JPS6244770B2 - - Google Patents

Info

Publication number
JPS6244770B2
JPS6244770B2 JP58092977A JP9297783A JPS6244770B2 JP S6244770 B2 JPS6244770 B2 JP S6244770B2 JP 58092977 A JP58092977 A JP 58092977A JP 9297783 A JP9297783 A JP 9297783A JP S6244770 B2 JPS6244770 B2 JP S6244770B2
Authority
JP
Japan
Prior art keywords
epoxy resin
weight
cured product
parts
elongation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58092977A
Other languages
Japanese (ja)
Other versions
JPS59217720A (en
Inventor
Tadahide Sato
Kuniaki Tobukuro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP9297783A priority Critical patent/JPS59217720A/en
Publication of JPS59217720A publication Critical patent/JPS59217720A/en
Publication of JPS6244770B2 publication Critical patent/JPS6244770B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔技術分野〕 本発明は、高性能型の炭素繊維プリプレグ用エ
ポキシ樹脂に関するものである。 〔従来技術〕 炭素繊維強化プラスチツクス(以下CFRPと略
す)は、比強度、比弾性率が大きいことから、民
間航空機分野において、機体を軽量化するための
構造材料として検討されており、すでにその第一
段階として2次構造材として使用されている。さ
らに、最近では高強伸度の炭素繊維が開発されこ
れを使用したCFRPが1次構造材として検討され
はじめている。 航空機用CFRPに使用されているエポキシ樹脂
は、N・N・N′・N′−テトラグリシジルジアミ
ノジフエニルメタンを主成分とし、硬化剤は4・
4′−ジアミノジフエニルスルホンが使用されてい
る。かかる樹脂は、例えば特公昭55−25217号公
報に詳細に開示されている。この樹脂組成物は、
高弾性率を有し熱変形温度が高いため、この樹脂
組成物によつて得られるCFRPは、乾燥時におい
て、優れた耐熱性、層間剪断強度および圧縮強度
を有している。しかしながら、この樹脂組成物
は、硬化物の伸度が小さく耐水性が悪いため、得
られるCFRPは、以下に記すような欠陥を有して
いる。 すなわち、樹脂の伸度が小さいため、CFRPの
90゜引張伸度が0.4〜0.5%と小さい。この結果、
0゜/90゜、0゜/±45゜/90゜のような積層板
の引張物性は低いものになり、炭素繊維の優れた
特性を十分活かしていない。さらに、最近開発さ
れた高強伸度炭素繊維に対しては、0゜引張物性
も十分に発現できない。 一方、耐水性が悪いため、吸水後の耐熱性低下
が大きい。この結果、航空機の構造材として重要
な物性である吸水後の高温での圧縮強度が低くな
る。この状態での圧縮強力を満すために、CFRP
を厚くしなければならず、CFRPの機体軽量化効
率を悪くしている。 〔本発明の目的〕 そこで、本発明者らは、CFRPの耐熱性、層間
剪断強度および圧縮強童を損なうことなく優れた
引張物性、耐水性を発現するエポキシ樹脂を見い
出すべく鋭意検討した結果、本発明に到達した。 〔本発明の構成〕 すなわち、本発明は、 (1) 全エポキシ樹脂を100重量部として、20〜80
重量部のN・N・N-・N-−テトラグリシジル
ジアミノジフエニルメタンと、15〜60重量部の
Br化エポキシ樹脂と、エポキシ基1当量に対
して0.8〜1.2当量の4・4-ジアミノジフエニル
スルホンを含有することを特徴とするエポキシ
樹脂組成物(以下本発明Aという)。 (2) 全エポキシ樹脂を100重量部として、15〜60
重量部のN・N・N-・N-−テトラグリシジル
ジアミノジフエニルメタンと、15〜60重量部の
Br化エポキシ樹脂と、15〜60重量部のノボラ
ツク型エポキシ樹脂と、エポキシ基1当量に対
して0.8〜1.2当量の4・4-ジアミノジフエニル
スルホンを含有することを特徴とするエポキシ
樹脂組成物(以下本発明Bという)。 に関する。 すなわち、本発明Aのエポキシ樹脂組成物は、
硬化物の弾性率を損なうことなく硬化物の伸度を
大きくした結果、得られるCFRPは、層間剪断強
度および圧縮強度を損なうことなく、90゜引張伸
度を0.70〜0.95%と大きく向上したため、0゜/
90゜、0゜/±45/90゜などの積層板の物性が改
善されるので、炭素繊維の優れた性能を十分発現
する。また、最近開発された高強伸度炭素繊維の
0゜引張物性を十分発現する。さらに、硬化物の
耐熱性を損なうことなく耐水性を改良したので、
得られるCFRPの吸水後の高温での圧縮強度は、
航空機の構造材として十分満足できるものになつ
ている。さらに、本発明Aの耐熱性および硬化物
の伸度を向上させるために、本発明Aにノボラツ
ク型エポキシ樹脂を添加した本発明Bが好まし
い。本発明Bは、他の物性を損なわずに耐熱性お
よび硬化物の伸度を向上させた結果、得られる
CFRPは、層間剪断強度、圧縮強度を損なうこと
なく引張物性および耐熱性がさらに優れたものに
なつた。 本発明に使用される、N・N・N′・N′−テト
ラグリシジルジアミノジフエニルメタンは、
ELM434、YL913、YH434などの商標名で市販さ
れている。このエポキシ樹脂は、4官能エポキシ
樹脂であるため、架橋密度が高くなり高弾性率か
つ高耐熱性の硬化物が得られるという長所があ
る。 一方、硬化物の伸度が小さく、分子内に窒素原
子を有するため、硬化物の耐水性が悪いという欠
点がある。これらの特性を考慮して、N・N・
N′・N′−テトラグリシジルジアミノジフエニル
メタンの添加量は、硬化剤の4・4′−ジアミノジ
フエニルスルホンを除いたエポキシ樹脂だけを
100重量部とした場合、15〜60重量部であり、よ
り好ましくは20〜50重量部である。この範囲より
多くすると、硬化物の伸度および耐水性が低下
し、少なくすると、硬化物の耐熱性および弾性率
が低下する。弾性率を低下させると得られる
CFRPの層間剪断強度および圧縮強度が低下す
る。N・N・N′・N′−テトラグリシジルジアミ
ノジフエニルメタンに、N・N・N′−トリグリ
シジルジアミノジフエニルメタンおよびこれらの
グリシジル基同志が反応した二量体が含有されて
いても、本発明の樹脂組成物の性能を損なうこと
はない。 本発明に使用されるBr化エポキシ樹脂は、Br
化ビスフエノールAのグリシジルエーテル型エポ
キシ樹脂、Br化フエノールノボラツク樹脂のグ
リシジルエーテル型エポキシ樹脂で、Br含有量
が16〜50重量%のものであり、エピクロン152、
エピクロン1120、ESB340、EP1050、BREN−S
の商標名で市販されている。このBr化エポキシ
樹脂は、耐水性および弾性率の高い硬化物になる
という長所があるが、エポキシ当量が大きいこと
から架橋密度が低く耐熱性の低い硬化物になると
いう欠点がある。さらに、Br原子に起因する立
体障害を有するため、Br化エポキシ樹脂の濃度
を高くすると硬化物の伸度が低下する。これらの
特性を考慮してBr化エポキシ樹脂の添加量は、
15〜60重量部であり、より好ましくは20〜50重量
部である。この範囲より多くすると硬化物の耐熱
性および伸度が低下し、少なくすると硬化物の耐
