える
炭素繊維プリプレグ用エポキシ樹脂組成物に関す
るものである。 (従来技術) 炭素繊維の比強度、比弾性率を活かしてCFRP
はスポーツ用途をはじめとして、航空機及び産業
用分野に広く使用されはじめた。航空機及び産業
用分野は一般に高い耐熱性を要求するところか
ら、この分野に使用されているCFRPのマトリツ
クス樹脂としては、N・N・N′・N′−テトラグ
リシジルジアミノジフエニルメタンか、これを若
干変性したものと、硬化剤として4・4′−ジアミ
ノジフエニルスルホンを混合したエポキシ樹脂組
成物が主流である。かかる樹脂は、例えば特公昭
55−25217号公報に詳細に開示されている。これ
らの樹脂組成物の硬化物は、高弾性率を有し熱変
形温度が高いため、これらの樹脂組成物によつて
得られるCFRPは、乾燥時において優れた耐熱
性、層間セン断強度、及び圧縮強度を有してい
る。しかしながら、これらの樹脂組成物の硬化剤
は、伸度が小さく耐水性が悪いため得られる
CFRPは以下に記すような欠陥を有している。 すなわち、硬化物の伸度が小さいため、0゜/
90゜、0゜/±45゜/90゜のような積層板の引張
破断伸度は1.0〜1.2%あるが、0.3〜0.4%低レベ
ルの歪みで90゜層にクラツクが入るので、実用的
には耐疲労性を考慮すると0.3〜0.4%の伸度レベ
ルしか使用できない。この結果、現状のCFRPの
引張物性は優れた炭素繊維の物性を充分利用して
いるとはいえない。 また、耐水性が悪いため吸水後の機械的物性及
び耐熱性の低下が著しく、実用下では、乾燥時の
優れた耐熱性、機械的物性は有しておらず、随分
低い性能になつて炭素繊維の優れた物性を充分利
用していない。さらに、吸水による寸法変化が大
きいため、寸法精度の厳しい産業用途には使用し
にくい。 このように、現行のエポキシ樹脂組成物は硬化
物の伸度が小さく、耐水性が悪いため炭素繊維の
優れた物性を十分利用できていないと共にCFRP
使用の可能性を低いものにしている。 (本発明の目的) 本発明の目的は、硬化物の伸度、及び耐水性を
改良し、炭素繊維の優れた物性を十分利用できる
CFRPを与えるエポキシ樹脂を提供することにあ
る。 (本発明の構成) 本発明のかかる目的は、 (1) フエノールノボラツク型エポキシ樹脂及びエ
ポキシ基1当量に対して0.6〜1.4当量の4・4-
ジアミノジフエニルスルホンから主としてなる
ことを特徴とする炭素繊維プリプレグ用エポキ
シ樹脂組成物(以下、本発明Aという)。 (2) 全エポキシ樹脂を100重量部として、85〜40
重量部のフエノールノボラツク型エポキシ樹脂
と、15〜60重量部のBr化エポキシ樹脂と、エ
ポキシ基1当量に対して0.6〜1.4当量の4・4-
ジアミノジフエニルスルホンを含有することを
特徴とする炭素繊維プリプレグ用エポキシ樹脂
組成物(以下、本発明Bという)。 によつて達成される。 すなわち、本発明Aのエポキシ樹脂組成物は、
得られる硬化物の伸度及び耐水性を向上させた結
果、CFRPの90゜引張伸度が大巾に改良され、0
゜/90゜、0゜/±45゜/90゜などの積層板の実
用的に使える引張伸度も向上するし、吸水による
耐熱性及び機械的物性の低下を大巾に小さくした
ため、実用に際して十分高い性能を発揮する
CFRPが得られる。また、耐水性が良いため吸水
による寸法変化は非常に小さく寸法安定性の良い
CFRPが得られる。さらに、本発明Aの耐水性及
び弾性率を向上させるためには、本発明Aに、
Br化エポキシ樹脂を添加した本発明Bが好まし
い。本発明Bのエポキシ樹脂組成物は、得られる
硬化物の伸度を損わずに弾性率を向上させた結
果、CFRPの引張物と共に、層間セン断強度及び
圧縮物性がさらに優れたものとなつた。また、耐
水性もさらに改善されたため、吸水による耐熱性
及び機械的物性の劣化の改良と共に寸法安定性が
さらに優れたものになつた。 本発明に使用されるフエノールノボラツク型エ
ポキシ樹脂は、フエノールノボラツク樹脂のグリ
シジルエーテル型エポキシ樹脂であり、フエノー
ルノボラツク樹脂の重合度により2官能から数官
能のエポキシ樹脂であり、EP152、EP154、
N740、N673、DER485などの商標名で市販され
ている。この樹脂から得られる硬化物は伸度が大