水性および弾性率が低下する。 本発明に使用されるノボラツク型エポキシ樹脂
は、フエノールノボラツク樹脂およびクレゾール
ノボラツク樹脂のグリシジルエーテル型エポキシ
樹脂であり、EP152、EP154、DER485、N740、
N673、ESCN220L、などの商標名で市販されて
いる。このノボラツク型エポキシ樹脂は高耐熱
性、高耐水性および高伸度の硬化物になるという
長所があるが、弾性率の低い硬化物になるという
欠点がある。これらの特性を考慮して、ノボラツ
ク型エポキシ樹脂の添加量は15〜60重量部であ
り、より好ましくは20〜50重量部である。この範
囲より多いと硬化物の弾性率が低下し、少なくす
ると硬化物の耐水性および伸度が低下する。 さらに、本発明の樹脂組成物に、EP828、
EP1001、EP1004、YD128、エピクロン855、エ
ピクロン1050、ELA128などの商標名で市販され
ているビスフエノールAのグリシジルエーテル型
エポキシ樹脂の添加は硬化物の伸度を大きくする
ことから、ビスフエノールAのグリシジルエーテ
ル型エポキシ樹脂の添加は非常に好ましい。 本発明に使用される硬化剤としての4・4′−ジ
アミノジフエニルスルホンは、アミン系硬化剤と
しては比較的長いシエルフライフが有ると共に、
高耐熱性の硬化物を与えるものである。4・4′−
ジアミノジフエニルスルホンの添加量は、理論的
にはエポキシ1当量に対してアミン1当量添加す
ればよいが、硬化速度やシエルフライフの調整お
よび得られる硬化物の耐熱性、耐水性、伸度か
ら、4・4′−ジアミノジフエニルスルホンの添加
量は、エポキシ1当量に対して、0.8〜1.2当量の
範囲である。この範囲より多ければ、硬化速度は
速くなりシエルフライフは短くなる。さらに、硬
化物の耐水性および耐熱性が低下する。この範囲
より少なくすると、硬化速度は非常に遅くなると
共に硬化物の耐熱性および伸度が低下する。ま
た、本発明において、4・4′−ジアミノジフエニ
ルスルホンは、他の硬化剤または硬化促進剤と併
用することはもちろん可能である。特に、三弗化
ホウ素アミン錯体との併用は、他の性能を損なう
ことなく、硬化速度を速くしてくれることから非
常に好ましい。 本発明においては、プリプレグに適した樹脂粘
度にするため、4・4′−ジアミノジフエニルスル
ホンや4・4′−ジアミノジフエニルメタンで予備
重合し樹脂粘度を調節してもさしつかえない。さ
らに本発明の樹脂組成物の性能を損なわない程度
に、熱可塑性樹脂などを添加し、樹脂粘度の調節
および硬化時の樹脂フローの調節をしてもかまわ
ない。 本発明のエポキシ樹脂組成物は、CFRPとして
好ましく用いられるが、この場合に使用される炭
素繊維とは、一定方向に配列されたテープ、シー
ト状物、マツト状物、織物など、どのような形態
の炭素繊維にも適用できる。さらに、ガラス繊
維、ボロン繊維、有機繊維など、通常FRPの補
強材として用いられるものはすべて使用できる。 〔本発明の効果〕 本発明Aのエポキシ樹脂組成物は、硬化物の弾
性率を損なうことなく硬化物の伸度を大きくした
結果、得られるCFRPは、層間剪断強度および圧
縮強度を損なうことなく、90゜引張伸度を0.7〜
0.95%と大きく向上したため、0゜/90゜、0
゜/±45/90゜などの積層板の物性が非善される
ので、炭素繊維の優れた性能を十分発現する。ま
た、最近開発された高強伸度炭素繊維の0゜引張
物性を十分発現する。さらに、硬化物の耐熱性を
損なうことなく耐水性を改良したので、得られる
CFRPの吸水後の高温での圧縮強度は、航空機の
構造材として十分満足できるものになつた。 本発明Bは、他の物性を損なわずに耐熱性およ
び硬化物の伸度を向上させた結果、得られる
CFRPは、層間剪断強度、圧縮強度を損なうこと
なく引張物性および耐熱性がさらに優れたものに
なつた。 以下、実施例によつて本発明をさらに詳細に説
明する。 実施例 1 N・N・N′・N′−テトラグリシジルジアミノ
ジフエニルメタン(エポキシ当量120)1750gと
Br化エポキシ樹脂(エポキシ当量360)1500gと
ビスフエノールAのグリシジルエーテル型エポキ
シ樹脂(エポキシ当量189)1750gを100℃にあら
かじめ加熱したニーダに加え十分混合する。混合
した後、ニーダ内容物の温度を60〜65度に冷却し
て、4・4′−ジアミノジフエニルメタン1600gと
三弗化ホウ素モノエチルアミン25gを加え十分混
合してエポキシ樹脂組成物を作つた。この樹脂組
成物を一方向に引き揃えた炭素繊維“トレカ”T
−500(東レ(株)商標)にホツトメルト法により含
浸させ、樹脂含有量34重量%の一方向プリプレグ
を作成した。得られたプリプレグを長さ30cm、幅
30cmに切断し、これを8枚積層した後、離型処理
したアルミ上積層した物を乗せ、ナイロン製のバ
キユムバツクでオートクレーブ成形用にセツトし
た。このセツトした物を、オートクレーブに入
れ、6Kg/cm2に加圧した後、1.5℃/分で昇温
し、180℃で2時間加熱して硬化板を得た。この
硬化板の炭素繊維含有量は58容量%であり、板の
厚さは1.13mmであつた。この硬化板から炭素繊維
方向に長さ230mm、幅12.72mmの0゜引張用試験片
を切り出した。この試験片の両端の両側に長さ50
mm、幅12.72mmで一方の端に10mmのテーパ部を有
するガラス製のタブを接着した。このタブ付き試
験片の中央に歪みゲージを張り付け1mm/分の引
張速度で引張、引張物性を測定した。この測定結
果を表1に示す。また、この硬化板から、
ASTM、D695に準じて試験片を切り出し圧縮物
性を測定した。この結果を表1に示す。次に、プ
リプレグを35cm、幅30cmに切断し、これを16枚積
層した。この積層した物を、上記と同様な方法で
硬化板を作つた。この硬化板の炭素含有量は60容
量%で、板の厚さは2.19mmであつた。この硬化板
から炭素繊維に対して90゜方向に長さ230mm、幅
25.43mmの90゜引張用試験片を切り出した。この
試験片の中央に歪みケージを張り付け、引張速度
1mm/分で引張、引張物性を測定した。この結果
を表1に示す。さらに、この硬化板から、
ASTM、D2344に準じて試験片を切り出し、層間
剪断強度を測定した。この結果を表1に示す。こ
れらの測定結果より、特に耐水性、耐熱性および
引張物性が優れていることを確認した。
[Technical Field] The present invention relates to a high-performance epoxy resin for carbon fiber prepreg. [Prior Art] Carbon fiber reinforced plastics (hereinafter abbreviated as CFRP) has high specific strength and specific modulus, so it is being considered as a structural material for reducing the weight of aircraft bodies in the civil aircraft field, and it has already been used. As a first step, it is used as a secondary structural material. Furthermore, recently, high-strength and elongation carbon fibers have been developed, and CFRP using them has begun to be considered as a primary structural material. The epoxy resin used in CFRP for aircraft is mainly composed of N・N・N′・N′-tetraglycidyldiaminodiphenylmethane, and the curing agent is 4.
4'-diaminodiphenyl sulfone has been used. Such resins are disclosed in detail in, for example, Japanese Patent Publication No. 55-25217. This resin composition is
Since it has a high modulus of elasticity and a high heat distortion temperature, the CFRP obtained from this resin composition has excellent heat resistance, interlaminar shear strength, and compressive strength when dry. However, since this resin composition has a low elongation of the cured product and poor water resistance, the resulting CFRP has the following defects. In other words, since the elongation of the resin is small, CFRP
The 90° tensile elongation is small at 0.4-0.5%. As a result,
The tensile properties of laminates such as 0°/90° and 0°/±45°/90° are low, and the excellent properties of carbon fibers are not fully utilized. Furthermore, recently developed high strength and elongation carbon fibers cannot exhibit sufficient 0° tensile properties. On the other hand, since the water resistance is poor, the heat resistance decreases significantly after water absorption. As a result, the compressive strength at high temperatures after water absorption, which is an important physical property for aircraft structural materials, decreases. In order to meet the compression strength in this state, CFRP
CFRP has to be made thicker, which reduces the efficiency of CFRP in reducing the weight of the aircraft. [Object of the present invention] Therefore, the present inventors conducted intensive studies to find an epoxy resin that exhibits excellent tensile properties and water resistance without impairing the heat resistance, interlaminar shear strength, and compressive strength of CFRP. We have arrived at the present invention. [Structure of the present invention] That is, the present invention provides: (1) 20 to 80 parts by weight of the total epoxy resin;
parts by weight of N・N・N -・N - -tetraglycidyldiaminodiphenylmethane and 15 to 60 parts by weight of
An epoxy resin composition (hereinafter referred to as the present invention A) characterized by containing a brominated epoxy resin and 4,4 - diaminodiphenylsulfone in an amount of 0.8 to 1.2 equivalents per equivalent of epoxy group. (2) 15 to 60 parts by weight of total epoxy resin
parts by weight of N・N・N -・N - -tetraglycidyldiaminodiphenylmethane and 15 to 60 parts by weight of
An epoxy resin composition comprising a brominated epoxy resin, 15 to 60 parts by weight of a novolac type epoxy resin, and 0.8 to 1.2 equivalents of 4,4 - diaminodiphenylsulfone per equivalent of epoxy group. (hereinafter referred to as the present invention B). Regarding. That is, the epoxy resin composition of the present invention A is
As a result of increasing the elongation of the cured product without impairing the elastic modulus of the cured product, the resulting CFRP has a greatly improved 90° tensile elongation of 0.70 to 0.95% without impairing the interlaminar shear strength and compressive strength. 0゜/
Since the physical properties of the laminate at angles of 90°, 0°/±45/90° are improved, the excellent performance of carbon fiber can be fully expressed. It also fully exhibits the 0° tensile properties of recently developed high strength and elongation carbon fibers. Furthermore, we have improved water resistance without compromising the heat resistance of the cured product.
The compressive strength of the obtained CFRP at high temperature after water absorption is