きく耐水性が良い。この結果、この樹脂から得ら
れるCFRPは引張物性は優れており、乾燥時の層
間セン断強度及び圧縮強度は現行のN・N・
N′・N′−テトラグリシジルジアミノジフエニル
メタンを主成分とした樹脂組成物から得られる
CFRPより若干低いものの、耐水性が良いため、
吸水時の、特に高温でこれらの物性は数段優れて
いる。実用の際は、CFRPは吸水することから、
このフエノールノボラツク型エポキシ樹脂から得
られるCFRPの方が現行の樹脂系から得られる
CFRPより高い物性を発揮する。 本発明に使用されるBr化エポキシ樹脂は、Br
化ビスフエノールAのグリシジルエーテル型エポ
キシ樹脂及びBr化フエノールノボラツク樹脂の
グリシジルエーテル型エポキシ樹脂で、Br含有
量が、16〜50重量%のものであり、エピクロン
152、エピクロン1120、EBS340、EP1050、
BRENSなどの商標名で市販されている。この樹
脂から得られる硬化物は、耐水性及び弾性率が高
い反面、エポキシ当量が大きいため、架橋密度が
低く耐熱性が低い。また、この樹脂の硬化物は、
Br原子に起因する立体障害のため伸度は小さい
が、架橋密度が小さいことから潜在的には伸度が
大きい。すなわち、この樹脂を他のエポキシ樹脂
で希釈しBr原子に起因する立体障害を緩和する
こと、この樹脂系の硬化物の伸度は大きくなる。
これらの特性を考慮してBr化エポキシ樹脂の添
加量は、硬化剤の4・4′−ジアミノジフエニルス
ルホンを除いたエポキシ樹脂のみを100重量部と
した場合、15〜60重量部であり、より好ましく
は、20〜50重量部である。この範囲より多くする
と、硬化物の耐熱性及び伸度が低下するし少なく
すると、弾性率及び耐水性が低下する。このBr
化エポキシ樹脂を添加したフエノールノボラツク
型エポキシ樹脂の硬化物は、耐水性をさらに向上
させると共に弾性率も高くなるため、得られる
CFRPの乾燥時の層間セン断強度及び圧縮強度
は、現行のN・N・N′・N′−テトラグリシジル
ジアミノジフエニルメタン系の樹脂から得られる
CFRと同程度になり、吸水劣化に対しては、著
しく改善されているので、吸水後の層間セン断強
度及び圧縮強度は、現行のものより数段優れてい
る。 さらに、本発明の樹脂組成物に、EP828、
EP1001、EP1004、YD128、エピクロン855、エ
ピクロン1050、ELA128、DER331などの商標名
で市販されているビスフエノールAのグリシジル
エーテル型エポキシ樹脂の添加は、硬化物の伸度
を改善することから、このエポキシ樹脂の添加は
特に好ましい。また、ELM120、YDM120などの
商標名で市販されている、N・N・O−トリグリ
シジルメタアミノフエノールの添加も硬化性及び
弾性率を向上するので、本発明の樹脂組成物の耐
水性を損わない程度にこのエポキシ樹脂を添加す
ることも好ましい。 本発明に使用される硬化剤の4・4′−ジアミノ
ジフエニルスルホンは、アミン系硬化剤としては
長いシエルフライフが有ると共に、高耐熱性の硬
化物を与える。4・4′−ジアミノジフエニルスル
ホンの添加量は、理論的には、エポキシ1当量に
対してアミン1当量添加すればよいが、硬化速度
やシエルフライフの調節、及び、得られる硬化物
の耐熱性、耐水性、伸度を考慮して、4・4′−ジ
アミノジフエニルスルホンの添加量は、エポキシ
1当量に対して、0.6〜1.4当量であり、より好ま
しくは0.8〜1.1当量である。この範囲より多けれ
ばシエルフライフは短くなり、得られる硬化物の
耐水性及び耐熱性が低下するし、この範囲より少
なければ、硬化性が悪くなると共に得られる硬化
物の耐熱性及び伸度が低下する。また、本発明に
おいて、4・4′−ジアミノジフエニルスルホンは
他の硬化物または硬化促進剤と併用することは勿
論可能である。特に、三弗化ホウ素アミン錯体と
の併用は、他の性能を損うことなく、硬化速度を
改善することから非常に好ましい。 本発明において、プリプレグに適した樹脂粘度
にするため、4・4′−ジアミノジフエニルスルホ
ンや4・4′−ジアミノジフエニルメタンで予備重
合し樹脂粘度を調節してもさしつかえない。さら
に、本発明の樹脂組成物の特性を損わない程度
に、熱可塑性樹脂を添加し、樹脂の粘度を調節し
たり、硬化時の樹脂フローの調節をしてもさしつ