It has become fully satisfactory as a structural material for aircraft. Furthermore, in order to improve the heat resistance of the present invention A and the elongation of the cured product, the present invention B is preferred, in which a novolak type epoxy resin is added to the present invention A. Invention B is obtained as a result of improving heat resistance and elongation of the cured product without impairing other physical properties.
CFRP has improved tensile properties and heat resistance without compromising interlaminar shear strength and compressive strength. N・N・N′・N′-tetraglycidyldiaminodiphenylmethane used in the present invention is
It is commercially available under trade names such as ELM434, YL913, and YH434. Since this epoxy resin is a tetrafunctional epoxy resin, it has the advantage that it has a high crosslinking density and a cured product having a high elastic modulus and high heat resistance can be obtained. On the other hand, the elongation of the cured product is low and the water resistance of the cured product is poor because the molecule contains nitrogen atoms. Considering these characteristics, N・N・
The amount of N′・N′-tetraglycidyldiaminodiphenylmethane added is determined by adding only the epoxy resin excluding the curing agent 4・4′-diaminodiphenyl sulfone.
In the case of 100 parts by weight, it is 15 to 60 parts by weight, more preferably 20 to 50 parts by weight. If the amount exceeds this range, the elongation and water resistance of the cured product will decrease, and if it decreases, the heat resistance and elastic modulus of the cured product will decrease. Obtained by lowering the elastic modulus
The interlaminar shear strength and compressive strength of CFRP decrease. Even if N・N・N′・N′-tetraglycidyldiaminodiphenylmethane contains N・N・N′-triglycidyldiaminodiphenylmethane and a dimer in which these glycidyl groups have reacted with each other, The performance of the resin composition of the present invention is not impaired. The Br epoxy resin used in the present invention is Br
Glycidyl ether type epoxy resin of brominated bisphenol A, glycidyl ether type epoxy resin of brominated phenol novolak resin, with a Br content of 16 to 50% by weight, Epiclon 152,
Epicron 1120, ESB340, EP1050, BREN-S
It is marketed under the trade name. This brominated epoxy resin has the advantage of forming a cured product with high water resistance and high elastic modulus, but has the disadvantage that the large epoxy equivalent weight results in a cured product with low crosslinking density and low heat resistance. Furthermore, since it has steric hindrance due to Br atoms, increasing the concentration of the Br-containing epoxy resin lowers the elongation of the cured product. Considering these characteristics, the amount of brominated epoxy resin added is:
The amount is 15 to 60 parts by weight, more preferably 20 to 50 parts by weight. If the amount exceeds this range, the heat resistance and elongation of the cured product will decrease, and if it decreases, the water resistance and elastic modulus of the cured product will decrease. The novolak type epoxy resins used in the present invention are glycidyl ether type epoxy resins of phenol novolak resin and cresol novolak resin, including EP152, EP154, DER485, N740,