かえない。 本発明のエポキシ樹脂組成物は、CFRPとして
好ましく用いられるが、この場合に使用される炭
素繊維とは、一定方向に配列されたテープ、シー
ト状物、マツト状物、織物など、どのような形態
の炭素繊維にも適用できる。さらに、ガラス繊
維、ボロン繊維、有機繊維など、通常FRPの補
強材として用いられるものは、すべて使用でき
る。 (本発明の効果) 本発明Aのエポキシ樹脂組成物は、得られる硬
化物の伸度及び耐水性を向上させた結果、CFRP
の90゜引張伸度が大巾に改良され、0゜/90゜、
0゜/±45゜/90゜などの積層板の実用的に使え
る引張伸度も向上する。また、吸水による耐熱性
及び機械的物性の低下を大巾に小さくしたため、
実用に際して十分高い性能を発揮するCFRPが得
られる。また、耐水性が良いため吸水による寸法
変化は非常に小さく寸法安定性の良いCFRPが得
られる。 本発明Bのエポキシ樹脂組成物は、得られる硬
化物の伸度を損わずに弾性率を向上させた結果、
CFRPの引張物性と共に、層間セン断強度及び圧
縮物性がさらに優れたものとなつた。また、耐水
性もさらに改善されたため、吸水による耐熱性の
劣化の改良と共に寸法安定性がさらに優れたもの
になつた。 以下、実施例によつて、本発明をさらに詳細に
説明する。 実施例 1 フエノールノボラツク型エポキシ樹脂(エポキ
シ当量178)3500gと4・4′−ジアミノジフエニ
ルスルホン1120gと三弗化ホウ素モノエチルアミ
ン17.5gを、あらかじめ60〜65℃に加熱したニー
ダに入れ十分混合し、エポキシ樹脂組成物を作つ
た。この樹脂組成物を、一方向に引き揃えた炭素
繊維“トレカ”T−300(東レ商標)にホツトメ
ルト法により含浸させ、樹脂含有量34重量%の一
方向プリプレグを作成した。得られたプリプレグ
を長さ30cm、巾30cmに切断し、これを8枚積層し
た後、離型処理したアルミ板にのせナイロン製の
バキユームバツグでおおい、バツグ内を真空引き
した後、オートクレーブに入れ、6Kg/cm2に加圧
した後、1.5℃/分で昇温し、180℃で2時間加熱
し硬化板を得た。得られた硬化板の炭素繊維含有
量は59.2容量%であり、板の厚さは1.15mmであつ
た。この硬化板から繊維方向に長さ230mm、巾
12.72mmの0゜引張用試験片を切り出した。この
試験片の両端の両側に長さ50mm巾12.72mmで一方
の端に10mmのテーパ部を持つガラス製のタブを接
着した。このタブ付き試験片の中央に、歪みゲー
ジを張り付け1mm/分の引張速度で引張り、引張
物性を測定した。測定結果を表1に示す。さら
に、この硬化板からASTM−D−695に準じて試
験片を切り出し圧縮物性を測定した。この結果を
表1に示す。また、プリプレグを長さ35cm、巾30
cmに切断し、これを16枚積層した。この積層板を
上記と同様な方法で硬化板を作つた。この硬化板
の炭素含有率は、60.8容量%で、板の厚さは2.24
mmであつた。この硬化板から炭素繊維に対して90
゜方向に長さ230mm、巾25.41mmの90゜引張用試験
片を切り出した。この試験片の中央に歪みゲージ
を張り付け、引張速度1mm/分で引張り、引張物
性を測定した。その結果を表1に示す。さらに、
この硬化板から、ASTM、D−2344に準じて試
験片を切り出し層間セン断強度を測定した。 この測定結果を表1に示す。これらの測定結果
より引張物性、耐熱性、耐水性が優れていること
を確認した。
(Technical Field) The present invention relates to an epoxy resin composition for carbon fiber prepreg that provides carbon fiber reinforced plastic (hereinafter abbreviated as CFRP) with excellent heat resistance and hydrophobicity. (Conventional technology) CFRP takes advantage of the specific strength and specific modulus of carbon fiber.