It is commercially available under trade names such as N673 and ESCN220L. This novolak type epoxy resin has the advantage of forming a cured product with high heat resistance, high water resistance, and high elongation, but has the disadvantage of forming a cured product with low elastic modulus. Taking these characteristics into consideration, the amount of novolak type epoxy resin added is 15 to 60 parts by weight, more preferably 20 to 50 parts by weight. If the amount exceeds this range, the elastic modulus of the cured product will decrease, and if it decreases, the water resistance and elongation of the cured product will decrease. Furthermore, EP828,
The addition of glycidyl ether type epoxy resins of bisphenol A, which are commercially available under trade names such as EP1001, EP1004, YD128, Epiclon 855, Epiclon 1050, and ELA128, increases the elongation of the cured product. The addition of ether type epoxy resins is highly preferred. 4,4'-diaminodiphenyl sulfone as a curing agent used in the present invention has a relatively long shelf life as an amine-based curing agent, and
It provides a cured product with high heat resistance. 4・4′−
Theoretically, the addition amount of diaminodiphenylsulfone should be 1 equivalent of amine per 1 equivalent of epoxy, but it is important to adjust the curing speed and shelf life, and the heat resistance, water resistance, and elongation of the resulting cured product. Therefore, the amount of 4,4'-diaminodiphenyl sulfone added is in the range of 0.8 to 1.2 equivalents per equivalent of epoxy. If the amount exceeds this range, the curing speed will be faster and the shelf life will be shorter. Furthermore, the water resistance and heat resistance of the cured product decrease. When the amount is less than this range, the curing speed becomes extremely slow and the heat resistance and elongation of the cured product decrease. Furthermore, in the present invention, 4,4'-diaminodiphenyl sulfone can of course be used in combination with other curing agents or curing accelerators. In particular, the combined use with a boron trifluoride amine complex is very preferable because it increases the curing speed without impairing other properties. In the present invention, in order to obtain a resin viscosity suitable for prepreg, the resin viscosity may be adjusted by prepolymerizing with 4,4'-diaminodiphenyl sulfone or 4,4'-diaminodiphenylmethane. Furthermore, a thermoplastic resin or the like may be added to adjust the resin viscosity and resin flow during curing to an extent that does not impair the performance of the resin composition of the present invention. The epoxy resin composition of the present invention is preferably used as CFRP, but the carbon fibers used in this case can be in any form such as tapes, sheets, mats, textiles, etc. arranged in a certain direction. It can also be applied to carbon fiber. Furthermore, all the materials normally used as reinforcing materials for FRP can be used, such as glass fiber, boron fiber, and organic fiber. [Effects of the present invention] As a result of the epoxy resin composition of the present invention increasing the elongation of the cured product without impairing the elastic modulus of the cured product, the obtained CFRP has a high elongation without impairing the interlaminar shear strength and compressive strength. , 90° tensile elongation 0.7~
Because of the significant improvement of 0.95%, 0°/90°, 0
Since the physical properties of the laminate, such as ゜/±45゜/90゜, are improved, the excellent performance of carbon fiber can be fully expressed. It also fully exhibits the 0° tensile properties of recently developed high strength and elongation carbon fibers. Furthermore, we have improved the water resistance without impairing the heat resistance of the cured product.
The compressive strength of CFRP at high temperatures after water absorption has become sufficiently satisfactory as a structural material for aircraft. Invention B is obtained as a result of improving heat resistance and elongation of the cured product without impairing other physical properties.
CFRP has improved tensile properties and heat resistance without compromising interlaminar shear strength and compressive strength. Hereinafter, the present invention will be explained in more detail with reference to Examples. Example 1 1750 g of N・N・N′・N′-tetraglycidyldiaminodiphenylmethane (epoxy equivalent: 120)
Add 1,500 g of brominated epoxy resin (epoxy equivalent: 360) and 1,750 g of glycidyl ether type epoxy resin of bisphenol A (epoxy equivalent: 189) to a kneader preheated to 100° C. and mix thoroughly. After mixing, the temperature of the contents of the kneader was cooled to 60 to 65 degrees, and 1,600 g of 4,4'-diaminodiphenylmethane and 25 g of boron trifluoride monoethylamine were added and thoroughly mixed to prepare an epoxy resin composition. . Carbon fiber "trading card" T made of this resin composition aligned in one direction
-500 (Trademark of Toray Industries, Inc.) by the hot melt method to create a unidirectional prepreg with a resin content of 34% by weight. The obtained prepreg is 30cm long and wide.
After cutting 30 cm pieces and laminating 8 sheets, the laminated material was placed on release-treated aluminum and set for autoclave molding using a nylon bag. This set material was placed in an autoclave, pressurized to 6 kg/cm 2 , heated at a rate of 1.5° C./min, and heated at 180° C. for 2 hours to obtain a cured plate. The carbon fiber content of this cured board was 58% by volume, and the thickness of the board was 1.13 mm. A 0° tensile test piece having a length of 230 mm and a width of 12.72 mm was cut out from this cured plate in the direction of the carbon fibers. Length 50 on each side of both ends of this specimen
A glass tab with a width of 12.72 mm and a taper of 10 mm at one end was glued. A strain gauge was attached to the center of this tabbed test piece, and tensile properties were measured at a tensile speed of 1 mm/min. The measurement results are shown in Table 1. Also, from this hardened plate,
Test pieces were cut out and compressive properties were measured according to ASTM, D695. The results are shown in Table 1. Next, the prepreg was cut into pieces of 35 cm and width of 30 cm, and 16 pieces were laminated. A cured plate was made from this laminated product in the same manner as above. The carbon content of this cured plate was 60% by volume, and the thickness of the plate was 2.19 mm. From this hardened plate, the length is 230 mm and the width is 90° to the carbon fiber.
A 25.43 mm 90° tensile test piece was cut out. A strain cage was attached to the center of this test piece, and the tensile properties were measured at a tensile rate of 1 mm/min. The results are shown in Table 1. Furthermore, from this hardened plate,
A test piece was cut out according to ASTM, D2344, and the interlaminar shear strength was measured. The results are shown in Table 1. From these measurement results, it was confirmed that especially water resistance, heat resistance, and tensile properties were excellent.