began to be widely used in sports, aircraft, and industrial fields. Since aircraft and industrial fields generally require high heat resistance, the matrix resin for CFRP used in this field is N・N・N′・N′-tetraglycidyldiaminodiphenylmethane or The mainstream is an epoxy resin composition in which a slightly modified resin is mixed with 4,4'-diaminodiphenyl sulfone as a curing agent. Such resins are, for example,
It is disclosed in detail in Japanese Patent No. 55-25217. The cured products of these resin compositions have high elastic modulus and high heat distortion temperature, so CFRP obtained from these resin compositions has excellent heat resistance, interlaminar shear strength, and It has compressive strength. However, the curing agents for these resin compositions have low elongation and poor water resistance.
CFRP has the following defects. In other words, since the elongation of the cured product is small, 0°/
The tensile elongation at break of laminates such as 90°, 0°/±45°/90° is 1.0 to 1.2%, but cracks will occur in the 90° layer at low levels of strain of 0.3 to 0.4%, so it is not practical. Considering fatigue resistance, only elongation levels of 0.3 to 0.4% can be used. As a result, it cannot be said that the current tensile properties of CFRP fully utilize the excellent physical properties of carbon fiber. In addition, due to poor water resistance, mechanical properties and heat resistance decrease significantly after water absorption, and in practical use, it does not have excellent heat resistance and mechanical properties when dry, and has a considerably lower performance. The excellent physical properties of fibers are not fully utilized. Furthermore, the dimensional change due to water absorption is large, making it difficult to use in industrial applications where dimensional accuracy is strict. In this way, current epoxy resin compositions have low elongation of the cured product and poor water resistance, making it difficult to take full advantage of the excellent physical properties of carbon fiber.
This makes it less likely to be used. (Objective of the present invention) The object of the present invention is to improve the elongation and water resistance of a cured product, and to fully utilize the excellent physical properties of carbon fiber.
Our objective is to provide an epoxy resin that provides CFRP. (Structure of the present invention) This object of the present invention is as follows: (1) 0.6 to 1.4 equivalents of 4.4- to 1 equivalent of phenol novolac type epoxy resin and epoxy group ;
An epoxy resin composition for carbon fiber prepreg (hereinafter referred to as the present invention A) characterized in that it mainly consists of diaminodiphenylsulfone. (2) 85 to 40 parts by weight of total epoxy resin
Parts by weight of phenol novolak type epoxy resin, 15 to 60 parts by weight of brominated epoxy resin, and 0.6 to 1.4 equivalents of 4.4- to 1 equivalent of epoxy group.
An epoxy resin composition for carbon fiber prepreg (hereinafter referred to as invention B) characterized by containing diaminodiphenylsulfone. achieved by. That is, the epoxy resin composition of the present invention A is
As a result of improving the elongation and water resistance of the resulting cured product, the 90° tensile elongation of CFRP has been greatly improved, reaching 0.
The tensile elongation for practical use of laminates such as ゜/90゜, 0゜/±45゜/90゜ has been improved, and the decrease in heat resistance and mechanical properties due to water absorption has been greatly reduced, making it suitable for practical use. Demonstrates sufficiently high performance
CFRP is obtained. In addition, it has good water resistance, so dimensional changes due to water absorption are very small, and dimensional stability is good.
CFRP is obtained. Furthermore, in order to improve the water resistance and elastic modulus of the present invention A, the present invention A includes
Invention B in which a brominated epoxy resin is added is preferred. The epoxy resin composition of the present invention B improves the elastic modulus without impairing the elongation of the obtained cured product, and as a result, it has even better interlaminar shear strength and compressive properties as well as CFRP tensile material. Ta. In addition, water resistance was further improved, resulting in improved heat resistance and deterioration of mechanical properties due to water absorption, as well as improved dimensional stability. The phenol novolak type epoxy resin used in the present invention is a glycidyl ether type epoxy resin of a phenol novolak resin, and is a bifunctional to multifunctional epoxy resin depending on the degree of polymerization of the phenol novolak resin, such as EP152, EP154,
It is commercially available under trade names such as N740, N673, and DER485. The cured product obtained from this resin has high elongation and good water resistance. As a result, the CFRP obtained from this resin has excellent tensile properties, and the interlaminar shear strength and compressive strength when dry are lower than the current N, N,
Obtained from a resin composition containing N′・N′-tetraglycidyldiaminodiphenylmethane as the main component.
Although it is slightly lower than CFRP, it has good water resistance,
These physical properties are much better when water is absorbed, especially at high temperatures. In practical use, since CFRP absorbs water,
CFRP obtained from this phenol novolak type epoxy resin is better than that obtained from current resin systems.
Demonstrates higher physical properties than CFRP. The Br epoxy resin used in the present invention is Br
A glycidyl ether type epoxy resin of brominated bisphenol A and a glycidyl ether type epoxy resin of brominated phenol novolak resin, with a Br content of 16 to 50% by weight.
152, Epicron 1120, EBS340, EP1050,
It is commercially available under trade names such as BRENS. Although the cured product obtained from this resin has high water resistance and elastic modulus, it has a high epoxy equivalent weight, so it has a low crosslink density and low heat resistance. In addition, the cured product of this resin is
Although the elongation is small due to steric hindrance caused by the Br atom, the elongation is potentially large due to the low crosslink density. That is, diluting this resin with another epoxy resin to alleviate steric hindrance caused by Br atoms increases the elongation of the cured product of this resin system.
Taking these characteristics into consideration, the amount of the brominated epoxy resin added is 15 to 60 parts by weight, assuming that the epoxy resin excluding the curing agent 4,4'-diaminodiphenylsulfone is 100 parts by weight. More preferably, it is 20 to 50 parts by weight. If the amount exceeds this range, the heat resistance and elongation of the cured product will decrease, and if it decreases, the elastic modulus and water resistance will decrease. This Br
The cured product of phenol novolak type epoxy resin added with chemical epoxy resin further improves water resistance and has a higher elastic modulus.
The dry interlaminar shear strength and compressive strength of CFRP can be obtained from the current N・N・N′・N′-tetraglycidyldiaminodiphenylmethane resin.
It is comparable to CFR, and the resistance to water absorption deterioration is significantly improved, so the interlaminar shear strength and compressive strength after water absorption are several orders of magnitude better than the current ones. Furthermore, EP828,
The addition of glycidyl ether type epoxy resins of bisphenol A, which are commercially available under trade names such as EP1001, EP1004, YD128, Epiclon 855, Epiclon 1050, ELA128, and DER331, improves the elongation of the cured product. Addition of resin is particularly preferred. In addition, the addition of N・N・O-triglycidyl metaaminophenol, which is commercially available under trade names such as ELM120 and YDM120, also improves the curability and elastic modulus, so it does not impair the water resistance of the resin composition of the present invention. It is also preferable to add this epoxy resin to the extent that it does not cause any damage. The curing agent 4,4'-diaminodiphenyl sulfone used in the present invention has a long shelf life as an amine curing agent and provides a cured product with high heat resistance. Theoretically, the amount of 4,4'-diaminodiphenyl sulfone to be added is 1 equivalent of amine per 1 equivalent of epoxy. Considering heat resistance, water resistance, and elongation, the amount of 4,4'-diaminodiphenyl sulfone added is 0.6 to 1.4 equivalents, more preferably 0.8 to 1.1 equivalents, based on 1 equivalent of epoxy. . If the amount exceeds this range, the shelf life will be shortened and the water resistance and heat resistance of the resulting cured product will decrease; if it is less than this range, the curability will deteriorate and the heat resistance and elongation of the resulting cured product will decrease. descend. Furthermore, in the present invention, it is of course possible to use 4,4'-diaminodiphenyl sulfone in combination with other cured products or curing accelerators. In particular, the combined use with a boron trifluoride amine complex is highly preferred since it improves the curing rate without impairing other properties. In the present invention, in order to obtain a resin viscosity suitable for prepreg, the resin viscosity may be adjusted by prepolymerizing with 4,4'-diaminodiphenyl sulfone or 4,4'-diaminodiphenylmethane. Furthermore, a thermoplastic resin may be added to adjust the viscosity of the resin or the flow of the resin during curing to the extent that the properties of the resin composition of the present invention are not impaired. The epoxy resin composition of the present invention is preferably used as CFRP, but the carbon fibers used in this case can be in any form such as tapes, sheets, mats, textiles, etc. arranged in a certain direction. It can also be applied to carbon fiber. Furthermore, all the materials normally used as reinforcing materials for FRP, such as glass fiber, boron fiber, and organic fiber, can be used. (Effects of the present invention) The epoxy resin composition of the present invention A improves the elongation and water resistance of the obtained cured product, and as a result, it improves the elongation and water resistance of the obtained cured product.