【表】【table】

【表】 実施例 2 N・N・N′・N′−テトラグリシジルジアミノ
ジフエニルメタン1500gとBr化エポキシ樹脂
1500gとノボラツク型エポキシ樹脂(エポキシ当
量176)2000gを、あらかじめ100℃に加熱したニ
ーダに加え十分混合する。混合した後、ニーダ内
容物の温度を60〜65℃に冷却して、4・4′−ジア
ミノジフエニルスルホン1600gと三弗化ホウ素モ
ノエチルアミン25gを加え十分混合してエポキシ
樹脂組成物を作つた。この樹脂組成物を使用し、
実施例1と同様にして、樹脂含有量34重量%の一
方向プリプレグを作つた。このプリプレグを使用
して、実施例1と同様に、0°および90゜引張物
性、圧縮物性、層間剪断強度を測定した。これら
の結果は表2のとおりであり、特に、耐水性、耐
熱性、引張物性が優れていることを確認した。
[Table] Example 2 N・N・N′・N′-tetraglycidyldiaminodiphenylmethane 1500g and brominated epoxy resin
Add 1,500 g and 2,000 g of novolac type epoxy resin (epoxy equivalent: 176) to a kneader preheated to 100°C and mix thoroughly. After mixing, the temperature of the contents of the kneader was cooled to 60 to 65°C, and 1600 g of 4,4'-diaminodiphenylsulfone and 25 g of boron trifluoride monoethylamine were added and thoroughly mixed to prepare an epoxy resin composition. . Using this resin composition,
A unidirectional prepreg with a resin content of 34% by weight was produced in the same manner as in Example 1. Using this prepreg, the 0° and 90° tensile properties, compressive properties, and interlaminar shear strength were measured in the same manner as in Example 1. These results are shown in Table 2, and it was confirmed that the water resistance, heat resistance, and tensile properties were particularly excellent.

【表】 実施例 3 N・N・N′・N′−テトラグリシジルジアミノ
ジフエニルメタン1500gとBr化エポキシ樹脂
1250gとノボラツク型エポキシ樹脂1500gとビス
フエノールAのグリシジルエーテル型エポキシ樹
脂(エポキシ当量188)750gを、あらかじめ100
℃に加熱したニーダに加え十分混合した。混合し
た後、ニーダ内容物の温度を60〜65℃に冷却し
て、4・4′−ジアミノジフエニルスルホン1650g
と三弗化ホウ素モノエチルアミン25gを加え十分
混合してエポキシ樹脂組成物を作つた。この樹脂
組成物を使用し、実施例1と同様にして、樹脂含
有量34重量%の一方向プリプレグを作つた。この
プリプレグを使用して、実施例1と同様に、0゜
および90゜引張物性、圧縮強度、層間剪断強度を
測定した。これらの結果は表3のとおりであり、
特に、耐水性、耐熱性、引張物性が優れているこ
とを確認した。
[Table] Example 3 N・N・N′・N′-tetraglycidyldiaminodiphenylmethane 1500g and brominated epoxy resin
1250g, 1500g of novolac type epoxy resin, and 750g of glycidyl ether type epoxy resin of bisphenol A (epoxy equivalent: 188) were mixed in advance with 100g of novolac type epoxy resin.
The mixture was added to a kneader heated to ℃ and thoroughly mixed. After mixing, the temperature of the contents of the kneader was cooled to 60-65°C, and 1650 g of 4,4'-diaminodiphenylsulfone was added.
and 25 g of boron trifluoride monoethylamine were added and thoroughly mixed to prepare an epoxy resin composition. Using this resin composition, a unidirectional prepreg with a resin content of 34% by weight was produced in the same manner as in Example 1. Using this prepreg, 0° and 90° tensile properties, compressive strength, and interlaminar shear strength were measured in the same manner as in Example 1. These results are shown in Table 3.
In particular, it was confirmed that the water resistance, heat resistance, and tensile properties are excellent.

【表】 比較例 1 N・N・N′・N′−テトラグリシジルジアミノ
ジフエニルメタン5000gと4・4′−ジアミノジフ
エニルスルホン2400gと三弗化ホウ素モノエチル
アミン25gを、あらかじめ60〜65℃に加熱したニ
ーダに加え十分混合してエポキシ樹脂組成物を作
り、以下実施例1と同様にしてプリプレグを作つ
た。このプリプレグを使用して、実施例1と同様
に、0゜および90゜引張物性、圧縮物性、層間剪
断強度を測定した。これらの結果は、表4のとお
りで、引張物性および耐水性の悪いCFRPしか得
られなかつた。
[Table] Comparative Example 1 5000 g of N・N・N′・N′-tetraglycidyldiaminodiphenylmethane, 2400 g of 4,4′-diaminodiphenylsulfone, and 25 g of boron trifluoride monoethylamine were heated to 60 to 65°C in advance. The mixture was added to a heated kneader and thoroughly mixed to prepare an epoxy resin composition, and a prepreg was prepared in the same manner as in Example 1. Using this prepreg, 0° and 90° tensile properties, compressive properties, and interlaminar shear strength were measured in the same manner as in Example 1. These results are shown in Table 4, and only CFRP with poor tensile properties and water resistance was obtained.