The 90° tensile elongation of 0°/90° has been greatly improved.
Practical tensile elongation of laminates such as 0°/±45°/90° is also improved. In addition, the decrease in heat resistance and mechanical properties due to water absorption has been greatly reduced.
A CFRP that exhibits sufficiently high performance for practical use can be obtained. In addition, since it has good water resistance, dimensional changes due to water absorption are extremely small, resulting in CFRP with good dimensional stability. The epoxy resin composition of the present invention B improves the elastic modulus without impairing the elongation of the obtained cured product, and as a result,
In addition to the tensile properties of CFRP, the interlaminar shear strength and compressive properties have become even better. In addition, water resistance was further improved, resulting in improved dimensional stability as well as improved heat resistance deterioration due to water absorption. Hereinafter, the present invention will be explained in more detail with reference to Examples. Example 1 3500 g of phenol novolak type epoxy resin (epoxy equivalent: 178), 1120 g of 4,4'-diaminodiphenylsulfone, and 17.5 g of boron trifluoride monoethylamine were placed in a kneader preheated to 60 to 65°C and mixed thoroughly. Then, an epoxy resin composition was prepared. This resin composition was impregnated into unidirectionally aligned carbon fibers "Torayca" T-300 (Toray trademark) by a hot melt method to produce a unidirectional prepreg having a resin content of 34% by weight. The obtained prepreg was cut into pieces of 30 cm in length and 30 cm in width, and 8 sheets were laminated, placed on a release-treated aluminum plate, covered with a nylon vacuum bag, and after evacuating the inside of the bag, placed in an autoclave. After pressurizing to 6 kg/cm 2 , the temperature was raised at a rate of 1.5° C./min and heated at 180° C. for 2 hours to obtain a cured plate. The carbon fiber content of the obtained cured board was 59.2% by volume, and the thickness of the board was 1.15 mm. From this hardened board, the length in the fiber direction is 230 mm, and the width is
A 12.72 mm 0° tensile test piece was cut out. Glass tabs having a length of 50 mm and a width of 12.72 mm and a tapered portion of 10 mm at one end were adhered to both ends of this test piece. A strain gauge was attached to the center of this tabbed test piece, and the test piece was pulled at a pulling speed of 1 mm/min to measure the tensile properties. The measurement results are shown in Table 1. Further, a test piece was cut out from this cured plate according to ASTM-D-695 and its compression properties were measured. The results are shown in Table 1. In addition, the prepreg is 35cm long and 30cm wide.
It was cut into cm pieces and 16 sheets were stacked. A cured board was made from this laminate in the same manner as above. The carbon content of this hardened plate is 60.8% by volume, and the thickness of the plate is 2.24
It was warm in mm. 90 for carbon fiber from this hardened plate
A 90° tensile test piece with a length of 230 mm and a width of 25.41 mm was cut in the ° direction. A strain gauge was attached to the center of this test piece, and the test piece was pulled at a pulling speed of 1 mm/min to measure the tensile properties. The results are shown in Table 1. moreover,
A test piece was cut out from this cured plate according to ASTM, D-2344, and the interlaminar shear strength was measured. The measurement results are shown in Table 1. These measurement results confirmed that the material had excellent tensile properties, heat resistance, and water resistance.