【表】【table】

Claims (1)

【特許請求の範囲】 1 全エポキシ樹脂を100重量部として、20〜80
重量部のN・N・N-・N-−テトラグリシジルジ
アミノジフエニルメタンと、15〜60重量部のBr
化エポキシ樹脂と、エポキシ基1当量に対して
0.8〜1.2当量の4・4-ジアミノジフエニルスルホ
ンを含有することを特徴とするエポキシ樹脂組成
物。 2 全エポキシ樹脂を100重量部として、15〜60
重量部のN・N・N-・N-−テトラグリシジルジ
アミノジフエニルメタンと、15〜60重量部のBr
化エポキシ樹脂と、15〜60重量部のノボラツク型
エポキシ樹脂と、エポキシ基1当量に対して0.8
〜1.2当量の4・4-ジアミノジフエニルスルホン
を含有することを特徴とするエポキシ樹脂組成
物。
[Claims] 1 20 to 80 parts by weight of the total epoxy resin
Parts by weight of N・N・N -・N - -tetraglycidyldiaminodiphenylmethane and 15 to 60 parts by weight of Br
epoxy resin and 1 equivalent of epoxy group
An epoxy resin composition containing 0.8 to 1.2 equivalents of 4,4 - diaminodiphenylsulfone. 2 15 to 60 parts by weight of the total epoxy resin
Parts by weight of N・N・N -・N - -tetraglycidyldiaminodiphenylmethane and 15 to 60 parts by weight of Br
epoxy resin, 15 to 60 parts by weight of novolak type epoxy resin, and 0.8 parts per equivalent of epoxy group.
An epoxy resin composition comprising ~1.2 equivalents of 4,4 - diaminodiphenyl sulfone.
JP9297783A 1983-05-26 1983-05-26 Epoxy resin composition Granted JPS59217720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9297783A JPS59217720A (en) 1983-05-26 1983-05-26 Epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9297783A JPS59217720A (en) 1983-05-26 1983-05-26 Epoxy resin composition

Publications (2)

Publication Number Publication Date
JPS59217720A JPS59217720A (en) 1984-12-07
JPS6244770B2 true JPS6244770B2 (en) 1987-09-22

Family

ID=14069450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9297783A Granted JPS59217720A (en) 1983-05-26 1983-05-26 Epoxy resin composition

Country Status (1)

Country Link
JP (1) JPS59217720A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8421525D0 (en) * 1984-08-24 1984-09-26 Ciba Geigy Ag Powder coating compositions
EP1142920B1 (en) 1998-12-25 2011-08-03 Mitsubishi Rayon Co., Ltd. Epoxy resin composition, prepreg, and roll made of resin reinforced with reinforcing fibers
RU2608400C2 (en) * 2011-12-09 2017-01-18 Сайтек Текнолоджи Корп. Surfacing film for composite structures and method of making same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55127424A (en) * 1979-03-23 1980-10-02 Toray Ind Inc Curable resin composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55127424A (en) * 1979-03-23 1980-10-02 Toray Ind Inc Curable resin composition

Also Published As

Publication number Publication date
JPS59217720A (en) 1984-12-07

Similar Documents

Publication Publication Date Title
JP4687167B2 (en) Epoxy resin composition, prepreg and fiber reinforced composite material
JP2003026768A (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
EP0326177B1 (en) Epoxy resin composition and prepreg for composite materials using the same
JPH02151623A (en) Epoxy resin composition and prepreg
JPH04249544A (en) Resin composition, prepreg and production of prepreg
US5310825A (en) Epoxy matrix containing amine hardener and micropulverized polyimide
JPS6244770B2 (en)
EP0366068B1 (en) Epoxy resin composition
JPH0365812B2 (en)
JPS6236421A (en) Epoxy resin composition for prepreg
JPH04339818A (en) Intermediate for composite material
JPH01135858A (en) Epoxy resin composition for fiber reinforcement
JP2006104403A (en) Epoxy resin composition
JP7290109B2 (en) Epoxy resin compositions, prepregs and fiber reinforced composites
JPS6244771B2 (en)
JPS6244772B2 (en)
JPS62177016A (en) Epoxy resin composition
JPS61250021A (en) Matrix resin composition for prepreg
JPH02124919A (en) Epoxy resin composition
JPS61250022A (en) Matrix resin composition
JPH01135859A (en) Epoxy resin composition
JPS6257417A (en) Epoxy resin composition for prepreg
US5179139A (en) Dihydroxybiphenyl-advanced epoxy resin blends
JPS61231021A (en) Epoxy resin composition
JPS6039286B2 (en) prepreg