【表】 実施例 2 フエノールノボラツク型エポキシ樹脂2100gと
Br化エポキシ樹脂(エポキシ当量360)1400g
を、あらかじめ100℃に加熱したニーダに加え十
分混合する。この後、ニーダ内容物の温度を60〜
65℃に冷却して、4・4′−ジアミノジフエニルス
ルホン910gと三弗化ホウ素17.5gを加え十分混
合してエポキシ樹脂組成物を作つた。この樹脂組
成物を使用し、実施例1と同様にして、樹脂含有
量34重量%の一方向プリプレグを作製した。この
プリプレグを使用して、実施例1と同様に、0゜
及び90゜引張物性、圧縮物性、層間セン断強度を
測定し、その結果を表2に示す。これらの結果よ
り、引張物性、耐熱性、耐水性が優れていること
を確認した。
[Table] Example 2 2100g of phenol novolac type epoxy resin and
Brized epoxy resin (epoxy equivalent: 360) 1400g
Add to a kneader preheated to 100℃ and mix thoroughly. After this, increase the temperature of the kneader contents to 60~
After cooling to 65 DEG C., 910 g of 4,4'-diaminodiphenylsulfone and 17.5 g of boron trifluoride were added and thoroughly mixed to prepare an epoxy resin composition. Using this resin composition, a unidirectional prepreg with a resin content of 34% by weight was produced in the same manner as in Example 1. Using this prepreg, the 0° and 90° tensile properties, compressive properties, and interlaminar shear strength were measured in the same manner as in Example 1, and the results are shown in Table 2. From these results, it was confirmed that the tensile properties, heat resistance, and water resistance were excellent.

【表】 比較例 1 N・N・N′・N′−テトラグリシジルジアミノ
ジフエニルメタン4000gと4・4′−ジアミノジフ
エニルスルホン1920gと三弗化ホウ素モノエチル
アミンとを65℃に加熱したニーダに加え十分混合
してエポキシ樹脂組成物を作り、以下実施例1と
同様にして樹脂含有量34重量%の一方向プリプレ
グを作つた。このプリプレグを使用して実施例1
と同様に、0゜及び90゜引張物性、圧縮物性、層
間セン断強度を測定し、結果を表3に示す。 これらの結果より、引張物性及び耐水性の悪い
CFRPしか得られなかつた。
[Table] Comparative Example 1 4000 g of N・N・N′・N′-tetraglycidyldiaminodiphenylmethane, 1920 g of 4,4′-diaminodiphenyl sulfone, and boron trifluoride monoethylamine were placed in a kneader heated to 65°C. The mixture was added and thoroughly mixed to prepare an epoxy resin composition, and a unidirectional prepreg having a resin content of 34% by weight was prepared in the same manner as in Example 1. Example 1 using this prepreg
Similarly, the 0° and 90° tensile properties, compressive properties, and interlaminar shear strength were measured, and the results are shown in Table 3. These results indicate that the tensile properties and water resistance are poor.
All I could get was CFRP.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 フエノールノボラツク型エポキシ樹脂及びエ
ポキシ基1当量に対して0.6〜1.4当量の4・4-
アミノジフエニルスルホンから主としてなること
を特徴とする炭素繊維プリプレグ用エポキシ樹脂
組成物。 2 全エポキシ樹脂を100重量部として、85〜40
重量部のフエノールノボラツク型エポキシ樹脂
と、15〜60重量部のBr化エポキシ樹脂と、エポ
キシ基1当量に対して0.6〜1.4当量の4・4-ジア
ミノジフエニルスルホンを含有することを特徴と
する炭素繊維プリプレグ用エポキシ樹脂組成物。
[Scope of Claims] 1. An epoxy resin composition for carbon fiber prepreg, characterized in that it mainly consists of a phenol novolak type epoxy resin and 4,4 - diaminodiphenylsulfone in an amount of 0.6 to 1.4 equivalents per equivalent of epoxy group. . 2 85 to 40 parts by weight of total epoxy resin
It is characterized by containing parts by weight of a phenol novolak type epoxy resin, 15 to 60 parts by weight of a brominated epoxy resin, and 0.6 to 1.4 equivalents of 4,4 - diaminodiphenyl sulfone per equivalent of epoxy group. Epoxy resin composition for carbon fiber prepreg.
JP9297983A 1983-05-26 1983-05-26 Epoxy resin composition for carbon fiber prepreg Granted JPS59217722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9297983A JPS59217722A (en) 1983-05-26 1983-05-26 Epoxy resin composition for carbon fiber prepreg

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9297983A JPS59217722A (en) 1983-05-26 1983-05-26 Epoxy resin composition for carbon fiber prepreg

Publications (2)

Publication Number Publication Date
JPS59217722A JPS59217722A (en) 1984-12-07
JPS6244772B2 true JPS6244772B2 (en) 1987-09-22

Family

ID=14069503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9297983A Granted JPS59217722A (en) 1983-05-26 1983-05-26 Epoxy resin composition for carbon fiber prepreg

Country Status (1)

Country Link
JP (1) JPS59217722A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990006334A1 (en) * 1987-06-02 1990-06-14 Mitsubishi Rayon Co., Ltd. Epoxy resin composition
KR940001169B1 (en) * 1988-11-30 1994-02-16 미쓰비시레이욘 가부시끼가이샤 Epoxy resin composition
US5685936A (en) * 1994-10-11 1997-11-11 Showa Aircraft Industry Co., Ltd. Method for preparing carbon honeycomb structure
EP1142920B1 (en) 1998-12-25 2011-08-03 Mitsubishi Rayon Co., Ltd. Epoxy resin composition, prepreg, and roll made of resin reinforced with reinforcing fibers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50127999A (en) * 1974-03-29 1975-10-08
JPS515400A (en) * 1974-07-04 1976-01-17 Toray Industries TANSOSENIPURIPUREGUYO EHOKISHIJUSHISOSEIBUTSU
JPS5516056A (en) * 1978-07-23 1980-02-04 Toho Rayon Co Ltd Epoxy resin composition for carbon fiber prepreg and preparation
JPS5883031A (en) * 1981-11-13 1983-05-18 Toho Rayon Co Ltd Epoxy resin prepreg

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50127999A (en) * 1974-03-29 1975-10-08
JPS515400A (en) * 1974-07-04 1976-01-17 Toray Industries TANSOSENIPURIPUREGUYO EHOKISHIJUSHISOSEIBUTSU
JPS5516056A (en) * 1978-07-23 1980-02-04 Toho Rayon Co Ltd Epoxy resin composition for carbon fiber prepreg and preparation
JPS5883031A (en) * 1981-11-13 1983-05-18 Toho Rayon Co Ltd Epoxy resin prepreg

Also Published As

Publication number Publication date
JPS59217722A (en) 1984-12-07

Similar Documents

Publication Publication Date Title
AU2001266730B2 (en) Low moisture absorption epoxy resin systems
JP4687167B2 (en) Epoxy resin composition, prepreg and fiber reinforced composite material
JP7200928B2 (en) Thermosetting resin compositions, prepregs and fiber-reinforced composites
JPH10330513A (en) Prepreg and fiber-reinforced composite material
JP4475880B2 (en) Epoxy resin composition
KR970006672B1 (en) Epoxy resin composition and prepreg for composite materials using the same
JP4857587B2 (en) Epoxy resin composition for fiber reinforced composite materials
JP2006291094A (en) Epoxy resin composition for reinforced composite material
JP3026372B2 (en) Composite material intermediate
JPH068341B2 (en) Epoxy resin composition for prepreg
JPS6244772B2 (en)
JP2829369B2 (en) Epoxy resin composition
JP2001302760A (en) Epoxy resin composition
JPH01135858A (en) Epoxy resin composition for fiber reinforcement
US5128425A (en) Epoxy resin composition for use in carbon fiber reinforced plastics, containing amine or amide based fortifiers
JPS592446B2 (en) Flame-retardant epoxy resin composition for carbon fiber reinforcement
JPS6244771B2 (en)
JPS6360056B2 (en)
JPS61250021A (en) Matrix resin composition for prepreg
JPS6244770B2 (en)
JPH0586425B2 (en)
JPS61250022A (en) Matrix resin composition
JPH09268221A (en) Resin composition for prepreg
JPH02124919A (en) Epoxy resin composition
JPS6140244B2 (en)